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Abstract
Beamforming technique allows the cognitive users to 
opportunistically access the licensed spectrum without interfering 
the licensed users by exploiting the spatial domain in the radio 
transmission for cognitive radio network. In this paper, the 
eigenfilter approach to solve general least-squares approximation 
problems is extended. Such extension unifies previous work in 
eigenfilters and many other filter design problems, including 
spectral/spatial filtering, one-dimensional or multidimensional 
filters etc. With this approach, various filter design problems are 
transformed into problems of finding an eigenvector of a positive 
definite matrix that is determined by filter design specifications. A 
number of design examples are presented to show the usefulness 
and flexibility of the proposed approach.
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I. Introduction
In the modern era, there is a common believe that spectrum scarcity 
is happening at frequencies which can be used economically for 
wireless communication. This concept arises due to the heavy 
occupancy of frequency spectrum below 3 GHz which is caused 
by the ever growing demand for wireless services by the customers 
[1]. This problem has placed a heavy burden to the resource 
allocation policy maker to accommodate between the demand 
and the available spectrum resources. This fact is contradicting 
with the mindset of spectrum scarcity, since we can see that we 
have spectrum abundance.
An approach which is expected to solve the problem of spectrum 
scarcity is the Cognitive Radio (CR) [2-3]. The CR system is 
developed to be able to sense the spectral environment over 
the available band and to use the unused spectrum as long as 
it doesn’t interfere with the licensed user. The cognitive radio 
network usually consists of the primary or Licensed Users (LU) 
which has the priority and legality to access the communication 
spectrum, and the secondary or the cognitive radio users (RU) 
who use the spectrum only if they do not create interference to the 
primary users. This is where the cognitive radio technique is used 
by the secondary users to ensure non-interfering condition with 
the primary users. There are several ways to achieve the spectrum 
sharing with cognitive radio, such as space, time, frequency, and 
region. One of the strategies is to have the cognitive users to 
scan the spectrum and search for idleness, then access it when 
an unused slot is detected. 
Beamforming is a well-known spatial filtering technique which 
can be used to direct the communication transmission or reception 
energy in the presence of noise and interference. By using this 
technology, we can enable simultaneous communication links 
between the primary and secondary users with minimized or 
even total avoidance of interference. Beamforming allows the 
establishment of a communication link between the secondary 
users by exploiting the absence of a licensed user’s communication 
link in a certain geographical location, also known as the spatial 

spectrum holes. The definition of spectrum holes is the frequency 
bands which are assigned to primary users, which at a particular 
time and specific geographical location are not used by them. 
The basic idea of Beamforming in cognitive radio is to direct the 
radio signal to the direction of the destination, and to minimize 
the transmission energy towards the primary users [4]. This way 
we can suppress the interference caused by the secondary users 
to the primary users. In a multiple-antenna system, Beamforming 
exploits channel knowledge in the transmitter to maximize the 
Signal-to-Noise Ratio (SNR) at the receiver. Beamforming can 
also be used in the uplink or downlink in a multiuser system 
to maximize the Signal-to-Interference-Noise Ratio (SINR) to a 
specific user. However several challenges still exist if we want to 
implement Beamforming into a cognitive radio system.
The paper is organized as follows. In section II, conventional 
Beamforming technique with necessary formulation and beam 
patterns are described. In section III, Eigenfilter design for FIR is 
discussed with necessary literature. In section IV, implementation 
of Eigenfilter approach in Beamforming is discussed. In section V, 
simulation results using Eigenfilter weights are done and compared 
weights obtained with conventional method. Lastly, concluding 
remarks are made in section VI.

II. Conventional Beamforming
In Beamforming, we estimate the signal of interest arriving from 
some specific directions in the presence of noise and interfering 
signals with the aid of an array of sensors. These sensors are 
located at different spatial positions and sample the propagating 
waves in space. The collected spatial samples are then processed 
to attenuate/null out the interfering signals and spatially extract 
the desired signal. As a result, a specific spatial response of the 
array system is achieved with ‘beams’ pointing to the desired 
signals and ‘nulls’ towards the interfering ones [4].
Fig. 1, shows a simple Beamforming structure based on a linear 
array, where M sensors sample the wave field spatially and the 
output y(t) at time t is given by an instantaneous linear combination 
of these spatial samples xm(t), m = 0, 1, . . . , M − 1, as:

				   (1)
where,  denotes the complex conjugate.
The beamformer associated with this structure is only useful for 
sinusoidal or narrowband signals, where the term ‘narrowband’ 
means that the bandwidth of the impinging signal should be narrow 
enough to make sure that the signals received by the opposite 
ends of the array are still correlated with each other, and hence it 
is termed a narrowband beamformer [5].
We now analyse the array’s response to an impinging complex 
plane wave ejωt with an angular frequency ω and a DOA angle θ, 
where θ ∈ [−π/2 π/2] is measured with respect to the broadside of 
the linear array, as shown in fig. 2. For convenience, we assume 
the phase of the signal is zero at the first sensor. Then the signal 
received by the first sensor is x0(t) = ejωt and by the mth sensor is 
xm(t) = ejω(t−τm), m = 1, 2, . . . , M − 1, where τm is the propagation 
delay for the signal from sensor 0 to sensor m and is a function 
of θ. Then the beamformer output is:
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		  (2)
with τ0 = 0. The response of this beamformer is given by:

	 (3)
where, the weight vector w holds the M complex conjugate 
coefficients of the sensors, given by:
w = [w0 w1 ………… wM-1]

 T

	 (4)
We refer to d (θ,ω) as the array response vector, which is also 
known as the steering vector or direction vector.
For signals having the same angular frequency ω and the 
corresponding wavelength λ, but different DOAs θ1 and θ2 
satisfying the condition (θ1, θ2) ∈ [−π/2 π/2], aliasing implies 
that we have d(θ1, ω) = d(θ2,ω), namely:
 

Fig. 1: Narrow Band Beamforming

For a uniformly spaced linear array with an inter-element spacing 
d, we have τm = mτ1 = m(d sin θ)/c and ωτm = m(2πd sin θ)/λ. 
Then Equation (1.15) changes to:

we will always set d = λ/2, unless otherwise specified, then ωτm 
= mπsin θ and the response of the uniformly spaced narrowband 
beamformer is given by:

			   (5)

Note for an FIR (finite impulse response) filter with the same set 
of coefficients its frequency response is given by:

			   (6)
with Ω ∈ [−π π] being the normalized frequency. For the 
response of the beamformer given by Equation, when θ changes 
from −π/2(−90◦) to π/2(90◦), π sin θ changes from −π to π 
accordingly, which is in the same range as in Equation (6). With 
this correspondence, the design of uniformly spaced linear arrays 
can be achieved by the existing FIR filter design approaches 
directly.
Suppose we want to form a flat beam response pointing to the 
directions θ ∈ [−π/6 π/6] ([−30◦ 30◦]), while suppressing signals 
from directions θ ∈ [−π/2 −π/4] and [π/4 π/2], then it is equivalent 
to designing an FIR filter with a passband of Ω ∈ [−0.5π 0.5π] and 
a stopband of Ω ∈ [−π − 0.71π] and [0.71π π] (sin π/6 = 0.5 and 
sin π/4 = 0.71). We can use the MATLAB function remez to design 
such a filter, and then use the result directly as the coefficients of 
the desired beamformer. 
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Fig. 2: Beam Pattern

The beam pattern of the resultant narrowband beamformer 
Substituting this result into Equation, we can draw the resultant 
amplitude response |P(θ,ω)| of the beamformer with respect to the 
DOA angle θ. |P(θ,ω)| is called the beam pattern of the beamformer 
to describe the sensitivity of the beamformer with respect to signals 
arriving from different directions and with different frequencies. 
Fig. 2, shows the Beam Pattern (BP) in dB, which is defined as 
follows:

			   (7)

III. Eigenfilter Design
The Eigenfilter method for digital filter design involves the 
computation of filter coefficients as the eigenvector of an 
appropriate Hermitian matrix by Rayleigh principle [6]. As 
opposed to the least-squares approach, which requires the 
computation of a matrix inverse which may be susceptible to 
numerical inaccuracies, the Eigenfilter method has a much lower 
design complexity and remains robust even when ill-conditioned 
matrices are present in the design problem [8].
Let, h(n) be a causal FIR filter of length N, so that 

. Defining the N X 1 vectors
h = [h(0) h(1) ………… h(N-1)]T			   (8)
e(z) = [1 z-1 …………. Z-(N-1) ]T			   (9)
we clearly have H(z) = hT e(z).
To develop an Eigenfilter based method for approximating a 
complex valued desired response D(ω), following is the least-
squares objective function [7],

	 (10)
in order to express it as a quadratic form in terms of the vector 
. The frequency region is now a subset of the interval and the 
desired response is allowed to be complex, subject to the unit 
norm constraint. Here, the matrix is a complex- valued Hermitian, 
positive definite matrix. Under the unit norm constraint, the optimal 
filter coefficients can be found using Rayleigh’s principle, which 
applies for any Hermitian matrix, be it real or complex. After 
obtaining the optimal coefficients, the resulting filter must be 
scaled in order to satisfy the reference frequency condition. The 
objective is a quadratic form in terms of the vector of real and 
imaginary parts of h(n). It involved an N X N complex matrix or 
2N X 2N real matrix.
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Fig. 3:
 
Magnitude responses obtained using the least-squares approach 
along with the eigenfilter approach. In fig. 3, the magnitude 
responses using the Eigenfilter method as well as the least-squares 
approach are plotted for a low-pass filter with ωp = 0.3 and ωp = 0.4. 
Here, the filter order was chosen to be and equal weighing was used 
for both the passband and stopband. The eigenfilter was rescaled 
to have unity gain at ω=0. From the plots, it can be seen that the 
Eigenfilter is very similar to the least-squares filter, although the 
former performs slightly worse in some parts of the stopband. 
As N increases, the two responses become more and more alike. 
The close agreement between the least-squares approach and the 
eigenfilter method, along with the lower complexity of the latter, 
show the merits of the eigenfilter method.

IV. Beamforming: Eigenfilter Approach
Consider the following approximation problem, which turns out to 
be general enough to cover many filter design problems. Suppose 
we want to approximate a given function g(z) (possibly complex 
function) defined for real x ϵ χ, by using the linear combination 
of a set of N functions bo(z),b1(z),. . . , bN-1(z) which are also well-
defined in χ. Let , the conjugate of wn, be the weights of such 
linear combination [9-10]. With w denoting the vector [w0 w1 
…..… wN-1] T and b(x) denoting the vector [bo(z),b1(z),. . . , bN-1(z)] 
T the result of such a linear combination can be expressed as

		  (11)
By properly choosing w, we want to make f(x) ‘close’ to g(x) 
for z E X. We now reformulate this problem into an eigenvector 
problem. First, we add the normalization constraint  
wŧw = 1. Under this constraint, we have no control of the ‘scale’ 
of f(x) any more. Therefore, we shall make f(x)/f(xo) approximate 
g(x)/g(x0), where, x0 is a reference point in X. Equivalently, we 
minimize the following quadratic error measure

			   (12)
Using (1). We can rewrite E as

		  (13)
Where

		 (14)
We can see that Pŧ = P, i.e., P is a Hermitian matrix. Also, the 
error E = wŧ P w is positive for any nonzero w, so P is positive-
definite. (It can be positive semidefinite if there exists w such that 
E = 0, which implies that the approximation can be made exact.) 
Therefore, all the eigenvalues of P are real and positive. 

According to the Rayleigh-Ritz theorem, the vector w which 
minimizes E = wŧ P w under the constraint wŧ w = 1 is the eigenvector 
of P corresponding to the smallest eigenvalue. Such eigenvector 
can be computed using the power method. When the ratio between 
the two smallest eigenvalues of P is sufficiently large, this method 
converges very fast. Hence, the required computation complexity 
is relatively low, compared with other approximation schemes 
which usually involve matrix inversion operations.

V. Simulation Results

Fig. 4: A Liner Array

A. linear array
Consider a linear array having N sensors spaced at one-half 
wavelength as shown in fig. 4. The output of the n-th sensor is 
weighted by  to produce the overall output. The gain of this 
sensor array with respect to a uniform plane wave arriving at 
angle θ is
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Fig. 5: Gain of a Linear Array

So, the appropriate bn(θ) functions for this problem are bn( ) = 
exp(- jnπsinθ). In fact, the vector b(θ) obtained above is the so-
called steering vector or direction vector. Then, we can use the 
eigen-approach to compute the proper weights . For the case N = 
12, suppose we want to ‘steer’ the array to an arrival angle of 0º. We 
can achieve this by constraining the gain to be unity for θ = 0º and 
minimizing the energy elsewhere using the Eigen-approach. Fig. 
5, shows the resulting gain versus θ. As we can see the eigenfilter 
approach gives better beam response than conventional method 
with same number of sensors N = 12.
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VI. Conclusion
In this paper, a generalized eigenfilter approach for Beamforming 
is proposed, where Beamforming technique allows the cognitive 
users to opportunistically access the licensed spectrum without 
interfering the licensed users by exploiting the spatial domain 
in the radio transmission for cognitive radio network. With this 
approach, various filter design problems are transformed into 
problems of finding an eigenvector of a positive definite matrix 
that is determined by Beamforming techniques.
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