
A COMPARATIVE ANALYSIS OF DIFFERENT LFSR BASED

CIPHERS AND PARALLEL COMPUTING PLATFORMS FOR

DEVELOPMENT OF GENERIC CIPHER COMPATIBLE ON

BOTH HARDWARE AND SOFTWARE PLATFORMS

Trishla Shah
*
, Darshana Upadhyay

1
, Priyanka Sharma

2

*
Department of Computer Science and Engineering, Institute of Technology, Nirma

University, Ahmedabad 382481, India

Student and Corresponding author, email: 13mcei15@nirmauni.ac.in

1
Assistant Professor, Institute of Technology, Nirma University, Ahmedabad

382481, India email:

darshana.upadhyay@nirmauni.ac.in

2
Associate Professor, Institute of Technology, Nirma University, Ahmedabad

382481, India, email: priyanka.sharma@nirmauni.ac.in

ABSTRACT

Pseudo-Random numbers are at the core of any network security application. They

find their application in the network security domain in key-generation, re-keying,

authentication, smart-phone security etc. These random numbers are produced

through PRNG (Pseudo Random Number Generator). Hence, if the PRNG

produces predictable sets of random numbers, then the entire application would be

prone to attacks. Therefore, development of a generic framework for generating

strong sets of pseudo-random numbers is proposed. Hardware implementation for

GSM stream cipher is already available under a particular segment of mobile

communication. The project advanced into many dimensions like, vulnerability

assessment, protocol design, implementation in both software and hardware and

evaluation. The proposal aims to build an in-general framework and a unified

model for enhanced security specifically for LFSR (Linear Feedback Shift Register)

based stream ciphers. Hence, a thorough study on already existing LFSR based

ciphers is done which aims to extract out the behaviour of different ciphers under

different application domains. As pseudo-random numbers are used in both

software (stream ciphers, protocol design) and hardware (wireless devices, smart

phones) areas of security, the generic model proposed is aimed at using a co-

simulation of both. For software development of the cipher, a parallel computing

environment has been chosen because in today’s computing trends, multi-core

processors are superseding the sequential ones, hence the primary engine for

processor performance growth is to increase parallelism rather than increasing the

clock rate. The paper thus presents the CSPRNG (Cryptographically Secure Pseudo

Random Number Generator) model based on hardware and software co-simulation,

using a generic approach.

Key words: CSPRNG, GSM, Attacks, Keys, Generic, Co-simulation, LFSR

INTRODUCTION

 In today's era, the use of networks and its applications are growing rapidly.

Users often reveal critical information like account numbers, bank passwords,

personal and financial details, important transaction details etc., over the Internet.

Apart from its legitimate use, attacks like password theft, virus attacks, spoofing,

message confidentiality threats, message integrity threats etc., have been found,

causing potential loss of the users’ private information. Hence it is important to

build a secure system providing a perfect balance of confidentiality, integrity and

availability of users’ private data. These security parameters are provided by a

mechanism of key generation (public and private keys), random password

generation, one-time password (OTP) generation, strong authentication etc.

Implementation of these mechanisms is done through generation of unpredictable

sets of random numbers having high uncertainty, called pseudo-random numbers.

Hence, pseudo-random numbers are at the core in providing security to network

applications. These random numbers are produced through a Pseudo-Random

Number Generator. Hence, if the PRNG (Pseudo-Random Number Generator)

produces predictable sets of random numbers, then the entire application would be

prone to attacks. Therefore, development of a generic framework for generating

strong sets of pseudo-random numbers, using a co-simulation of hardware and

software is proposed. The proposal aims to build an in-general framework and a

unified model for enhanced security specifically for LFSR (Linear Feed-Back Shift

Register). Here, the design of the model has been constrained specifically for

enhanced security of LFSR based stream ciphers, owing to its good statistical

properties, large period, well suited to low power or high speed requirements. For

the software implementation, a parallel computing platform i.e. GPU programming

is chosen, for increasing throughput. Therefore the entire model aims to develop a

CSPRNG (Cryptographically Secure PRNG), using hardware and software co-

simulation, for its use in various security applications. The research is thus

constrained to network security domain.

Basic Concept

LFSR based stream ciphers are currently used in almost all network security

applications (e.g., military cryptography, etc.) Recent research shows that these are

prone to various threats like eavesdropping, snooping, masquerading and in the

specific wireless network domain poor security mechanisms are explored.[1]

Stream ciphers currently, are implemented on both hardware (A5/1, A5/2,

KASUMA, E0, MICKEY, GRAIN, SNOW, FISH) and software (HC- 256, Rabbit,

Salsa20, SOSEMANUK) [2] platforms. These ciphers have been detected to be

prone to various network attacks like dynamic cube attack, basic correlation attack,

refinement attack, guess-and-determine attack, linear approximation attack,

algebraic attack, Berlekamp-Massey attack, fast time memory trade-off attack

(which requires some pre computation) [3]. Hence, designing a strong LFSR based

PRNG, resistant to above mentioned stream cipher attacks, is needed.

Challenges

Many stream ciphers have been designed for the generation of a strong set of

pseudo random numbers but certain limitations are observed like: i) While

designing hardware ciphers, the computational complexity over software

performance decreases ii) Very few ciphers have been designed, working for

network security applications in both hardware and software domains. iii) The

software implementation is mostly done sequentially increasing time complexity

overhead. iv) Ciphers compatible for generating good pseudo random series on a

generic platform for diverse applications has not yet been designed.

LITERATURE SURVEY

The design features of this CSPRNG are done, considering its compatibility

with both hardware and software. Hence, the entire literature survey is divided into

analysis of Network Applications requiring PRNs, analysing hardware and software

ciphers and analysing parallel computing platforms.

Analysis of Network Applications requiring pseudo-random numbers:

i) Application in generation of keys and in re-keying:

As per Tara Chand Singhal [4], key-distribution and re-keying are major problems

in any research, and in wireless environment, these problems increase due to lesser

sources of infrastructure, power and memory cost. The stream ciphers are used in

secure communication in WEP (Wired Equivalent Privacy) and military

applications. Hence, in all these applications, generation of pseudo random

numbers is important for maintaining privacy and security. Hence, a strong cipher

needs to be designed, which provide a highly random and attack resistant encrypted

text and is to be designed at SSL (Secure Socket Layer). Re-keying is used, if in the

same communication band (which may be long enough), different keys are used for

security purpose.

ii) Mobile Devices for Mobile-Agent Communication:

With mobile agents, like mobile devices, major attacks occur during the process of

communication and migration from one cell to another. Agent state, which is gained

at previous executions, needs to be encrypted, so that an intruder cannot change or

take advantage of it. This requires the generation of secret key, which is a strong

pseudo random number. [5]

iii) Application on Smart Phones:

In any security applications, ubiquitous computing devices, not having necessary

computing capacities are hard to operate. Smart cards have PRN (Pseudo-Random

Numbers) for security. Usually PRN are produced by physical random number

generator, but these are vulnerable to environmental changes. Hence, for securing

against attacks, generation of the PRN is required. [6]

iv) Authentication to counter DOS (Denial of Service) Attack on 802.11:

WLANs (Wireless LAN) which are based on 802.11 standards, are vulnerable to

DOS attacks due to unprotected authentication management and control frames.

They can be filtered by pseudo random number generator authentication. Here a

mechanism for authentication is provided for security. A strong and highly

unpredictable random sequence is required. Hence, a PRNG based on software

mechanism is required. [7]

Analysis of Hardware Cipher

For understanding the design specification of hardware, following hardware ciphers

have been studied: i) GRAIN -128 [8], ii) GRAIN-128a [9], iii) SNOW 2.0 (both

h/w and s/w) [10], iv) SNOW 2.0 modified [11], v) RFID (AES) [12].The table

presents a detailed study of all hardware ciphers, useful in cipher designing.

 Table 2 Analysis of hardware ciphers.

Parameters RFID GRAIN-128 GRAIN-128a

Purpose Providing

security using

strong symmetric

authentication,

using low-power

and low die-size.

Providing security

in all hardware

applications with

low memory and

low power, using

lesser components

Enhanced from

GRAIN-128,

supporting improved

authentication and

hardware

performance.

Security

Issues to be

overcome by

the ciphers

Consumer

tracking, tag

forgery and the

unauthorized

access to the tag’s

memory content.

Correlation Attack,

Chosen IV attack,

Time

Memory Trade-off

attack

All Attacks observed

by Grain-128

Input to

Ciphers

Blocks(128 bits) Bit-oriented Bit-oriented

Reason for

input

AES provides

better security

Bit-oriented, as it is

easy to implement

in hardware

Bit-oriented, as it is

easy to implement in

hardware

Functions

Applied to

input

text(bytes)

Functions

Applied to input

text(bytes)

LFSR, NFSR, filter

function

LFSR, NFSR, pre-

output function

Key-Size 128-bits 80 bits 128-bits

Reason for

key-size

selection

- To prevent all

attacks with

computational

complexity lower

than 2
80

-

S-box or

NFSR use(if

yes), then

reason for

selection

The more S-boxes

are used the less

clock cycles are

needed for

encryption.

Generation of non-

linearity

Both shift registers

are regularly clocked

so the cipher will

output one bit every

second clock. This

regular clocking is an

advantage, both in

terms of performance

and resistance to

side-channel attacks,

compared to using

irregular clocking or

Decimation

Reason for

selection of

algorithms on

hardware

implementati

on

AES-Main aim of

using AES in

RFID is using

min hardware

(constraint is size)

and min power

consumption.

Hence, an 8-bit

architecture

instead of 32-bit,

reduces number

of S-boxes and

reduce in power

consumption.

GRAIN- Main aim

is to avoid attacks

with computational

complexity not

more than 2^80 and

min hardware.

Hence a memory of

160-bits is chosen

and functions are

chosen

appropriately

minimize hardware.

GRAIN-128a- Main

aim is to provide in-

built support for

authentication and

improve hardware

performance against

older version of

GRAIN. The

authentication

depends on the

security of pre-output

stream (to provide

more randomness).

Throughput Gate Equivalent-

3595

Clock Rate- 992

Gate Equivalent-

2243

Clock Rate-256

Gate Equivalent-

2133

Clock Rate-160

Improvement

s from

previous

ciphers

Previous AES

implementations

never focused on

AES module low

die-size and low

power-

consumption

requirements.

This

implementation

focused only on

low hardware

complexity and

low power

consumption,

providing

authentication

The AES

implementation on

RFID used more

number of gates,

thus increasing

hardware

complexity. GRAIN

128 is specifically

tailored for using

low hardware

complexity and

security against

attacks.

GRAIN 128 didn’t

have

authentication so,

GRAIN 128a

provided

authentication

support, and high

security by its highly

random pre-output

generator.

The hardware, hence to be used in cipher, is concentrated on its clock cycles,

feasibility in applications, its orientation in bits or words etc.

Analysis of Software ciphers

The software ciphers implemented till date were designed specifically for

sequential generation. Hence, these ciphers are studied to understand their

sequential computation and replace it with parallel computing and to check the

feasibility of these ciphers for parallel computation.

 Table 3 Analysis of software cipher.

Cipher Usage Implemented Approach

SNOW 1.0 Development

of a more

secure and fast

cipher

A.1) Outputs from two components LFSR

and FSM is independent of each other yet it is

sequential.

A.2) A technique called hard-coding is used,

to increase the speed of computation but

memory used is high

A.3) XORing outputs of LFSR and FSM is

done sequentially.

SNOW 2.0 Improvements

over previous

version

1)Mathematical equations derived for SNOW

2.0 are as follows:

(x) = x16 + x14+1x5 + 1 F232

[x],4 = 233 + 2452+ 48 + 239

MUL[c] = (c23,c245, c48, c239)

MUL1[c] = (c16, c39, c6, c64). All above

equations are solved sequentially using gcc or

Microsoft C++ Compiler.

RC4 Cipher Used for

checking out

effect of ad-

versaries on

embedded

devices

The implementation of RC4 is on CPU with

the verification process being sequential,

leading to overheads.

The analysis of software ciphers depicts the need to use parallel rather than

sequential computing in their implementation approach. The advantages of using

CUDA, is done in latter part of paper.

EXPERIMENTAL BASIS

 For software implementation, it is necessary to choose a robust platform

equalizing the trade-off between time and speed which is satisfied by using a GPU

rather than CPU. Hence, parallel computing is beneficial rather than sequential.

While surveying on parallel platforms, two most prominent candidates are: i)

Nvidia’s GPU and ii) Intel’s GPU. The API used for Nvidia is CUDA and for Intel

is OpenCL. A thorough analysis of these frameworks has been done. The analysis

branches up in following segments:

Analysis of Parallel Computing Platform

The software implementation is to be done on parallel computing platforms. Here

parallel platform is chosen rather than normal sequential computing to increase

efficiency and decrease time. A parallel computing environment has been chosen

because in today’s computer trends, multi-core processors are superseding the

sequential ones, hence the primary engine for processor performance growth is to

increase parallelism rather than increasing the clock rate. Hence, increased

parallelism would increase the efficiency of random number generation. Many

parallel programming platforms are available like CUDA (Compute Unified Device

Architecture), OpenCL etc. are available. The survey analysis to find a better

platform is done. The following section shows the performance metrics of CUDA

over OpenCL in terms of throughput, timings, overheads etc.

Survey of default Pseudo Random Generating Libraries:

Both the platforms have in-built pseudo-random number generating libraries. The

CUDA library for pseudo random number generation is CURAND and OpenCL,

has PRNGCL for pseudo random number generation. The common basic algorithm

which is used in both for pseudo random number generation is MTGP (Mersenne

Twister). A thorough analysis of MTGP algorithm is done and is based on LFSR.

This made the direction of survey much clear and precise.

Analysis of randomness of generated algorithms through NIST statistical toolkit:

The random numbers generated from the two platforms were tested on NIST

statistical toolkit. Randomness was checked based on 14 parameters: [14]. The

below table indicates a comparison between CUDA and OpenCL based on various

tests. The tests were carried out for various bit streams including

10,100,1000,10,000. The X-axis indicates various tests and Y-axis indicates its

comparison results. The results showed CUDA’s MTGP to have a better

randomness rather than OpenCL. Hence it was concluded that CUDAs pseudo

random platform is more effective in PRNG generation rather than OpenCL. The

brief analysis is shown in table 4:

P1 P2 P3 P4 P5 P6

App

Entropy

Test

Block

Frequency Test

Cumulative Test

Forward

Cumulative Test

Reverse

FFT Fq

 Fig.1 NIST analysis of CUDA and OpenCL

Table 4 Effectiveness of CUDA for designing existing ciphers

Implemented approach

using sequential

computing

Suggested approach using

CUDA

How is CUDA

better

1) In many ciphers, Output

from two components,

LFSR and FSM is

independent of each other,

yet it is done sequential.

2) A technique

called Hard-coding is

used, to increase the speed

of computation, but

memory used is

high.

3) XORing of outputs of

LFSR and FSM, is done

sequentially.

1) Using CUDA, generation of

outputs from LFSR and FSM

can be done in parallel.

2)Hardcoding LFSR is done

sequentially;

this can be done in parallel.

3) XORing of

outputs of LFSR and FSM can

be

done in parallel.

Generation of

parallel outputs

would save time

and increase

efficiency.

Mathematical

equations derived for

SNOW 2.0 are as follows:

(x) = x16 + x14

+1x5 + 1 F232

[x],4 = 233 + 2452

+ 48 + 239

MUL[c] = (c23,

c245, c48, c239)

MUL1 [c] =

(c16,c39, c6,

c64). All above equations

are solved

sequentially using gcc or

Microsoft C++ Compiler.

These equations can be solved

in parallel like splitting entire

equation

as x16, x14, 233 etc , with one

thread solving one term. All

these can then be added in

parallel.

Computational

complexity of

Matrix

multiplication for

these equations

would decrease

exponentially to

the base 2.

The implementation of

RC4 is on CPU

with the verification

process being sequential,

leading to overheads

The same approach can be done

in parallel, leading to low

overheads of cycles.

With CUDA the

entire algorithm

can be optimized.

OBSERVATIONS

 On the basis of above survey, following conclusions have been made for the

proposed cipher. i) A hybrid of word oriented and bit oriented cipher is to be

implemented for designing LFSR. This would best optimize the initial cycles as

well as increase efficiency in software based ciphers. ii) A cipher is to be designed

keeping in mind its basic utility i.e. security over communication with multiple

messages using a single common key, and in telecommunication scenario for

recovery from frame loss of sync messages. To design the above features, MODES

can be designed in the cipher. iii) To increase efficiency, the component structure

needs to work independently i.e. their o/p must be independent of each other and

only the final output must be XORed. This can be best fitted in CUDA.

DISCUSSION

A primary objective of this paper is to design, implement and evaluate the

cryptographically secure PRNG on parallel computing platforms. Towards the

realization of this objective, the short term goals of this proposal are to:

i) Investigate vulnerabilities and security mechanisms in LFSR based stream

ciphers. ii) Design wireless interface and techniques for stream ciphers

vulnerability modelling and evaluate security requirements for each component

network; iii) Design the proposed algorithm for PRNG using a hybrid of various

methods (shrinking generator, nonlinear filter generator and alternating step

generator) to break the predictability of LFSRs. iv) Comparative analysis of

different parallel computing environment, namely OpenCL and CUDA. v) Analyse

and design proposed algorithm using VHDL (very high speed integrated circuit

hardware description language) on hardware platform FPGA-SPARTAN 6 and

using CUDA on software parallel platform. vi) Identifying the hardware utilization

using Spartan-6, FPGA, measurement of execution speed using parallel Computing

software - CUDA, evaluate randomness of key stream using the NIST statistical

test package.

TECHNICAL REQUIREMENTS AND FEASIBILITY

 As the project is focused on both hardware and software implementation, it

confines its technical requirements in both these domains. Hardware

Requirements: VHDL- Very High Speed Integrated Circuit Hardware Description

Language Analysis and designing of the proposed algorithm is done using VHDL

language. FPGA-SPARTAN 6- The simulation of the proposed algorithm is to be

done, using FPGA-Spartan 6 toolkit. Software Requirements: CUDA- Compute

Unified Device Architecture is a parallel computing platform to parallelize the

given algorithm, developed by NVIDIA. The GPU used is GeForce 480.

CONCLUSION AND FUTURE WORK

 Through this paper, a precise review on different network applications,

hardware and software ciphers, parallel computing platforms have been done. The

study thus enforces the need to build a generic cipher which works efficiently both

on hardware and software platforms. From the literature and the experimental basis,

designing of the strong cipher is quite clear and easy. An n-bit LFSR cipher,

customized for different application and different requirements of computation

capacities is proposed. Figure 2 shows the block diagram of proposed cipher.

 Fig.2 Block Diagram of PRNG Generation

ACKNOWLEDGMENT

 Towards the progress of the project, I would firstly like my organization

INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY for granting of ample

resources and a strong platform. I would like to thank all the associated professors

and dignitaries.

REFERENCES

1. M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick,S. Morton, E.

Phillips, Y. Zhang, and V. Volkov, “Parallel Computing Experiences with CUDA,”

IEEE Micro, vol. 28, pp. 13–27, July 2008.

2. Wasim A Al-Hamdani and Ivory J Griskell. A proposed curriculum of

cryptography courses. In Proceedings of the 2nd annual conference on Information

security curriculum development, pages 4-11. ACM, 2005.

3. Bart Preneel, Christof Paar, and Jan Pelzl. Understanding cryptography: a

textbook for students and practitioners. Springer, 2009.

4. Tara Chand Singhal. Systems and methods for complex encryption keys, January

29 2013. US Patent 8,363,834.

5. U. Topaloglu, C. Bayrak, and K. Iqbal. A pseudo random number generator in

mobile agent interactions. In Engineering of Intelligent Systems, 2006 IEEE

International Conference on, pages 1-5, 2006.

6. Jian-Wei Fan, Chao-Wen Chan, and Ya-Fen Chang. A random increasing

sequence hash chain and smart card-based remote user authentication scheme. In

Information, Communications and Signal Processing (ICICS) 2013 9th

International Conference on, pages 1-5. IEEE, 2013.

7. Mansoor Ahmed Khan and Aamir Hasan. Pseudo random number based

authentication to counter denial of service attacks on 802.11. In Wireless and

OpticalCommunications Networks, 2008. WOCN'08. 5th IFIP International

Conference on, pages 1-5. IEEE, 2008.

8. Hell, Martin, Thomas Johansson, and Willi Meier. "Grain: a stream cipher for

constrained environments." International Journal of Wireless and Mobile

Computing 2.1 (2007): 86-93.

9. Martin_Agren, Martin Hell, Thomas Johansson, and Willi Meier. A new version

of grain-128 with authentication. In Symmetric Key Encryption Workshop 2011

10. Patrik Ekdahl and Thomas Johansson. Snow-a new stream cipher. In

Proceedings of First Open NESSIE Workshop, KU-Leuven, pages 167-168, 2000.

11. Patrik Ekdahl and Thomas Johansson. A new version of the stream cipher snow.

In Selected Areas in Cryptography, pages 47-61. Springer, 2003.

12. Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong

authentication for rfid systems using the aes algorithm. In Cryptographic Hardware

and Embedded Systems-CHES 2004, pages 357-370. Springer, 2004.

13. Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. A comprehensive

performance comparison of cuda and OpenCL. In Parallel Processing (ICPP), 2011

International Conference on, pages 216-225. IEEE, 2011.

14. A Statistical Test Suite for Random and Pseudorandom Number Generators for

Cryptographic Applications.

