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Abstract- Smith-Waterman is a well-known local sequence alignment algorithm that is used for finding regions of maximum 
similarity between two biological sequences and is known to be a highly compute intensive task. As it is based on dynamic 
programming it guarantees optimal results. But Dynamic Programming has its own drawbacks such as heavy memory 
consumption and significant amount of computations. Many academicians and researchers have tried variety of methods to 
harness the large amount of computational capabilities provided by the GPU in order to make this algorithm run faster. This 
paper proposes a version of Parallel Scan Smith-Waterman algorithm to improve performance of its phase-2. Here, we have 
also compared and evaluated performance of proposed work with other approaches like anti-diagonal and blocked 
anti-diagonal for both constant gap model and affine gap model and have observed remarkable performance  gain. 

 
Index Terms- Smith-Waterman, GPU, Parallel Scan, CUDA 
 
 
I. INTRODUCTION 
 
Sequence alignment is one of the most fundamental 
operations carried out in bioinformatics. A sequence 
alignment is a way of arranging the sequences 
of DNA, RNA, or protein to identify regions of 
similarity. A particular alignment has a similarity 
score associated with it, which gives us information 
about how good is that alignment. This similarity 
score is obtained by using an appropriate scoring 
scheme that is conformed to underlying biological 
models. Fig.1 shows an example of sequence 
alignment and its similarity score. Highest score 
represents maximum similarity. There are two kinds of 
sequence alignments: Global and Local. Global 
alignment forces the alignment to span across the 
entire length of query sequence, whereas local 
alignment identifies regions of similarity within long 
sequences that are widely divergent overall. 

 

 
Figure 1 Sequence Alignment example and its score 

 
One of the important issues in alignment is how the 
gaps are dealt. There are two kinds of gap penalty 
functions: (i) Constant Penalty (ii) Affine Gap Model. 
The constant gap penalty function treats each gap 
equally and assigns same penalty score to each gap. 
Affine gap model assigns different penalty scores to 
gap introducing position and consecutive gap 
positions.Keeping gaps together generates more 
significant results, in a biological perspective. Hence 
affine gap model is more preferred by biologists. 
 
Smith-Waterman algorithm has a time complexity of  
O (mn) for sequences of size m and n. Since biological 

databases are huge in size, using Smith-Waterman 
algorithm is not a viable option for finding the 
alignment. Many efforts have been made in the 
direction of identifying an optimized solution for 
sequence alignment, which are time efficient but at the 
cost of accuracy. This paper considers time-efficiency 
without compromising accuracy like many other 
approaches. 
 
The best option available to improve the time 
efficiency of Smith-Waterman algorithm is applying 
parallelism. In recent years, Graphical Processing Unit 
(GPU) cards have been introduced as a highly scalable 
parallel programming device. Easy availability and 
huge number of processors of GPU have attracted 
programmers to use it for performance improvement 
for data intensive computations. In 2007, NVIDIA 
released parallel programming model CUDA [9] with 
user-friendly and rich API to program GPU. This 
paper propose version of Parallel Scan [1], which is 
GPU-based parallel solution for Smith-Waterman 
algorithm, considering essential factors responsible 
for performance improvement on GPU [7]: 
(i)   Increase Byte: Flop ratio 
(ii)   Reduce Cache miss, as cache miss plays 

important role in over-all execution time 
(iii)  Synchronization free load distribution 

The Smith-Waterman algorithm is discussed in 
Section II. Various methods that are used to 
parallelize the algorithm are explained in Section 
III.A detailed explanation of proposed work is 
presented in Section IV. Section V and Section VI 
consists of experimental results and conclusion 
respectively. And lastly future work is discussed 
in section VII. 

  
II. SMITH-WATERMAN ALGORITHM 
 
Smith-Waterman [3] is a very famous local alignment 
algorithm that has been in use since many years. In 
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order to incorporate the affine gap model, a modified 
version was proposed by Gotoh [4]. The 
Smith-Waterman algorithm identifies highest scoring 
sequence alignment by computing a similarity matrix 
H as shown in Fig 3. 
 
One of the sequences is placed on the top and the other 
sequence is placed on the left. The first row and first 
column are initialized to zero. The rest of the matrix is 
calculated using the formulae listed in Fig.2 based on 
defined score system. Fig.3 shows a similarity matrix 
for alignment computation between sequences 
"ATGCTCATAGA" and "ATGCCTCACTGA". Here 
we have applied a score system where, match=5, 
mismatch=-3, gap introduction penalty =    -8, gap 
extension penalty =-1 

 
Figure 2  Formulae for calculating Hi, j 

Where: 
 Gext is the gap extension penalty 
 Gintro is the gap introduction penalty 
 W(i,j) is the substitution matrix(match/mismatch) 

 

 
Figure 3 Similarity Matrix between two sequences 

 
The best alignment is obtained by finding a cell having 
the maximum value and then moving backwards 
depending on the direction used to construct the 
matrix. 
 
The computation of similarity matrix cells is a 
compute intensive task and consumes most of the 
algorithm running time. Hence, this computation of 
matrix cells must be done in parallel in order to obtain 
faster results. Parallelizing data dependent 

computations is a highly challenging task. As shown 
in Fig.4, computation of each cell is dependent on the 
value of cells present on its left, top and diagonal. 
 

 
Figure 4 Data dependency present in the matrix 

 
III. RELATED WORK 
 
It has been observed by many researchers that the cells 
present in an anti-diagonal [8] are independent of each 
other as shown in Fig.5. Hence, executing one by one 
all the anti-diagonals, each one in parallel become a 
well-known solution for parallelizing 
Smith-Waterman like dynamic programming 
algorithm. 
 
Issues in parallelizing using anti-diagonal approach 
are: 
 
i) High amount of Cache-miss and Data Fetch 

operations for both row-major and column-major 
data organization. 

ii) Complex computations for data reordering in 
anti-diagonal order. 

 

 
Figure 5 Anti-diagonal Method 

 
Sandes et al. [2] proposed a method known as blocked 
anti-diagonal in order to reduce the number of 
cache-misses that occurred in anti-diagonal method. 
Here, they divided the entire matrix into a number of 
blocks and these blocks were then executed in an 
anti-diagonal fashion. Anti-diagonal approach of a 
block reduced matrix reduces cache miss, but parallel 
execution of anti-diagonal blocks still causes higher 
fetch operations and smaller byte: Flop ratio. 
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Khajeh et al. [1] has recommended a new approach of 
parallelizing score computations for Smith-Waterman 
algorithm which reduces data fetch operations and 
cache miss at a higher level. Coalesced memory access 
also helps to reduce fetch operations, but the 
dependencies restrict coalesced access. Parallel Scan 
[1] algorithm focuses on coalesced memory access 
and parallel access of row elements on row major data 
ordering to increase remarkable Byte: Flop ratio. 
 
Parallel Scan algorithm [1] applies 2 phases on each 
row and performs parallel calculations of elements in a 
row for each phase. The phase-1 ignores the influence 
of row-maximum (Ei,j).Therefore the value at any cell 
in the matrix is dependent only on the row above it and 
thus each cell in the current row can be calculated 
independently and in parallel. The phase-2 considers 
the previously ignored row-maximum. Khajeh et al. 
[1] uses a variation of parallel maximum scan to 
complete the phase 2. 
 
III. PROPOSED WORK 
 
This paper proposes a version of phase-2 to reduce 
computations of Parallel Scan [1]. Parallel Scan [1] 
works in two stages up-shift and down-shift for 
parallel maximum scan computation. This paper 
proposes a version of phase-2, which reduces it to 
single stage for referring left-dependencies using 
parallel maximum scan. 
 
Proposed phase-2 of parallel maximum scan is 
demonstrated in Fig.6 for computation of Ei,j. Like, 
Parallel Scan [1], it computes cells Ei,j for j=1 to n-1 in 
parallel for ith row. During first iteration 0, Eij for each 
cell is initialized with gap introduction penalty (like 0 - 
g, 1- g, (n-1) - g) for j=1 to n-1. During (log n) 
subsequent iterations, it subtracts gap extension 
penalty (e*2iteration-1) from a cell positioned at distance 
2iteration-1 left from that cell for j= (1+2iteration-1) to (n-1) 
and maximum between this subtracted value and the 
cell value is placed at Ei,j.  For example, during 
iteration 1, e is subtracted from Ei,j for j=1 to (n-1-1) 
and compared with cells 2 to n-1 respectively.  During 
iteration 2, 2*e is subtracted from Ei,j for j=1 to (n-1-2) 
and compared with cells 3 to n-1 respectively.   

 

 
Figure 6 Single-stage Phase-2 of Parallel Scan Smith – 

Waterman algorithm 

The proposed single stage phase-2 kernel of Parallel 
Scan [1] is listed in Fig.7. Here, I specifies the 
iteration. d_E and d_H are E and H vectors present on 
the device (GPU). gap_intro represents the gap 
introduction penalty and gap_extend represents the 
gap extension penalty. 
 
The proposed algorithm has several advantages over 
Parallel Scan [1] Smith-Waterman algorithm. 
  
(i) This proposed single stage phase-2 Parallel Scan 
[1] takes runtime of O (logn), which is much 
optimized than phase-2 of Parallel Scan [1] 
Smith-Waterman algorithm. In parallel maximum 
reduction [5], [6] each of the two stages in phase-2 
requires O (logn) steps. Since the amount of work 
becomes half at each, the overall work is done in O (n) 
[5], [6].  
 
(ii) Another time-inefficiency of parallel maximum 
reduction is in the case when the number of elements is 
more than the size of the single block. The entire array 
is divided into many blocks and partial modified scan 
results are used as input to the next recursive call. In 
this proposed algorithm, there is no need to divide the 
array and make recursive calls. The value of E can be 
calculated in one scan only as it works on global 
memory. 

 
(iv) One more point is that the parallel maximum 

reduction algorithm works only on arrays having 
size of power of 2.So, if an array is not having a size 
of power of two it is required to convert it into 
power of two, whereas this proposed algorithm can 
work on data size which is not even a power of 2. 

 

 
Figure 7 Pseudo code for proposed single stage phase-2 of 

Parallel Scan [1] 
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IV. EXPERIMENTAL RESULTS 
 

We have tested our proposed algorithm on sequences 
of variable sizes and for both affined gap model and 
constant gap model. It is also compared with 
anti-diagonal and blocked anti-diagonal approaches. 
In blocked anti-diagonal method, we have not 
considered the optimizations mentioned in the Sandes 
et al. [2]. 
 
A. Experiment Platform 
We have performed our proposed algorithm on a 
system having Intel® Core™ i3 CPU 550 @ 3.2 GHz 
X 4 and NVIDIA GeForce GTX 480 graphic card. 
 
 
B. Performance Comparison and Analysis 
We have focused on reducing two-stage phase-2 to 
single stage phase-2 of Parallel Scan [1] using parallel 
reduction.  

 

 
Figure 8 Speedup comparison for constant gap model 

 
Initially, this algorithm was applied on constant gap 
model. Fig.8 shows speedup comparison chart 
between anti-diagonal, blocked anti-diagonal and the 
proposed Parallel Scan [1] version for constant gap 
model.  This chart shows that proposed algorithm has 
the highest speed up of 2-6 for constant gap model. It 
also represent that as size increases, speedup ratio also 
increases. 

 

 
Figure 9 Speedup comparison for affine gap model 

 
Affine gap model is highly preferred by biologists to 
find highest similarity and longer regions. Hence, we 
have also implemented proposed algorithm for affine 
gap model. Fig.9 shows speedup comparison chart 

between anti-diagonal, blocked anti-diagonal and the 
proposed Parallel Scan [1] version for affine gap 
model. Here, it is observed higher speedup 1.5 – 4.5 
using the proposed algorithm. 
 
 
CONCLUSION 
 
In this paper, we have discussed various approaches of 
parallelizing Smith-Waterman algorithm on GPU. We 
have shown that synchronization free load 
distribution, coalesced memory access on GPU 
reduces Fetch operations and improve overall 
performance. We have also demonstrated that 
optimization from multiple stage to single stage can 
help to improve overall performance. Our proposed 
algorithm gains 2-6 speedup over sequential among 
sequences with length varied from 512 to 8000 for 
constant gap model and 1.5 – 4.5 speedup for affine 
gap model. 
 
FUTURE WORK 
 
The implementation was done using global memory. 
Shared memory access can achieve higher 
performance gain as compared to global memory. 
Hence, we would like to apply shared memory access 
on proposed algorithm to reduce memory access time 
and improve overall performance. 
 
Our work is limited to the extent that it can find the 
sequence alignment between two sequences only. We 
would like to extend it for database searches also. 
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