
International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-2, Issue-9, Sept.-2014

Optimizing Parallel Scan Smith Waterman Algorithm On GPU

86

OPTIMIZING PARALLEL SCAN SMITH WATERMAN ALGORITHM
ON GPU

1HARSH SHUKLA, 2MONIKA SHAH

1, 2 Department of Computer Science, Institute of Technology, Nirma University, Ahmedabad, India

E-mail: harsh.g.shukla@gmail.com, monikag.shah@gmail.com

Abstract- Smith-Waterman is a well-known local sequence alignment algorithm that is used for finding regions of maximum
similarity between two biological sequences and is known to be a highly compute intensive task. As it is based on dynamic
programming it guarantees optimal results. But Dynamic Programming has its own drawbacks such as heavy memory
consumption and significant amount of computations. Many academicians and researchers have tried variety of methods to
harness the large amount of computational capabilities provided by the GPU in order to make this algorithm run faster. This
paper proposes a version of Parallel Scan Smith-Waterman algorithm to improve performance of its phase-2. Here, we have
also compared and evaluated performance of proposed work with other approaches like anti-diagonal and blocked
anti-diagonal for both constant gap model and affine gap model and have observed remarkable performance gain.

Keywords- Smith-Waterman, GPU, Parallel Scan, CUDA

I. INTRODUCTION

Sequence alignment is one of the most fundamental
operations carried out in bioinformatics. A sequence
alignment is a way of arranging the sequences
of DNA, RNA, or protein to identify regions of
similarity. A particular alignment has a similarity
score associated with it, which gives us information
about how good is that alignment. This similarity
score is obtained by using an appropriate scoring
scheme that is conformed to underlying biological
models. Fig.1 shows an example of sequence
alignment and its similarity score. Highest score
represents maximum similarity. There are two kinds of
sequence alignments: Global and Local. Global
alignment forces the alignment to span across the
entire length of query sequence, whereas local
alignment identifies regions of similarity within long
sequences that are widely divergent overall.

Figure 1 Sequence Alignment example and its score

One of the important issues in alignment is how the
gaps are dealt. There are two kinds of gap penalty
functions: (i) Constant Penalty (ii) Affine Gap Model.
The constant gap penalty function treats each gap
equally and assigns same penalty score to each gap.
Affine gap model assigns different penalty scores to
gap introducing position and consecutive gap
positions.Keeping gaps together generates more
significant results, in a biological perspective. Hence
affine gap model is more preferred by biologists.

Smith-Waterman algorithm has a time complexity of
O (mn) for sequences of size m and n. Since biological

databases are huge in size, using Smith-Waterman
algorithm is not a viable option for finding the
alignment. Many efforts have been made in the
direction of identifying an optimized solution for
sequence alignment, which are time efficient but at the
cost of accuracy. This paper considers time-efficiency
without compromising accuracy like many other
approaches.

The best option available to improve the time
efficiency of Smith-Waterman algorithm is applying
parallelism. In recent years, Graphical Processing Unit
(GPU) cards have been introduced as a highly scalable
parallel programming device. Easy availability and
huge number of processors of GPU have attracted
programmers to use it for performance improvement
for data intensive computations. In 2007, NVIDIA
released parallel programming model CUDA [9] with
user-friendly and rich API to program GPU. This
paper propose version of Parallel Scan [1], which is
GPU-based parallel solution for Smith-Waterman
algorithm, considering essential factors responsible
for performance improvement on GPU [7]:
(i) Increase Byte: Flop ratio
(ii) Reduce Cache miss, as cache miss plays

important role in over-all execution time
(iii) Synchronization free load distribution

The Smith-Waterman algorithm is discussed in
Section II. Various methods that are used to
parallelize the algorithm are explained in Section
III.A detailed explanation of proposed work is
presented in Section IV. Section V and Section VI
consists of experimental results and conclusion
respectively. And lastly future work is discussed
in section VII.

II. SMITH-WATERMAN ALGORITHM

Smith-Waterman [3] is a very famous local alignment
algorithm that has been in use since many years. In

International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-2, Issue-9, Sept.-2014

Optimizing Parallel Scan Smith Waterman Algorithm On GPU

87

order to incorporate the affine gap model, a modified
version was proposed by Gotoh. The Smith-Waterman
algorithm identifies highest scoring sequence
alignment by computing a similarity matrix H as
shown in Fig 3.

One of the sequences is placed on the top and the other
sequence is placed on the left. The first row and first
column are initialized to zero. The rest of the matrix is
calculated using the formulae listed in Fig.2 based on
defined score system. Fig.3 shows a similarity matrix
for alignment computation between sequences
"ATGCTCATAGA" and "ATGCCTCACTGA". Here
we have applied a score system where, match=5,
mismatch=-3, gap introduction penalty = -8, gap
extension penalty =-1

Figure 2 Formulae for calculating Hi, j

Where:
 Gext is the gap extension penalty
 Gintro is the gap introduction penalty
 W(i,j) is the substitution matrix(match/mismatch)

Figure 3 Similarity Matrix between two sequences

The best alignment is obtained by finding a cell having
the maximum value and then moving backwards
depending on the direction used to construct the
matrix.

The computation of similarity matrix cells is a
compute intensive task and consumes most of the
algorithm running time. Hence, this computation of
matrix cells must be done in parallel in order to obtain
faster results. Parallelizing data dependent

computations is a highly challenging task. As shown
in Fig.4, computation of each cell is dependent on the
value of cells present on its left, top and diagonal.

Figure 4 Data dependency present in the matrix

III. RELATED WORK

It has been observed by many researchers that the cells
present in an anti-diagonal [8] are independent of each
other as shown in Fig.5. Hence, executing one by one
all the anti-diagonals, each one in parallel become a
well-known solution for parallelizing
Smith-Waterman like dynamic programming
algorithm.

Issues in parallelizing using anti-diagonal approach
are:

i) High amount of Cache-miss and Data Fetch

operations for both row-major and column-major
data organization.

ii) Complex computations for data reordering in
anti-diagonal order.

Figure 5 Anti-diagonal Method

Sandes et al. Proposed a method known as blocked
anti-diagonal in order to reduce the number of
cache-misses that occurred in anti-diagonal method.
Here, they divided the entire matrix into a number of
blocks and these blocks were then executed in an
anti-diagonal fashion. Anti-diagonal approach of a
block reduced matrix reduces cache miss, but parallel
execution of anti-diagonal blocks still causes higher
fetch operations and smaller byte: Flop ratio.

International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-2, Issue-9, Sept.-2014

Optimizing Parallel Scan Smith Waterman Algorithm On GPU

88

Khajeh et al. Has recommended a new approach of
parallelizing score computations for Smith-Waterman
algorithm which reduces data fetch operations and
cache miss at a higher level. Coalesced memory access
also helps to reduce fetch operations, but the
dependencies restrict coalesced access. Parallel Scan
algorithm focuses on coalesced memory access and
parallel access of row elements on row major data
ordering to increase remarkable Byte: Flop ratio.

Parallel Scan algorithm applies 2 phases on each row
and performs parallel calculations of elements in a row
for each phase. The phase-1 ignores the influence of
row-maximum (Ei,j).Therefore the value at any cell in
the matrix is dependent only on the row above it and
thus each cell in the current row can be calculated
independently and in parallel. The phase-2 considers
the previously ignored row-maximum. Khajeh et al.
Uses a variation of parallel maximum scan to complete
the phase 2.

IV. PROPOSED WORK

This paper proposes a version of phase-2 to reduce
computations of Parallel Scan. Parallel Scan works in
two stages up-shift and down-shift for parallel
maximum scan computation. This paper proposes a
version of phase-2, which reduces it to single stage for
referring left-dependencies using parallel maximum
scan.

Proposed phase-2 of parallel maximum scan is
demonstrated in Fig.6 for computation of Ei,j. Like,
Parallel Scan, it computes cells Ei,j for j=1 to n-1 in
parallel for ith row. During first iteration 0, Eij for each
cell is initialized with gap introduction penalty (like 0 -
g, 1- g, (n-1) - g) for j=1 to n-1. During (log n)
subsequent iterations, it subtracts gap extension
penalty (e*2iteration-1) from a cell positioned at distance
2iteration-1 left from that cell for j= (1+2iteration-1) to (n-1)
and maximum between this subtracted value and the
cell value is placed at Ei,j. For example, during
iteration 1, e is subtracted from Ei,j for j=1 to (n-1-1)
and compared with cells 2 to n-1 respectively. During
iteration 2, 2*e is subtracted from Ei,j for j=1 to (n-1-2)
and compared with cells 3 to n-1 respectively.

Figure 6 Single-stage Phase-2 of Parallel Scan Smith –

Waterman algorithm

The proposed single stage phase-2 kernel of Parallel
Scan is listed in Fig.7. Here, I specifies the iteration.
d_E and d_H are E and H vectors present on the device
(GPU). gap_intro represents the gap introduction
penalty and gap_extend represents the gap extension
penalty.

The proposed algorithm has several advantages over
Parallel Scan Smith-Waterman algorithm.

(i) This proposed single stage phase-2 Parallel Scan
takes runtime of O (logn), which is much optimized
than phase-2 of Parallel Scan Smith-Waterman
algorithm. In parallel maximum reduction each of the
two stages in phase-2 requires O (logn) steps. Since
the amount of work becomes half at each, the overall
work is done in O (n).

(ii) Another time-inefficiency of parallel maximum
reduction is in the case when the number of elements is
more than the size of the single block. The entire array
is divided into many blocks and partial modified scan
results are used as input to the next recursive call. In
this proposed algorithm, there is no need to divide the
array and make recursive calls. The value of E can be
calculated in one scan only as it works on global
memory.

(iv) One more point is that the parallel maximum

reduction algorithm works only on arrays having
size of power of 2.So, if an array is not having a size
of power of two it is required to convert it into
power of two, whereas this proposed algorithm can
work on data size which is not even a power of 2.

Figure 7 Pseudo code for proposed single stage phase-2 of

Parallel Scan [1]

International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-2, Issue-9, Sept.-2014

Optimizing Parallel Scan Smith Waterman Algorithm On GPU

89

V. EXPERIMENTAL RESULTS

We have tested our proposed algorithm on sequences
of variable sizes and for both affined gap model and
constant gap model. It is also compared with
anti-diagonal and blocked anti-diagonal approaches.
In blocked anti-diagonal method, we have not
considered the optimizations mentioned in the Sandes
et al.

A. Experiment Platform
We have performed our proposed algorithm on a
system having Intel® Core™ i3 CPU 550 @ 3.2 GHz
X 4 and NVIDIA GeForce GTX 480 graphic card.

B. Performance Comparison and Analysis
We have focused on reducing two-stage phase-2 to
single stage phase-2 of Parallel Scan using parallel
reduction.

Figure 8 Speedup comparison for constant gap model

Initially, this algorithm was applied on constant gap
model. Fig.8 shows speedup comparison chart
between anti-diagonal, blocked anti-diagonal and the
proposed Parallel Scan version for constant gap
model. This chart shows that proposed algorithm has
the highest speed up of 2-6 for constant gap model. It
also represent that as size increases, speedup ratio also
increases.

Figure 9 Speedup comparison for affine gap model

Affine gap model is highly preferred by biologists to
find highest similarity and longer regions. Hence, we
have also implemented proposed algorithm for affine
gap model. Fig.9 shows speedup comparison chart
between anti-diagonal, blocked anti-diagonal and the

proposed Parallel Scan version for affine gap model.
Here, it is observed higher speedup 1.5 – 4.5 using the
proposed algorithm.

CONCLUSION

In this paper, we have discussed various approaches of
parallelizing Smith-Waterman algorithm on GPU. We
have shown that synchronization free load
distribution, coalesced memory access on GPU
reduces Fetch operations and improve overall
performance. We have also demonstrated that
optimization from multiple stage to single stage can
help to improve overall performance. Our proposed
algorithm gains 2-6 speedup over sequential among
sequences with length varied from 512 to 8000 for
constant gap model and 1.5 – 4.5 speedup for affine
gap model.

FUTURE WORK

The implementation was done using global memory.
Shared memory access can achieve higher
performance gain as compared to global memory.
Hence, we would like to apply shared memory access
on proposed algorithm to reduce memory access time
and improve overall performance.

Our work is limited to the extent that it can find the
sequence alignment between two sequences only. We
would like to extend it for database searches also.

REFERENCES

[1] Ali Khajeh-Saeed, Stephen Poole, J. Blair Perot,

“Acceleration of the Smith–Waterman algorithm using single
and multiple graphics processors,” Journal of Computational
Physics 229 (2010) 4247–4258.

[2] Sandes, E.F.O. and De Melo, A.C,”CUDA Align: using GPU
to accelerate the comparison of megabase genomic
sequences,” ACM SIGPLAN Notices. ACM (2010), pp.
137–146.

[3] T.F. Smith, M.S. Waterman, “Identification of common
molecular subsequences,” J. Mol. Biol. 147 (1981) 195–197.

[4] O. Gotoh, “An improved algorithm for matching biological
sequences,” J. Mol. Biol. 162 (1982) 705–708.

[5] S. Sengupta, M. Harris, Y. Zhang, J.D. Owens, “Scan
primitives for GPU computing,” Graphics Hardware (2007)
97–106.

[6] G.E. Blelloch, “Prefix sums and their applications,” John H.
Reif (Ed.), Synthesis of Parallel Algorithms, Morgan
Kaufmann, 1990.

[7] Shah M., Patel V.”An efficient sparse matrix multiplication
for skewed matrix on gpu,” High Performance Computing and
Communication 2012 IEEE 9th International Conference on
Embedded Software and Systems (HPCC-ICESS), 2012 IEEE
14th International Conference on. (June 2012).

[8] P.Zhang, G.Tan, G.R.Gao,” Implementation of the
Smith-Waterman algorithm on a reconfigurable
supercomputing platform,” Proceedings of the 1st
international workshop on High-performance reconfigurable
computing technology and applications: held in conjunction
with SC07 (A.C.M,NewYork,2007),pp. 39-48

[9] Nvidia CUDA [https://developer.nvidia.com/cuda-zone

