
Performance Analysis of ARM Cores and
Use of Cortex-M3 for realisation of IoT

application

Major Project Report

Submitted in fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Manas Dodya
(13MECE04)

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2015

Performance Analysis of ARM Cores and
Use of Cortex-M3 for realisation of IoT

application

Major Project Report

Submitted in fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Manas Dodya

(13MECE04)

Under the guidance of

External Project Guide: Internal Project Guide:

Mr. ShankarGanesh Kandasamy Prof. Dhaval Shah
ARM Embedded Technologies Pvt. Ltd. Assistant Professor, EC Department,
Mr. Kedar Sovai EE Branch, Institute of Technology,
Marvell India Pvt. Ltd. Nirma University, Ahmedabad.

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2015

iii

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- Manas Dodya

13MECE04

iv

Disclaimer

“The content of this thesis does not represent the technology,opinions,beliefs,

or positions of ARM Embedded Technologies Pvt.Ltd. and Marvell India

Pvt. Ltd., its employees, vendors, customers, or associates.”

v

Certificate

This is to certify that the Major Project entitled “Performance Analysis of

ARM Cores and Use of Cortex-M3 for realisation of IoT application”

submitted by Manas M. Dodya (13MECE04), towards the partial fulfillment

of the requirements for the degree of Master of Technology in Embedded Systems,

Nirma University, Ahmadabad is the record of work carried out by him under our

supervision and guidance. In our opinion, the submitted work has reached a level

required for being accepted for examination.The results embodied in this major

project, to the best of our knowledge,haven’t been submitted to any other university

or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Prof.Dhaval Shah Dr. N.P. Gajjar

Internal Guide Program Coordinator

Dr. D.K.Kothari
Section Head, EC

Dr. P.N.Tekwani Dr. K. Kotecha

Head of EE Dept. Director, IT

vi

vii

viii

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr.P.N.Tekwani, Head

of Electrical Engineering Department, and Dr.N.P.Gajjar, PG Coordinator of

M.Tech Embedded Systems program for allowing me to undertake this thesis work

and for his guidelines during the review process.

I take this opportunity to express my profound gratitude and deep regards to

Prof.Dhaval Shah, guide of my major project for his exemplary guidance, monitor-

ing and constant encouragement throughout the course of this thesis. The blessing,

help and guidance given by him time to time shall carry me a long way in the jour-

ney of life on which I am about to embark.

I would take this opportunity to express a deep sense of gratitude to my Project Man-

ager Mr.ShankarGanesh Kandasamy(ARM) and Mr.Kedar Sovani(Marvell)

for their cordial support and for providing valuable information regarding the project

and guidance, which helped me in completing this task through various stages.I

would also thank to Mr.Praveen Arkeri, Mr.Biswa Singh, Mr.Raj Zalaria,

Mr.Nirav Desai, Mr.Shantanu Potdar, Mr.Mahavir Jain, Ms.Nikita Nerkar

and Mr.Amit Sheth for always giving good suggestions and solving my doubts to

complete my project in better way.

Lastly, I thank almighty, my parents and friends for their constant encouragement

without which this assignment would not be possible.

- Manas Madhusudan Dodya

13MECE04

ix

Abstract

As x86-64 processors have already became the most chosen CPU for the personal

computers or desktops, it leads us to understand the performance impact of migrat-

ing to 64-bit environment from 32-bit environment in cases of mobile and portable

devices. The applications that can explore large memory address space always get

benefit from 64-bit environment in terms of performance. But still for the applica-

tions which does not require such large memory space and are able to fit into 32-bit

environment, it is interesting to know the effect on the overall performance, if it can

get improvement or not when shifted to 64-bit environment platform. In this report,

the description regarding various performance metrics for benchmarks compiled for

32-bit platform and 64-bit platform that run on the same platform having ARM

v8-A architecture based system is given.

In case of IoT devices, the higher speed of execution and low power consumption is

always desirable. Here, we use two versions of cortex-M3 micro-controllers running

on 200 MHz and 300 MHz to realize a serial to wi-fi converter IoT application and see

how the performance is benefited by the use of 300 MHz cortex-M3 micro-controller

in terms of power consumption. The serial to wi-fi converter IoT application is

brought up on 300 MHz chip and its performance is validated for various test sce-

narios which can check the functionality of serial to wi-fi converter IoT application.

Contents

Declaration iii

Disclaimer iv

Certificate v

Acknowledgements viii

Abstract ix

Contents xiii

List of Tables xiv

List of Figures xvi

Abbreviation Notation and Nomenclature xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Overview . 2

1.4 Thesis Organization . 4

2 Literature Survey 5

2.1 Processors . 6

x

CONTENTS xi

2.2 Extensions . 6

2.3 Architecture Features . 8

2.4 Instruction Set Features . 8

2.5 Performance Monitoring Unit (PMU) 9

2.5.1 PMU Functional Description 10

2.5.2 PMU Events . 11

2.6 SPEC CPU2000 Integer Benchmarks 13

2.7 ARM Cortex M3 . 13

2.8 Serial to Wi-Fi Converter . 15

2.8.1 Features . 15

2.9 Wi-Fi Power Management . 17

2.9.1 Basic Terminology . 17

2.9.2 Modes of Operation . 18

2.10 Summary . 20

3 Measurement Set-up and Techniques 21

3.1 ARM v8-A Architecture . 21

3.1.1 Perf Tool . 22

3.1.2 Performance Metrics . 23

3.2 Cortex-M3 in Marvell 88MC200 chip 25

3.2.1 Power Measurement Techniques 25

3.2.2 Measurement Set-Up . 26

3.2.3 Various Power Modes . 27

3.3 Summary . 28

4 Performance Analysis 29

4.1 ARM v8-A Architecture . 29

4.1.1 Speed Up . 29

4.1.2 Dynamic Instruction Count 30

4.1.3 Instruction Mix . 32

CONTENTS xii

4.1.4 CPI . 34

4.1.5 Stall Cycles . 35

4.1.6 Instruction Cache Miss/KI . 40

4.1.7 Instruction Cache Miss Rate 41

4.1.8 Data Cache Miss/KI . 42

4.1.9 Data Cache Miss Rate . 44

4.1.10 Branch Miss/KI . 46

4.1.11 Branch Miss Rate . 47

4.1.12 Indirect Branches/Total No. of Branches 47

4.2 Cortex-M3 in Marvell 88MC200 chip 48

4.2.1 Wi-Fi Deep Sleep Mode . 49

4.2.2 Wi-Fi IEEE PS DTIM=1 Mode 50

4.2.3 Wi-Fi IEEE PS DTIM=3 Mode 51

4.3 Summary . 52

5 Significant Benchmark Analysis 53

5.1 gzip . 53

5.2 mcf . 54

5.3 crafty . 55

5.4 parser . 55

5.5 vortex . 56

5.6 Summary . 56

6 Analysis Summary 57

6.1 ARM v8-A Architecture Analysis . 57

6.2 Cortex-M3 Analysis . 60

6.3 Summary . 60

7 Test Scenarios 61

7.1 Test Cases . 61

CONTENTS xiii

7.2 Summary . 63

8 Conclusion And Future Scope 64

8.1 Conclusion . 64

8.2 Future Scope . 65

References 66

List of Tables

2.1 Common Architectural PMU Events 12

2.2 Implementation Defined PMU Events 12

2.3 SPEC CPU2000 Integer Benchmark Description 13

2.4 ARM7TDMI and Cortex M3 Comparison 14

3.1 Cortex M3 States . 27

3.2 SRAM States . 28

3.3 Power States of 88MC200 . 28

5.1 Benchmarks with significant performance difference 53

6.1 Performance Difference Summary . 59

7.1 Test Scenarios for Provisioning . 62

7.2 Test Scenarios for Network . 62

7.3 Test Scenarios for HTTP and HTTPS 62

7.4 Test Scenarios for Web-Sockets . 63

7.5 Test Scenarios for Sockets . 63

7.6 Test Scenarios for Async Events . 63

xiv

List of Figures

2.1 ARM Architecture Evolution . 7

2.2 PMU Block Diagram . 10

2.3 PMU Events Classification . 11

2.4 ARM Coertex-M3 Core . 14

2.5 Serial to Wi-Fi Converter Block Diagram 16

3.1 Performance Metrics Classification 24

3.2 Marvell Wi-Fi Micro-Controller Chip 25

3.3 Basic Schematic for current measurement 26

3.4 Test Board MC200 used for power measurement 27

4.1 Speedup: 64-bit mode vs. 32-bit mode 30

4.2 Dynamic Instruction Count: 64-bit mode vs. 32-bit mode 31

4.3 Instruction Mix: 32-bit mode . 33

4.4 Instruction Mix: 64-bit mode . 33

4.5 CPI: 64-bit mode vs. 32-bit mode . 34

4.6 BX Stall: 64-bit mode vs. 32-bit mode 37

4.7 CX Stall: 64-bit mode vs. 32-bit mode 37

4.8 LS Stall: 64-bit mode vs. 32-bit mode 38

4.9 MX Stall: 64-bit mode vs. 32-bit mode 38

4.10 SP Stall: 64-bit mode vs. 32-bit mode 39

4.11 SX Stall: 64-bit mode vs. 32-bit mode 39

xv

LIST OF FIGURES xvi

4.12 Instruction Cache Miss/KI: 64-bit mode vs. 32-bit mode 40

4.13 Instruction Cache Miss Rate: 64-bit mode vs. 32-bit mode 41

4.14 L1 Data Cache Miss/KI: 64-bit mode vs. 32-bit mode 43

4.15 L2 Data Cache Miss/KI: 64-bit mode vs. 32-bit mode 43

4.16 L1 Data Cache Miss Rate: 64-bit mode vs. 32-bit mode 45

4.17 L2 Data Cache Miss Rate: 64-bit mode vs. 32-bit mode 45

4.18 Branch Miss/KI: 64-bit mode vs. 32-bit mode 46

4.19 Branch Miss Rate: 64-bit mode vs. 32-bit mode 47

4.20 Indirect Branches/Total No. of Branches: 64-bit vs. 32-bit mode . . . 48

4.21 Wi-Fi Deep Sleep mode MW300 vs MC200 49

4.22 Wi-Fi IEEE PS (DTIM=1) mode MW300 vs MC200 50

4.23 Wi-Fi IEEE PS (DTIM=3) mode MW300 vs MC200 51

Abbreviation Notation and Nomenclature

BX . Branch Execution

CPI .Cycles Per instructios

CX . Complex Execution

DTIM .Data Trafic Indication Map

LS .Load Sore

MX .Multi-cycle Execution

PS . Power Save

PMU .Performance Monitoring Unit

SP . Special Purpose Registers

SPEC . Standard Performance Evolution Corporation

SX . Single-cycle Execution

TBTT .Target Becaon Transmission Time

xvii

Chapter 1

Introduction

1.1 Motivation

Personal computers have already shifted from 32-bit to 64-bit environment and pro-

viding the better performance in terms of speed of execution. It creates the anxiety

to know if the same speed-up enhancement can be obtained by moving to 64-bit

environment in case of portable devices and mobile platform. This defines the need

to do the performance analysis of ARM v8 architecture to know if any benefit can

be exploited from this architecture working in 64-bit mode.

IoT is a new and emerging thing in todays world. New devices that will come

in consumer electronics market will already be capable of interacting with other de-

vices over the internet as an IoT device. But what can be done to bring the devices

that are existing and not able to connect and communicate with other devices. This

curiosity leads to create an application serial to wi-fi converter which can bring the

existing devices into an IoT eco-system.

1

CHAPTER 1. INTRODUCTION 2

1.2 Problem Statement

Main objective of this project is to do analysis of ARM cores and try to make use

of them for enhancement of IoT application. Performance analysis of ARM v8-A

architecture is done using SPEC CPU2000 integer benchmarks. While doing the

performance analysis, benchmarks are compiled on one single platform for 32-bit

and 64-bit environment and the focus is on various performance metrics. Perfor-

mance metrics such as Speed up, Instruction mix, Cycles break-up, CPI, Cache

miss rate and branch miss-prediction rate are to be captured and analysed. Using

all these performance metrics, predict the influence of moving to a 64-bit mode from

a 32-bit mode.

ARM Cortex M Series cores can be used for bringing up the existing device into a

new eco-system of connected devices under IoT with the use of serial to wi-fi con-

verter application. The main objective is to bring up the serial to wi-fi application

on to a new platform with understanding the need of upgrading from one develop-

ment platform to another for reducing the overall power consumption and increasing

the performance efficiency of IoT chip from Marvell.

1.3 Overview

SPEC suite has become de facto standard for benchmarking the recent high perfor-

mance processors. SPEC stands for Standard Performance Evaluation Corporation.

It is the organization that defines and maintains a set of some standard benchmarks

for computer systems and makes them available to the users of such systems as

a common reference point in the evaluation of computer performance. It is par-

ticipated by computer manufacturers, system integrators, consultants, publishers,

universities and research organizations [1]. Since its foundation in 1988, the SPEC

consortium has developed and distributed technically reliable benchmarks based on

CHAPTER 1. INTRODUCTION 3

real applications. The selection of inputs and workload is performed by the consensus

amongst consortium members willing for a transparent, comparable, reproducible

and non-proprietary solution.

The details of this thesis report are confined to integer benchmark suit because

they are helpful for CPU designers and researchers. This report presents detailed

analysis of SPEC CPU 2000 integer benchmarks running on ARM v8A processors

and showcases the important characteristics of workloads. We compare performance

of 32-bit and 64-bit architecture with the help of SPEC CPU2000 integer bench-

marks and identify the key performance behaviour of various workloads.

Single platform is able to provide an environment to run 32-bit code and 64-bit

code. It will be good to find out the major benefits of upgrading to 64-bit. The

aim is to analyse the performance of a particular set of popular applications in these

modes.

New devices that are being manufactured in recent times are coming with inte-

grated Wi-Fi chip to communicate with other devices. In coming future, there will

be plethora of electronics devices that can be controlled over internet forming an

eco-system named Internet of Thing. In this scenario, existing devises may fall

back in race of inventions. But to bring such devices in the same harmony, there

is need of a utility which can allow them to communicate and exchange data with

other devices. This can be done for the devices which are already having micro-

controllers embedded in them with the help of serial to Wi-Fi converter. Serial

to Wi-Fi converter is a module that provides WLAN connectivity to other micro-

controller based systems. A host microcontroller can communicate with this module

over UART interface. The communication happens with the use of simple ASCII

text based communication.

CHAPTER 1. INTRODUCTION 4

1.4 Thesis Organization

The rest of the thesis organized as follows.

Chapter 2 deals with brief description of ARM v8-A architecture, some of its

features, some details about SPEC CPU2000 Integer Benchmarks, Cortex-M3 fea-

tures, serial to wi-fi converter application and wi-fi power measurement techniques.

Chapter 3 deals with the measurement set-up and the technique used for perfor-

mance analysis of ARM v8-A architecture and performance analysis of Cortex-M3

used in an IoT application.

Chapter 4 deals with the performance analysis of ARM v8-A architecture based

on performance metrics and performance analysis of Cortex-M3 for the power con-

sumption in various wi-fi modes.

Chapter 5 deals with the individual benchmark performance characterization giv-

ing analysis of five benchmarks which have shown remarkable performance variation

between 64-bit mode and 32-bit mode.

Chapter 6 gives analysis summary of performance analysis of ARM v8-A archi-

tecture and points out some common benefits and some potential pitfalls of moving

to 64-bit environment. Also summary of performance in terms of power consump-

tion of cortex-M3 micro-controller used for IoT application is mentioned.

Chapter 7 gives various test scenarios that are necessary to check the function-

ality of serial to wi-fi converter application.

Chapter 8 concludes this report regarding performance analysis.

Chapter 2

Literature Survey

This chapter gives the brief overview of ARM v8-A Architecture and its evolution

from its earlier versions and this chapter also explains about cortex M3 micro-

controller. The ARM architecture is Reduced Instruction Set Computer (RISC)

architecture. Since some recent years, there is tremendous increase in number of

various smart phones and tablets. Because of this increase, ARM processors are be-

coming very popular. The main reason behind this is reduction in costs and higher

power efficiency.

Complex Instruction Set Computer (CISC) processors, have a rich instruction set

which can perform tedious operations using a single instruction. In contrast to CISC,

RISC architectures have lesser number of general purpose instructions that might be

executed with significantly fewer transistors making the silicon cheaper and more

power efficient. ARM cores have a higher count of general-purpose registers and

many instructions execute by consuming a single clock cycle. RISC architectures

main features [2]:

• The load/store architecture only allows memory to be accessed by load and

store operations and other operations uses values stored in registers only.

• Another specific difference with CISC architectures is that, when there is a

5

CHAPTER 2. LITERATURE SURVEY 6

call to Branch and Link then instead of storing the return address in the

stack, it is stored in a special register.

2.1 Processors

A short ARM processors list [2]:

1 Cortex-A: with DSP, Floating Point, TrustZone, Jazelle extensions. ARMv5,

ARM6(2001)

2 Cortex-M: ARM Thumb-2 technology which provides excellent code density.

With Thumb-2 technology, the Cortex-M processors support a fundamental base

of 16-bit Thumb instructions, extended to include more powerful 32-bit instruc-

tions. First Multi-core.(2004)

3 Cortex-R: ARMv7 deeply pipelined micro-architecture, Flexible Multi-Processor

Core (MPCore) configurations: Symmetric Multi-Processing (SMP) and Asym-

metric Multi-Processing (AMP), LPAE extension.

4 ARMv8-A:64bit with load-acquire and store-release features, which are an ex-

cellent match for the C++11, C11 and Java memory models. (2011)

2.2 Extensions

With every new version of ARM, therere new extensions provided, the v8 architec-

ture has these [2]:

• Floating Point: for floating point operations

• Neon: the ARM SIMD 128 bit (Single instruction, multiple data) engine and

DSP the SIMD 32bit engine useful to make linear algebra operations

CHAPTER 2. LITERATURE SURVEY 7

• Cryptographic Extension is an extension of the SIMD support and operates

on the vector register file. It provides instructions for the acceleration of

encryption and decryption to support the following: AES, SHA1, SHA2-256.

• Virtualization Extensions with the Large Physical Address Extension (LPAE)

enable the efficient implementation of virtual machine hypervisors for ARM

architecture compliant processors.

– The Large Physical Address extension provides the means for each of the

software environments to utilize efficiently the available physical memory

when handling large amounts of data.

Figure 2.1: ARM Architecture Evolution [3]

CHAPTER 2. LITERATURE SURVEY 8

2.3 Architecture Features

• AArch64 the ARMv8-A 64-bit execution state, that uses 31 64-bit general

purpose registers (R0-R30), and a 64-bit program counter (PC), stack pointer

(SP), and exception link registers (ELR). Provides 32 128-bit registers for

SIMD vector and scalar floating-point support (V0-V31) A64 instructions have

a fixed length of 32 bits and are always little-endian.

• AArch32 is the ARMv8-A 32-bit execution state, that uses 13 32-bit general

purpose registers (R0-R12), a 32-bit program counter (PC), stack pointer (SP),

and link register (LR). Provides 32 64-bit registers for Advanced SIMD vector

and scalar floating-point support. AArch32 execution state provides a choice of

two instruction sets, A32 (ARM) and T32 (Thumb2). Operation in AArch32

state is compatible with ARMv7-A operation.

2.4 Instruction Set Features

• New fixed length instruction set.

– Instructions are 32-bits in size.

– Clean decode table based on 5-bit register specifiers.

• Instruction semantics broadly the same as AARCH32.

• 31 general purpose registers accessible all the time.

• Improved performance and energy

• General purpose registers are 64-bits wide.

• No banking of general purpose registers

• Stack pointer and PC are not general purpose registers.

CHAPTER 2. LITERATURE SURVEY 9

• Additional dedicated zero registers are available for most instructions.

• New instructions support 64-bit operands

• Addresses are assumed to be 64-bit in size.

• LP64 and LLP64 are primary data models targeted

• Far fewer conditional instructions than in AArch32 such as conditional Branches,

compares, selects

• No arbitrary length load/store multiple instructions.

• LD/ST ‘P’for handling pairs of registers added.

• A64 Advanced SIMD and FP semantically similar to A32

– Advanced SIMD shares the floating point register files as in AArch32.

• A64 provides three major functional enhancements.

– More 128 bit registers: 32 x 128 bit wide registers

– Advanced SIMD supports DP floating-point execution

– Advanced SIMD supports full IEEE754 execution

• Instruction level support for cryptography.

2.5 Performance Monitoring Unit (PMU)

Performance Monitoring Unit is found on all medium and high end processors. This

unit is actually hardware unit that is situated inside processor to measure its hard-

ware and software performance measurement events. We can measure parameters

like branch miss, clock cycle, total instruction executed, cache miss and many other

based on the hardware provided by the processor.

CHAPTER 2. LITERATURE SURVEY 10

2.5.1 PMU Functional Description

The figure 2.2 below shows the PMU Block Diagram.

Figure 2.2: PMU Block Diagram [4]

• Event Interface: Events from all other units from across the design are

provided to PMU.

• System Register and APB interface: We can program PMU register using

system registers or external APB interface.

• Counters: There are 6 counters available. Each counter can count any of the

PMU event available for the processor

CHAPTER 2. LITERATURE SURVEY 11

2.5.2 PMU Events

There are different PMU events which are used for monitoring the performance.

Basically the PMU events are divided into two types as shown in figure 2.3 below.

Figure 2.3: PMU Events Classification

Following table 2.1 describes some common architectural PMU events used for per-

formance characterization of SPEC CPU2000 integer benchmarks and table 2.2 de-

scribes some of the implementation defined PMU events that are used for perfor-

mance analysis of SPEC CPU 2000 integer benchmarks.

CHAPTER 2. LITERATURE SURVEY 12

Table 2.1: Common Architectural PMU Events [4]

Name of Event Description
CPU Cycles Counts total no. of CPU cycles being used
Instructions Retired Counts total no. of Instructions Executed
Memory Access Counts total no. of memory access

instructions
DP Spec Counts total no. of integer operation

instructions
AES Spec Count of Advanced SIMD instructions
VFP Spec Count of Vector Floating Point instructions
Branch Predicted Total no. of branch predictions
Branch Mispredictions Total no. of branch mispredicted
I Cache Access Counts total no. of Instructions caches
I Cache Refill Counts no. of Instruction cache misses
D Cache Access Counts no. of data cache access
D Cache Refill Counts no. of data cache misses

Table 2.2: Implementation Defined PMU Events [4]

Name of Event Description
BX Stall Gives no. of stall cycles due to branch execution
CX Stall Gives no. of stall cycles due to complex operation

execution
LS Stall Gives no. of stall cycles due to load-store

operations
MX Stall Gives no. of stall cycles due to Multiple-cycles

operations execution
SP Stall Gives no. of stall cycles due to use of special

purpose registers
SX Stall Gives no. of stall cycles due to single cycle

operations

CHAPTER 2. LITERATURE SURVEY 13

2.6 SPEC CPU2000 Integer Benchmarks

Following table 2.3 gives general idea about the SPEC CPU2000 integer benchmarks

and the main task that they are designed for.

Table 2.3: SPEC CPU2000 Integer Benchmark Description [1]

Benchmark Language Category
164.gzip C Algorithm of Different Compression Techniques
175.vpr C Algorithm of FPGA Circuit Placement and Routing
176.gcc C Algorithm of C Programming Language Compiler
181.mcf C Algorithm of Combinational Optimization
186.crafty C Algorithm of Chess Game Playing
197.parser C Algorithm of Word Processing
252.eon C++ Algorithm of Computer Visualization
253.perlbmk C PERL Programming Language
254.gap C Algorithm of Group, Theory Interpreter
255.vortex C Algorithm of Object Oriented Database
256.bzip2 C Algorithm of Specific Compression technique
300.twolf C Algorithm of a Place and Route Simulator

2.7 ARM Cortex M3

The Cortex-M3 processor is based on the ARMv7-M architecture. It integrates the

CM3 core which is central processor core with various advanced system peripherals

for enabling different integrated capabilities like interrupt control, memory protec-

tion and system debug and trace. All these peripherals are highly configurable so

that they facilitate a wide range of applications. The Cortex-M3 core and the inte-

grated components are specifically designed to satisfy various requirements such as

minimum memory implementation, reduced number of pin count and lower power

consumption.

CHAPTER 2. LITERATURE SURVEY 14

Table 2.4: ARM7TDMI and Cortex M3 Comparison [7]

Feature ARM7TDMI Cortex-M3
Architecture ARMv4T (von Neuman) ARMv7-M (Harvard)
ISA Support Thumb/ARM Thumb/Thumb-2
Pipeline 3-Stage 3-stage + branch speculation
Interrupts FIQ/IRQ NMI+ 1 to 240 Physical Interrupts
Interrupt Latency 24-42 Cycles 24-42 Cycles
Sleep Modes None Integrated
Memory Protection None 8 region Memory Protection Unit
Power Consumption 0.28mW/MHz 0.19mW/MHz
Area 0.62mm2 (core only) 0.86mm2 (Core and Peripherals)

Figure 2.4: ARM Cortex-M3 Core
[8]

Cortex-M3 can be mainly useful for activity trackers, wearable and wi-fi transceivers.

Some of the well-known features of cortex-M3 are as follows [9].

• 32-bit architecture optimised for embedded application

• Cortex M3 core can operate at up to 200 MHz

• Thumb-2 instruction set with mixture of both 16-bit and 32-bit instructions

CHAPTER 2. LITERATURE SURVEY 15

• Hardware division and fast multiplier

• Little-endian memory space

• Memory Protection Unit (MPU) for protected operating system functionality

• Includes Nested Vectored Interrupt Controller (NVIC)

• SysTick Timer provided by cortex-M3 core

• Wakeup Interrupt controller (WIC) for waking up the CPU from reduced

power modes.

• Standard JTAG debug interfaced

• Serial wire JTAG debug port (SWJ-DP)

• Enhanced system debug with extensive breakpoint

• 3 Stage enhanced pipeline

2.8 Serial to Wi-Fi Converter

Serial to wi-fi converter is a module that provides WLAN connectivity to the other

micro-controller based systems. A host micro-controller can communicate with this

module over an UART interface. The host micro-controller system issues commands

and receives response from the serial to wi-fi converter module using simple ASCII

text based communication. Following figure 2.5 shows the block diagram of serial

to wi-fi converter module.

2.8.1 Features

• WLAN Station: This module acts as an 802.11 b/g/n station interface that

can associate with any wi-fi alliance certified access point. It supports open,

WEP, WPA and WPA2 security based association with these access points.

CHAPTER 2. LITERATURE SURVEY 16

Figure 2.5: Serial to Wi-Fi Converter Block Diagram

• Provisioning: Provisioning is the process of configuring the setting of the

home wireless network/access point in serial to wi-fi converter module. Once

this configuration is performed, this module will automatically associate and

maintain connectivity with the configured AP.

– Micro-AP and WPS based provisioning: In this method of provi-

sioning, this module hosts as a micro-AP network itself that clients can

connect to. Once connected, they can program the provisioning infor-

mation into this module. WPS is supported by many access points. A

WPS-push button based provisioning is as easy as pressing a button on

the AP and this module establishes association. Alternatively, a WPS

pin based provisioning includes entering the same WPS pin on the AP

and this module.

CHAPTER 2. LITERATURE SURVEY 17

• Configuration and Manufacturing: Persistent configuration parameters

are written in flash partition called PSM. Also a support is provided to have

the manufacturing time default configuration data.

• File System: The file system image that contains the HTML5/CSS/JS code

that implements the provisioning using web application.

• Asynchronous Events: Asynchronous events can be generated from this

module to the host. This allows host to go into low power modes and this

module can wake host up appropriately.

• TCP and UDP sockets: This module support communication over network

using TCP/UDP sockets. This can be used to implement both clients and

servers.

• HTTP and HTTPS Client: HTTP Client support provides an easy way of

commutation with any web server supporting HTTP protocol. Secure HTTP

HTTPS is also supported.

• Websockets: It provides full duplex communication over HTTP sockets by

upgrading it to websockets.

• Power Management: This module is designed to opportunistically enter

low power modes on detection of idle intervals.

2.9 Wi-Fi Power Management

2.9.1 Basic Terminology

To help the stations for saving the power, Access Points (APs) are designed such

that they can buffer frames for a station when that station is kept in power save

mode and to transmit them later to the station, when it is out of power save mode

and ready to listen. In power save mode, transmitter and receiver of station are

CHAPTER 2. LITERATURE SURVEY 18

turned off to save the energy. It’s more power-efficient for an AP to inform a station

if it has buffered frames present on the AP than to have the station polling the AP

and querying if frames are present.

• Target Beacon Transmission Time (TBTT) and Beacon Interval:

The time at which AP must send a becon is Target Beacon Transmission

Time (TBTT). The beacon interval is time difference between two TBTTs.

The beacon interval is given in Time Units (TU), each TU represents 1024

microseconds.

• Listen Interval: The listen interval is given in beacon interval units, so

essentially it tells the AP how many beacons it wants to ignore before turning

the receiver on.

• Delivery Traffic Indication Map (DTIM) Period : This is a special

type of TIM which announces that the AP is about to transmit all buffered

broadcast and multicast frames called the Delivery Traffic Indication Map

(DTIM). The time interval after which DTIM will be sent is called as DTIM

period. The DTIM period represents the number of beacon intervals that must

go by before a new DTIM is sent.

2.9.2 Modes of Operation

When talking about current consumption of an embedded WLAN device, the mode

of operation puts a current consumption number in its proper context. For exam-

ple, when comparing two current consumption numbers whose only other piece of

attached information is the unit (in milliamps) of measurement, it becomes nec-

essary to also include the operation mode in which the numbers were obtained.

Different modes require different parts of the design to be turned on, which makes

the operation mode a key to observed differences in the amount of current consumed.

CHAPTER 2. LITERATURE SURVEY 19

Knowing the current consumption of the design in these basic modes allows the sys-

tem designed to make accurate calculations for current consumption during various

power saving modes. For example, IEEE power save mode consists of staying asleep

and waking up periodically to receive DTIMs. The sleep portion is the same as the

deep-sleep mode defined below, and receiving the DTIM beacons is an active receive

mode. As a result, knowing the current consumption for these two modes and the

length of time the device will be in each mode (essentially the duty cycle of the

waveform for IEEE power save) allows the designer to calculate an average current

consumption over a time interval. The modes of interest and their definitions are as

follows.

• Receive Idle: DUT is powered on and had completed firmware download.

DUT is ready to receive packets, but is not actively decoding packets because

none are being transmitted to it.

• Deep-Sleep: This is a low-power state used in the sleep state of many power

save modes. It is a low-power state where the external reference clock and

many blocks in the chip are switched off. Only a slow sleep clock is used to

maintain register and memory states. Wake-up does not require a firmware

re-download.

• Power Down: Lowest power state achieved by completely powering down

the WIFI subsection of the SoC. All internal WIFI clocks are shut down, and

register and memory states are not maintained. Upon exiting power down

mode, a WIFI reset is automatically performed and a firmware re-download is

required to re-enter any of the above mentioned operation modes.

• IEEE Power Save: This mode is specially designed for wi-fi stations. In this

power saving mode some of the hardware blocks are turned off (like hardware

MAC, RF chip). A wakeup timer is programmed such that is should wakeup

WLAN device when there is next expected beacon transmit from AP. When

CHAPTER 2. LITERATURE SURVEY 20

wakeup occurs there is no need for establishing an association again with AP.

The device automatically wakes up on beacons. This is dependent on the

DTIM value of the AP it is connected to. If it is a DTIM value of 1 along with

a beacon interval of 100ms, the device wakes up every 100ms. Similarly, with

DTIM=2, the device wakes up at every 200ms and so on.

When the device is asleep in IEEE-power save mode, only a slow sleep clock is

used to maintain register and memory states. However, there is a definite wake-up

pattern. The device wakes up at regular intervals determined by the DTIM count

and/or the listen interval.

2.10 Summary

This chapter gives some details about the ARM v-8A architecture and the PMU

events which are useful for the performance characterization. Also the SPEC CPU2000

integer benchmarks details are listed out. Using these PMU events we can do some

analysis for ARM-v8A architecture and we can find which factors will enhance the

overall performance in 64-bit mode and for which factors 32-bit mode is still the

better one. Also this chapter gives some brief details about ARM Cortex-M3 micro

controller and introduction to serial to wi-fi converter application and background

to wi-fi power measurement.

Chapter 3

Measurement Set-up and

Techniques

This chapter gives idea about the experimental set-up and the measurement tech-

nique used for performance analysis of ARM v8-A architecture and ARM Cortex

M-3 micro-controller used along with Marvells 8801 wi-fi chip.

3.1 ARM v8-A Architecture

For the performance analysis, ARMs test board having the ARM v8A architecture

processor is used. Single platform is able to provide an environment to run 32-bit

code and 64-bit code. It will be good to find out the major benefits of upgrading

to 64-bit. The aim is to analyse the performance of a particular set of popular

applications in these modes.

Following are some key points of that test board that have been set at the time of

whole experiment.

• GCC compiler version: 4.9.1

• OS: SuSE Linux 9.2

21

CHAPTER 3. MEASUREMENT SET-UP AND TECHNIQUES 22

• No. of cores active: 1

3.1.1 Perf Tool

perf is powerful tool. It can instrument CPU performance counters, tracepoints,

kprobes, and uprobes (dynamic tracing). It is capable of lightweight profiling. It is

also included in the Linux kernel, under tools/perf, and is frequently updated and

enhanced.

perf began as a tool for using the performance counters subsystem in Linux, and

has had various enhancements to add tracing capabilities.

Trace points are instrumentation points placed at logical locations in code, such as

for system calls, TCP/IP events, file system operations, etc. These have negligible

overhead when not in use, and can be enabled by the perf command to collect

information including timestamps and stack traces. perf can also dynamically create

tracepoints using the kprobes and uprobes frameworks, for kernel and userspace

dynamic tracing. The possibilities with these are endless [5]. The user space perf

command presents a simple to use interface with commands like [5]:

• perf stat: obtain event counts

• perf record: record events for later reporting

• perf report: break down events by process, function etc.

• perf top: see live event count

• perf bench: run different kernel micro-benchmarks

In this experiment, perf stat is majorly used for collecting data of various PMU

events. The perf stat command can be used as follows [5].

CHAPTER 3. MEASUREMENT SET-UP AND TECHNIQUES 23

perf stat [options] [command]

options consists of

• -e event selector

• -p stat events on process id

• -t stat events on thread id

command consist of executable binary name followed by some command line input

to that binary

Ex:

perf stat -e r001 -e r002 -e r003 -e r004 -e r005 -e instructions -e cycles ./executable

Here,

• r001, r002, r003, r004, r005 are some PMU events

• instructions give count of instructions executed.

• cycles give CPU cycles required

In this case, executable can be any binary for various benchmarks from the SPEC

CPU2000 integer benchmark suit.

3.1.2 Performance Metrics

The classification of various performance metrics that are to be measured can be

done as shown in fig 3.1 below.

1 Program Behavior:

Program behaviour consists of measuring following parameters which gives basic

idea of the performance.

• Speed up: Gives idea about how fast is the performance.

• Static Code Size: Gives the size of binaries.

CHAPTER 3. MEASUREMENT SET-UP AND TECHNIQUES 24

Figure 3.1: Performance Metrics Classification

• Dynamic Instruction Count: Total no. of instructions being executed

• Instruction Mix: Types of instructions and their weightage

2 CPU Utilization:

CPU utilization gives us the idea about the various parameters that can affect the

performance of CPU and up to what extent CPU is used for various operations.

• CPI: CPI gives idea about the no. of cycles required to execute any instruc-

tion.

• Stall Cycles: Stalls gives us idea about which kind of cycles will affect the

pipeline execution and which kind of operations are going to add stall in the

pipeline.

3 Memory Performance:

Memory Performance can briefly give idea about memory subsystem utilization.

The instruction cache and data cache utilization various branch instructions that

affect memory utilization can be deduced from this metric.

• Cache Behaviour: Cache behaviour gives idea about L1 and L2 data and

instruction cache misses and cache access. This will give the idea about the

load on the memory subsystem.

CHAPTER 3. MEASUREMENT SET-UP AND TECHNIQUES 25

• Branch Miss: This metric gives idea about all the branches being missed

over the various branches being predicted.

• Indirect Branches: This metric tell about the indirect branch instructions

executed among the total branch instructions. Indirect branches can be a

key metric to analyse the behaviour of branch instructions

3.2 Cortex-M3 in Marvell 88MC200 chip

For power measurement, Marvell 88MC200 micro-controller chip is used along with

the 8801 wi-fi chip. The following diagram shows these both chips.

Figure 3.2: Marvell Wi-Fi Micro-Controller Chip
[10]

3.2.1 Power Measurement Techniques

The power consumption is directly related to the current drawn. The average power

consumption can be found out using the following formula.

CHAPTER 3. MEASUREMENT SET-UP AND TECHNIQUES 26

Electrical power equation:

Power P = I * V

Where,

power P is measured in watts,

current I is measured in amperes.

voltage V is measured in volts,

The device used to measure the current is called as Ammeter. Ammeter should be

connected in series with the circuit, as it is required that the current which is needed

to be measured must pass directly through the ammeter. The basic schematic to

connect the ammeter is as follows.

Figure 3.3: Basic Schematic for current measurement

3.2.2 Measurement Set-Up

The board is powered by USB and is connected to a laptop. It is connected to a

laptop to give commands to the chip to switch its various power modes to take the

readings.

A digital averaging multimeter is used for taking the readings. Usually all the

readings are average of 1000 readings. Another advantage of using the averaging

multimeter over the normal digital multimeter is that it can capture the instanta-

neous current.

CHAPTER 3. MEASUREMENT SET-UP AND TECHNIQUES 27

Figure 3.4: Test Board MC200 used for power measurement

To measure the current consumption of the board, the current meter is connected

across JP8 of the DUT. JP8 measures the entire current of DUT at voltage 3.3V

3.2.3 Various Power Modes

Power Management unit (PMU) is responsible for power management and reset

functions of MCU including power management of Cortex M3 and SRAM. Power

states of MCU controlled by PMU are referred as PM States. PM State is a com-

bination of states of Cortex M3, SRAM and flash. Before moving to PM states in

detail a brief on Cortex M3 states and SRAM states is as follows.

Table 3.1: Cortex M3 States [9]

Run (C0) Idle (C1) Standby (C2) Off (c3)
HCLK:On HCLK:On HCLK:Off Power Removed
FCLK:On FCLK:Off FCLK:On Power Removed

CHAPTER 3. MEASUREMENT SET-UP AND TECHNIQUES 28

Table 3.2: SRAM States [9]

Run (M0) Standby (M2) Off (M3)
CLK:On PWDN:Leakage reduction mode Power Removed

Now moving further to 88MC200 MCU System Power States (PM states) are based

on states of Cortex M3, SRAM and various PLL states.

Table 3.3: Power States of 88MC200[9]

Component PM0 PM1 PM2 PM3 PM4
Cortex M3 C0 C1 C2 C3 C4
SRAM M0 M0 M2 M2 M3
XTAL On/Off On/Off On/Off Off Off
SPLL On/Off On/Off Off Off Off
AuPLL On/Off On/Off Off Off Off

All these power modes can be explained in brief as follows.

• PM0: Active Mode

• PM1: idle Mode

• PM2: Standby Mode

• PM3: Sleep Mode

• PM4: Shut Down Mode

3.3 Summary

This chapter gives details about the experiment set-up used for performance analysis

of ARM cores and various methodologies to measure down the accurate readings

required to do the performance analysis.

Chapter 4

Performance Analysis

In this chapter, analysis of the overall performance of SPEC CPU2000 INT bench-

marks on ARM v8-A architecture and analysis of power measurement of various

MCU states of ARM Coretex-M3 microcontroller is done. The outcome will be an

overall understanding of the performance of ARM v8-A architecture for 64-bit mode

and 32-bit mode and the need to switch to new micro-controller for realisation of

the IoT application serial to wi-fi converter.

4.1 ARM v8-A Architecture

4.1.1 Speed Up

Speed-up is the difference between time taken for execution of a particular bench-

mark while running on 64-bit mode as well as 32-bit mode. By the observations,

it is found that in most of the benchmarks while running in 32-bit mode provides

speed-up.

Figure 4.1 represents the speedup achieved while running the CPU2000 integer

benchmarks in 64-bit mode against 32-bit mode. Both of these modes run with

the reference inputs in the suit. It is observed that, on an average 32-bit mode

29

CHAPTER 4. PERFORMANCE ANALYSIS 30

provides 5.85% performance boost over 64-bit mode. Highest performance boost

is observed for crafty benchmark as it is designed around 64-bit word whereas the

mcf benchmark performance is slowest for 64-bit mode as compared to 32-bit mode

because it uses long data types and pointer data types which increases the code

size in 64-bit and many branch instructions cause the higher BX stalls reducing the

overall speed of operations.

Figure 4.1: Speedup: 64-bit mode vs. 32-bit mode

4.1.2 Dynamic Instruction Count

Dynamic Instruction Count gives the idea about no. instructions required to execute

the overall benchmark suit in any specific mode i.e. either 64-bit mode or 32-bit

mode.

Figure 4.2 shows the dynamic instruction count of CPU2000 integer benchmark

while running on 64-bit mode against 32-bit mode. It is observed that, on average

the dynamic instruction count is decreased by 10.65% in 64-bit mode as compared

CHAPTER 4. PERFORMANCE ANALYSIS 31

to 32-bit mode. The significant decrease in dynamic instruction count is observed

in benchmarks like crafty, eon, vortex, whereas significant increase in dynamic in-

struction count is found in benchmarks like bzip2 and some input sets of perlbmk.

Figure 4.2: Dynamic Instruction Count: 64-bit mode vs. 32-bit mode

The main reason for decrease in instruction count in 64-bit mode of crafty benchmark

is that, it is built around 64-bit mode, in 32-bit mode it needs extra registers to

address the same data as each register is 32-bit wide. But in 64-bit mode it can

be fitted into less no. of registers as the register is 64-bit wide and availability of

more general purpose registers. The load-store instruction count is lowered in 64-bit

mode. This is one of the major reasons of reduction in overall dynamic instruction

count in 64-bit mode.

CHAPTER 4. PERFORMANCE ANALYSIS 32

4.1.3 Instruction Mix

This performance metric explains the percentage of various types of instructions

occurred such as memory, branch, neon, vfp and integer operations instruction out

of total no. of instructions being executed. In figure 4.3 and 4.4, we can see that

the Instruction mix for 64-bit mode as well as 32-bit mode. As observed the major

part of instruction mix consists of integer operations and memory instructions for

both 64-bit mode and 32-bit mode and very little of neon and vfp instructions.

There is increase of 2.38% in the integer operation instructions as we move from 32-

bit mode to 64-bit mode and decrease of 6.17% in the memory instructions which

significantly improves the performance in 64-bit mode as compared to that in 32-

bit mode. But the branch instructions are increased by 8.29% in 64-bit mode on

an average, this slows down performance of some benchmarks like parser. Vfp

instructions are observed in eon and vpr benchmarks only in both 64-bit mode and

32-bit mode. This is because of some floating point operations being performed in

these benchmarks.

CHAPTER 4. PERFORMANCE ANALYSIS 33

Figure 4.3: Instruction Mix: 32-bit mode

Figure 4.4: Instruction Mix: 64-bit mode

CHAPTER 4. PERFORMANCE ANALYSIS 34

4.1.4 CPI

CPI is another major important performance parameter to differentiate between

64-bit mode and 32-bit mode. Lower the CPI, the better is the performance.

Figure 4.5 shows the cycles-per-instruction (CPI) for the CPU2000 integer bench-

marks run in 64-bit mode against 32-bit mode. The impact on the number of dy-

namically instructions executed has been already showed in figure 4.2. From these

figures, a basic idea regarding the components that are responsible for the observed

performance difference is obtained. This will help in analysing individual bench-

mark.

Figure 4.5: CPI: 64-bit mode vs. 32-bit mode

It is observed that CPI increased by 17.67% in 64-bit mode against to that in 32-bit

mode. The average CPI for 32-bit mode is 0.84 and that for 64-bit mode is 0.99.

While moving from 32-bit to 64-bit the highest increase in CPI is observed in the

mcf benchmark. mcf benchmark consists of more of branch instructions as compared

CHAPTER 4. PERFORMANCE ANALYSIS 35

to other benchmarks hence the increase in CPI is expected as the execution of mcf

benchmarks needs more CPU cycles.

4.1.5 Stall Cycles

To analyse increased pressure that was placed on instruction fetch and decode unit

due to the factor of longer opcodes and the longer instructions in 64-bit mode, com-

parison of the stall cycles is done in both modes. We compared these six stall cycles

BX, CX, LS, MX, SP and SX stall cycle.

In figure 4.6, we can see the BX stall cycles for 64-bit mode as well as 32-bit mode.

It is found that on an average there is 35.31% increase in BX stall when we move

from 32-bit mode to 64-bit mode though the overall BX stall is very less for each

individual benchmark. Only significantly higher BX stall rate is observed in case

of benchmarks like mcf and parser as these benchmarks consists of more number of

branch instructions.

In figure 4.7, we can see the CX stall cycles for 64-bit mode as well as 32-bit mode.

The CX stall rate value is very less for all benchmarks except eon and gzip bench-

marks. eon benchmark consists of neon and vfp instructions hence the significant

CX stall is observed in case of eon benchmark in both 32-bit mode and 64-bit mode.

In figure 4.8, we can see the LS stall cycles for 64-bit mode and 32-bit mode. The

significant increase in the LS stall is found in benchmarks like mcf and gcc. mcf

has higher stall rate in 64-bit mode because it has to perform more memory access

as compared to other benchmarks in order to accumulate all the data for integer

operations that are being performed under it. And these stall are increased in 64-bit

mode because it puts additional pressure on memory subsystem to fetch the data

and load-store operations being performed are significantly higher for these bench-

CHAPTER 4. PERFORMANCE ANALYSIS 36

marks in 64-bit mode.

In figure 4.9, we can see the MX stall cycles for 64-bit mode as well as 32-bit mode.

The MX stall is decreased in 64-bit mode as compared to that of 32-bit mode. Over-

all for all the benchmarks MX stall is very less. Only in case of gzip benchmarks it

is having significant value in 32-bit mode. This is mainly because the register width

is less in 32-bit mode as compared to 64-bit mode, since gzip has to perform many

arithmetic and load-store operations which consume multiple cycles for the single

operation and hence the MX stall is higher for gzip.

In figure 4.10, we can see the SP stall cycles for 64-bit mode as well as 32-bit mode.

Only significant increase in SP stall rate is observed in case of benchmarks eon and

vpr while migrating from 32-bit mode to 64-bit mode. eon mostly consists of neon

and vfp operations. Hence to perform these operations special purpose registers are

used quite often which are resulting in the SP stalls for these benchmarks.

In figure 4.11, we can see the SX stall cycles for 64-bit mode as well as 32-bit mode.

It is observed that SX stall rate is increased by 6.7% in 64-bit mode as compared

to that in 32-bit mode. The key outlier in SX Stalls is gzip benchmark. In gzip

the compression and decompression is being performed at different levels and many

arithmetic operations which require single cycle for their execution are not performed

properly. Hence the SX stall is more in gzip benchmark as compared to others.

CHAPTER 4. PERFORMANCE ANALYSIS 37

Figure 4.6: BX Stall: 64-bit mode vs. 32-bit mode

Figure 4.7: CX Stall: 64-bit mode vs. 32-bit mode

CHAPTER 4. PERFORMANCE ANALYSIS 38

Figure 4.8: LS Stall: 64-bit mode vs. 32-bit mode

Figure 4.9: MX Stall: 64-bit mode vs. 32-bit mode

CHAPTER 4. PERFORMANCE ANALYSIS 39

Figure 4.10: SP Stall: 64-bit mode vs. 32-bit mode

Figure 4.11: SX Stall: 64-bit mode vs. 32-bit mode

CHAPTER 4. PERFORMANCE ANALYSIS 40

4.1.6 Instruction Cache Miss/KI

Instruction cache miss/KI gives the idea about how many cache miss instructions

have occurred among all the instructions that are executed. Figure 4.12 shows the

instruction cache miss observed per thousand instructions in both 64-bit mode and

32-bit mode. It is observed that in the 64-bit mode instruction cache miss rate

increased by 16.82% on an average against to that in 32-bit mode. But overall

the count of instruction cache miss is infinitesimally small in both modes for all

benchmarks. Lower the cache miss rate better is the performance. Some significant

amount of cache miss is observed in perlbmk perfect. This is because of all the

branch and load store instructions which add the load on memory subsystem.

Figure 4.12: Instruction Cache Miss/KI: 64-bit mode vs. 32-bit mode

CHAPTER 4. PERFORMANCE ANALYSIS 41

4.1.7 Instruction Cache Miss Rate

Instruction Cache Miss Rate gives the idea about how many instruction cache misses

occurred among the all instruction cache access instructions. Figure 4.13 shows the

instruction cache miss rate observed in both 64-bit mode and 32-bit mode. It is

observed that in the 64-bit mode instruction cache miss rate increased by 1.43% on

an average against to that in 32-bit mode. But overall the instruction cache miss

is infinitesimally small in both modes for all benchmarks. Higher instruction cache

miss rate is observed in perlbmk for the input set of perfect.pl.

Figure 4.13: Instruction Cache Miss Rate: 64-bit mode vs. 32-bit mode

CHAPTER 4. PERFORMANCE ANALYSIS 42

4.1.8 Data Cache Miss/KI

Data cache miss/KI gives the idea about how many data miss instructions have

occurred among all the instructions that are executed. Figure 4.14 and 4.15 shows

the L1 and L2 data cache miss observed per thousand instructions in both 64-bit

mode as well as 32-bit mode respectively. Overall data cache miss is very less in

all the benchmarks. The key outlier in L1 and L2 data cache miss is mcf benchmark.

The remarkable increase in data cache miss rate when upgrading from 32-bit mode

to 64-bit mode in mcf benchmark illustrates that as the size of pointer and long

data types is doubled, it causes an ill effect on the data cache behaviour. mcf puts

excessive load on memory subsystem as its data cache request is already very high

as compared to others, that results in higher data cache miss. Hence mcf performs

slows down on 64-bit mode as against to that in 32-bit mode.

CHAPTER 4. PERFORMANCE ANALYSIS 43

Figure 4.14: L1 Data Cache Miss/KI: 64-bit mode vs. 32-bit mode

Figure 4.15: L2 Data Cache Miss/KI: 64-bit mode vs. 32-bit mode

CHAPTER 4. PERFORMANCE ANALYSIS 44

4.1.9 Data Cache Miss Rate

Data Cache Miss Rate gives the idea about how many data cache misses occurred

among the all data cache access instructions. Figure 4.16 shows the L1 data cache

miss rate observed in both 64-bit mode and 32-bit mode. It is observed that in the

64-bit mode instruction cache miss rate increased by 34.21% on an average against

to that in 32-bit mode. But overall the instruction cache miss is infinitesimally small

in both modes. The main reason of higher data miss rate in mcf benchmark is the

doubling of the size of pointer and long data types in 64-bit mode.

Figure 4.17 shows the L2 data cache miss rate observed in both 64-bit mode and

32-bit mode. It is observed that in the 64-bit mode instruction cache miss rate

increased by 18.47% on an average against to that in 32-bit mode. Key outliers in

L2 data cache miss rate are mcf and gap benchmarks. Size of L2 cache is higher

as compared to L1 cache so secondary data to be loaded in L2 cache is more. The

arithmetic operations in mcf benchmark and array operations to be performed in

gap benchmarks that require higher memory access to load the data from main

memory. This creates more no. of load store operations which results in data cache

miss. The data cache miss rate slows down the overall performance of mcf and gap

benchmarks in 64-bit mode as compared to that in 32-bit mode.

CHAPTER 4. PERFORMANCE ANALYSIS 45

Figure 4.16: L1 Data Cache Miss Rate: 64-bit mode vs. 32-bit mode

Figure 4.17: L2 Data Cache Miss Rate: 64-bit mode vs. 32-bit mode

CHAPTER 4. PERFORMANCE ANALYSIS 46

4.1.10 Branch Miss/KI

Branch Miss is the performance metric to measure the no. of branch miss predic-

tions occurred. Branch instructions are predicted so that it can be used to fasten

the execution of total no. of instructions being executed. Lower the branch miss

rate the better is the performance.

In figure 4.18, we can see the branch miss occurred per thousand instructions for

both 64-bit mode as well as 32-bit mode. It is observed that in 64-bit mode the

branch miss rate increased by 9.84% on an average as against to that with 32-bit

mode.

It can be seen that, the branch miss increased while moving from 32-bit mode to

64-bit mode for benchmarks like vpr, mcf, bzip, twolf and the branch miss decreased

in case of benchmarks like perlbmk and gap.

Figure 4.18: Branch Miss/KI: 64-bit mode vs. 32-bit mode

CHAPTER 4. PERFORMANCE ANALYSIS 47

4.1.11 Branch Miss Rate

Branch Miss Rate gives the idea about how many branch misses occurred among the

all branch instructions. Figure 4.19 shows the Branch miss rate illustrated in both

64-bit mode and 32-bit mode. It is observed that in the 64-bit mode branch miss

rate increased by 1.7% on as against to that in 32-bit mode. Highest branch miss

rate is in vpr benchmark because of its placement and routing algorithm used. For

routing purpose various branch predictions has to be done and hence for planning

out optimum routing branch miss occurs. Overall branch miss rate is low which

gives performance benefit for branch specific applications.

Figure 4.19: Branch Miss Rate: 64-bit mode vs. 32-bit mode

4.1.12 Indirect Branches/Total No. of Branches

This metric gives the idea about how many indirect branch instructions are present

among the overall branch instructions that are being executed.

CHAPTER 4. PERFORMANCE ANALYSIS 48

Figure 4.20 shows the indirect branches per total branches observed in both 64-bit

mode and 32-bit mode. It is observed that in the 64-bit mode indirect branches are

decreased by 9.56% on an average versus that in 32-bit mode. This reduction in

indirect branches reduces the frequent memory access and helps in improving the

performance.

Figure 4.20: Indirect Branches/Total No. of Branches: 64-bit vs. 32-bit mode

4.2 Cortex-M3 in Marvell 88MC200 chip

In this section, the comparison of power consumption of ARM Cortex-M3 cores of

88MC200 and 88MW300 is done for various MCU states. The basic aim of this

comparison is to know the need to bring up the serial to wi-fi converter application

on 88MW300 chip. The main difference between MW300 and MC200 chip is that

MW300 is made up of 45nm technology whereas MC200 is made up of 65nm tech-

nology and MC200 runs on 200MHz clock speed whereas MW300 runs on 300MHZ

clock speed.

CHAPTER 4. PERFORMANCE ANALYSIS 49

4.2.1 Wi-Fi Deep Sleep Mode

This is a low-power state used in the sleep state of many power save modes. It is

a low-power state where the external reference clock and many blocks in the chip

are switched off. Only a slow sleep clock is used to maintain register and memory

states. Wake-up does not require a firmware re-download

Figure 4.21: Wi-Fi Deep Sleep mode MW300 vs MC200

The fig. 4.21 shows the comparison of current consumed by various MCU states in

the Wi-Fi deep sleep mode for MW300 and MC200 chipset. It can be clearly seen

that in the standby mode i.e. PM2, the current consumed by MW300 is 63.59%

lesser than that by MC200, in sleep mode i.e. PM3 current consumed by MW300 is

84.36% lesser than that by MC200 and in shut down mode i.e PM4 current consumed

by MW300 is 48.31% lesser than that by MC200. Overall in wi-fi deep sleep mode

the current consumed by MW300 is 66.09% lesser than that of MC200 chip. This

implies that overall power consumed by MW300 is less as compared to MC200 in

case of wi-fi deep sleep mode.

CHAPTER 4. PERFORMANCE ANALYSIS 50

4.2.2 Wi-Fi IEEE PS DTIM=1 Mode

When the device is asleep in IEEE-power save mode, only a slow sleep clock is

used to maintain register and memory states. However, there is a definite wake-up

pattern. The device wakes up at regular intervals determined by the DTIM count

and/or the listen interval.

Figure 4.22: Wi-Fi IEEE PS (DTIM=1) mode MW300 vs MC200

The figure 4.22 shows the current consumption of MW300 and MC200 in wi-fi IEEE

PS mode when the DTIM value is set to 1. For standby mode (PM2), there is

26.57% decrease in current consumption for MW300 as compared to MC200, for

sleep mode (PM3), the current reduced by 24.28% with MW300 when compared to

that of MC200 and for shut down mode (PM4), the current reduced by 21.13% with

MW300 when compared to that of MC200 Overall there is 23.99% decrement in the

current consumption for all the MCU states for MW300 over MC200.

CHAPTER 4. PERFORMANCE ANALYSIS 51

4.2.3 Wi-Fi IEEE PS DTIM=3 Mode

The figure 4.23 shows the current consumption of MW300 and MC200 in wi-fi IEEE

PS mode when the DTIM value is set to 3.

For Standby mode (PM2), there is 51% decrease in current consumption for MW300

as compared to MC200, for the sleep mode (PM3), the current consumption is re-

duced by 28.88% with MW300 when compared to that with MC200 and for shut

down mode (PM4), the current consumption is reduced by 40% with MW300 when

compared to that with MC200. Overall there is 39.96% decrement in the current

consumption for all the MCU states for MW300 over MC200.

Figure 4.23: Wi-Fi IEEE PS (DTIM=3) mode MW300 vs MC200

As the value of DTIM is increased the overall difference significantly improves for

MW300 as compared to MC200. All these indicate that MW300 consumes less

current as compared to MC200 which means overall power consumed by MW300 is

much lesser than that of MC200. Hence there is need to shift to MW300 chip for

CHAPTER 4. PERFORMANCE ANALYSIS 52

serial to wi-fi converter, to enhance the performance.

4.3 Summary

This chapter gives details about the result of performance analysis of ARM v8-A

architecture with help of SPEC2000 integer benchmarks and performance analysis

of Cortex M3 used with Marvell 8801 wi-fi chip.

Chapter 5

Significant Benchmark Analysis

In this chapter, the cynosure of analysis is on five selected benchmarks from SPEC2000

integer benchmark suit and they are gzip, mcf, crafty, parser and vortex. These five

benchmarks showed vital performance distinction between 64-bit mode and 32-bit

mode. Three of them (gzip, crafty and vortex) have performed higher in 64-bit mode

and two (mcf and parser) performed higher in 32-bit mode.

Following table 5.1 shows the speed-up obtained by five benchmarks operating in

64-bit mode as against that in 32-bit mode.

Table 5.1: Benchmarks with significant performance difference

Benchmark Speedup of 64-bit mode over 32-bit mode
gzip 10.30%
mcf -54.68%
crafty 18.65%
parser -15.99%
vortex 6.38%

5.1 gzip

gzip is a popular data compression program. SPEC’s version of gzip performs only

single file I/O which is reading the input. All compression and decompression takes

53

CHAPTER 5. SIGNIFICANT BENCHMARK ANALYSIS 54

place entirely in memory. This is to segregate the work done by the CPU and the

memory subsystem.

gzip benchmarks reference workload has five ingredients : a large TIFF image, a

webserver log, a program binary, random data, and a source tar file. Each input set

is compressed and decompressed at various blocking factors (“compression levels”).

The end result of the process is simultaneously compared to the original data after

each step [1].

gzip performs highest no. of arithmetic operations as compared to all the other

benchmarks in SPEC 2000 integer suit. When we move from 32-bit to 64-bit envi-

ronment, from profiling of the benchmark, it is observed that the number of load-

store instructions has been lowered in 64-bit mode which reduces the pressure on

memory subsystem. This is one of the major points that help in speed up in 64-bit

mode. As arithmetic operations are more, the wider register width can accumulate

more data and speeds up the execution.

5.2 mcf

mcf is based on a program used for single-depot vehicle scheduling in public mass

transportation [1]. This benchmark uses almost exclusively integer arithmetic. From

the profiling, it is found that mcf has two main data structures which consume lot

of overhead for its execution. These data structures consist of long data type and

pointer data type operands. In 64-bit environment, size of long and pointer data

types are doubled. As a result the code size has been increased in 64-bit mode.

Same results have been observed for performance metrics such as instruction cache

miss and data cache miss. Most of the instructions used for mcf benchmark are of

integer operations and memory instructions. The mcf benchmark is key outlier in

the spec 2000 suit and it executes faster on 32-bit environment as compared to 64-bit

CHAPTER 5. SIGNIFICANT BENCHMARK ANALYSIS 55

environment. And this is the only reason for overall degradation in the speed-up of

whole benchmark suit in 64-bit mode against the 32-mode.

5.3 crafty

crafty is a high-performance Computer Chess program that is designed around a

64-bit word [1]. It runs on 32-bit machines exploiting the “long long ”data type.

It is primarily an integer code, with a significant number of logical operations As

the benchmark is designed around 64-bit word, there is no doubt that it provides

speed up in 64-bit mode against the 32-bit mode. The code size of crafty benchmark

reduces tremendously in 64-bit mode as compared to that in case of 32-bit mode.

Use of 64-bit word perceptibly causes overall reduction of dynamic instruction count

in 64-bit mode. No. of indirect branches among the overall branch instructions are

very less in case of crafty benchmark in 64-bit mode as against to 32-bit mode. This

reduces the data cache misses which helps in improving the execution speed and

ensures better performance in 64-bit mode.

5.4 parser

Parser is a syntactic parser of English. It is based on link grammar. Execution of

parser consists of analysis of proposed input sentence from a dictionary of 60000

word forms. The analysis includes a set of links which capture the grammatical

structure of the input sentence [1].

In the parser benchmark, it has been observed that there are more no. of branch

instructions in 64-bit mode as against to that in 32-bit mode. This puts excessive

load on memory subsystem and data cache misses are more in 64-bit as against to

32-bit mode because of this. This leads to degradation in performance in 64-bit

CHAPTER 5. SIGNIFICANT BENCHMARK ANALYSIS 56

mode as against to 32-bit mode.

5.5 vortex

vortex is a single-user object-oriented database transaction benchmark which exer-

cises a system kernel coded in integer C.[1].

It has been observed that while executing in 64-bit mode there are less no. of

indirect branch instructions as compared to that in 32-bit mode. This reduces

the additional pressure on memory subsystem. The arithmetic operations are also

reduced which can be observed from the instruction mix for this benchmark. Load-

store instructions are also reduced in 64-bit mode. This reduces the cache memory

access and helps in enhancement of speed of execution in 64-bit mode.

5.6 Summary

This chapter gives detailed analysis of the benchmarks which have shown consider-

able difference while moving to 64-bit from 32-bit mode. This analysis is useful for

determining that, for which application areas 64-bit architecture is better and for

some areas where 32-bit architecture is sufficient enough. This will help the devel-

opers in determining which architecture should be used for the specific purpose.

Chapter 6

Analysis Summary

In this chapter, first of all we figure out the major benefits and drawbacks of moving

on to 64-bit mode from 32-bit mode environment. Then we sum up the analysis of

five benchmarks as presented in chapter 5. After that we comment on the move of

shifting from MC200 chip to MW300 for realising the serial to wi-fi converter IoT

application.

6.1 ARM v8-A Architecture Analysis

The common attributes of SPEC 2000 integer benchmarks that suggest the benefits

of moving to 64-bit mode environment are as follows.

1 64-bit integer arithmetic instructions are used

2 Loop bodies are present that require more than a few registers (Register pres-

sure can also be increased because of loop unrolling which is a common compiler

optimization).

3 Calls to the functions can be inlined.

4 Large number of registers available to accumulate neon and vfp instructions data.

57

CHAPTER 6. ANALYSIS SUMMARY 58

5 Large Physical Address extension provides the mediaum for each of the software

system environments to utilize expeditiously the available physical memory when

handling enormous amounts of data. It helps in lowering the cache misses up to

certain extent.

6 As the address space is more in the 64-bit mode, multiple OS systems can sustain

easily and work efficiently in 64-bit mode.

The major traits of SPEC 2000 integer benchmarks that suggests potential pitfall

for 64-bit mode environment are as follows.

1 Memory intensive applications; particularly those that have already experienced

a high data cache miss rate in a 32-bit environment.

2 Rigorous use of long and pointer data types in terms of amount of memory allotted

and the frequency of their access

3 Use of neon and vpf instructions can cause SP stalls which may introduce load

on pipeline and cause higher cache access request increasing the load on memory

subsystem.

Table 6.1 shows the key performance metrics (64-bit vs. 32-bit variations) of those

five CPU2000 integer benchmarks and an outline of first order cause that ends up

in these observed performance variations.

CHAPTER 6. ANALYSIS SUMMARY 59

Table 6.1: Performance Difference Summary

Bench
Marks

Speed
Up

Inst.
Count

Load
Store
Inst.

Indirect
Branches

Cause Of Performance
Difference

gzip 10.30% -9.10% -26.24% -12.14% Highest number of arith-
metic operations is to be
performed which can be
performed using less no.
of instructions in 64-bit
mode. The load-store in-
struction count is reduced
in 64-bit mode. Hence data
cache misses are lower in
64-bit mode. this helps in
obtaining the speed-up

mcf -54.86% -9.72% 0.08% -24.57% Use of long and pointer
data types in 64-bit mode
increases the code size,
long data types adds pres-
sure on memory subsys-
tems, which increases the
instructions and data cache
misses, increasing the over-
all CPU cycles count that
subsequently slows down
the overall speed of opera-
tion in 64-bit mode

crafty 18.65% -31.42% -47.25% -44.55% Designed on 64-bit variable
hence overall instruction
count is reduced, the load-
store and indirect branch
instructions are drastically
reduced in 64-bit mode,
which reduces frequent
memory access. Hence
speed up is achieved.

parser -15.99% -6.18% -10.95% 5.80% More number of branch
instructions and indirect
branches and data cache
misses are higher in 64-bit
mode. Hence the slower
performance.

vortex 6.38% -21.05% -19.73% -26.38% Less number of arithmetic
operations and indirect
branches in 64-bit mode re-
duces the load on memory
subsystem. This enhances
the performance

CHAPTER 6. ANALYSIS SUMMARY 60

6.2 Cortex-M3 Analysis

From Section 4.2, it can be clearly observed that the current consumption of MW300

chip is much lesser than MC200 chip. This indicates that overall power consumed by

MW300 is lesser than that of MC200. As low power is very critical thing in cases of

IoT applications, the move to bring up the serial to wi-fi converter IoT application

to a new MW300 chip is necessary.

Apart from low power consumption, MW300 is combination of Cortex-M3 micro-

controller and Marvells 8801 wi-fi chip on a single die. This saves a lot of space on

the chip and that space can be used for increasing the external flash memory. As

increased memory is always very useful for some critical applications and can be

utilised for providing additional features for the existing application and make the

IoT application multi-functional. Hence it does make sense to bring up the existing

serial to wi-fi application functional over MW300 chip.

6.3 Summary

This chapter gives overall summary and points on advantages and disadvantages of

making the move to 64-bit architecture from 32-bit in case of ARM v8-A architecture

and this chapter also covers the benefits of bringing up the serial to wi-fi application

over a new MW300 chip.

Chapter 7

Test Scenarios

This chapter describes all the test scenarios of various features of serial to wi-fi

converter like provisioning, network, http and https, sockets, websocket, async events

that were being validated.

7.1 Test Cases

Serial to wi-fi converter module is tested over various features that it supports. All

these test cases were written in node.js language. Node.js supports web-server cre-

ation which is useful in all test scenarios.

Following tables 7.1, 7.2, 7.3, 7.4, 7.5, 7.6 shows various test scenarios for provision-

ing, network, http and https, web-sockets, sockets and async events respectively

61

CHAPTER 7. TEST SCENARIOS 62

Table 7.1: Test Scenarios for Provisioning

Sr.No. Test Scenario
1 Validate if device is in connected state then it can shift to provisioning state
2 Validate if device is in connecting state then it can shift to provisioning state
3 Validate if device is in disconnected state then it can shift to provisioning

state

Table 7.2: Test Scenarios for Network

Sr.No. Test Scenario
1 Validate ‘Network not found’event if AP is down
2 Validate authentication failed event if passphrase is wrong
3 Validate if application goes in disconnected state after specific reconnect

attempts
4 Validate if reconnect attempts equals the configured reconnect attempts

available
5 WLAN configuration should work without rebooting the system
6 WLAN configuration should work even if executed after WLAN is started
7 Application should go to disconnected state after connect-failed state, if

reconnect attempts are set to zero

Table 7.3: Test Scenarios for HTTP and HTTPS

Sr.No. Test Scenario
1 Validate the connection with HTTP server, set header, post and get opera-

tions on the server and disconnect.
2 Validate the connection with HTTPS server, set header, post and get oper-

ations on the server and disconnect.
3 Find the maximum number of clients that can connect to HTTP/HTTPS

server (Max. Clients = 8)
4 Find maximum number of headers that can be set.
5 Validate if the current header length is exceeding the maximum allowed

header length (Max. allowed header length = 8K)

CHAPTER 7. TEST SCENARIOS 63

Table 7.4: Test Scenarios for Web-Sockets

Sr.No. Test Scenario
1 Validate websocket send and receive the data
2 Validate websocket send/receive without upgrading the socket to websocket
3 Validate websocket send ping and receive pong
4 Validate websocket receive ping from the server

Table 7.5: Test Scenarios for Sockets

Sr.No. Test Scenario
1 Validate TCP server bridge mode
2 Validate TCP client bridge mode
3 Validate UDP server bridge mode
4 Validate UDP client bridge mode

Table 7.6: Test Scenarios for Async Events

Sr.No. Test Scenario
1 Validate async events for provisioning
2 Validate async events for network
3 Validate async events for HTTP and HTTPS
4 Validate async events for Sockets
5 Validate async events for Web-Sockets

7.2 Summary

This chapter covers various test scenarios of serial to wi-fi application that were

being validated while working with MC200 chip and MW300 chip as well. These

scenarios cover all the application framework area of serial to wi-fi converter IoT

application.

Chapter 8

Conclusion And Future Scope

In this chapter, conclusion of the project work is described.

8.1 Conclusion

In this report, detailed analysis of performance variations observed between 64-bit

and 32-bit modes of ARM v8-A architecture is done based on various performance

metrics. The benchmarks from SPEC CPU2000 integer benchmarks suit are used

for this study. We presented all the performance metrics which can affect the speed

of operation and overall performance while migrating to 64-bit mode from 32-bit

mode. We further analysed the benchmarks showing remarkable difference in per-

formance to find the common program attributes that have shown advantage in one

mode against the other.

It has been found that while migrating to 64-bit mode we can use wider registers

and increased no. of general purpose registers for various operations more effec-

tively. This will reduce the data cache misses and subsequently reduces the load

on memory subsystem. Also the indirect branch instructions are lowered in case

of 64-bit mode. For arithmetic operation, there are more general purpose registers

are available with increased register width, which reduces the dynamic instruction

64

CHAPTER 8. CONCLUSION AND FUTURE SCOPE 65

count for 64-bit mode. Still the overall performance degrades by 5.85% in 64-bit

mode against to 32-bit mode for the case of SPEC CPU2000 integer benchmarks

because of performance of mcf benchmark. But still 64-bit mode can be beneficial

for use on mobile and portable devices because of its other features at the cost of

slightly degradation in speed-up for some applications.

Cortex-M3 micro-controller can be used for realising an IoT application serial to

wi-fi converter because of all its features specially the operating speed of 300MHz

which is quite faster as compared to other micro-controllers available. Also the

various low power modes and MCU states of ARM cortex-M3 allows designers to

enhance the efficiency in terms of power consumption of the device that is being

used for serial to wi-fi converter IoT application. This serial to wi-fi converter ap-

plication works perfectly over various features such as network, HTTP and HTTPS,

websocket etc.

8.2 Future Scope

In the future, it would be beneficial to extend the analysis for the floating point

benchmarks of SPEC CPU 2000 suit to find out how beneficial it is to move to 64-

bit environment. Also some compiler optimization techniques can be investigated

which can be helpful in mitigating the problems that encounter by these benchmarks

while running on 64-bit mode.

References

[1] “SPEC Introduction, CPU2000 Integer Benchmarks”, [Online]. Available:
http : //www.spec.org/ Last Updated: December 2014

[2] “Introduction to ARM v8 64-bit Architecture”, [Online]. Available: https :
//quequero.org/2014/04/introduction − to − arm − architecture/, Last Up-
dated: April 2014

[3] Richards Grisenthwaite, ARMv8 Technology Preview, ARM Tech Con, 2011

[4] ARM Cortex A-57 MP Core Processor, Revision r1p3, Technical Reference
Manual 2013

[5] “Perf Basics and Command Options”, [Online]. Available: https :
//perf.wiki.kernel.org Last Updated: June 18, 2014

[6] “SPEC CPU2000 Integer Commands”, [Online], Available: http :
//kbarr.net/specint2000 − commandlines

[7] Shyam Sadasivan An Introduction to the ARM Cortex-M3 Processor, Oct 2006

[8] “Cortex-M3, Features, Technical Specificaion”, [Online]. Available: http :
//www.arm.com/products/processors/cortex−m/cortex−m3.php

[9] Marvell 88MC200 Microcontroller Datasheet

[10] “88MC200 Chip, Features, Applications, Software ”, [Online]. Available: http :
//www.marvell.com/microcontrollers/wi−fi−microcontroller−platform/

66

	Declaration
	Disclaimer
	Certificate
	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	Abbreviation Notation and Nomenclature
	Introduction
	Motivation
	Problem Statement
	Overview
	Thesis Organization

	Literature Survey
	Processors
	Extensions
	Architecture Features
	Instruction Set Features
	Performance Monitoring Unit (PMU)
	PMU Functional Description
	PMU Events

	SPEC CPU2000 Integer Benchmarks
	ARM Cortex M3
	Serial to Wi-Fi Converter
	Features

	Wi-Fi Power Management
	Basic Terminology
	Modes of Operation

	Summary

	Measurement Set-up and Techniques
	ARM v8-A Architecture
	Perf Tool
	Performance Metrics

	Cortex-M3 in Marvell 88MC200 chip
	Power Measurement Techniques
	Measurement Set-Up
	Various Power Modes

	Summary

	Performance Analysis
	ARM v8-A Architecture
	Speed Up
	Dynamic Instruction Count
	Instruction Mix
	CPI
	Stall Cycles
	Instruction Cache Miss/KI
	Instruction Cache Miss Rate
	Data Cache Miss/KI
	Data Cache Miss Rate
	Branch Miss/KI
	Branch Miss Rate
	Indirect Branches/Total No. of Branches

	Cortex-M3 in Marvell 88MC200 chip
	Wi-Fi Deep Sleep Mode
	Wi-Fi IEEE PS DTIM=1 Mode
	Wi-Fi IEEE PS DTIM=3 Mode

	Summary

	Significant Benchmark Analysis
	gzip
	mcf
	crafty
	parser
	vortex
	Summary

	Analysis Summary
	ARM v8-A Architecture Analysis
	Cortex-M3 Analysis
	Summary

	Test Scenarios
	Test Cases
	Summary

	Conclusion And Future Scope
	Conclusion
	Future Scope

	References

