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Structural and physicochemical requirements of aryl carboxylic acid amide derivatives for the inhibition of human 
dihydroorotate dehydrogenase (hDHODH) are explored in this QSAR study. The calculated molecular descriptors 
(electronic and thermodynamic) have been used to derive QSAR models between hDHODH inhibitory activity and 
structural properties. The best model for prediction of hDHODH inhibitory activity is obtained by applying sequential 
multiple linear regression (SMLR) analysis.  Regression coefficient of all the descriptors is significant at more than 99% and 
statistically significant model with r2 > 0.87 is obtained. Selected QSAR model emphasized the importance of logP, torsion 
energy (Et), 1,4-dihedral van der Waals interaction (1,4-VDWE) and electronic descriptor like lowest unoccupied molecular 
orbital (LUMO) on hDHODH inhibitory activity. Results of QSAR analysis show that logP and LUMO are the principle 
descriptors for inhibition of hDHODH. QSAR model has also been tested successfully for internal (q2 > 0.753) and external 
(r2

 pred
 > 0.621) validation criteria. It is believed that the results of this study will be helpful in the design of more potent and 

selective hDHODH inhibitors. 

Keywords: QSAR, dihydroorotate dehydrogenase (DHODH), aryl carboxylic acid amides, hDHODH 
inhibitors, logP, LUMO 

Dihydroorotate dehydrogenase (DHODH)[EC 
1.3.99.11] (Ref 1) is the fourth enzyme of 
pyrimidine de-novo synthesis that catalyses the 
conversion of dihydroorotate to orotate using co-
factors flavin mononucleotide (FMN) and 
ubiquinone (CoQ) in redox process, which is a rate-
limiting step in pyrimidine biosynthesis (Figure 1)2. 
Pyrimidines are required for the biosynthesis of 
DNA, RNA, glycolproteins and phospholipids3. 
Most of the organisms acquire pyrimidines either 
through de novo synthesis or by salvage pathway. 
Rapidly proliferating human cells such as activated 
T lymphocytes4 and cancer cells5 are heavily 
dependent on de novo nucleotide synthesis to meet 
their growth requirements6; therefore, de novo 
pyrimidine biosynthesis represents an attractive and 
selective target for the development of new 
therapeutics as anticancer, antimalarial and anti-
microbial agents. Inhibitors of hDHODH have 
proven efficacy for the treatment of cancer7,8 and 
immunological disorders, such as rheumatoid 
arthritis and multiple sclerosis9-12. Leflunomide for 
the treatment of rheumatoid arthritis13,14 and 
brequinar (antitumor and immunosuppressive 
agent)15 are two well-described inhibitors of 

hDHODH. DHODH enzymes are divided into two 
family based upon their localization, amino acid 
sequence, substrate/cofactor dependence, and 
cellular localization16. Family-1 enzymes are located 
in the cytosol; utilize fumarate or NAD+ as the 
terminal electron acceptor whereas family-2 
enzymes transfer electrons to ubiquinone (CoQ), to 
which hDHODH belongs17,18. To correlate 
mathematically chemical structures with biological 
activity induced by sets of congener molecules is 
generally referred to as QSAR. The main object of 
QSAR is to predict the desired property of a newly 
synthesized or a hypothetical molecule19,20. QSAR is 
being used to gain insight into the interaction of 
molecules with macromolecules and macromolecular 
systems and by modifying the molecular structures 
to predict the desired property could be helpful in 
designing of more potent and selective drug 
candidate. We have compiled the literature 
pertaining recent advancements in the medicinal 
chemistry of DHODH inhibitors21. In search for 
selective hDHODH inhibitors, an attempt has been 
made to quantify necessary structural and physico-
chemical requirements for inhibition of hDHODH, 
which is the first of its kind and of high statistical 
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quality and it was examined with variety of 
statistical parameters.  

Materials and Methods 

The main steps for the development of a QSAR 
model is described in the following section as: data 
preparation, statistical methods and model validation. 

Data preparation 
A data set of 34 compounds (hDHODH inhibitors) 

was collected from the literatures22,23. The experimental 
IC50 values (50% inhibitory concentration of the 
enzyme) were evaluated by Leban, et al.

22,23 in an 
enzyme assay by using N-terminally truncated re-
combinant hDHODH. The enzyme inhibition data IC50 
values were converted to pIC50 and subsequently used 
as the dependent variable for QSAR study (Table I). 

Model building 

All the calculation to draw out molecular descriptor 
was done on P-IV processor using CS Chem office24 

and in order to perform correlation analysis 
VALSTAT25 software was used. The structures of aryl 
carboxylic acid amide derivatives were drawn in 
Chem draw and copied to Chem 3D ultra to create 3D 
model, which was served as template model, for every 
compound. Template compound was suitably 
modified considering its structural feature so that 
every compound maintains same sequence of atoms. 
Minimized molecules are than subjected to re-
optimization via Austin model-1 (AM1) method using 
closed shell restricted wave function of MOPAC 
module until the root mean square (RMS) gradient 
attained a value less than 0.0001 kcal/mol Å. The 
geometric optimization of the lowest energy structure  
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Figure 1 — Reactions catalyzed by DHODH 
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Table I — Structures, physicochemical properties and activity of aryl carboxylic acid amide derivatives— Contd 

 
hDHODH  

Inhibitory activity 
Compd 

 
Compd structure m.p. 

(K) 
logP Et  

(Kcal/mol) 
1,4-

VDWE  
(Kcal/mol) 

N1,4-
VDWE  

(Kcal/mol) IC50 
a 

 
pIC50

 b 

1 

HO
O

O

HN

 

736.5 3.182 -7.048 10.844 0.453 
0.41 
µM 6.387 

2 

S

HO
O

O

HN

 

774.4 2.651 -12.078 12.091 -1.75 
0.667 
µM 6.176 

3 

S

HO
O

O

HN
O

O  

773.21 0.588 -6.967 9.575 0.399 3.8µM 5.42 

4 

HO
O

O

HN

F OCH3

 

795.63 3.214 4.576 13.299 -0.712 0.134 
µM 

6.873 

5 

O

HO
O

O

HN

F OCH3

 

810.93 1.807 3.553 13.208 -0.327 
0.36 
µM 6.444 

6 

S

HO
O

O

HN

F OCH3

 

867.81 2.528 -11.295 11.532 1.4905 
0.131 
µM 6.883 

7 

HO
O

O

HN

F OCH3

F  

808.74 3.372 -7.242 12.259 3.549 0.011 
µM 

7.959 

       — Contd 
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Table I — Structures, physicochemical properties and activity of aryl carboxylic acid amide derivatives— Contd 

 
hDHODH  

Inhibitory activity 
Compd 

 
Compd structure m.p. 

(K) 
logP Et  

(Kcal/mol) 
1,4-

VDWE  
(Kcal/mol) 

N1,4-
VDWE  

(Kcal/mol) IC50 
a 

 
pIC50

 b 

8 

HO
O

O

HN

F OCF3

F  

812.93 5.025 -4.303 11.435 -2.333 0.033 
µM 

7.481 

9 

O

HO
O

O

HN

F OCF3

F  

828.23 3.618 6.498 11.912 -2.144 0.205 
µM 

6.688 

10 

S

HO
O

O

HN

F OCF3

F  

885.11 4.34 10.935 10.33 -2.162 0.015 
µM 8.155 

11 

HO
O

O

HN

F OCF3

F

F

F  

839.15 5.342 6.188 11.659 -2.054 0.007 
µM 7.237 

12 

O

HO
O

O

HN

F OCF3

F

F

F  

854.45 3.934 2.945 11.48 -2.612 0.058 
µM 

7.237 

13 

S

HO
O

O

HN

F OCF3

F

F

F  

911.33 4.6559 7.53618 9.91312 -2.23212 0.004 
µM 

8.398 

14 

HO O

O

HN O
 

770 3.113 -4.19 13.458 1.524 2 µM 5.699 

       —Contd 
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Table I — Structures, physicochemical properties and activity of aryl carboxylic acid amide derivatives— Contd 
 

hDHODH  
Inhibitory activity 

Compd 
 

Compd structure m.p. 
(K) 

logP Et  
(Kcal/mol) 

1,4-
VDWE  

(Kcal/mol) 

N1,4-
VDWE  

(Kcal/mol) IC50 
a 

 
pIC50

 b 

15 

HO
O

O

O

HN

Br

Br  

914.64 4.771 1.521 14.651 -1.4001 0.127 
µM 6.896 

16 

S

HO
O

O

O

HN

Br

Br  

986.82 4.086 2.963 13.054 -1.37 0.173 
µM 

6.762 

17 

S

HO
O

O

O

HN

Br

Br

F

Cl  

1042.3 4.802 3.061 13.268 -1.853 0.105 
µM 

6.979 

18 

HO O

O

HN O

F

Cl

Cl

 

867.99 4.388 2.377 13.603 -1.73 0.011 
µM 7.959 

19 

O

HO
O

O

HN O

F

Cl

Cl

 

883.29 2.98 -2.889 13.84 -1.308 0.041 
µM 7.387 

20 

HO
O

O

F

Cl

Br

Br
O

HN

 

970.19 5.488 3.209 14.655 -1.06 0.11 
µM 

6.959 

21 

HO
O

O

HN O

OCH3
HO

F

 

885.71 2.054 17.115 16.611 0.797 0.68 
µM 6.167 

22 

HO O

O

HN O

OCH3

OH

F

 

885.71 2.054 9.496 16.888 0.373 1.46 
µM 

5.836 

       —Contd 
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Table I — Structures, physicochemical properties and activity of aryl carboxylic acid amide derivatives— Contd 

 
hDHODH  

Inhibitory activity 
Compd 

 
Compd structure m.p. 

(K) 
logP Et  

(Kcal/mol) 
1,4-

VDWE  
(Kcal/mol) 

N1,4-
VDWE  

(Kcal/mol) IC50 
a 

 
pIC50

 b 

23 

HN

OH
O

FF

F F

O O

CH3

 

834.96 3.688 10.78 12.282 -2.223 8 nM 
8.097 

 

24 S

O
OH

HN

O  

809.44 4.053 -3.183 8.861 0.423 303 
nM 

6.519 

25 
S

O
OH

HN

O

F O CH3

 

868.57 4.085 -2.498 10.892 1.848 44 nM 7.357 

26 
S

O
OH

HN

O

F O

F

CH3

 

892.95 4.581 -5.742 11.562 4.496 3 nM 8.523 

27 

S

O
OH

HN

O

F

F

O

H3C

 

892.95 4.581 15.345 11.57 0.456 9 nM 8.047 

28 

S

O
OH

HN

O

F

F

F

F

O

CH3

 

907.9 4.559 14.221 10.366 -2.859 1 nM 9 

29 

S

O
OH

HN

O Cl

O

CH3

 

897.9 4.485 2.486 11.983 0.915 12 nM 7.921 

       — Contd 
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Table I — Structures, physicochemical properties and activity of aryl carboxylic acid amide derivatives— Contd 

 
hDHODH  

Inhibitory activity 
Compd 

 
Compd structure m.p. 

(K) 
logP Et  

(Kcal/mol) 
1,4-

VDWE  
(Kcal/mol) 

N1,4-
VDWE  

(Kcal/mol) IC50 
a 

 
pIC50

 b 

30 

S
HN

O
HO

O

 

809.44 3.998 0.978 8.804 0.224 1000 
nM 6 

31 
S

N
H

O
HO

O F

F

O

H3C

 

892.95 4.525 3.29 10.876 -3.319 10 nM 8 

32 
S

N
H

O
HO

O F

F

O CF3

 

885.87 5.84 19.474 10.568 -1.329 10 nM 8 

33 

O

O
OH

HN

O

F O

F

CH3

 

836.07 3.159 8.128 12.081 0.168 16 nM 7.796 

34 
O HN

O

F

O
OH

O CH3

 

811.69 2.663 -1.408 11.283 1.74 340 
nM 6.469 

a Experimental hDHODH inhibitory activity (IC50 µM/nM) 
bNegative logarithm of IC50 (µM/nM) (pIC50) 

 
was carried out with eigenvector (EF) routine. The 
energy minimized geometry was used for the 
calculation of descriptor and extended Huckel charges 
of different atoms. The descriptor values were 
calculated using ‘‘compute properties’’ module of the 
program. Total number of descriptors calculated was 
about 48. Calculated thermodynamic descriptors 
included critical temperature (Tc), ideal gas thermal 
capacity (Cp), critical pressure (Pc), boiling point (BP), 
Henry’s law constant (H), bond energy (Eb), heat of 
formation (Hf), total energy (TE), partition coefficient 

(PC) and melting point (m.p.). Steric descriptors were 
also derived like connolly accessible area (CAA), 
connolly molecular area (CMA), connolly solvent 
excluded volume (CSEV), exact mass (EM), molecular 
weight (MW), principal moment of inertia-X 
component (PMI-X), principal moment of inertia-Y 
component (PMI-Y) and principal moment of inertia-Z 
component (PMI-Z), molar refractivity (MR) and 
ovality (OVAL). Electronic descriptors such as dipole 
(DIP), electronic energy (ElcE), highest occupied 
molecular orbital energy (HOMO), lowest unoccupied 
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molecular orbital energy (LUMO), repulsion energy 
(NRE), VDW-1,4-energy (1,4-VDWE), Non-1,4-VDW 
energy (N1,4-VDWE) and total energy were 
calculated. Some of the descriptors used in QSAR 
study are listed in Table I. 

Selection of the training and test sets 

Training set plays a vital role in the development of 
QSAR model, since the more similar molecules for 
training a model; the more accurate are predictable 
results. Thus, selection of training and test sets is one 
of the most important steps in QSAR modeling. An 
ideal division of a training and test set will lead to 
data sets with resemblance of all the compounds of 
the test set in multidimensional descriptor space to the 
training set and resemblance of all representative 
compounds of a training set to a test set. Simply, an 
ideal splitting leads to a test set in which each of its 
members is close to at least one member of a training 
set26. In present QSAR study all the compounds were 
divided into a training set of 25 compounds (11, 13, 

26, 10, 15, 25, 32, 28, 34, 21, 16, 17, 31, 29, 20, 27, 

30, 6, 7, 14, 33, 19, 3, 4, 8) and test set of 9 
compounds (5, 22, 24, 1, 9, 18, 2, 12, 23) by 
straightforward random selection through activity 
sampling automatically by VALSTAT. 

Statistical analysis 

Sequential multiple linear regression (SMLR) 
analysis was carried out to develop QSAR models. 
The data was transferred to the statistical program 
(VALSTAT) in order to establish the correlation 
between physiochemical descriptors as independent 
variable and hDHODH inhibitory activity as 
dependent variable. The ± data within the parentheses 
are the standard deviation, associated with coefficient 
of descriptors in regression equations. Statistical 
quality of SMLR equation were judged by parameter 
like observed squared correlation coefficient (r2), 
standard error of estimate (SE), sequential Fischer test 
(F), bootstrapping squared correlation coefficient 
(r2

bs), bootstrapping standard deviation (Sbs), chance 
statistics evaluated as the ratio of the equivalent 
regression equations to the total number of 
randomized sets; a chance value of 0.001 corresponds 
to 0.1% chance of fortuitous correlation), outliers on 
the basis of Z-score value27. 

Validation of QSAR model 

The definitive validity of QSAR model was 
examined by mean of external validation (q2), which 

evaluates how well an equation generalizes. Training 
set was used to derive an adjustment model that was 
used to predict the activity of a test set. The predicted 
power of equations was validated using predictive 
squared correlation coefficients (r2

pred). 

Results and Discussion 

Thirty four compounds were identified for QSAR 
analysis and further subjected to molecular modeling 
studies in order to explore physicochemical properties 
of the molecules which are responsible for hDHODH 
inhibition. Training set of 25 compounds was used to 
explore conformational and geometrical related 
physicochemical properties, when training set was 
subjected to SMLR to develop QSAR models, various 
statistical equations were obtained. 

pIC50 = [7.078 (± 0.381)] +MP [0.024 (± 0.004)] 
+N1,4-VDWE [-0.516 (± 0.040)] + VDW14E [-0.213 
(± 0.164)] +LUMO [1.052 (± 0.249)]  ... (1) 

where, n = 25training and 9test, r = 0.935, r2 = 0.875, SD 
= 0.371, F = 23.426, q2 = 0.695, r2

pred = 0.386 

pIC50 = [6.490 (± 0.028)] + Cp [0.013(± 0.013)] + 
N1,4-VDWE [-0.407(± 0.017)] + 1,4-VDWE [-
0.241(± 0.087)] + LUMO [1.132(± 0.212)]  ...  (2) 

where, n = 25training and 9test, r = 0.934, r2 = 0.873, SD 
= 0.374, F= 23.150, q2 = 0.681, r2

pred = 0.427 

pIC50 = [7.081(± 0.275)] +logP [0.063 (± 0.175)] +Et 
[0.074(± 0.041)] +1,4VDWE [-0.260(± 0.146)] 
+LUMO [0.750(± 0.176)]  ...  (3) 

where, n = 25training and 9test, r = 0.935, r2=0.873, SD = 
0.373, F= 24.248, q2 = 0.753, r2

pred = 0.621 

Where n is a number of compounds, r is a 
correlation coefficient which measures quality of fit 
of model, r2 is a squared correlation coefficient used 
to describe goodness of fit of the data, SD is 
standard deviation, a square root of variance and 
measure of magnitude of residuals, accounting for 
accuracy, F is a Fischer ratio values between 
variances of calculated and observed activities which 
is used to measure levels of statistical significance of 
regression model.  

 
Statistical significance of QSAR models was 

further supported by a plot of calculated vs. predicted 
activity (Figure 2) of training set compounds and 
provides an idea about how fit model was trained and 
how well it predict the activity of a test set.  
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Nearness of experimental and predicted activity 
reported in Table II also adds to this fact. Equations 
1–3 were screened on the basis of inter correlation 
within the descriptors (< 0.46) as mentioned in 

Table III; leave-one-out (LOO) cross validated 
squared correlation coefficient > 0.75 and intercept of 
best fit line. Equation 3 was considered as best model 
for hDHODH inhibition with r2 > 0.87, standard  
 

y = 0.9862x + 0.0886

R2 = 0.9908

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5

5 6 7 8 9 10

Calculated hDHODH Inhibitory pIC50 

P
re

d
ic

te
d

 (
L

O
O

) h
D

H
O

D
H

 

In
h

ib
it

o
ry

 p
IC

 50

 
Figure 2 — Plot of calculated vs. predicted (LOO) pIC50 

 
Table II — Calculated and predicted pIC50 by LOO method with residual and Z-score value  

 
Compd 

 
Calculated 

pIC50 
Residual Z-value Predicted pIC50 

(LOO) 
Residual 
(LOO) 

11 8.599 -0.862 -0.761 8.715 -1.478 

13 8.716 -0.318 -0.76 8.809 -0.411 

26 8.133 -0.776 0.934 8.096 -0.739 

10 7.867 0.288 -0.103 7.872 0.283 

15 6.71 0.186 0.446 6.696 0.201 

25 7.192 0.165 0.395 7.182 0.175 

32 7.692 0.309 0.738 7.589 0.411 

28 8.959 0.041 0.098 8.944 0.056 

34 7.047 -0.579 -1.386 7.092 -0.623 

21 6.742 -0.575 -1.374 6.996 -0.829 

16 6.811 -0.049 -0.118 6.818 -0.055 

17 6.683 0.296 0.709 6.622 0.357 

31 7.589 0.411 0.984 7.557 0.443 

29 7.732 0.189 0.453 7.705 0.216 

20 6.759 0.2 0.477 6.742 0.217 

27 8.178 -0.132 -0.316 8.199 -0.153 

30 6.827 -0.827 -1.978 6.986 -0.986 

6 7.03 -0.147 -0.353 7.045 -0.162 

7 7.212 0.748 1.787 7.145 0.814 

14 6.395 -0.696 -1.668 6.473 -0.774 

33 7.296 0.501 1.195 7.275 0.522 

19 6.727 0.66 1.579 6.653 0.734 

3 5.415 0.005 0.014 5.379 0.041 

4 6.807 0.066 0.159 6.798 0.075 

8 7.838 -0.357 -0.853 7.878 -0.396 
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deviation < 0.38, chance correlation < 0.01 and better 
statistical significance > 99% with F (4, 25 α 0.001) = 
24.248. The generated model shows 87% variance in 
the activity. Model was tested for outlier by Z-score 
method; there is no outlier in QSAR study. To 
ascertain the predictivity of the model, internal 
validation using leave-one-out cross validation 
process, bootstrapping technique and randomization 
test were performed. The satisfactory values of 
internal validation, LOO cross validated squared 
correlation coefficient (q2) > 0.75, standard deviation 
of prediction (Spress) = 0.421, standard deviation of 
error of predictions (SDEP) = 0.425, bootstrapping 
squared correlation coefficient (r2

bs) = 0.893 and 
chance correlation < 0.01 in the randomize biological 
activity test revealed that the results were not based 
on chance correlation. The model’s q

2
 > 0.75 

supported the predictive ability and significance of the 
model (Table IV). QSAR model shows predictive 
squared correlation coefficient (r2

pred) of 0.621. 
(Table IV). Equation 3 revealed that thermodynamic 
descriptors like logP, torsion energy (Et) and 
electronic descriptor like lowest unoccupied 
molecular orbital (LUMO) energy were contributed 
positively to the model, where thermodynamic 
descriptor like 1,4-dihedral van der Waals interaction 
(1,4-VDWE) energy was contributed negatively to the 
model. LUMO energy is a very popular quantum 
chemical descriptor. LUMO is the lowest energy level 
in a molecule that contains no electrons. LUMO 
energy28 plays a major role in governing many 
chemical reactions and determining electronic band 
gaps in molecules; it is also responsible for the 
formation of many charge transfer complexes29. 
According to frontier molecular orbital theory (FMO) 

of chemical reactivity, the formation of a transition 
state is due to an interaction between the frontier 
orbital (LUMO) of reacting species. Hard 
electrophiles have a high LUMO energy; and soft 
electrophiles have a low LUMO energy. DHODH 
catalyzes conversion of dihydroorotate (DHO) to 
orotate (ORO) by utilizing an FMN cofactor in the 
redox reaction for pyrimidine biosynthesis. Human 
DHODH belongs to the family-2 that utilizes flavin as 
a redox cofactor that uses respiratory quinones as 
terminal electron acceptors. LUMO which is 
indicative of π-bonding interaction of species is 
crucial for the electrophilicity of the molecules, 
suggested that molecules are able to interact with 
electron rich area at the target site. The substitutions 
which enhance electrophilicity of a molecule might be 
helpful for development of potent hDHODH 
inhibitors. Literature survey21 suggested that all the 
inhibitors of hDHODH published to date binds to the 
putative ubiquinone (CoQ) binding channel and 
display favorable antiproliferative activity, shown to 
be most pronounced during T-cell proliferation30. The 
octanol/water partition coefficient (logP) is the 
standard quantity to characterize the 
hydrophobicity/hydrophilicity of a molecule; a 
property is of major importance in biomedical 
applications. Atomic charge density has been 
proposed as the basis for calculating octanol/water 
partition coefficients31. Oral bioavailability and 
membrane permeability have regularly been 
correlated to logP in a molecule, thus logP is an 
important property in describing the affinity of the 
compounds in terms of their partitioning the 
biological membranes. Thus by increasing lipohilicity 
of whole molecule by introducing a suitable lipophilic 

 

Table III — Correlation matrix of descriptors used in QSAR model 3 
 

 logP Et 1,4-VDWE LUMO 

logP 1.000000    

Et 0.029049 1.000000   

1,4-VDWE 0.072969 0.459634 1.000000  

LUMO 0.059161 0.076151 0.428572 1.000000 
 
 

Table IV — QSAR statistics of equations 1-3 
 

Eqn r2 SD F r2
bs sbs Chance q2 SPRESS SDEP r2

pred 

1 0.874 0.371 23.426 0.901 0.05 0.001 0.695 0.478 0.472 0.386 

2 0.872 0.374 23.150 0.902 0.07 0.001 0.681 0.491 0.483 0.427 

3 0.873 0.373 24.248 0.893 0.07 0.001 0.753 0.421 0.425 0.621 
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group would surely lead to the development of 
inhibitors with good activity. Human DHODH is an 
integral membrane protein localized in the inner 
mitochondrial membrane with the active site facing 
the inner membrane space. DHODH is capped by 
hydrophobic cavity and inhibitors have to diffuse 
through a very hydrophobic environment, hence 
increase in lipophilicity might increase inhibitory 
activity. Torsion energy (Et) is defined as the sum of 
dihedral bond rotational energy term of the force-field 
equation. Torsion energy (Et) is a thermodynamic 
parameter, which represents the energy associated 
with deforming torsion angles in the molecules from 
their ideal values. Torsion energy (Et) contributes 
positively to QSAR model which suggested that 
absence of conjugation would be conducive for 
inhibitory activity of the compounds. 1,4-Dihedral 
van der Waals interaction (1,4-VDWE) energy term is 
defined as sum of pair wise van der Waals interaction 
energy for the atoms separated by exactly three 
chemical bonds, which explains depth of attraction 
potential energy well and how easy it is to push atoms 
together. Negative coefficient of 1,4-VDWE indicate 
that substitution which decreases the energy of this 
interaction generally lead to higher activity. 

Conclusions 

QSAR study suggested some important structural 
features responsible for better hDHODH inhibitory 
activity of the studied compounds. QSAR analysis 
revealed that selective inhibition is dependent on 
calculated electronic and thermodynamic descriptors. 
The linear models developed in this work are easily 
calculated and suitable for the rapid prediction of 
hDHODH inhibitory activity, and internal and 
external validation of QSAR models supported this 
claim. The π electron density of aromatic system 
decrease along with the LUMO energy of the system, 
therefore, substitution of electron withdrawing groups 
in the molecules will impart a positive influence on 
hDHODH inhibitory activity, and it may be helpful 
for designing of less toxic and more potent inhibitors. 
Partition coefficient (logP) was contributed positively 
to QSAR model, which means a group that increases 
hydrophobic nature might be helpful for good 
inhibitory activity. The study revealed that 
substitution on aromatic portion of the molecules 
results in interaction with a hydrophobic pocket at 
receptor site, which have an influence on the 
selectivity and activity. Thus, it can be concluded that 
introduction of suitable functional groups, which 

increases electronic effect like LUMO energy and the 
groups which results in increased torsion energy (Et) 
and lipophiliity (logP) have significant deficit in terms 
of accuracy of molecular structures, while 
substitutions which decreases 1,4-VDW energy can 
be used to optimize hDHODH inhibitory activity of 
aryl carboxylic acid amide derivatives. 
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