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Fragment Based HQSAR Modeling and Docking Analysis of Conforma-
tionally Rigid 3-azabicyclo [3.1.0] Hexane Derivatives to Design Selective 
DPP-4 Inhibitors 
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Abstract: Development of potent, selective and orally bioactive dipeptidyl Peptidase IV inhibitors as antihyperglycemic 
agents is challenging task due to potential side effects are associated with them. It may result from other prolyldipepti-
dases of DPP-4 include DPP-2, DPP-8 and DPP-9. To resolve the selectivity issue in different DPP enzymes hologram 
quantitative structure-activity relationship studies were carried out on a series of potent and selective DPP-4 ligands. To 
measure selectivity between two kinds of enzyme selectivity data of DPP-4 over DPP-2, DPP-8 and DPP-9 were calcu-
lated and best HQSAR models were generated with significant correlation coefficients. The statistical results of the three 
models showed the best prediction and fitness for the selectivity activities. Docking studies were carried out on conforma-
tionally rigid 3-azabicyclo [3.1.0] hexane derivatives which suggested the substitution pattern on P1 and P2 fragment. The 
finally QSAR model, along with the information obtained from contribution maps and docking studies should be useful 
for the design of novel DPP-4 ligands having improved selectivity without side effects. 

Keywords: HQSAR, 3-azabicyclo [3.1.0] hexane derivatives, Fragment based design, Selectivity, DPP-4 inhibitors, Docking. 

INTRODUCTION 

Type–2 diabetes is becoming a global epidemic, with the 
incidence and prevalence of the condition as well as related 
risk factors, such as obesity, continuously rising worldwide. 
This metabolic disease is a growing public health problem, 
affecting approximately 246 million people worldwide in 
2007, and this number is projected to be 380 million by 2025 
[1]. Within the past few years, increasing comprehension of 
the cellular and biochemical defects underlying insulin resis-
tance and T2DM has prepared the foundations on which to 
develop new therapeutic approaches that enhance insulin 
secretion in a sustained glucose-dependent manner in pa-
tients with type 2 diabetes [2]. Although a number of thera-
pies are available for this condition, recent efforts have been 
focusing on dipeptidyl peptidase 4 (DPP-4) inhibitors as a 
new class of therapeutic agents for type 2 diabetes [3]. In-
deed, a number of clinical studies have already confirmed 
the efficacy and good tolerance of DPP-4 inhibitors.  

The incretin hormones glucagon like peptide-1 (GLP-1) 
and glucose dependent insulinotropic polypeptide (GIP) play 
an important role in glucose homeostasis with effects on the 
pancreas, gastrointestinal tract, muscle tissue, and brain. 
GLP-1 enhances glucose-stimulated insulin secretion from 
the �-cells of the pancreas, promotes insulin biosynthesis, 
and inhibits postprandial glucagon secretion [4]. DPP-4 is a 
serine protease that cleaves a dipeptide from the N-terminus 
of the active form of GLP-1, GIP, neuropeptides, and 
chemokines, and renders them inactive [5]. This discovery 
has led to the development of DPP-4 inhibitors to increase  
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the half-life of circulating incretin hormones and normalize 
glucose homeostasis [6]. DPP-4 has now become a validated 
target with several small molecule inhibitors in late stage 
clinical trials for the treatment of type 2 diabetes. A number 
of catalytically active DPPs distinct from DPP-4 (DPP II, 
FAP, DPP-8, and DPP-9) have been described that is associ-
ated with side-effect and toxicity [7]. Although, a number of 
DPP-4 inhibitors have been accounted, all have limitations 
relating to potency, stability, or toxicity. Accordingly, a great 
need exists for novel DPP-4 inhibitors which are useful in 
treating conditions mediated by DPP-4 inhibition and which 
do not suffer from the above mentioned limitations [8]. The 
development of selective DPP-4 inhibitors is a big task due 
to another member of dpp family like DPP-2, DPP-8, DPP-9, 
etc. which may produce side effect as severe toxic reaction, 
alopecia, thrombocytopenia, anemia and increased mortality 
[9]. To discover potent and selective and safer drugs in a 
shorter time frame and with reduced cost it requires using an 
innovative approach for designing novel inhibitors. The 
utilization of CADD solutions and mathematical models like 
QSAR can help with future development of more selective 
DPP-4 agents.  

Improved ligand based design methods that are based on 
such traditional QSAR methods e. g. fragment-based method 
HQSAR (Hologram QSAR) is effective to solve untreated 
issues [10]. Holographic QSAR (HQSAR) is a newly devel-
oped QSAR technique, which relates the biological activity 
to structural molecular composition in terms of patterns of 
sub-structural fragments. It eliminates the need for genera-
tion of 3D structure, putative binding conformations, and 
molecular alignment [11]. With the combined application of 
molecular hologram and subsequent partial least squares 
(PLS) regression analysis, highly predictive QSARs are de-
veloped and validated with cross-validation procedure. 
Leave-one-out cross-validation method is used for both fit-
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ting and assessing the model [12]. No 3D molecular structure 
and molecular alignment are needed for the generation of 
hologram. With partial least squares (PLS) regression analy-
sis, the problem of co-linearity among parameters is avoided. 
In addition the molecular descriptors can be created auto-
matically and quickly and avoid the selection and calculation 
or measurement of physicochemical descriptors required by 
traditional QSAR. Thus, it provides promising screening 
tools for large scale of dataset [13]. The results are viewed as 
color-coded regions of the individual molecules, the color-
coding denoting regions of relatively high and low contribu-
tions to activities [14]. Applying the quantitative HQSAR 
model, predict the activity of a different (but structurally 
related) molecule and search databases of compounds similar 
to those in the training set. Docking Studies provide guide-
lines for the drug design and focus on the mechanisms of 
drug-receptor interactions, which further aid to the rationali-
zation of drug development [15]. In the present work, 
HQSAR technique has been applied to generate molecular 
representation and derive QSAR model, aiming to develop 
robust, highly predictive QSAR models for design highly 
selective DPP-4 inhibitors by the measure of selectivity be-
tween the two kinds of enzymes. Docking studies were car-
ried out for selective 3-azabicyclo [3.1.0] hexane derivatives 
against an anti DPP-4 target to explore the binding mecha-
nism.  

MATERIALS AND METHODS  

Data Selection 

A series of conformationally rigid 3-azabicyclo [3.1.0] 
hexane derivatives as selective DPP-4 are taken from litera-
ture (Table 1) [16]. To measure of selectivity between two 
kinds of enzyme selectivity data of DPP-4 over DPP-2, DPP-
8 and DPP-9 were calculated by their respective biological 
activity (IC50) using given formula:  

p(IC50DPP4/IC50DPP2)= -log (IC50DPP4/IC50DPP2)…(HQSAR A) 

p(IC50DPP4/IC50DPP8)= -log (IC50DPP4/IC50DPP8)… (HQSAR B) 

p(IC50DPP4/IC50DPP9)= -log (IC50DPP4/IC50DPP9)… (HQSAR C) 

All the molecules were built using the SybylX 1.2 mo-
lecular modeling package and were minimized by using the 
Tripos force field and Gasterger–Marsili charge with an en-
ergy gradient convergence criterion of 0.001 kcal/mol and a 
distance-dependent dielectric constant. The data sets were 
randomly partitioned into training and test set molecules by 
considering a range of molecules, so that both the training 
and test sets consist of high, medium and low activity mole-
cules. The number of training and test set molecules consist 
as per Table 2, respectively.  

Generation of Molecular Hologram 

The novel molecular hologram representation designed 
by the HQSAR package of Sybyl X 1.2 software (Tripos 
Inc., St. Louis, USA. In HQSAR, each molecule in the data-
base is divided into a set of unique overlapping structural 
fragments and sorted to form a molecular hologram, unlike 
other fragment-based fingerprinting methods, which encodes 
more information, such as branched and cyclic fragments 
and overlapping fragments as well as stereochemistry, and  
 

maintains a count of the number of times about each frag-
ment occurs. HQSAR model generation deals with the 2D 
structure directed fragment fingerprints. These molecular 
fingerprints are broken into strings at fixed intervals as 
specified by a hologram length (HL) parameter. The HL de-
termines the number of bins in the hologram into which the 
fragments are hashed. The optimal HQSAR model was de-
rived from screening through the 12 default HL values, 
which were a set of 12 prime numbers ranging from 53-401. 
The model development was performed using the following 
parameters: atom (A), bond (B), connection (C), chirality 
(Ch), hydrogen (H) and donor/acceptor (DA). The patterns 
of fragment counts from the training set inhibitors were then 
related to the experimental biological data using the PLS 
analysis. 

QSAR Model Validation  

 All QSAR models were investigated using full cross-
validated r2 (q2) PLS. Leave one-out (LOO) cross-validation 
has been applied to determine the number of principal com-
ponents that yield optimally predictive models. External 
validation was performed with a test set compounds, which 
were not considered in QSAR model development. The pre-
dictive ability of the models is expressed by predictive r

2 
values (r2pred), calculated as follows (equation 1):  

 (1) 

SD is the sum of squared deviation between the biologi-
cal activities of the test set molecule and the mean activity of 
the training set molecules and PRESS is the sum of squared 
deviations between the observed and the predicted activities 
of the test molecules [17]. 

Fisher’s Weight 

The Fisher weight is a measure of the distance between 
two categories; it is given by the difference of the mean val-
ues of each category, divided by the sum of the categories 
variances and can be interpreted as a normalized distance 
between the Classes [18]. The Fisher’s weight is defined as 
eq. 2.  

 (2) 

Where –xp,1, –xp,2 , denote the average values of descriptor p 
in class 1 and class 2 respectively, and Sp,1, Sp,2 denote the 
standard deviation of descriptor p in class 1 and class 2, re-
spectively [19]. 

Docking Analysis 

Degree of affection in between synthesized novel mole-
cules and target in terms of structural and chemical comple-
mentation was explored by advanced scientific program 
“Glide 4.5” module of Schrödinger Molecular Modeling 
Interface [20]. Glide searches for favorable interactions be-
tween one or more ligand molecules and a receptor molecule 
using a grid based method. In the present study, X-ray crys-
tal structure of DPP-4 (PDB: 1N1M) was taken from PDB 
(www.rscb.org). Before docking the proteins were prepared  
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Table 1. Chemical Structure and their Biological Activities. 

NH
NR

1

H

H

N

O

CN

F  

IC50(nM) 
S.No. R

1
 

DPP-4 DPP-2 DPP-8 DPP-9 

1 

 

NC  

165 18100 2110 421 

2 
 

NC

F

 

153 2760 637 131 

3 

 

NC

F

 

110 1200 3030 1660 

4 

 

NC

F

F  

38 10900 1675 343 

5 
 

NC

Cl

 

95 1000 399 66 

6 

 

NC

Cl

 

152 907 3020 807 

7 
 

NC

CF3

 

59 1000 652 130 

8 

 

NC

F3C

 

2540 n.d. n.d n.d 

9 

 

CH3CO  

109 9000 500 771 

10 

 

EtOOC  

229 9880 2080 640 
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Table 1. contd… 

NH
NR

1

H

H

N

O

CN

F  

IC50(nM) 
S.No. R

1
 

DPP-4 DPP-2 DPP-8 DPP-9 

11 

 

H2NOC  

95 21800 2130 3030 

12 

 

MeHNOC  

3430 n.d. n.d. n.d. 

13 

 

O

N
 

3740 n.d. n.d. n.d. 

14 
 

CN

 

51 406 2400 729 

15 
 

CN

Cl

 

31 96 10000 119 

16 
 

CN

F3C

 

42 1300 6500 1910 

17 
 

CN

F 

63 1300 366 169 

18 
 

CN

F

 

92 >10000 10000 1910 

19 
 

CN

F3C  

141 4330 28600 3680 

20 
 

CN

F  

422 >10000 3090 4850 
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Table 1. contd…. 

NH
NR

1

H

H

N

O

CN

F  

IC50(nM) 
S.No. R

1
 

DPP-4 DPP-2 DPP-8 DPP-9 

21 

 

CN

F

F  

630 3900 2050 1960 

22 
 

CN

F

 

118 1800 3270 1200 

23 

 

NC

 

1715 n.d. n.d. n.d. 

24 
N

N  

 

84 16500 4030 100000 

25 
N

N  F3C

 

181 2200 11100 5420 

26 

S

N

 

 

146 11000 11499 448 

27 

N

N

 

 

186 226 7270 7810 

28 

S

N

 

 

186 5100 14900 547 

29 

O

N

 

 

221 5100 13100 5990 

30 N

 

 

3670 n.d. n.d. n.d. 
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Table 1. contd… 

NH
NR

1

H

H

N

O

CN

F  

IC50(nM) 
S.No. R

1
 

DPP-4 DPP-2 DPP-8 DPP-9 

31 
N

 

 

27 10800 837 n.d. 

32 
N

 Cl

 

49 8750 2375 n.d. 

33 
N

 O2N

 

85 13050 1667 n.d. 

34 
N

 F3C

 

123 4000 35500 63200 

35 
N

 NC

 

147 11000 2180 350 

36 N

 

NO2  

78 6420 3400 525 

37 N

 

CN  

91 1340 16100 7300 

38 N

 

Cl  

1300 n.d. n.d. n.d. 

 

by using the protein preparation wizard, removing the water 
molecule and cofactors from the proteins, optimizing hydro-
gen bonding and deleting the ligand present in crystal struc-
ture. Solvent molecules were deleted and bond order for 
crystal ligand and protein were adjusted and minimized up to 
0.30 A° RMSD. The ligands were built using Maestro v-8.0

3
 

build panel and prepared by LigPrep-v2.1 [21] by using the 
OPLS-2005

 
[22] force field. Using extra precision (XP) 

mode of Glide v-4.5 all molecules were docked into the ac-
tive site of target molecules and final scoring is carried out in 
term of GlideScore multi-ligand scoring function. 

RESULTS AND DISCUSSION 

HQSAR is a technique that employs fragment finger-
prints as predictive variables of biological activity or other 
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structural related data HQSAR model generation deals with 
the 2D structure directed fragment fingerprints. The model 
development was performed using the following parameters: 
atom (A), bond (B), connection (C), chirality (Ch), hydrogen 
(H) and donor/acceptor (DA). The validity of the model de-
pends on statistical parameters such as r2, q2 by LOO, predic-
tive r2

pred and standard error. The robustness of the model 
depend on the more challenging test set prediction reflected 
by its predictive r2

pred value. The results of HQSAR analysis 
indicate significance differences in HQSAR model quality 
when fragment parameter and fragment length is varied. The 
optimized model was generated with different combination 
of fragment parameter and fragment length and validate by 
cross-validation for HQSAR A, HQSAR B and HQSAR C. 
HQSAR analyses were done using various combinations of 
fragment distinctions (A, B, C, Ch, H, DA) using fragment 
size default 5-8 and best model was selected based on cross-
validated predictability (q2). The HQSAR results represent 
the best predictive model of the system, for the given choice 
of hologram parameters. Applying the quantitative model 
thus obtained, the activity of a different) molecule can be 
predicted. 

The HQSAR model (A-C) together with the results of fi-
nal PLS calculation between the inhibition activities and 

fragment size based on the distinctions of substrate mole-
cules was visually analyzed by means of atomic contribution 
plots. Following the calculation of atomic contributions to 
activity, the molecule is color coded to reflect the individual 
atomic contributions. The colors at the red end of the spec-
trum (red and orange) reflect poor (or negative) contribu-
tions, while colors at the green end (yellow, blue, and green) 
reflect favorable (positive) contributions. Atoms with inter-
mediate contributions are colored white. Comparison of the 
predicted and experimental results of the HQSAR model and 
their deviations are listed in Table 2. For HQSAR models 
(A-C), the Obs.pI50 versus the predicted Pred.pI50 values 
are plotted in Fig. (1). 

HQSAR A 

The results shown in Table 4a for HQSAR A conforming 
that model A3 is best model having good non cross validated 
(r2) = 0.978 and cross validated (q2)=0.711 having fragment 
distinction Atom, bond, connection and hydrogen bond. Fur-
ther taking fragment distinction Atom, bond, connection and 
hydrogen bond, fragment length are varied from 2-5 to 8-12. 
The cross-validated predictability (q2) varied from 0.525 at a 
fragment length of 2-5 to 0.711 at a fragment length of 5-8; 
further increases in fragment size decrease the q2. Cross-

Table 2. Training Set and Test Set Distinction of Developed Models. 

Model Total Compounds Activity Range (PIC50) Training Set Test Set 

(A) p(IC50DPP4/IC50DPP2) 32 9.08-11.60 24 8 

(B ) p(IC50DPP4/IC50DPP8) 32 9.62-11.51 24 8 

(C) p(IC50DPP4/IC50DPP9) 29 8.84-12.08 22 7 

 

Fig. (1). Relationships between observed inhibition values and predicted values by HQSAR models . The scatterplot displays the predicted 
versus actual activities of the training set (A) and the test set (B) of compounds. 
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validated and non cross-validated PLS analysis suggested 
that model A3 is the best HQSAR model (Table 4b). The 
results of the external validation for the best predictive 
model is r2

pred= 0.776 and the graphic results for the experi-
mental versus predicted for both training and test sets are 
shown in Fig. (1). The Atomic contribution to the activity of 
individual fragment is calculated using A3 model and de-
noted by color coding shown in Fig. (2). Fig (2A) showing 
atomic contribution map of highly selective molecule 31 in 
which red to brown color shows negative contribution, white 
color shows intermediate contribution and green color shows 
positive contribution towards selectivity of dpp-4 activity on 
dpp-2 activity. Contribution map shows that P1 fragment 4-
fluoropyrrolidine-2-carbonitrile and peptide linkage in mole-
cule contributing negatively as well as 3-azabicyclo 
[3.1.0]hexane ring and aromatic P2 fragment shown inter-
mediate and positive contribution. Overall electronegative 
substitution at P1 fragment decreases the selectivity and P2 
fragment increases the selectivity.  

HQSAR B 

The results shown in Table 5a for HQSAR B has shown 
that model B3 is best model having good non cross validated 
(r2) = 0.973 and cross validated (q2)=0.795 having fragment 
distinction Atom, bond, connection and hydrogen bond. Fur-
ther taking fragment distinction Atom, bond, connection and 
hydrogen bond, fragment length are varied from 2-5 to 8-11. 
The cross-validated predictability (q2) varied from 0.354 at a 
fragment length of 2-5 to 0.795 at a fragment length of 5-8; 
further increases in fragment size decrease the q2. Cross-
validated and non cross-validated PLS analysis suggested 
that model B3 is the best HQSAR model with fragment size 
5-8 and fragment distinction Atom, bond, connection and 
hydrogen bond (Table 5b). The results of the external valida-

tion for the best predictive model is r
2

pred= 0.796 and the 
graphic results for the experimental versus predicted for both 
training and test sets are shown in Fig. (1). The Atomic 
contribution to the activity of individual fragment is 
calculated using the B3 model and denoted by color coding 
shown in Fig. (2). Fig. (2B) showing atomic contribution 
map of highly selective molecule 15 in which red to brown 
color shows negative contribution, white color shows 
intermediate contribution and green color shows positive 
contribution towards selectivity of dpp-4 activity on dpp-8 
activity. Contribution map shows that peptide linkage in 
molecule contributing positively as well as P1 fragment 4-
fluoropyrrolidine-2-carbonitrile and aromatic P2 fragment 
shown intermediate contribution. 3-azabicyclo[3.1.0]hexane 
ring shown negative contribution. An overall linkage group 
of P1 and P2 fragment is important for selectivity of DPP-4 
inhibitors. 

HQSAR C 

The results shown in Table (6a) for HQSAR B has 
shown that model C3 is best model having good non cross 
validated (r2) = 0.968 and cross validated (q2)=0.646 having 
fragment distinction Atom, bond, connection and hydrogen 
bond at 5-8 fragment length. Further taking fragment distinc-
tion Atom, bond, and hydrogen bond, fragment length are 
varied from 2-5 to 8-11. The cross-validated predictability 
(q2) varied from 0.394 at a fragment length of 2-5 to 0.646 at 
a fragment length of 5-8; further increases in fragment size 
decrease the q2. Cross-validated and non cross-validated PLS 
analysis suggested that model C6 is the best HQSAR model 
with fragment size 5-8 and fragment distinction Atom, bond 
and hydrogen bond (Table 6b). The results of the external 
validation for the best predictive model is r2

pred= 0.742 and 
the graphic results for the experimental versus predicted for  

 

Fig (2). Individual atomic contributions of most active compound for the activity (A) compound 31 for HQSAR A model (B) compound 15 
for HQSAR B Model(C) compound 24 for HQSAR C model. 
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Table 3. Actual and Predicted Activity of Developed Models. 

HQSAR A 

p(IC50DPP4/IC50DPP2) 

HQSAR B 

p(IC50DPP4/IC50DPP8) 

HQSAR C 

p(IC50DPP4/IC50DPP9) Comp. 

Actual Pred. Residual Actual Pred. Residual Actual Pred. Residual 

1 11.04� 10.928� 0.112� 10.13� 10.179� -0.049� 9.41� 10.05� -0.64�

2 10.26� 10.667� -0.407� 9.62� 9.548� 0.072� 8.93� 9.107� -0.177�

3 10.04� 10.468� -0.428� 10.44� 10.391� 0.049� 10.18� 10.056� 0.124�

4 11.46� 11.061� 0.399� 10.64� 10.64� 0� 9.96� 10.028� -0.068�

5 10.02� 10.01� 0.01� 9.62� 9.632� -0.012� 8.84� 8.815� 0.025�

6 9.78� 9.919� -0.139� 10.3� 10.358� -0.058� 9.73� 9.822� -0.092�

7 10.23� 10.21� 0.02� 10.04� 10.027� 0.013� 9.34� 9.338� 0.002�

8 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

9 10.92� 10.842� 0.078� 9.66� 9.622� 0.038� 9.85� 9.535� 0.315�

10 10.63� 10.663� -0.033� 9.96� 10.005� -0.045� 9.45� 9.422� 0.028�

11 11.36� 11.413� -0.053� 10.35� 10.372� -0.022� 10.5� 10.05� 0.45�

12 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

13 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

14 9.9� 9.377� 0.523� 10.67� 10.589� 0.081� 10.16� 10.036� 0.124�

15 9.49� 9.438� 0.052� 11.51� 10.741� 0.769� 9.58� 9.542� 0.038�

16 10.49� 10.728� -0.238� 11.19� 11.128� 0.062� 10.66� 10.629� 0.031�

17 10.31� 10.263� 0.047� 9.76� 9.812� -0.052� 9.43� 9.307� 0.123�

18 11.04� 11.138� -0.098� 11.04� 10.68� 0.36� 10.32� 9.759� 0.561�

19 10.49� 10.477� 0.013� 11.31� 11.432� -0.122� 10.42� 10.631� -0.211�

20 10.37� 10.427� -0.057� 9.86� 9.571� 0.289� 10.06� 9.483� 0.577�

21 9.79� 9.791� -0.001� 9.51� 9.972� -0.462� 9.49� 9.465� 0.025�

22 10.18� 10.261� -0.081� 10.44� 10.426� 0.014� 10.01� 9.978� 0.032�

23 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

24 11.29� 11.394� -0.104� 10.68� 10.41� 0.27� 12.08� 12.296� -0.216�

25 10.08� 9.989� 0.091� 10.79� 10.744� 0.046� 10.48� 10.545� -0.065�

26 10.88� 10.905� -0.025� 10.9� 10.965� -0.065� 9.49� 9.459� 0.031�

27 9.08� 9.121� -0.041� 10.59� 10.614� -0.024� 10.62� 10.568� 0.052�

28 10.44� 10.405� 0.035� 10.9� 10.871� 0.029� 9.47� 9.855� -0.385�

29 10.36� 10.578� -0.218� 10.77� 10.775� -0.005� 10.43� 10.479� -0.049�

30 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

31 11.6� 11.341� 0.259� 10.49� 10.715� -0.225� n.d. n.d. n.d. 

32 11.25� 11.28� -0.03� 10.69� 10.667� 0.023� n.d. n.d. n.d. 

33 11.19� 11.249� -0.059� 10.29� 10.381� -0.091� n.d. n.d. n.d. 

34 10.51� 10.505� 0.005� 11.46� 11.422� 0.038� 11.71� 11.616� 0.094�

35 10.87� 10.951� -0.081� 10.17� 10.428� -0.258� 9.38� 9.703� -0.323�
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Table 3. contd… 

HQSAR A 

p(IC50DPP4/IC50DPP2) 

HQSAR B 

p(IC50DPP4/IC50DPP8) 

HQSAR C 

p(IC50DPP4/IC50DPP9) Comp 

Actual Pred. Residual Actual Pred. Residual Actual Pred. Residual 

36 10.92� 10.951� -0.031� 10.64� 10.428� 0.212� 9.83� 9.703� 0.127�

37 10.17� 10.191� -0.021� 11.25� 11.179� 0.071� 9.52� 9.403� 0.117�

38 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

*Grey color indicates test set compounds 

 

Table 4a. The HQSAR Analyses of Model HQSAR A for Various Fragment Distinction on the Key Statistical Parameters Using Frag-

ment Size Default 5-8. 

Model Fragment Distinction R2 SEE Q2 SEP HL N 

A1 A/B 0.973 0.107 0.677 0.370 257 6 

A2 A/B/C 0.923 0.170 0.639 0.370 53 4 

A3 A/B/C/H 0.978 0.096 0.711 0.350 97 6 

A4 A/B/C/H/Ch 0.980 0.093 0.672 0.373 97 6 

A5 A/B/C/H/Ch/DA 0.958 0.134 0.495 0.463 307 6 

A6 A/B/H 0.979 0.095 0.556 0.434 307 6 

A7 A/B/C/Ch 0.921 0.173 0.632 0.374 53 4 

A8 A/B/DA 0.948 0.148 0.535 0.444 53 6 

A9 A/B/C/DA 0.957 0.135 0.560 0.432 257 6 

A10 A/B/H/DA 0.944 0.154 0.485 0.467 83 6 

A11 A/B/C/Ch/DA 0.955 0.138 0.557 0.434 257 6 

A12 A/B/C/H/DA 0.946 0.152 0.519 0.452 257 6 

A13 A/B/H/Ch/DA 0.975 0.104 0.476 0.472 307 6 

 

Table 4b. Influence of Various Fragment Sizes on Key Statistical Parameters Using the Best Fragment Distinction (A, B, C and H) 

of Model HQSAR A. 

Fragment Size R2 SEE Q2 SEP HL N 

2-5 0.929 0.174 0.525 0.449 71 6 

3-6 0.947 0.150 0.582 0.421 97 6 

4-7 0.983 0.084 0.657 0.381 401 6 

5-8 0.978 0.096 0.711 0.350 97 6 

6-9 0.974 0.104 0.556 0.429 401 6 

7-10 0.975 0.104 0.556 0.429 401 6 

8-11 0.894 0.201 0.459 0.453 61 4 
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Table 5a. The HQSAR Analyses of Model HQSAR B for Various Fragment Distinction on the Key Statistical Parameters Using 

Fragment Size Default 5-8. 

Model Fragment Distinction R2 SEE Q2 SEP HL N 

B1 A/B 0.959 0.126 0.58 0.403 199 6 

B2 A/B/C 0.969 0.109 0.602 0.393 257 6 

B3 A/B/C/H 0.973 0.102 0.795 0.283 83 6 

B4 A/B/C/H/Ch 0.971 0.107 0.762 0.304 83 6 

B5 A/B/C/H/Ch/DA 0.953 0.135 0.584 0.402 71 6 

B6 A/B/H 0.941 0.148 0.650 0.359 59 5 

B7 A/B/C/Ch 0.970 0.109 0.623 0.383 257 6 

B8 A/B/DA 0.914 0.173 0.616 0.366 257 5 

B9 A/B/C/DA 0.959 0.126 0.566 0.414 353 6 

B10 A/B/H/DA 0.956 0.132 0.598 0.395 257 6 

B11 A/B/C/Ch/DA 0.952 0.137 0.545 0.421 307 6 

B12 A/B/C/H/DA 0.948 0.142 0.594 0.397 97 6 

B13 A/B/H/Ch/DA 0.927 0.163 0.584 0.391 353 5 

 

Table 5b. Influence of Various Fragment Sizes on Key Statistical Parameters using the Best Fragment Distinction (A, B, C and H) of 

Model HQSAR B. 

Fragment Size R2 SEE Q2 SEP HL N 

2-5 0.627 0.343 0.354 0.451 71 2 

3-6 0.957 0.126 0.601 0.383 71 5 

4-7 0.966 0.115 0.684 0.351 83 6 

5-8 0.973 0.102 0.795 0.283 83 6 

6-9 0.952 0.129 0.681 0.333 83 4 

7-10 0.885 0.201 0.617 0.365 71 4 

8-11 0.942 0.146 0.628 0.370 307 5 

 

Table 6a. The HQSAR Analyses of Model HQSAR C for Various Fragment Distinction on the Key Statistical Parameters Using 

Fragment Size Default 5-8. 

Model Fragment Distinction R2 SEE Q2 SEP HL N 

C1 A/B 0.90 0.232 0.201 0.654 199 4 

C2 A/B/C 0.65 0.408 0.177 0.628 53 2 

C3 A/B/C/H 0.707 0.358 0.239 0.620 53 3 

C4 A/B/C/H/Ch 0.700 0.390 0.226 0.626 53 3 

C5 A/B/C/H/Ch/DA 0.894 0.239 0.296 0.614 401 4 

C6 A/B/H 0.968 0.145 0.646 0.480 53 7 

C7 A/B/C/Ch 0.886 0.247 0.172 0.666 97 4 

C8 A/B/DA 0.832 0.300 0.140 0.679 59 4 
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Table 6a. cont… 

Model Fragment Distinction R2 SEE Q2 SEP HL N 

C9 A/B/C/DA 0.923 0.217 0.260 0.670 83 6 

C10 A/B/H/DA 0.886 0.254 0.155 0.694 353 5 

C11 A/B/C/Ch/DA 0.875 0.267 0.180 0.683 53 5 

C12 A/B/C/H/DA 0.898 0.241 0.240 0.658 401 5 

C13 A/B/H/Ch/DA 0.894 0.239 0.296 0.614 401 4 

 
Table 6b. Influence of Various Fragment Sizes on Key Statistical Parameters Using the Best Fragment Distinction (A, B, and H) of 

Model HQSAR C. 

Fragment size R2 SEE Q2 SEP HL N 

2-5 0.725 0.373 0.393 0.554 61 3 

3-6 0.937 0.196 0.450 0.578 59 6 

4-7 0.903 0.235 0.423 0.573 56 5 

5-8 0.968 0.145 0.646 0.480 53 7 

6-9 0.949 0.176 0.583 0.503 53 6 

7-10 0.910 0.223 0.440 0.583 53 6 

8-11 0.730 0.370 0.299 0.595 59 3 

 

Table 7. Docking Scores. 

Ligand GScore LipophilicEvdW PhobEn HBond Electro 

1 -9.13 -1.64 -1.4 -2.54 -2.97 

2 -9.4 -1.35 -1.5 -2.99 -3.11 

3 -8.49 -1.36 -1.38 -2.34 -2.92 

4 -9.89 -1.4 -1.51 -2.97 -3.16 

5 -9.36 -1.53 -1.42 -2.84 -3.05 

6 -9.62 -1.92 -1.4 -2.71 -3.06 

7 -9.25 -1.58 -1.6 -2.71 -3.07 

8 -9.28 -1.6 -1.45 -2.83 -3 

9 -8.64 -1.4 -1.46 -2.46 -3.33 

10 -8.98 -1.79 -1.43 -2.74 -2.92 

11 -8.67 -1.11 -1.35 -2.7 -3.38 

12 -9.55 -1.68 -1.38 -3.01 -3.1 

13 -9.29 -1.87 -1.51 -2.92 -2.95 

14 -8.83 -1.39 -1.39 -2.61 -2.92 

15 -8.94 -1.49 -1.43 -2.58 -2.92 

16 -8.76 -1.28 -1.52 -2.62 -3 

17 -9.45 -1.63 -1.46 -2.81 -3.03 

18 -9.29 -1.56 -1.43 -2.73 -3.09 



196     Letters in Drug Design & Discovery, 2014, Vol. 11, No. 2 Ghate and Jain 

Table 7. contd… 

Ligand GScore LipophilicEvdW PhobEn HBond Electro 

19 -9.38 -1.82 -1.39 -2.45 -3.14 

20 -8.93 -1.38 -1.46 -2.63 -2.94 

21 -9.2 -1.51 -1.36 -2.7 -3.06 

22 -8.89 -1.53 -1.4 -2.68 -3.05 

23 -8.39 -1.54 -1.38 -2.23 -2.78 

24 -8.93 -1.34 -1.4 -2.68 -3.29 

25 -9.05 -1.39 -1.38 -2.68 -2.93 

26 -9.14 -1.37 -1.41 -2.85 -3.34 

27 -8.8 -1.45 -1.38 -2.66 -2.93 

28 -8.98 -1.54 -1.38 -2.64 -2.91 

29 -9.01 -1.42 -1.4 -2.83 -3.36 

30 -9.04 -1.44 -1.45 -2.63 -3 

31 -8.98 -1.26 -1.39 -2.78 -2.97 

32 -9 -1.34 -1.4 -2.82 -3.3 

33 -8.37 -1.72 -1.4 -1.76 -3.18 

34 -9.05 -1.39 -1.38 -2.67 -2.94 

35 -8.99 -1.32 -1.49 -2.69 -2.87 

37 -8.51 -1.34 -1.32 -2.15 -2.89 

38 -8.71 -1.41 -1.41 -2.5 -2.93 

Vildaglaptin -8.51 -1.24 -1.3 -3.09 -3.14 

NVP -6.95 -1.23 -1.04 -2.32 -3.08 

saxaglaptin -9.6 -1.93 -1.16 -3.1 -3.63 

sitaglaptin -7.92 -1.36 -1.36 -1.38 -3.26 

 

both training and test sets are shown in Fig. (1). The Atomic 
contribution to the activity of individual fragment is calcu-
lated using C6 model and denoted by color coding shown in 
Fig. (2). Fig. (2C) showing atomic contribution map of 
highly selective molecule 15 in which red to brown color 
shows negative contribution, white color shows intermediate 
contribution and green color shows positive contribution 
towards selectivity of dpp-4 activity on dpp-9 activity. Con-
tribution map shows that peptide linkage in molecule con-
tributing negatively as well as P1 fragment 4-fluorop-
yrrolidine-2-carbonitrile and 3-azabicyclo [3.1.0] he-xane 
ring shows intermediate contribution. Aromatic P2 fragment 
shows negative contribution. Overall, peptide linkage in-
volved in selectivity of dpp-4 inhibitors over dpp-9 activity. 

The HQSAR models are dependent not only on the mo-
lecular hologram length, but also on the information includ-
ing molecular fragment and distinction as before. Therefore, 
based on the selected hologram length, it is possible to find 
the structure of the substrate molecule and distinctions show-
ing high inhibitory activity by searching either minimizing 

the lowest standard error or the highest predictability q2. 
Finally, a complete HQSAR analysis involves the investiga-
tion of important indications of the molecular fragments di-
rectly related to biological activity or responsible for the low 
biological potency of the compounds and to propose struc-
tural modifications. In this way, one can obtain contribution 
maps that indicate the individual contributions to the activity 
of each atom in a given molecule of the data set and to 
analysis the most relevant structural fragments incorporated. 

Docking Analysis 

To investigate the detailed intermolecular interactions be-
tween the ligand and the target protein, an automated dock-
ing program Glide was used. These studies helped to sort out 
the screened compounds. Three-dimensional structure in-
formation on the DPP-4 enzyme was taken from the PDB 
entry 1N1M having resolution of 2.5 Å. DPP-4 is a 766 
amino acid transmembrane glycoprotein which belongs to 
the prolyl oligopeptidase family. It consists of three parts; a 
cytoplasmic tail, a transmembrane region and an extracellu-
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lar part. The extracellular part is divided into a catalytic do-
main and an eight-bladed â-propeller domain. The latter con-
tributes to the inhibitor binding site. The catalytic domain 
shows �/�-hydrolase fold and contains the catalytic triad 
Ser630 - Asp708 - His740. The S1-pocket is very hydropho-
bic and is composed of the side chains: Tyr631, Val656, 
Trp662, Tyr666 and Val711. Existing X-ray structures show 
that there is not much difference in size and shape of the 
pocket that indicates that the S1-pocket has high specificity 
for Proline residue. 

 Protein preparation included the deletion of the ligand 
and the solvent molecules as well as the addition of hydro-
gen atoms and energy minimization. All conformationally 
rigid 3-azabicyclo[3.1.0]hexane derivatives were docked into 

target using Glide extra precsion docking module of Maestro 
9.0 software. Evaluation is done with glide score (docking 
score) and single best pose is generated as the output for 
particular ligand. The entire compound showing good Glide 
score in the range of -9.89 to -8.37 as compared to establish 
drug for dpp-4 target. In the series of 3-azabicyclo 
[3.1.0]hexane derivatives compound 4 showing highest 
Gscore -9.89, lipophilic score -1.4, hydrophobic score -1.51, 
hydrogen bonding score -2.97 and electrostatic score -3.16 
having good binding affinity to dpp-4 enzyme shown in Fig. 
(3a). Same binding pattern of most selective compound 31, 
15 and 24 were shown in Fig. (3B-D).  

Docking studies revels the proline mimic P-1 site con-
tains nitrile in the position of the scissile bond of the peptidic 

 

Fig. (3). Docking interection of target enzyme dpp-4 (PDB: 1N1M) and series compounds (A) pose of higest docking score compound 4 (B) 
most active compound 31 for hqsar A model (C) most active compound 15 for hqsar B model (C) most active compound 15 for hqsar C 
model. Dotted yellow bond showing H-bond interactions with binding site residues. 

 

Fig. (4). 2D interaction diagram of highest docking score compound 4. 
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substrate group forms reversible covalent bonds with the 
catalytically active Tyr 547 residue. 2 (S) -cyanopyrrolidine 
moiety has been found to be an integral part of many DPP-4 
inhibitors and important for higher potency. The Hydrogen 
bonding network is formed between the protonated amino 
group and a negatively charged region of the protein surface, 
Glu205, Glu206 and Tyr662. 3-azabicyclo [3.1.0]hexane 
worked as a steric bulk and slowed intramolecular cyclization 
with increasing chemical stability. As P2 cavity have higher 
volume so bulky group were well tolerated at P2 site, different 
substituted aromatic and hetro aromatic show good lipophilic 
score. Elecronegetive group presents in ortho and pera posi-
tion at P2 site form hydrogen bonding Arg 358 and Tyr 585 
and well tolerated. In summary, structure-based design utilizes 
to build novel series DPP-4 inhibitors from a small fragment 
lead. SAR development led to the discovery of multiple com-
pounds which are potent and selective while maintaining ex-
cellent physical properties and drug-like characteristics. 

CONCLUSION 

With the recent identification of several closely related 
proline-specific DPP enzymes, understanding the degree of 
selectivity required for the development of inhibitors with an 
optimal safety profile has become a key issue. In this study, 
a highly predictive HQSAR model for selective DPP-4 in-
hibitors was generated. The reliable model showed leave-
one-out cross-validation q2 and conventional r2 values of 
0.0.711 and 0.978 for DPP-4 inhibitors, 0.79 and 0.973 for 
DPP-8 inhibitors, and 0.96 and 0.64 for DPP-9 inhibitors 
with respect to selectivity. The reliability of the HQSAR 
model was verified by the compounds in a test set with 
higher predictive power.  

From the atomic contribution maps obtained using the 
HQSAR model, it was revealed that ortho or pera electro-
withdrawing substituent’s on the phenyl ring at S2 site con-
tributed to the inhibition activity. According to this study, in 
order to obtain selective DPP-4 inhibitors compared to the 
isozymes, the interaction of the inhibitors with the S2 site 
and S1 site in DPP-4 should be carefully considered. To im-
prove the potency as well as selectivity and stability it’s re-
quired to optimize lead molecules by rational way, in such 
context ligand-based lead optimization is a powerful ap-
proach to the selection of lead compounds with potential for 
drug development. Therefore, modifications in chemical 
structure as per requirement of HQSAR models provide bet-
ter and selective Dpp-4 inhibitors. 
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