

Page 1

ABSTRACT:-

“Android is a software stack for mobile devices that includes an operating system,

middleware and key applications. The Android provides the tools and APIs necessary to

begin developing applications on the Android platform using the Java programming

language”. Android build system is organized a specific directory tree structure for your

Android project and much like any other Java project. and what it all does to prepare the

actual application that will run on the device or emulator.

INTRODUCTION:-

What is Android?
Android is a software stack for mobile devices that

includes an operating system, middleware and key

applications. The Android provides the tools and

APIs necessary to begin developing applications on

the Android platform using the Java programming

language.

 [ANDROID provide for API and Tools]

Features:-
 Application framework enabling reuse and

replacement of components

 Dalvik virtual machine optimized for

mobile devices

 Integrated browser based on the open

source Web Kit engine

 Optimized graphics powered by a custom

2D graphics library; 3D graphics based on

the OpenGL ES 1.0 specification (hardware

acceleration optional)

 SQLite for structured data storage

 Media support for common audio, video,

and still image formats (MPEG4, H.264,

MP3, AAC, AMR, JPG, PNG, and GIF)

 GSM Telephony (hardware dependent)

 Bluetooth, EDGE, 3G, and

WiFi (hardware dependent)

 Camera, GPS, compass, and

accelerometer (hardware dependent)

 Rich development environment including

a device emulator, tools for debugging,

memory and performance profiling, and a

plug-in for the Eclipse IDE

Android Overview, Application Framework and working style

Prof. Ketan R. Patel Prof. Devendra Vashi

Asst. Processor Asst. Processor

MCA Prog. MCA Prog.

NSVKMS MCA College,

Visnagar

Institute of Technology,

Nirma University, Ahmedabad

Email:ketan6599@yahoo.com Email:devendra.vashi@gmail.com

http://webkit.org/

Page 2

Android Architecture:-

The following diagram shows the major

components of the Android operating system. Each

section is described in more detail below.

 [Architecture]

Applications:-

Android will ship with a set of core applications

including an email client, SMS program, calendar,

maps, browser, contacts, and others. All

applications are written using the Java programming

language.

Application Framework:-

By providing an open development platform,

Android offers developers the ability to build

extremely rich and innovative applications.

Developers are free to take advantage of the device

hardware, access location information, run

background services, set alarms, add notifications to

the status bar, and much, much more.

Developers have full access to the same framework

APIs used by the core applications. The application

architecture is designed to simplify the reuse of

components; any application can publish its

capabilities and any other application may then

make use of those capabilities (subject to security

constraints enforced by the framework). This same

mechanism allows components to be replaced by

the user.

Underlying all applications is a set of services and

systems, including:

A rich and extensible set of Views that can be used

to build an application, including lists, grids, text

boxes, buttons, and even an embeddable web

browser

Content Providers that enable applications to access

data from other applications (such as Contacts), or

to share their own data

A Resource Manager, providing access to non-code

resources such as localized strings, graphics, and

layout files

A Notification Manager that enables all applications

to display custom alerts in the status bar

An Activity Manager that manages the lifecycle of

applications and provides a common navigation

back stack

Libraries:-

Android includes a set of C/C++ libraries used by

various components of the Android system. These

capabilities are exposed to developers through the

Android application framework. Some of the core

libraries are listed below:

System C library - a BSD-derived implementation

of the standard C system library (libc), tuned for

embedded Linux-based devices

http://developer.android.com/resources/tutorials/views/index.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/resources/resources-i18n.html
http://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/reference/android/app/Activity.html

Page 3

Media Libraries - based on Packet Video’s Open

CORE; the libraries support playback and recording

of many popular audio and video formats, as well as

static image files, including MPEG4, H.264, MP3,

AAC, AMR, JPG, and PNG

Surface Manager - manages access to the display

subsystem and seamlessly composites 2D and 3D

graphic layers from multiple applications

LibWebCore - a modern web browser engine

which powers both the Android browser and an

embeddable web view

SGL - the underlying 2D graphics engine

3D libraries - an implementation based on OpenGL

ES 1.0 APIs; the libraries use either hardware 3D

acceleration (where available) or the included,

highly optimized 3D software rasterizer

Free Type - bitmap and vector font rendering

SQLite - a powerful and lightweight relational

database engine available to all applications

Android Runtime:-

Android includes a set of core libraries that provides

most of the functionality available in the core

libraries of the Java programming language.

Every Android application runs in its own process,

with its own instance of the Dalvik virtual machine.

Dalvik has been written so that a device can run

multiple VMs efficiently. The Dalvik VM executes

files in the Dalvik Executable (.dex) format which

is optimized for minimal memory footprint. The

VM is register-based, and runs classes compiled by

a Java language compiler that have been

transformed into the .dex format by the included

"dx" tool.

The Dalvik VM relies on the Linux kernel for

underlying functionality such as threading and low-

level memory management.

Linux Kernel:-

Android relies on Linux version 2.6 for core system

services such as security, memory management,

process management, network stack, and driver

model. The kernel also acts as an abstraction layer

between the hardware and the rest of the software

stack.

Application Fundamentals:-

Quick view

Android applications are composed of one or more

application components (activities, services, content

providers, and broadcast receivers)

Each component performs a different role in the

overall application behavior, and each one can be

activated individually (even by other applications)

The manifest file must declare all components in the

application and should also declare all application

requirements, such as the minimum version of

Android required and any hardware configurations

required

Non-code application resources (images, strings,

layout files, etc.) should include alternatives for

different device configurations (such as different

strings for different languages and different layouts

for different screen sizes)

In this document

Application Components, Activating components

The Manifest File

 Declaring components

 Declaring application requirements

 Application Resources

Android applications are written in the Java

programming language. The Android SDK tools

compile the code—along with any data and

http://developer.android.com/guide/topics/fundamentals.html#Components
http://developer.android.com/guide/topics/fundamentals.html#ActivatingComponents
http://developer.android.com/guide/topics/fundamentals.html#Manifest
http://developer.android.com/guide/topics/fundamentals.html#DeclaringComponents
http://developer.android.com/guide/topics/fundamentals.html#DeclaringRequirements
http://developer.android.com/guide/topics/fundamentals.html#Resources

Page 4

resource files—into an Android package, an archive

file with an .apk suffix. All the code in a

single .apk file is considered to be one application

and is the file that Android-powered devices use to

install the application.

Once installed on a device, each Android

application lives in its own security sandbox:

 The Android operating system is a multi-

user Linux system in which each application is a

different user.

 By default, the system assigns each

application a unique Linux user ID (the ID is used

only by the system and is unknown to the

application). The system sets permissions for all the

files in an application so that only the user ID

assigned to that application can access them.

 Each process has its own virtual machine

(VM), so an application's code runs in isolation

from other applications.

 By default, every application runs in its own

Linux process. Android starts the process when any

of the application's components need to be

executed, then shuts down the process when it's no

longer needed or when the system must recover

memory for other applications.

In this way, the Android system implements

the principle of least privilege. That is, each

application, by default, has access only to the

components that it requires to do its work and no

more. This creates a very secure environment in

which an application cannot access parts of the

system for which it is not given permission.

However, there are ways for an application to share

data with other applications and for an application

to access system services:

It's possible to arrange for two applications to share

the same Linux user ID, in which case they are able

to access each other's files. To conserve system

resources, applications with the same user ID can

also arrange to run in the same Linux process and

share the same VM (the applications must also be

signed with the same certificate).

An application can request permission to access

device data such as the user's contacts, SMS

messages, the mountable storage (SD card), camera,

Bluetooth, and more. All application permissions

must be granted by the user at install time.

That covers the basics regarding how an Android

application exists within the system. The rest of this

document introduces you to:

The core framework components that define your

application.

The manifest file in which you declare components

and required device features for your application.

Resources that are separate from the application

code and allow your application to gracefully

optimize its behavior for a variety of device

configurations.

Application Components:-

Application components are the essential building

blocks of an Android application. Each component

is a different point through which the system can

enter your application. Not all components are

actual entry points for the user and some depend on

each other, but each one exists as its own entity and

Plays a specific role—each one is a unique building

block that helps define your application's overall

behavior.

There are four different types of application

components. Each type serves a distinct purpose

and has a distinct lifecycle that defines how the

component is created and destroyed.

Here are the four types of application

components:-

Page 5

Activities:

An activity represents a single screen with a user

interface. For example, an email application might

have one activity that shows a list of new emails,

another activity to compose an email, and another

activity for reading emails. Although the activities

work together to form a cohesive user experience in

the email application, each one is independent of

the others. As such, a different application can start

any one of these activities (if the email application

allows it). For example, a camera application can

start the activity in the email application that

composes new mail, in order for the user to share a

picture.An activity is implemented as a subclass

of Activity and you can learn more about it in

the Activities developer guide.

Services

A service is a component that runs in the

background to perform long-running operations or

to perform work for remote processes. A service

does not provide a user interface. For example, a

service might play music in the background while

the user is in a different application, or it might

fetch data over the network without blocking user

interaction with an activity. Another component,

such as an activity, can start the service and let it

run or bind to it in order to interact with it.

A service is implemented as a subclass

of Service and you can learn more about it in

the Services developer guide.

Content providers

A content provider manages a shared set of

application data. You can store the data in the file

system, an SQLite database, on the web, or any

other persistent storage location your application

can access. Through the content provider, other

applications can query or even modify the data (if

the content provider allows it). For example, the

Android system provides a content provider that

manages the user's contact information. As such,

any application with the proper permissions can

query part of the content provider (such

as ContactsContract.Data) to read and write

information about a particular person.

Content providers are also useful for reading and

writing data that is private to your application and

not shared. For example, the Note Pad sample

application uses a content provider to save notes.

A content provider is implemented as a subclass

of ContentProvider and must implement a standard

set of APIs that enable other applications to perform

transactions. For more information, see the Content

Providers developer guide.

Broadcast receivers:

A broadcast receiver is a component that responds

to system-wide broadcast announcements. Many

broadcasts originate from the system—for example,

a broadcast announcing that the screen has turned

off, the battery is low, or a picture was captured.

Applications can also initiate broadcasts—for

example, to let other applications know that some

data has been downloaded to the device and is

available for them to use. Although broadcast

receivers don't display a user interface, they

may create a status bar notification to alert the user

when a broadcast event occurs. More commonly,

though, a broadcast receiver is just a "gateway" to

other components and is intended to do a very

minimal amount of work. For instance, it might

initiate a service to perform some work based on the

event.

A unique aspect of the Android system design is

that any application can start another application’s

component. For example, if you want the user to

capture a photo with the device camera, there's

probably another application that does that and your

application can use it, instead of developing an

activity to capture a photo yourself. You don't need

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/guide/topics/fundamentals/activities.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/guide/topics/fundamentals/services.html
http://developer.android.com/reference/android/provider/ContactsContract.Data.html
http://developer.android.com/resources/samples/NotePad/index.html
http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html

Page 6

to incorporate or even link to the code from the

camera application. Instead, you can simply start

the activity in the camera application that captures a

photo. When complete, the photo is even returned to

your application so you can use it. To the user, it

seems as if the camera is actually a part of your

application.

When the system starts a component, it starts the

process for that application (if it's not already

running) and instantiates the classes needed for the

component. For example, if your application starts

the activity in the camera application that captures a

photo, that activity runs in the process that belongs

to the camera application, not in your application's

process. Therefore, unlike applications on most

other systems, Android applications don't have a

single entry point (there's no main() function, for

example).

Because the system runs each application in a

separate process with file permissions that restrict

access to other applications, your application cannot

directly activate a component from another

application. The Android system, however, can. So,

to activate a component in another application, you

must deliver a message to the system that specifies

your intent to start a particular component. The

system then activates the component for you.

Activating Components:-

Three of the four component types—activities,

services, and broadcast receivers—are activated by

an asynchronous message called an intent. Intents

bind individual components to each other at runtime

(you can think of them as the messengers that

request an action from other components), whether

the component belongs to your application or

another.

Intent is created with an Intent object, which defines

a message to activate either a specific component or

a specific type of component—intent can be either

explicit or implicit, respectively.

For activities and services, intent defines the action

to perform (for example, to "view" or "send"

something) and may specify the URI of the data to

act on (among other things that the component

being started might need to know). For example,

intent might convey a request for an activity to

show an image or to open a web page. In some

cases, you can start an activity to receive a result, in

which case, the activity also returns the result in

an Intent (for example, you can issue an intent to let

the user pick a personal contact and have it returned

to you—the return intent includes a URI pointing to

the chosen contact).

For broadcast receivers, the intent simply defines

the announcement being broadcast (for example, a

broadcast to indicate the device battery is low

includes only a known action string that indicates

"battery is low").

The other component type, content provider, is not

activated by intents. Rather, it is activated when

targeted by a request from a ContentResolver. The

content resolver handles all direct transactions with

the content provider so that the component that's

performing transactions with the provider doesn't

need to and instead calls methods on

the ContentResolver object. This leaves a layer of

abstraction between the content provider and the

component requesting information (for security).

There are separate methods for activating each type

of component: You can start an activity (or give it

something new to do) by passing an Intent to start

Activity () or start (when you want the activity to

return a result).

 You can start a service (or give new

instructions to an ongoing service) by passing

an Intent to start Service (). Or you can bind to the

service by passing an Intent to bind Service ().

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/ContentResolver.html
http://developer.android.com/reference/android/content/ContentResolver.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Context.html#startActivity(android.content.Intent)
http://developer.android.com/reference/android/content/Context.html#startActivity(android.content.Intent)
http://developer.android.com/reference/android/content/Context.html#startActivity(android.content.Intent)
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Context.html#startService(android.content.Intent)
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Context.html#bindService(android.content.Intent, android.content.ServiceConnection, int)

Page 7

You can initiate a broadcast by passing an Intent to

methodslike sendBroadcast(),sendOrderedBroadcast

(), or sendStickyBroadcast().

You can perform a query to a content provider by

calling query () on a ContentResolver.

For more information about using intents, see

the Intents and Intent Filters document. More

information about activating specific components is

also provided in the following

documents: Activities, Services, BroadcastReceiver

and Content Providers.

The Manifest File:-

Before the Android system can start an application

component, the system must know that the

component exists by reading the

application's AndroidManifest.xml file (the

"manifest" file). Your application must declare all

its components in this file, which must be at the root

of the application project directory. The manifest

does a number of things in addition to declaring the

application's components, such as:

Identify any user permissions the application

requires, such as Internet access or read-access to

the user's contacts. Declare the minimum API

Level required by the application, based on which

APIs the application uses.

Declare hardware and software features used or

required by the application.

Declaring components

The primary task of the manifest is to inform the

system about the application's components. For

example, a manifest file can declare an activity as

follows:

<? xml version="1.0" encoding="utf-8"?>
<manifest ... >
 <application android:icon="@drawable/app_icon.png" ... >

 <activity android:
name="com.example.project.ExampleActivity"
 android: label="@string/example label" ... >
 </activity>
 ...
 </application>
</manifest>

In the <application> element, the android:

icon attribute points to resources for an icon that

identifies the application.

In the <activity> element, the android:

name attribute specifies the fully qualified class

name of the Activity subclass and the android:

label attributes specifies a string to use as the user-

visible label for the activity.

You must declare all application components this

way:

<Activity> elements for activities

<Service> elements for services

<Receiver> elements for broadcast receivers

<Provider> elements for content providers

Activities, services, and content providers that you

include in your source but do not declare in the

manifest are not visible to the system and,

consequently, can never run. However, broadcast

receivers can be either declared in the manifest or

created dynamically in code (as Broadcast

Receiver objects) and registered with the system by

calling register Receiver().

For more about how to structure the manifest file

for your application, see the The

AndroidManifest.xml File documentation.

Declaring component capabilities

As discussed above, in Activating Components, you

can use an Intent to start activities, services, and

broadcast receivers. You can do so by explicitly

naming the target component (using the component

class name) in the intent. However, the real power

of intents lies in the concept of intent actions. With

intent actions, you simply describe the type of

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Context.html#sendBroadcast(android.content.Intent)
http://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent, java.lang.String)
http://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent, java.lang.String)
http://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent, java.lang.String)
http://developer.android.com/reference/android/content/Context.html#sendStickyBroadcast(android.content.Intent)
http://developer.android.com/reference/android/content/ContentProvider.html#query(android.net.Uri, java.lang.String[], java.lang.String, java.lang.String[], java.lang.String)
http://developer.android.com/reference/android/content/ContentResolver.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/topics/fundamentals/activities.html
http://developer.android.com/guide/topics/fundamentals/services.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/topics/manifest/application-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/service-element.html
http://developer.android.com/guide/topics/manifest/receiver-element.html
http://developer.android.com/guide/topics/manifest/provider-element.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/content/Context.html#registerReceiver(android.content.BroadcastReceiver, android.content.IntentFilter)
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/fundamentals.html#ActivatingComponents
http://developer.android.com/reference/android/content/Intent.html

Page 8

action you want to perform (and optionally, the data

upon which you’d like to perform the action) and

allow the system to find a component on the device

that can perform the action and start it. If there are

multiple components that can perform the action

described by the intent, then the user selects which

one to use.

The way the system identifies the components that

can respond to intent is by comparing the intent

received to the intent filters provided in the manifest

file of other applications on the device.

When you declare a component in your

application's manifest, you can optionally include

intent filters that declare the capabilities of the

component so it can respond to intents from other

applications. You can declare an intent filter for

your component by adding an <intent-

filter> element as a child of the component's

declaration element.

For example, an email application with an activity

for composing a new email might declare an intent

filter in its manifest entry to respond to "send"

intents (in order to send email). An activity in your

application can then create an intent with the “send”

action (ACTION_SEND), which the system

matches to the email application’s “send” activity

and launches it when you invoke the intent

with start Activity().

For more about creating intent filters, see the Intents

and Intent Filters document.

Declaring application requirements

There are a variety of devices powered by Android

and not all of them provide the same features and

capabilities. In order to prevent your application

from being installed on devices that lack features

needed by your application, it's important that you

clearly define a profile for the types of devices your

application supports by declaring device and

software requirements in your manifest file. Most of

these declarations are informational only and the

system does not read them, but external services

such as Android Market do read them in order to

provide filtering for users when they search for

applications from their device.

For example, if your application requires a camera

and uses APIs introduced in Android 2.1 (API

Level 7), you should declare these as requirements

in your manifest file. That way, devices that

do not have a camera and have an Android

version lower than 2.1 cannot install your

application from Android Market.

However, you can also declare that your application

uses the camera, but does not require it. In that

case, your application must perform a check at

runtime to determine if the device has a camera and

disable any features that use the camera if one is not

available.

Here are some of the important device

characteristics that you should consider as you

design and develop your application:

Screen size and density

In order to categorize devices by their screen type,

Android defines two characteristics for each device:

screen size (the physical dimensions of the screen)

and screen density (the physical density of the

pixels on the screen, or dpi—dots per inch). To

simplify all the different types of screen

configurations, the Android system generalizes

them into select groups that make them easier to

target.

The screen sizes are: small, normal, large, and extra

large.

The screen densities are: low density, medium

density, high density, and extra high density.

http://developer.android.com/guide/topics/manifest/intent-filter-element.html
http://developer.android.com/guide/topics/manifest/intent-filter-element.html
http://developer.android.com/reference/android/content/Intent.html#ACTION_SEND
http://developer.android.com/reference/android/app/Activity.html#startActivity(android.content.Intent)
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/appendix/api-levels.html

Page 9

By default, your application is compatible with all

screen sizes and densities, because the Android

system makes the appropriate adjustments to your

UI layout and image resources. However, you

should create specialized layouts for certain screen

sizes and provide specialized images for certain

densities, using alternative layout resources, and by

declaring in your manifest exactly which screen

sizes your application supports with the <supports-

screens>element.

For more information, see the Supporting Multiple

Screens document.

Input configurations

Many devices provide a different type of user input

mechanism, such as a hardware keyboard, a

trackball, or a five-way navigation pad. If your

application requires a particular kind of input

hardware, then you should declare it in your

manifest with the <uses-configuration> element.

However, it is rare that an application should

require a certain input configuration.

Device features

There are many hardware and software features that

may or may not exist on a given Android-powered

device, such as a camera, a light sensor, Bluetooth,

a certain version of OpenGL, or the fidelity of the

touch screen. You should never assume that a

certain feature is available on all Android-powered

devices (other than the availability of the standard

Android library), so you should declare any features

used by your application with the <uses-

feature> element.

Platform Version

Different Android-powered devices often run

different versions of the Android platform, such as

Android 1.6 or Android 2.3. Each successive

version often includes additional APIs not available

in the previous version. In order to indicate which

set of APIs are available, each platform version

specifies an API Level (for example, Android 1.0 is

API Level 1 and Android 2.3 is API Level 9). If you

use any APIs that were added to the platform after

version 1.0, you should declare the minimum API

Level in which those APIs were introduced using

the <uses-sdk> element.

It's important that you declare all such requirements

for your application, because, when you distribute

your application on Android Market, Market uses

these declarations to filter which applications are

available on each device. As such, your application

should be available only to devices that meet all

your application requirements.

Application Resources:-

An Android application is composed of more than

just code—it requires resources that are separate

from the source code, such as images, audio files,

and anything relating to the visual presentation of

the application. For example, you should define

animations, menus, styles, colors, and the layout of

activity user interfaces with XML files. Using

application resources makes it easy to update

various characteristics of your application without

modifying code and—by providing sets of

alternative resources—enables you to optimize your

application for a variety of device configurations

(such as different languages and screen sizes).

For every resource that you include in your Android

project, the SDK build tools define a unique integer

ID, which you can use to reference the resource

from your application code or from other resources

defined in XML. For example, if your application

contains an image file named logo.png (saved in

the res/drawable/ directory), the SDK tools generate

a resource ID named R.drawable.logo, which you

can use to reference the image and insert it in your

user interface.

http://developer.android.com/guide/topics/manifest/supports-screens-element.html
http://developer.android.com/guide/topics/manifest/supports-screens-element.html
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/topics/manifest/uses-configuration-element.html
http://developer.android.com/guide/topics/manifest/uses-feature-element.html
http://developer.android.com/guide/topics/manifest/uses-feature-element.html
http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html

Page 10

One of the most important aspects of providing

resources separate from your source code is the

ability for you to provide alternative resources for

different device configurations. For example, by

defining UI strings in XML, you can translate the

strings into other languages and save those strings

in separate files. Then, based on a

language qualifier that you append to the resource

directory's name (such as res/values-fr/ for French

string values) and the user's language setting, the

Android system applies the appropriate language

strings to your UI.

Activities:-

 [Android Life Cycle]

FUTURE SCOPE:-

Why Android Was Used?

 Full phone software stack including

applications

 Designed as a platform for software

development.

 Android is open

 Android is free

 Community support

 100% Java Phone

CONCLUSION:-

 Android is open to all: industry, developers

and Users Participating in many of the

successful open

 source projects

 Aims to be as easy to build for as the web.

 Goggle Android is stepping into the next

level of mobile internet.

REFERENCES:-

[1]. Android Application Development,

 O’REILLY, by Rick Rogers, JohnLombardo

 and Zigurd Mednieks, G. Blake Meike

[2]. The Busy Coder's Guide to Android

 Development by Mark L. Murphy

[3]. Beginning Android Mark Murphy, Apress,

[4]. Professional Android Application

 Development by Reto Meier

[5].Technology as a service provide, Website,

 http:// http://developer.android.com

[6].Software as a service, Wikipedia,

 http://en.wikipedia.org/wiki/Software_as_a_service

[7]. Unlocking Android, Developers Guide,

 Manning, by W. Frank Ableson, Charlie

 Collins and Robi sen

[8]. Professional Application Android Application

 Development by Reto Meier, Wrox

http://www.google.co.in/search?tbo=p&tbm=bks&q=+inauthor:%22Rick+Rogers%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=+inauthor:%22John+Lombardo%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=+inauthor:%22Zigurd+Mednieks%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=+inauthor:%22G.+Blake+Meike%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=+inauthor:%22Mark+Murphy%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=+inauthor:%22Reto+Meier%22

