
EXPLORING SDN AND ITS USE
CASE IN OPENSTACK

Major Project Report

Submitted in partial fulfilment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

By

Janki H. Chhatbar

(13MECE06)

Electronics & Communication Engineering Branch

Electrical Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2015

EXPLORING SDN AND ITS USE
CASE IN OPENSTACK

Major Project Report

Submitted in partial fulfilment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Janki H. Chhatbar

(13MECE06)

Under the guidance of

External Project Guide: Internal Project Guide:

Mr. Sunil Singh Prof. Sachin H. Gajjar

Senior Engineer (Level 1), Assistant Professor (EC Dept.),

e-Infochips Pvt. Ltd., Institute of Technology,

Ahmedabad. Nirma University, Ahmedabad.

Electronics & Communication Engineering Branch

Electrical Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2015

iii

Declaration

This is to certify that

1. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

2. Due acknowledgement has been made in the text to all other materials used.

- Janki H. Chhatbar

iv

Disclaimer

“The content of this thesis does not represent the technology, opinions, beliefs, or

positions of e-Infochips Pvt. Ltd., its employees, vendors, customers, or associates.”

v

Certificate

This is to certify that the Major Project entitled “Exploring SDN and its use

case in OpenStack” submitted by Janki H. Chhatbar (13MECE06), towards

the partial fulfilment of the requirements for the degree of Master of Technology in

Embedded Systems, Nirma University, Ahmedabad, is the record of work carried out

by her under our supervision and guidance. In our opinion, the submitted work has

reached a level required for being accepted for examination. The results embodied

in this major project, to the best of our knowledge, haven’t been submitted to any

other university or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Prof. S. H. Gajjar Dr. N. P. Gajjar

Guide Program Coordinator

Dr. D. K. Kothari

Section Head, EC

Dr. P. N. Tekwani Dr. Ketan Kotecha

Head of EE Dept. Director, IT

vi

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr. P. N. Tekwani,

Head of Electrical Engineering Department, and Dr. N. P. Gajjar, PG Coordi-

nator of M. Tech. Embedded Systems program for allowing me to undertake this

thesis work and for his guidelines during the review process.

I take this opportunity to express my profound gratitude and deep regards to Prof.

Sachin H. Gajjar, guide of my major project for his exemplary guidance, monitor-

ing and constant encouragement throughout the course of this thesis. The blessing,

help and guidance given by him time to time shall carry me a long way in the jour-

ney of life on which I am about to embark.

I would take this opportunity to express a deep sense of gratitude to Mr. Bhaskar

Trivedi, Delivery Manager (Level 2), for giving me an opportunity to work on this

project. I thank my Project Mentor Mr. Rajeshkumar Vivekanandan, Delivery

Manager (Level 1), for his cordial support, constant supervision as well as for pro-

viding valuable information regarding the project and guidance, which helped me

in completing this task through various stages. I would also thank Mr. Prajose

John, Technical Lead (Level 2), for always helping me, giving good suggestions and

solving my doubts. I thank Mr. Sunilkumar Singh, Senior Engineer (Level 1),

for his support and assistance in completing my project.

I am obliged to all the members of OpenStack team, e-Infochips Pvt. Ltd. for the

valuable information provided by them in their respective fields.

Lastly, I thank almighty, my parents, and friends for their constant encouragement

without which this assignment would not be possible.

- Janki H. Chhatbar

13MECE06

vii

Abstract

Software Defined Networking (SDN) is a new emerging approach towards networking

which makes managing a network easy and efficient. It has advantages like rapid

innovation, network-wide view, more flexibility and easy debug. SDN is an emerging

networking concept which decouples control plane and data plane. The control plane

is called a controller. One such controller is OpenDayLight (ODL).

OpenDayLight is a project aiming to make SDN a success. There are various

projects under ODL like ODL controller, Dlux, SNMP4SDN, ovsdb-northbound,

ovs-openstack. ODL controller acts as a control plane in the SDN architecture and

controls the switches lying underneath. OpenDayLight controller can be used to

control an emulated network as well as a real ethernet switches. ODL controller

described is Helium SR1.1 version. It is benchmarked with a tool called WCBench.

To get acquainted with the controller, a network emulator called Mininet is

used. Various ways to create custom network in Mininet are also described. Virtual

switches like OVS and CPqD are managed using ODL. The procedure to be followed

to make the controller interact with real Ethernet switches is discussed.

SDN and traditional networks are compared for performance in NS3 simulator.

The result could not be validated. The reasons are discussed as well.

Cloud computing is gaining momentum. Recent buzz word, OpenStack is in

focus. A good understanding on cloud computing and its advantages, particularly

to software developers are obtained. Three node architecture Icehouse installation on

Ubuntu 14.04 Desktop Operating System is set up. OpenStack uses Open vSwitch

switches in its connection. These switches could be managed by ODL too. This

brings out the possibility of integrating ODL with OpenStack. The step by step

procedure and advantages of integrating them both are highlighted.

Contents

Declaration iii

Disclaimer iv

Certificate v

Acknowledgements vi

Abstract vii

List of Tables xi

List of Figures xiii

Abbreviation Notation and Nomenclature xiv

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Problem Statement . 2

1.4 Thesis Organization . 3

1.5 Supporting Technologies . 4

2 Software Defined Networking 5

2.1 Introduction to Software Defined Networking 5

viii

CONTENTS ix

2.1.1 Need of separating these planes 6

2.1.2 SDN Architecture . 7

2.1.3 Difference between traditional and SDN based network 8

2.2 OpenDayLight Controller . 9

2.2.1 OpenDayLight User Interface 11

2.2.2 SNMP4SDN . 12

2.2.3 Benchmarking ODL . 15

2.3 OpenFlow . 19

2.3.1 Message Format . 20

2.3.2 OF Switch Components . 21

2.3.3 OF Pipeline . 21

2.3.4 Flow Table . 24

2.4 Open vSwitch . 25

2.4.1 OVS architecture . 25

2.5 CPqD . 25

2.6 Mininet overview . 26

2.6.1 Positives of Mininet . 26

2.6.2 Installing Mininet . 28

2.6.3 Limitations . 28

3 Dwelling into OpenStack 30

3.1 Understanding on Cloud Computing 30

3.1.1 Cloud for Developers . 33

3.2 OpenStack . 35

3.2.1 Architecture of OpenStack . 38

3.2.2 Types of network . 39

3.2.3 Floating IP . 40

4 Working with ODL 41

4.1 Working with Mininet . 41

CONTENTS x

4.1.1 Custom topologies in Mininet 47

4.2 Working with Ethernet switch . 48

4.2.1 Configuring SNMP in Linux Computer 48

4.2.2 Using SNMP4SDN plugin . 49

4.3 Bandwidth throttling through ODL 52

4.3.1 Using CPqD switch . 57

4.4 WCBench . 60

4.5 Comparing SDN with traditional network 64

5 Installing OpenStack setup 66

5.1 Within the nodes . 68

5.1.1 Creating a network . 68

5.1.2 Launching an instance . 69

6 Integrating ODL with OpenStack 73

6.1 Integrating ODL with OpenStack . 73

6.2 Advantages of using ODL with OpenStack 78

6.3 Negative point of using ODL with OpenStack 78

7 Conclusion 80

References 82

List of Tables

2.1 Control and Data plane summary . 7

5.1 Physical configurations of nodes . 66

xi

List of Figures

2.1 SDN Architecture . 8

2.2 Difference between traditional and SDN network 9

2.3 ODL Helium architecture . 10

2.4 ODL User Interface (Dlux) . 11

2.5 SNMP4SDN modules . 12

2.6 SNMP4SDN Internal Architecture . 13

2.7 Switch Discovery by Traps . 14

2.8 Topology Discovery . 15

2.9 OpenFlow Message Format . 20

2.10 OpenFlow Switch . 21

2.11 OpenFlow Pipeline Processing . 22

2.12 OpenFlow Flow Table . 22

2.13 Flow Table entry Matching . 23

2.14 Flow Table Fields . 24

3.1 Understanding Cloud Computing services and difference with Tradi-

tional Computing . 32

3.2 Cloud Computing models and services 33

3.3 Advantages of Cloud Computing . 35

3.4 Conceptual architecture of OpenStack 37

3.5 Nova network architecture . 38

3.6 Neutron network architecture . 39

xii

LIST OF FIGURES xiii

4.1 Creating a network in Mininet . 43

4.2 Linear topology in Mininet . 43

4.3 Switch configuration in Mininet . 44

4.4 Links among hosts . 44

4.5 Default flows in the switches . 45

4.6 Flows after ping . 46

4.7 SwitchDB.csv file . 50

4.8 Exchange of messages between ODL and Computer 52

4.9 OVS connected to ODL and VMs attached 55

4.10 CPqD switch attached to ODL and VMs 59

4.11 Stats from running wcbench once . 62

4.12 SDN and traditional network simulated in NS3 65

5.1 OpenStack installation setup . 67

5.2 Within Compute and Neutron nodes 70

6.1 ODL integrated with OpenStack . 74

Abbreviation Notation and Nomenclature

API . Application Programming Interface

CLI .Command Line Interface

Dlux . openDayLight User Interface

GPS .Global Positining System

IP . Internet Protocol

LLDP . Link Layer Discovery Protocol

NETCONF . NETwork CONFiguration

ODL .OpenDayLight

OF . OpenFlow

OFP . OpenFlow Protocol

OID . Object Identifier

OSGi .Open Service Gateway initiative

OVS .Open vSwitch

OVSDB . Open vSwitch DataBase

PDU . Protocol Data Unit

REST .Representational State Transfer

SDN .Software Defined Network

SNMP . Simple Network Management Protocol

TCP . Transport Control Protocol

TLV . Type-Length-value

UDP . User Datagram Protocol

UI . User Interface

VLAN . Very Large Area Network

VM . Virtual Machine

VNF .Virtual Network Function

xiv

Chapter 1

Introduction

1.1 Background

Today everything is in a network. Almost all devices have an Internet Protocol (IP)

address and can communicate with each other. For proper communication, ensuring

that the routes are installed correctly in a router is a must. But routers come with

limitations. Their memory is limited. Vendor-specific operating systems (OS) also

at times restrict a network administrator from implementing many things. A change

in network, like adding or deleting a router, would mean changing the routes in all

concerned surrounding routers. This becomes cumbersome when there are hundreds

of routers.

A break-through is an introduction of concept named Software Defined Net-

working (SDN). An era of programmable computer networks is on its way. SDN

architecture makes networking devices OS independent.

This new concept is to be explored to find ways to incorporate it into the existing

network.

1

CHAPTER 1. INTRODUCTION 2

1.2 Motivation

Social media, mobile devices and cloud computing are pushing traditional networks

to their limits. Compute and storage have benefited from incredible innovations

in virtualization and automation, but those benefits are constrained by limitations

in the network. Administrators may spin up new compute and storage instances

in minutes, only to be held up for weeks by rigid and often-times manual network

operations.

SDN has the potential to revolutionize legacy data centres by providing a flexi-

ble way to control the network so it can function more like the virtualized versions

of compute and storage today. Its advantages to cloud computing platform are

the ones not to be overlooked. OpenStack is cloud computing platform providing

Infrastructure-as-a-Service (IaaS). There is a huge chance that SDN can be incor-

porated in the cloud network.

SDN will drive significant changes in how networks are built and operated. SDN

places more control of network configuration and state in the hands of logically

centralized software - putting greater control of network-based innovation and dif-

ferentiation in the hands of network operators. It leverages global views of network

resource and service demand information, promoting operations, automation, and

resource optimization, while liberating and accelerating new service creation.

1.3 Problem Statement

The task is to get acquainted with OpenDayLight (ODL) controller. The approach

taken is to first start with Mininet emulator and then move to real ethernet switches.

The controller is then used to control OpenStack overlay network.

1. To create a network in Mininet and make a switch act as a firewall using ODL

controller.

2. To create a network of two hosts connected to a real Ethernet switch and use

CHAPTER 1. INTRODUCTION 3

SNMP4SDN plugin of OpenDayLight Helium controller to dump the flow into

the switch such that the hosts are not able to ping each other.

3. To implement bandwidth throttling using ODL.

4. To integrate ODL with OpenStack network.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 and 3 covers the literature about SDN, ODL and OpenStack. Chap-

ter 2 gives overview of SDN, Mininet and ODL. It also describes ways in which a

Mininet could be installed. It mentions working of OpenFlow (OF) protocol. It

explains Open vSwitch (OVS) and CPqD switches. Chapter 3 explains cloud com-

puting concept, its advantages, particularly to software developers, and working of

OpenStack.

Chapter 4 and 5 implements the learnt concept. Chapter 4 guides through

installing ODL controller, openDayLight User eXperience (Dlux) and SNMP4SDN

features of the controller. It describes how to inter-operate Mininet with ODL

controller. Two ways to create a custom topology in Mininet are also included. It

discusses ways of programming the controller to achieve desired network behavior.

Bandwidth throttling achieved using ODL is also a part of this chapter. Chapter

5 explains setting up and OpenStack Icehouse three node architecture installation.

These chapters also highlight the issues faced in achieving the problem statement

and its solution adopted.

Chapter 6 describes the procedure of using ODL with OpenStack.

Chapter 7 states conclusion and lists out future scope of the project.

CHAPTER 1. INTRODUCTION 4

Note: Through out the thesis, issue and its solution would be shown in a grey

box as below:

Issue: This is the issued faced.

Solution: This is the solution adopted.

The code snippet is included in a box as shown below:

Code goes here.

1.5 Supporting Technologies

Many available technologies were used in achieving the problem statement. The

thesis also mentions use of protocols used. There is a minimum system requirements

for running the ODL controller. These along with technologies used are summarised

as below.

System Requirements: Java 7, 64-bit OS, 4 GB RAM

Operating system: Linux, Windows

Emulator: Mininet, NS3

Networking Protocols: SNMPv2, LLDP, OpenFlow, OVSDB

Languages: C, Java, Python

Software: Net-SNMP agent

Tools: Wireshark, mib2c

Virtualiser: VirtualBox

API: REST

Framework: Django, Karaf

Chapter 2

Software Defined Networking

2.1 Introduction to Software Defined Networking

Software Defined Networking is an emerging concept which aims to centralise the

network routing mechanism. To understand it better, lets start with a simple anal-

ogy.

Suppose a package of data is to be sent across town. It is given to a courier

service. The courier service person starts off on the road to deliver it. He now is in

the network.

He has an idea of the route which stops at places to ask for directions and find

fastest route. At times he encounters a end road and has to return searching for

another route. Traffic might be high on certain roads and he has to take a road with

lighter traffic. The packet might be too large to be taken through narrow raods.

Those people he is asking are analogous to routers. They have the knowledge and

he needs to consult them at each point in the journey.

The same analogy applies over SDN. The courier guy now has a smartphone

with Global Positioning System (GPS). He just starts off with the packet and route

gets updated in the GPS. GPS is the central control here. The central control is

aware of the shape of the package and can route him accordingly. He can also see

5

CHAPTER 2. SOFTWARE DEFINED NETWORKING 6

traffic conditions on GPS. GPS dynamically updates the route. If his phone dies,

he can ask the way.

The central point, or control plane is software as opposed to the hardware

routers in the first scenario. In case of unavailability of the software, the hardware

provides a route.

So, analysing technically, traditional network hardware has the rules and logic

for controlling the flow and modification of data in proprietary firmware, which is

partitioned into data planes and control planes[1].

To understand control and data planes better, lets have another analogy. Con-

sider public transportation of a city. Before sending bus drivers out, a plan is needed.

Control Plane = Learning what is to be done.

The planning stage includes deciding which paths will be taken by bus. This is

similar to the control plane in the network. People haven’t been picked up yet, nor

have been dropped off, but the paths and stops are known due to the plan. The

control plane is primarily about the learning of routes.

In a routed network, this planning and learning can be done through static

routes, where the router are trained about remote networks, and how to get there.

Dynamic routing protocols allow the routers to train each other regarding how to

reach remote networks, can also be used. This is all the control plane.

Data Plane = Actually moving the packets based on what is learned.

Now, after the routers know how to route for remote networks, along comes a cus-

tomers packet. This is were the data plane begins. The data plane symbolises the

movement of the customer’s data packets over the transit path. (The path to be

used was learned in the control plane stage earlier)[2].

The tasks of control and data planes are summarised in table 2.1 on page 7.

2.1.1 Need of separating these planes

Separating data and control planes have various benefits as listed below.

CHAPTER 2. SOFTWARE DEFINED NETWORKING 7

Table 2.1: Control and Data plane summary

Control-Plane tasks Data-Plane tasks

Less time-critical Operations occurring real-time on

packet path

Control and management of device

operation

Core device operations

Table maintenance, port states, etc Receive, process and transmit packets

1. Rapid innovation: Control logic is not tied to the hardware. This leads to

more rapid innovation.

2. Network-wide view: Centralised logic makes it easier to infer and reason about

network behaviour.

3. More flexibility: Flexibility can introduce more services easily.

4. Evolution and development: It is not limited to the software that comes with

the hardware.

5. Easy debug: Controlling the network from a high-level software program makes

debugging or checking of network behaviour easy.

2.1.2 SDN Architecture

From a high level view, SDN is commonly described in layers as explained below.

1. Network Apps & Orchestration: SDN applications run on top of SDN con-

troller and communicate to it through NorthBound APIs (NBI).

2. Controller Platform: SDN controller is he middle layer in SDN architecture.

It is the intelligent part which takes routing decisions. It manages the underlying

data plane through SouthBound APIs (SBI). The ODL controller that is discussed

in this thesis falls into this second layer.

CHAPTER 2. SOFTWARE DEFINED NETWORKING 8

Figure 2.1: SDN Architecture

3. Physical & Virtual Network Devices: The lowest layer in SDN architecture,

it contains physical and virtual networking devices like routers and switches.

The SDN architecture is pictorially depicted in figure 2.1 on page 8.

2.1.3 Difference between traditional and SDN based net-

work

Traditional network has routers to connect to different subnets. Routers contain

intelligence (Central Processing Unit (CPU) and OS), memory (RAM, ROM) which

stores flows and data plane which forwards the packets. Each router will have its own

OS and Command Line Interface (CLI). Routers from different vendors generally

do not inter-operate and if they do, its not without a cumbersome process. In SDN,

the intelligence is taken from routers and shifted to a central place. In SDN terms,

this central place is called a controller. Controller is a software intelligent enough to

take routing decisions. Basically router is split into 2 parts: Intelligence is shifted

to a common place and forwarding hardware at its place. This difference is shown

in figure 2.2 on page 9.

CHAPTER 2. SOFTWARE DEFINED NETWORKING 9

Figure 2.2: Difference between traditional and SDN network

2.2 OpenDayLight Controller

OpenDayLight (ODL) Controller is one among many SDN controllers. It is an open

source project under Linux Foundation. Many corporations like Cisco, Red Hat,

Brocade, Juniper are involved in developing it. It celebrated its second birthday in

April 2015 [3]. Its first release was called Hydrogen, later Helium and next Formal

Lithium Release is expected during mid-2015 [4]. Lithium release is expected to have

support for Internet of Things (IoT) as well. The controller is more than 2,230,390

lines of code [5], by March 2015, majorly written in Java, followed by C++ and

relatively less in C. It can be installed on a hardware with 64 bit architecture, 4 GB

RAM and supporting Java 7. The code is built using maven and has Open Services

Gateway Initiative (OSGi) framework. OSGi allows dynamic loading of bundles,

thus various features of ODL can work independent of each other.

Three aspects of the project are listed below.

1. Code: To create a robust, extensible, open source code. The code should cover

CHAPTER 2. SOFTWARE DEFINED NETWORKING 10

major common components required to build a SDN solution.

2. Acceptance: To get broad industrial acceptance amongst vendors and users.

3. Community: To have a thriving and growing technical community contributing

to the code base, using the code in commercial products.

It is a collection of various projects working in collaboration of each other. The whole

list of projects is available at [6]. ODL release used in this thesis is Helium SR1.1.

Pictorial representation of Helium is shown in figure 2.3 on page 10. ODL has many

Figure 2.3: ODL Helium architecture [7]

SouthBound Interfaces (SBI). These let ODL communicate to variety of underly-

ing devices like ethernet switches, Network Configuration (NETCONF) protocol

CHAPTER 2. SOFTWARE DEFINED NETWORKING 11

enabled devices, OpenFlow (OF) enabled devices, Open vswitch (OVS). To com-

municate with ethernet switches, Simple Network Management Protocol (SNMP)

is used. ODL communicates with OVS through OF and Open vSwitch DataBase

management (OVSDB) protocol.

2.2.1 OpenDayLight User Interface

OpenDayLight User Interface called Dlux is a pure JavaScript based ODL user

interface that uses REST/RESTConf APIs of controller. Helium is the first release

of Dlux. Dlux can be deployed as karaf feature along with controller or it can work

as a standalone application. It is shown in snapshot 2.4 on page 11.

The following are the main features of Dlux.

Figure 2.4: ODL User Interface (Dlux)

1. Details of nodes, node connectors and statistics information present in Model

Driven Service Abstraction Layer (MD SAL) inventory RestConf API.

2. Visual representation of nodes and hosts in network topology of MD-SAL. Hosts

information is tracked by L2-switch project.

CHAPTER 2. SOFTWARE DEFINED NETWORKING 12

3. Yang UI - Web interface to see the yang models present in controller. This is

a very powerful feature that allows user to perform operations like adding or

deleting flows on the yang model.

4. Ported features such as Connection manager, flows, static routes.

2.2.2 SNMP4SDN

To make ODL controller communicate with the ethernet switches, a new plugin

called SNMP4SDN is developed. These switches are cheap and programmable to

some extend through SNMP and CLI. They can also report their status to their

administrative computer i.e ODL controller.

For the controller to be able to configure the switches, it first needs to know

which switches are under it. It also needs to know the topology of the switches.

Simple Network Management Protocol (SNMP) and Link Layer Discovery Protocol

(LLDP) play a major role in this process.

A code is written in Java which helps in discovering a switch and knowing its

Figure 2.5: SNMP4SDN modules [9]

topology. The code is divided into parts called modules, each one dedicated to a

CHAPTER 2. SOFTWARE DEFINED NETWORKING 13

single purpose. These modules can be summarised as is in figure 2.5 on page 12

and SNMP4SDN as a whole is a plugin to ODL project. Its internal architecture is

shown in figure 2.6 on page 13.

Figure 2.6: SNMP4SDN Internal Architecture [8]

2.2.2.1 Switch Discovery

Its a mechanism through which switches tell the controller that I am under you.

This is achieved by configuring every switch with its SNMP host i.e controller so

that the switch can send trap to the controller at boot-up.

This way the controller will know of the switch when it boots up. One thing

to be taken care is the community in the trap sent by the switch must match that

CHAPTER 2. SOFTWARE DEFINED NETWORKING 14

of the controller provided controller has one otherwise the controller will reject the

switch.

This is depicted pictorially in figure 2.7 on page 14.

Figure 2.7: Switch Discovery by Traps [10]

2.2.2.2 Topology Discovery

Discovering the topology among the switches is also crucial. This is done by reading

LLDP data from each switch. The plugin queries each switch, switch replies with

the LLDP data and the topology among them is resolved. LLDP data contains each

switchs port id, the port id and chassis id of the neighbour switch. This process is

pictorially represented in figure 2.8 on page 15.

CHAPTER 2. SOFTWARE DEFINED NETWORKING 15

Figure 2.8: Topology Discovery [11]

2.2.3 Benchmarking ODL

2.2.3.1 CBench

Performance is an important issue, be it a software or a hardware. Performance is

used for benchmarking and for continuously improving the code after studying the

collected statistics. One such tool is CBench. It is very simple and written in C by

Rob Sherwood. It is a program used for testing OpenFlow controllers by generating

packet-in events for new flows. It emulates a bunch of switches. These switches

connect to a controller and send packet-in messages and watch for flow-mods to get

pushed down. CBench measures various performance issues related to flow setup

time. It emulates a configurable number of OpenFlow switches that all communi-

CHAPTER 2. SOFTWARE DEFINED NETWORKING 16

cate with a single OpenFlow controller. Each emulated switch sends a configurable

number of new flow (Open-Flow packet in) messages to the OpenFlow controller

and waits for the appropriate flow setup (OpenFlow flow mod or packet out) re-

sponses. It records the difference in time between request and response. Cbench

supports two modes of operation: latency and throughput mode. In latency mode,

each emulated switch maintains exactly one outstanding new flow request, waiting

for a response before soliciting the next request. Latency mode measures the Open-

Flow controllers request processing time under low-load conditions. By contrast, in

throughput mode, each switch maintains as many outstanding requests as buffering

will allow, that is, until the local TCP send buffer blocks. Hence, throughput mode

measures the maximum flow setup rate that a controller can maintain. Its algorithm

is [13]:

Algorithm:

pretend to be n switches (n=16 is default)

create n openflow sessions to the controller

if latency mode (default):

for each session:

1) send up a packet in

2) wait for a matching flow mod to come back

3) repeat

4) count how many times #1-3 happen per sec

else in throughtput mode (i.e., with ’-t’):

for each session:

while buffer not full:

queue packet_in’s

count flow_mod’s as they come back

<snip>

CHAPTER 2. SOFTWARE DEFINED NETWORKING 17

2.2.3.2 Issues with CBench

1. It is not actively maintained.

2. It is poorly documented.

3. It doesnot contain nay unit tests.

4. It outputs unstructed results to standard output.

5. It is single threaded.

6. It has limited code path.

7. The code is not readable and hard to maintain. Much of the code could be

replaced by Python stdlib calls.

2.2.3.3 WCBench

ODL is also tested for its performance through a wrapper around CBench called

wcbench which is developed and maintained by Daniel Farrell at Red Hat. Its whole

code is available at Git Hub [14]. It initially supported only Fedora OS. Support for

Ubuntu 14.04 was added by me. WCBench is a Python wrapper around CBench. It

is a collection of scripts which runs CBench on ODL, stores output in results.csv file

and plots graphs of the results. .csv format was chosen because its the same format

that is consumed by the Jenkins Plot Plugin. ODL uses this plugin to automatically

run a subset of the functionality provided by WCBench against ODL builds.

It contains many three scripts:

1. ./wcbench.sh [options] is a shell script which

• Checks for the OS and installs OS specific CBench.

• Installs ODL controller.

• Configures and starts ODL.

CHAPTER 2. SOFTWARE DEFINED NETWORKING 18

• Optionally pins ODL to given number of processors.

• Optionally runs CBench for the given number of minutes. depending on

the [options] given and stores output in .csv file. This also contains a field

for specifying ODL controller host IP and port in case the controller is on

another machine and tests are being run from another machine.

2. ./loop wcbecnh.sh [options] is a shell script which runs WCBench in a loop. De-

pending on [options], it will

• Loop WCBench runs without restarting ODL for given number of times

• Loop WCBench runs, restarting ODL between runs for given number of

times

• Run WCBench for a given number of minutes

• Pin ODL to given number of processors

and stores output in .csv file.

3. ./stats.py [options] is a Python script which gives out statics of the above two

scripts ran. It takes result.csv file, compute stats about the collected data and

outputs on the console or a graph depending on the options given.

The parameters in the results.csv file for each run includes:

• The name of the controller under test

• The IP address of the ODL controller

• A run number for each run, starting at 0 and counting up

• The number of CPUs on the system running ODL

• The flows/sec average from the CBench run

• Human-readable time that the run finished

CHAPTER 2. SOFTWARE DEFINED NETWORKING 19

• Unix time (in seconds) at the beginning of the run

• Unix time (in seconds) at the end of the run

• The TESTS PER SWITCH value passed to CBench

• The number of switches simulated by CBench

• The number of MAC addresses used by CBench

• The duration of each test in milliseconds

• The total RAM on the system running ODL

• The used RAM on the system running ODL at the end of a test run

• The free RAM on the system running ODL at the end of a test run

• The steal time on the system running ODL at the start of the test

• The steal time on the system running ODL at the end of the test

• The one minute load of the system running ODL

• The five minute load of the system running ODL

• The fifteen minute load of the system running ODL

• The iowait value at the start of the test on the system running ODL

• The iowait value at the end of the test on the system running ODL

2.3 OpenFlow

OpenFlow (OF) is a programmable network protocol. It is designed to manage and

direct traffic among routers and switches from various vendors. It allows a server to

instruct network switches as to where to send packets. Its a standardised protocol for

CHAPTER 2. SOFTWARE DEFINED NETWORKING 20

interacting with the forwarding behaviour of switches from multiple vendors. It is a

controller to switch protocol that runs over Transport Layer Security or unprotected

Transport Control Protocol (TCP) connection[15]. There are basically two types of

messages namely

1. Controller to switch

• Specify how packets are to be forwarded.

• Configures parameters such as VLAN priorities.

2. Switch to controller

• Inform the controller when links go down or when a packet arrives with no

specified forwarding instruction.

2.3.1 Message Format

The OF message format is as shown in the figure 2.9 on page 20. The various

Figure 2.9: OpenFlow Message Format [15]

files of the message format are as explained below.

• Version: This filed indicates version of OFP.

• Type: It describes types of messages. As of OF specifications 3.4.1, there are

29 types of messages.

• Message length: It is the length of header and payload in octets.

• Transaction ID: This id is used to control transaction of packets and match-

ing requests and responses.

CHAPTER 2. SOFTWARE DEFINED NETWORKING 21

Figure 2.10: OpenFlow Switch [15]

2.3.2 OF Switch Components

An OpenFlow Logical Switch consists of one or more flow tables and a group table,

which perform packet lookups and forwarding, and one or more OpenFlow channel

to an external controller. The switch communicates with the controller and the

controller manages the switch via the OpenFlow switch protocol.

OpenFlow-compliant switches come in two types namely

1. OpenFlow-only: They support only OpenFlow operation, in those switches all

packets are processed by the OpenFlow pipeline, and can not be processed oth-

erwise.

2. OpenFlow-hybrid switches: They support both OpenFlow operation and normal

Ethernet switching operation, i.e. traditional Layer2 Ethernet switching, VLAN

isolation, Layer3 routing (IPv4 routing, IPv6 routing...).

2.3.3 OF Pipeline

The OpenFlow pipeline of every OpenFlow Logical Switch contains one or more

flow tables, each flow table containing multiple flow entries. The OpenFlow pipeline

CHAPTER 2. SOFTWARE DEFINED NETWORKING 22

Figure 2.11: OpenFlow Pipeline Processing [15]

processing defines how packets interact with those flow tables as depicted in figure

2.11 on page 22. An OpenFlow switch is required to have at least one flow table,

and can optionally have more flow tables. An OpenFlow switch with only a single

flow table is valid, in this case pipeline processing is greatly simplified. The details

of flow table matching is explained in figure 2.12 on page 22.

Figure 2.12: OpenFlow Flow Table [15]

The flow tables of an OpenFlow switch are sequentially numbered, starting at 0.

Pipeline processing always starts at the first flow table. The packet is first matched

against flow entries of flow table 0. Other flow tables may be used depending on the

outcome of the match in the first table.

When processed by a flow table, the packet is matched against the flow entries

of the flow table to select a flow entry. If a flow entry is found, the instruction set

included in that flow entry is executed. These instructions may explicitly direct

CHAPTER 2. SOFTWARE DEFINED NETWORKING 23

the packet to another flow table, where the same process is repeated again. A flow

entry can only direct a packet to a flow table number which is greater than its own

flow table number, in other words pipeline processing can only go forward and not

backward. Obviously, the flow entries of the last table of the pipeline can not include

the Goto-Table instruction. If the matching flow entry does not direct packets to

another flow table, pipeline processing stops at this table, the packet is processed

with its associated action set and usually forwarded.

If a packet does not match a flow entry in a flow table, this is a table miss.

The behaviour on a table miss depends on the table configuration. The instructions

included in the table-miss flow entry in the flow table can flexibly specify how to

process unmatched packets, useful options include dropping them, passing them to

another table or sending them to the controllers over the control channel via packet-

in messages. This whole process id depicted in figure 2.13 on page 23

Figure 2.13: Flow Table entry Matching [15]

CHAPTER 2. SOFTWARE DEFINED NETWORKING 24

2.3.4 Flow Table

A flow table contains of flow entries. Each flow entry will have various fields. These

fields are as explained below.

1. match fields: to match against packets. These consist of the ingress port and

packet headers, and optionally other pipeline fields such as metadata specified by

a previous table.

2. priority: matching precedence of the flow entry.

3. counters: updated when packets are matched.

4. instructions: to modify the action set or pipeline processing.

5. timeouts: maximum amount of time or idle time before flow is expired by the

switch.

6. cookie: opaque data value chosen by the controller. May be used by the con-

troller to filter flow entries affected by flow statistics, flow modification and flow

deletion requests. Not used when processing packets.

7. flags: flags alter the way flow entries are managed, for example the flag OF-

PFF SEND FLOW REM triggers flow removed messages for that flow entry.

These fields are also depicted in figure 2.14 on page 24 A flow table entry

Figure 2.14: Flow Table Fields [15]

is identified by its match fields and priority: the match fields and priority taken

together identify a unique flow entry in a specific flow table. The flow entry that

wildcards all fields (all fields omitted) and has priority equal to 0 is called the table-

miss flow entry.

CHAPTER 2. SOFTWARE DEFINED NETWORKING 25

2.4 Open vSwitch

Open vSwitch (OVS) is an OF capable virtual switch. They are typically used

with hypervisors to interconnect virtual machines (VMs) within a host and between

different hosts across networks. They are suitable for multi-server deployment. Few

of its features are:

• VLAN tagging

• standard spanning tree protocol

• Quality of Service control

2.4.1 OVS architecture

OVS switches contains three main components:

1. vswitchd: it is an OVS daemon.

2. ovsdb-server: it is a database and stores ovs configurations.

3. kernel module: it currently supports Linux.

OVS switches can be compiled from source available at [20]. Its latest release is

2.3.1.

2.5 CPqD

CPqD is an independent institute in Brazil focusing on Information and Communca-

tion technology. CPqD switch was develop at this institute with Ericsson TrafficLab

1.1 softswitch implementation as a base and having support for OF 1.3. The source

could be found at GitHub repository [21]. It has following components:

1. ofdatapath: implementation of the siwtch.

CHAPTER 2. SOFTWARE DEFINED NETWORKING 26

2. ofprotocol: secure channel which connects the controller to the switch.

3. oflib: a library for converting to/from 1.3 wire format

4. dpctl: a tool for configuring the switch from the console.

Its installation steps could be found at [21].

2.6 Mininet overview

Mininet is an OpenFlow enabled network emulator. It supports variety of networking

devices like switches, end-hosts, routers, and links on a single Linux kernel. A

Mininet host acts like a real machine. It can be ssh’ed into. Just like real networks,

link speed and bandwidth can also be spcified in Mininet. Applications like iperf

also work in Mininet. It has a provision of making a host a HTTP server through a

python script.

In short, Mininet’s virtual hosts, switches, links, and controllers are the real

thing they are just created using software rather than hardware and for the most

part their behavior is similar to discrete hardware elements. It is usually possible to

create a Mininet network that resembles a hardware network, or a hardware network

that resembles a Mininet network, and to run the same binary code and applications

on either platform. It does all this just with a simple command.

2.6.1 Positives of Mininet

Mininet combines many of the best features of emulators, hardware testbeds, and

simulators. These are summarised as below [18].

1. Compared to full system virtualization based approaches, Mininet:

• Boots faster: It takes seconds to boost up instead of minutes.

• Scales larger: A network of hundreds of hosts and switches can be created.

CHAPTER 2. SOFTWARE DEFINED NETWORKING 27

• Provides more bandwidth: Typically 2 Gbps of total bandwidth is pro-

vided on modest hardware.

• Installs easily: A prepackaged VM is available that runs on VMware or

VirtualBox for Mac/Win/Linux with OpenFlow v1.0 tools already installed.

2. Compared to hardware testbeds, Mininet

• Is inexpensive and always available.

• Is quickly reconfigurable and restartable.

3. Compared to simulators, Mininet

• Runs real, unmodified code including application code, OS kernel code, and

control plane code (both OpenFlow controller code and Open vSwitch code).

• Easily connects to real networks.

• Offers interactive performance - it can be typed at.

It creates a network wth 1 switch and 2 hosts attached. The switch is connection

to the internal OpenFlow controller.

mininet@mininet-vm:~$ sudo mn

*** Creating network

*** Adding controller

*** Adding hosts:

h1 h2

*** Adding switches:

s1

*** Adding links:

(h1, s1) (h2, s1)

*** Configuring hosts

h1 h2

CHAPTER 2. SOFTWARE DEFINED NETWORKING 28

*** Starting controller

c0

*** Starting 1 switches

s1

*** Starting CLI:

mininet>

2.6.2 Installing Mininet

There are three ways to install Mininet as discussed below. One of the ways used is

described below. Details for other ways of installation could be found at [19].

1. Mininet VM installation This is the easiest and most foolproof approach.

Follow the steps below

• Download Mininet VM image from here.

• Download and install a virtualization system.

• In virtualbox, go to file ->import and import the ovf file that was down-

loaded.

2. Native installation from source

3. Installation from Packages

Once downloaded login with username and password as mininet .

2.6.3 Limitations

Mininet, though being a great help in exploring SDN concept, has limitations as

listed below [18]

1. Mininet-based networks cannot (currently) exceed the CPU or bandwidth avail-

able on a single server.

CHAPTER 2. SOFTWARE DEFINED NETWORKING 29

2. Mininet cannot (currently) run non-Linux-compatible OpenFlow switches or ap-

plications; this has not been a major issue in practice.

3. Running on a single system is convenient, but it imposes resource limits: if the

server has 3 GigaHertz (GHz) of Central Processing Unit (CPU) and can switch

about 3 Gigabits per second (Gbps) of simulated traffic, those resources will need

to be balanced and shared among virtual hosts and switches.

4. Mininet uses a single Linux kernel for all virtual hosts; this means that softwares

depending on BSD, Windows, or other operating system kernels cannot be run.

5. Mininet won’t write an OpenFlow controller; a controller is to be developed or

found if custom routing or switching behavior is needed.

6. Currently Mininet doesn’t do Network Address Translation (NAT) out of the box.

This means that virtual hosts will be isolated from Local Area Network (LAN)

by default; this is usually a good thing, but means hosts can’t talk directly to

the Internet unless a means to do so is provided for them.

7. Currently all Mininet hosts share the host file system and PID space; this means

that care must be taken while running daemons requiring configuration in /etc,

and in killing the processes.

8. Unlike a simulator, Mininet doesn’t have a strong notion of virtual time; this

means that timing measurements will be based on real time, and that faster-

than-real-time results (e.g. 100 Gbps networks) cannot easily be emulated.

9. Since the Mininet hosts share the filesystem, there might be a need to create

different configuration files for each Mininet host and specify them as startup

options if a specific configuration for a program is needed.

10. Sharing filesystem also leads to file collision if same file is created in the same

directory.

Chapter 3

Dwelling into OpenStack

3.1 Understanding on Cloud Computing

Cloud Computing !!!!!!!! Its a big name companies are moving into now a days.

Splitting the word and defining it:

Cloud is a collection of servers - all linked to each another. Computing means

working with these servers.

In simple terms, Cloud computing is accessing, developing, editing, providing and

storing all data and applications from any place in the world. The only minimum

requirement the cloud ask for is The Internet with a computer.

Now that it is clear what cloud is, the question arises of setting up and using

the cloud. Based on that, clouds are mainly of 3 types:

1. Private: Big Companies setup their own cloud with all the required hardware

and IT team for its maintenance.

2. Public: If a company don’t want to spend money on the setup and main-

tenance, they will rent a cloud for their use and pay the rent to the cloud

provider according to its usage. All the headache of the IT team, up time of

30

CHAPTER 3. DWELLING INTO OPENSTACK 31

cloud and its maintenance will be taken care of by the cloud provider.

3. Hybrid: Suppose, some company knows that the product it is selling on its

website has high traffic during 2 particular months in a year and the website

is rarely used in other months during the year. At this point of time, the

concept of hybrid cloud comes into picture. Hybrid Cloud is a combination

of both public and private cloud in which some services are rented by using

public cloud and other services reside in private cloud. The company rent the

cloud for two months to satisfy their customers and handle the traffic from

their private cloud during the rest of the year.

But what are these clouds used for? What do we get from these clouds?

Basically, there are three main services that are provided by vendors in the cloud :

1. Infrastructure-as-a-service: Abbreviated as IaaS, this is the service that

resides in the most bottom layer of all the other services. The name itself

suggests that in this service, the vendor provides the whole infrastructure

(Storage, networking & access) for usage or to upload to web for customers.

They maintain all the hardware and you just need to pay them the rent ac-

cording to your usage.

Examples of IaaS vendors are Amazon EC2, S3, OpenStack etc... This thesis

describes various projects under OpenStack, setting up of OpenStack infras-

tructure and its usage.

2. Platform-as-a-Service: Coming exactly on top of IaaS is Platform-as-a-

Service, abbreviated as PaaS. PaaS is specifically for Software Developers.

What cloud computing companies like Google do is, they provide the platform

of different languages like Java, Python etc. to develop an app and charge for

these in return. Benefit of this service is that the deployment, upgradation

and testing of the app becomes a lot easier.

Example of PaaS companies are Google AppEngine, Salesforce etc...

CHAPTER 3. DWELLING INTO OPENSTACK 32

3. Software-as-a-Service: A lot more of people now a days might be using

Dropbox, Google Drive etc for storing their photos and their other personal

stuff. That is nothing but SaaS known as Software As A Service. So this term

will not need any more explanation.

Even checking email is also an example of using cloud.

Figure 3.1: Understanding Cloud Computing services and difference with

Traditional Computing [24]

Understanding on these services are very clear from the figure 3.1 on page 32 Control

over the cloud is maximum for a private cloud, ofcourse and mininum for public cloud

because it is controlled by a cloud vendor. Level of abstraction for more for SaaS and

less for IaaS. Usage flexibility is more in IaaS as with a VM anything can be done

as opposed to SaaS, wherein only that could be achieved that the service provides.

These concepts are pictorially depicted in figure 3.2 on page 33.

CHAPTER 3. DWELLING INTO OPENSTACK 33

Figure 3.2: Cloud Computing models and services [23]

3.1.1 Cloud for Developers

A Cloud for Developers? More and more companies now-a-days are trying to provide

their product,service or support on the cloud. In other sense, it could be said

that they are becoming more developer friendly by taking their point of view into

considersation. For a developer moving to cloud saves lots of time, hardware and

efforts when compared to traditional software development methods.

Lets start with a step by step analysis.

To write a code, an editor is needed. On-cloud editors like Google App Engine,

Cloud 9 are available with command predictions and highlighting to assist writing.

Since the code is on cloud, another person will also be able to view/edit the code

remotely. A group of people can contribute to the same code increasing its efficiency.

Since the code is on cloud, it coulde be sdited any time at any place having just a

computer connected to Internet. Editors are accompanied by compilers too. Say a

windows user and want to interpret a python code. Python interpreter will have to

be installed. This is not a problem. Problem arises when unfortunately all the drives

CHAPTER 3. DWELLING INTO OPENSTACK 34

of the computer are full. Python interpreter can’t be installed. What could be the

possbile solutions now? Buy an external hard disk or increase RAM of computer.

Both these options are hardware dependent and incure cost. Another option is -

Move to cloud, simple. This reduces OS or hardware dependency for compiling the

code plus the code becomes omnipresent.

On-cloud project management tools like SalesForce are also available that ease

tracking the progress of leads and the team. The progress can be communicated

with the client as well.

Clouds also give the facility of storing the code and the results. Say results were

stored on external hard disk and it got corrupted or got lost. These results need to

be shown to the client and laptop’s battery dies. Because the data is safely stored on

cloud, one can immediately log into his/her cloud account from the client’s computer

and continue with the presentation or retrieve the lost data.

Moving further from this, after the coding is done, the next stage the developer

enters into is the testing of the program or app. Again there are alternatives as to

whether a developer wants to test it locally or on the cloud. Some companies like

Bugzilla also provides facility to keep a report of bug tracking at various points of

time during app development which helps the developer or a group of developers in

an organization to reduce the downtime or error in their application.

Also, as an app developer if app is running on cloud, the cloud will take care of

the scalability as the demand for the app increases.Some companies have even gone

one step further than this. They provide the console to the developers so that they

can keep a continuous tracking of the traffic on their app and are also provided with

some amount of control on their app during their run-time.

In a nutshell, there is a cloud solution for each and everything a developer needs

to in writing a software, deploy it easily and make it available for their clients in

the fastest and easiest possible manner. It promotes agile software development

methodology.

CHAPTER 3. DWELLING INTO OPENSTACK 35

Figure 3.3: Advantages of Cloud Computing [25]

3.1.1.1 Advantages of Cloud Computing

From the above description, it is very evident that cloud could ease the process of

developing and managing an app. There are numerous other advantages of cloud

computing depending on the industry of interest. Few common advantages common

to all can be viewed in figure 3.3 on page 35.

3.2 OpenStack

OpenStack is a cloud computing software platform. It is also free and open source. It

is primarily deployed as an Infrastructure as a Service (IaaS) solution. It is a group

of various interrelated projects that control creating VMs, storing data and images,

and networking resources managed through a web-based dashboard, a RESTful API

or command-line tools. It is released under the terms of the Apache License by open-

stack.org.

OpenStack project began in 2010 as a joint venture of Rackspace Hosting and

CHAPTER 3. DWELLING INTO OPENSTACK 36

NASA. It is currently managed by the OpenStack Foundation. It is a non-profit

corporate entity established in September 2012 to promote OpenStack software and

its community. It is a community of 200+ companies, including Cisco, Huawei,

Arista Networks, Qosmos, AT&T, Ericsson, AMD, SolidFire, Avaya, Juniper Net-

works, Citrix, Intel, Dell, Mirantis, Dreamhost, Red Hat, EMC, Go Daddy, Hewlett-

Packard, IBM, Pure Storage, Internap, Oracle, Mellanox, Acelio, NEC, NetApp,

VMware, Nexenta, Canonical, PLUMgrid, SUSE Linux, VMTurbo and Yahoo!.

Till date (April 2015) 11 releases of OpenStack are released named alphabet-

ically as Austin, Bexar, Cactus, Diablo, Essex,Folsom, Grizzly, Havana, Icehouse,

Juno and Kilo released on 30 April 2015. This thesis describes OpenStack Icehouse

release. Icehouse was released on 17 April 2014 and includes following components

1. Nova: Called Compute. Hosts VMs and manages their life cycle.

2. Glance: Called Image service, it stores as well as retrieves virtual machine

disk images. Compute uses these images while creating an instance.

3. Swift: Called Object storage, it stores and retrieves unstructured data objects

via a RESTful, HTTP based API.

4. Horizon: It is on OpenStack dashboard written in Python using Django

framework. It facilitates creation and deletion of VMs, Networks, subnets,

routers. It shows information about the running instances.

5. Keystone: Called Identity service, it is an authorization and authentication

service of OpenStack. All API calls are authorised by it.

6. Neutron: Called Networking service, it enables network connectivity as a

service for other OpenStack services, such as OpenStack Compute. Provides

an API for users to define networks and the attachments into them. Has a

pluggable architecture that supports many popular networking vendors and

technologies.

CHAPTER 3. DWELLING INTO OPENSTACK 37

Figure 3.4: Conceptual architecture of OpenStack [26]

7. Cinder: Called Block storage, it provides persistent block storage to instances

in running mode.

8. Heat: Called orchestration, it manages the complex system of OpenStack.

9. Ceilometer: Called Telemetry, it is used for billing scalability and bench-

marking of OpenStack clouds.

10. Trove: It is a Database-as-a-Service of OpenStack.

These components and their inter-connectivity is shown in the figure 3.4 on page

37.

CHAPTER 3. DWELLING INTO OPENSTACK 38

Figure 3.5: Nova network architecture

3.2.1 Architecture of OpenStack

Two types of architecture are very popular in OpenStack, 2 node with Nova network

and 3 node with Neutron network. These nodes need a minimal physical require-

ments.

Services needed and installed in the nodes for these architectures are depicted

in figure 3.5 on page 38 for Nova network and in figure 3.6 on page 39 for Neutron

network. The figures also highlight the connections between the nodes. Nova net-

work didnot handle complex network topologies. It supports three simple kinds of

network topologies namely Flat, Flat DHCP and VLAN. From the Folsom release

of OpenStack, Neutron network was introduced. It was earlier named Quantum but

renamed Neutron due to clash with other company’s name. It facilitates creation of

CHAPTER 3. DWELLING INTO OPENSTACK 39

Figure 3.6: Neutron network architecture

network, subnets and ports.

3.2.2 Types of network

OpenStack uses 3 distinct networks:

1. Management network: It is used for inter process communication. Messag-

ing service like Rabbitmq, databases like MySql uses this network for commu-

nication. It should be ensured and isolated from other networks.

2. Data network: this network is used by instances to talk to each other. L3 ser-

vices and DHCP services are too accessed through this network. This should be

isolated and secured. It is to be mapped to underlying physical network. Phys-

ical network could be of Flat type or VLAN type. Variable bridge mapping in

CHAPTER 3. DWELLING INTO OPENSTACK 40

file ml2 conf.ini.

3. External network: it exposes API services of Nova and Glance to consumers

outside OpenStack. It also allows instances to communicate with Internet and

public network using floating IP.

Layer 2 isolation could be achieved through 3 techniques:

1. VLAN

2. VxLAN

3. Global Routing Encapsulation (GRE) tunnel

3.2.3 Floating IP

OpenStack setup is in a private network. Instances are given IP address from DHCP

agent of Neutron and are accessed within OpenStack using this private IP. When

instances need to communicate through public network, they use new IP called

floating IP. Each instance will have 2 IPs, private and floating. Neutron assigns the

IP. It neither uses any DHCP service nor being assigned statically. It is Neutron L3

agent’s responsibility to route the packets having floating IP to correct destination.

Chapter 4

Working with ODL

This chapter discusses a step by step procedure followed to implement the problem

statement. The first section describes interacting with Mininet. It shows how to

create a network attached to an ODL controller in Mininet. It shows how by a

single command a switch could be converted into a firewall. The second section

describes the usage of SNMP4SDN plugin of ODL project. Third section implements

bandwidth throttling through ODL. Section 4 runs benchmark on ODL and its result

is displayed. Section 5 compares SDN with traditional network in NS3 simulator.

4.1 Working with Mininet

ODL controller acts as a control plane and can control underlying network devices

remotely. Mininet talks to controller on port 6633 for OF 1.1 and on port 6653

for OF 1.3 version. The following was the procedure followed in using controller to

control a network in mininet.

1. The controller was downloaded in a zip file from [28]. The file was unzipped and

the karaf batch file from the bin directory was run on windows machine. The

controller was prepared to communicate with Mininet by installing the features

41

CHAPTER 4. WORKING WITH ODL 42

opendaylight-user@root>feature:install odl-mdsal-apidocs

odl-restconf odl-dlux-core odl-l2switch-switch odl-l2switch-ui

odl-openflowplugin-flow-services

These features will install dlux and L2 switch capabilities. The switches on

mininet and hosts connected to them will be seen on dlux. l2switch-switch

feature is needed to make controller communicate with OF switches created in

Mininet.

2. Mininet was installed as a VM as discussed in Mininet VM installation section

in Installing Mininet. Mininet talks to ODL controller with OF protocol. The

hosts are labelled h1,....hN and switches as s1,....sN. An IP address assigned to

Mininet VM was found by ifconfig command.

Important thing to be remembered is creating a Host-only adapter named Virtual-

Box Host-Only Ethernet Adapter. Putty was used to remotely to log into Mininet

with username mininet and password mininet . X11 forwarding was enabled

and Xming was installed to allow X-forwarding. This allowed to run Wireshark in

Mininet so as message flow between controller and Mininet can be viewed. Once the

set up was completed, a network with linear topology was created. The network had

3 switches with a host connected to each switch. The switches are OVS switches.

The command for creating this network was given as shown in figure 4.1 on page

43. The connection can be pictorially shown in figure 4.2 on page 43.

–mac option will assign the mac address similar to IP address of the switch. The

switches configuration can be seen from the command prompt like shown in figure

4.3 on page 44. The links between hosts and switches can be viewed by command

dump. Many more commands can be used. Three of them are shown in figure 4.4

on page 44. ODL will install few default flows into the switches. These flows are

shown in figure 4.5 on page 45. Since the ODL controller has a simple forwarding

application, the hosts were able to ping each other. This is depicted in figure 4.5

CHAPTER 4. WORKING WITH ODL 43

Figure 4.1: Creating a network in Mininet

Figure 4.2: Linear topology in Mininet

CHAPTER 4. WORKING WITH ODL 44

Figure 4.3: Switch configuration in Mininet

Figure 4.4: Links among hosts

CHAPTER 4. WORKING WITH ODL 45

Figure 4.5: Default flows in the switches

on page 45. When the hosts ping each other, the switch is not aware of the hosts.

It goes to the controller to ask fo the course of action. This is packet-in message.

The controller is aware of the network topology and thus directs the switch s1 to

output all packets for host h2 on port 2. These flows are shown in figure 4.6 on page

46. The aim is to stop in-flow or out-flow of packets from host h3. So the switch

s3 is to be instructed to drop the messages it receives ob port 1. This is done by

commanding the switch as

mininet> sh ovs-ofctl add-flow s3 in_port=1,actions=drop

ofctl is a command line tool to add/delete/modify flows/VLAN information in

OF switches. This flow can be added in the switch through ODL too. For this,

the flow is first added into ODL either through POSTMAN REST API client or

through Yang UI. Yang UI can be accessed from dlux. POSTMAN plugin needs to

be added in Chrome web browser and works offline. A code in xml is to be written

and PUT into the switch. The switch’s address with the flow table is given.

CHAPTER 4. WORKING WITH ODL 46

Figure 4.6: Flows after ping

localhost:8181/restconf/config/opendaylight-inventory/nodes

/openflow/1/table/0/flow/4

Headers saying that the content type and acceptable content is application type

in xml are specified.

Content-Type: application/xml

Accept: application/xml

The xml code to be written in POSTMAN is:

CHAPTER 4. WORKING WITH ODL 47

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<flow xmlns="urn:opendaylight:flow:inventory">

<priority>1000</priority>

<flow-name>h2drop</flow-name>

<id>4</id>

<table_id>0</table_id>

<instructions>

<instruction>

<order>0</order>

<apply-actions>

<action>

<order>0</order>

<drop-action/>

</action>

</apply-actions>

</instruction>

</instructions>

</flow>

The flow is stored in config database of ODL. It is then transmitted to the switch.

The switch adds it to its flow table numbered 0 with flow id = 4 and priority =

1000. The flow tells switch 1 to drop all the packets coming on any port.

4.1.1 Custom topologies in Mininet

Two topologies namely mesh and ring were also created using python. The con-

nectivity among the hosts was tested by pinging all hosts. The steps to create a

topology is summarised below.

CHAPTER 4. WORKING WITH ODL 48

1. Using mn command

• Goto /home/mininet/mininet/custom

• Write a python file for the required topology eg:mesh.py

• In the same directory, run the command sudo mn –custom mesh.py –topo

mytopo –controller=remote,ip=192.168.56.1

2. without using mn command

• Goto /home/mininet/mininet/examples

• Write a python code eg. ring.py

• In the same directory, run the script sudo python ring.py

4.2 Working with Ethernet switch

A flow for dropping a packet was successfully added into a virtual OpenFlow switch.

The same thing was needed to be done with real Ethernet switches. ODL plugin

SNMP4SDN was used for this purpose. Since there were no unused switches able,

Linux computer was used to act as a switch. The plugin discovered the switches by

identifying the traps and LLDP data sent by switches.

Issue:Ethernet switch was unavailable

Solution:

Used Linux computer as a switch. Net-SNMP agent was installed to extend

the SNMP agent in the computer and code was written to make it return

dummy values.

4.2.1 Configuring SNMP in Linux Computer

The switch were configured to send LLDP data and SNMP data by installing and

starting their respective daemons using below commands.

CHAPTER 4. WORKING WITH ODL 49

controller1@janki:~$ sudo apt-get install snmp snmpd lldpd

Since computer needed to reply to SNMP queries sent by controller, an agent

called Net-SNMP agent was needed. The agent was downloaded as pointed out

below.

1. Downloaded the source file from http://www.net-snmp.org/download.html and

unzipped it.

2. From the folder, ran configure file with embedded perl.

This enabled use of mib2c tool to extend the agent.

./configure --enable-embedded-perl

make

sudo make install

3. The agent was configured to send traps to controller at boot-up and to reply with

values of OIDs asked by controller by writing snmp.conf and snmpd.conf .

These can be generated using config utility of Net-SNMP agent by a command

as shown below.

snmpconf –g basic setup

4.2.2 Using SNMP4SDN plugin

The SNMP4SDN feature was installed into Helium controller by typing following

commands in karaf console.

opendaylight-user@root>feature: install feature:install

odl-adsal-northbound odl-snmp4sdn-all

CHAPTER 4. WORKING WITH ODL 50

Now the controller is needed to be informed of the switches under it along with their

CLI username, passwords, Medium Access Control (MAC) address and IP address.

This information was written in a .csv file and placed on Desktop. An example of

this file is shown in figure 4.7 on page 50 The file is read into controller by the below

Figure 4.7: SwitchDB.csv file [9]

command.

opendaylight-user@root>snmp4sdn:ReadDB

\home\controller1\Desktop\SwitchDB.csv

The topology is discovered by following command.

opendaylight-user@root>snmp4sdn:TopoDiscover

This command asked for chassis Id and Port Id of the computer by using get re-

quests. These information is present in LLDP-MIB as lldpLocChassisId and lldploc-

PortId respectively. Their OID is .1.0.8802.1.1.2.1.3.2.0 and .1.0.8802.1.1.2.1.3.7.1.3

respectively. Since the computer did not have these value in-built, it did not reply

with any data.

The solution to this is to write a C program to extend the agent. For this the

LLDP-MIB is to be added into the agent. The steps taken for this are listed below.

1. The default directory where MIBs are searched was found by the following com-

mand

net-snmp-config --default-mibdirs

One such directory was usrlocalsharesnmpmibs

CHAPTER 4. WORKING WITH ODL 51

2. LLDP-MIB was downloaded and copied into the above folder.

3. Agent was told to include the above MIB by writing the below line in the

snmp.conf file situated at /usr/local/etc/snmp/snmp.conf.

mibs +ALL

4. A c and h file to make agent return a dummy lldpLocChassisId was written using

mib2c tool by the command below.

mib2c-c mib2c.scalar.conf lldLocChassisId

Since lldpLocChassisId has only one instance, it is a scalar. Thus scalar configu-

ration file was used in the above command.

5. A dummy value was added into the lldLocChassisId.c generated.

6. c and h files were moved into the folder. /net-snmp-5.7.2/agent/mibgroup

7. The agent was reconfigured to include the lldpLocChassisId files generated by

following commands.

./configure --with-mib-modules="lldpLocChasssisId"

make

sudo make install

8. It was tallied that the files were configured into agent correctly by

• Checking that the file /agent/mibgroup/mib modules inits.h mentioned lld-

pLocChassisId.

• Adding a line to print lldpLocChassisId in the initialization function in

lldpLocChassisId.c file.

9. The agent was restarted by command snmpd .

CHAPTER 4. WORKING WITH ODL 52

The agent still did reply with the dummy chassis id value. The flow of messages

between the ODL controller and Linux computer is shown in figure 4.8 on page 52.

Figure 4.8: Exchange of messages between ODL and Computer

4.3 Bandwidth throttling through ODL

Bandwidth throttling is a concept of limiting bandwidth to desired value. It is a

Quality of Service (QoS) factor. These are configured into the switch through ODL

by defining meters. OVS switch is installed through its package.

controller1@janki:~$ sudo apt-get install openvswitch-switch

Course of action taken to connect OVS to ODL are:

1. Create a bridge named mybridge.

controller1@janki:~$ sudo ifconfig h1 up

CHAPTER 4. WORKING WITH ODL 53

2. OVS switches are managed by ODL controller by the command.

controller1@janki:~$ sudo ovs-vsctl set-manager \

tcp:ip_of_controller:6640

3. To make OVS connect to internet, attach one of its port to computer’s internet

stack and the physical interface of computer to OVS.

4. Attach 2 tap interfaces to OVS switch.

controller1@janki:~$ sudo ip tuntap add mode tap h1

controller1@janki:~$ sudo ip tuntap add mode tap h2

controller1@janki:~$ sudo ifconfig h1 up

controller1@janki:~$ sudo ifconfig h2 up

controller1@janki:~$ sudo ovs-vsctl add-port mybridge h1

controller1@janki:~$ sudo ovs-vsctl add-port mybridge h2

5. Check the bridge configurations.

controller1@janki:~$ sudo ovs-vsctl show

9243e0d7-44fb-42f7-b206-a51687c9978f

Bridge mybridge

Port "h2"

Interface "h2"

Port mybridge

Interface mybridge

type: internal

Port "h1"

Interface "h1"

ovs_version: "2.0.2"

CHAPTER 4. WORKING WITH ODL 54

Start two Ubuntu VMs and attach them to these tap interfaces h1 and h2 in bridged

mode. These connections are pictorially shown in figure 4.9 on page 55. Now that

the physical setup is ready, lets get into its programming. Define a meter of desire

and write its xml code.

<meter

xmlns="urn:opendaylight:flow:inventory">

<meter-id>1</meter-id>

<container-name>mymeter</container-name>

<meter-name>mymeter</meter-name>

<flags>meter-kbps</flags>

<meter-band-headers>

<meter-band-header>

<band-id>0</band-id>

<band-rate>50000</band-rate>

<meter-band-types>

<flags>ofpmbt-drop</flags>

</meter-band-types>

<band-burst-size>0</band-burst-size>

<drop-rate>50000</drop-rate>

<drop-burst-size>0</drop-burst-size>

</meter-band-header>

</meter-band-headers>

</meter>

This meter limits the bandwidth to 50000 kbps. Put this to address of the switch.

CHAPTER 4. WORKING WITH ODL 55

Figure 4.9: OVS connected to ODL and VMs attached

PUT http://ip:8181/restconf/config/opendaylight-inventory:nodes

/node/openflow:1/meter/1

Give another REST call to put a flow with defined meter.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<flow xmlns="urn:opendaylight:flow:inventory">

<priority>2</priority>

<hard-timeout>0</hard-timeout>

<idle-timeout>0</idle-timeout>

<flow-name>dl_dst-tb7-p2p4</flow-name>

CHAPTER 4. WORKING WITH ODL 56

<cookie_mask>255</cookie_mask>

<cookie>7</cookie>

<match>

<ethernet-match>

<ethernet-destination>

<address>6a:e9:2d:37:39:29</address>

</ethernet-destination>

</ethernet-match>

</match>

<id>10</id>

<table_id>0</table_id>

<instructions>

<instruction>

<order>0</order>

<meter>

<meter-id>1</meter-id>

</meter>

</instruction>

<instruction>

<order>1</order>

<apply-actions>

<action>

<order>0</order>

<output-action>

<output-node-connector>openflow:1:1

</output-node-connector>

<max-length>60</max-length>

</output-action>

CHAPTER 4. WORKING WITH ODL 57

</action>

</apply-actions>

</instruction>

</instructions>

</flow>

ethernet-destination is the MAC address of the VM. This flow can be seen in

OVS and defined meter is also configured. But the bandwidth was not limited.

After searching for the issue, it was found that OVS switch, at the moment doesnot

support meter configurations [29] [30].

Issue: OVS switches donot support meter configurations through ODL

Solution: Use another soft switch called CPqD

4.3.1 Using CPqD switch

Its installation steps are summarised below:

1. Install dependencies.

controller1@janki:~$ sudo apt-get install git-core autoconf \

automake autotools-dev pkg-config make gcc g++ libtool \

libc6-dev cmake libpcap-dev libxerces-c2-dev unzip \

libpcre3-dev flex bison libboost-dev

2. Downgrade bison to get NetBee to compile correctly.

controller1@janki:~$ wget -nc http://de.archive.ubuntu.com \

/ubuntu/pool/main/b/bison/bison_2.5.dfsg-2.1_amd64.deb

CHAPTER 4. WORKING WITH ODL 58

controller1@janki:~$ http://de.archive.ubuntu.com/ubuntu/ \

pool/main/b/bison/libbison-dev_2.5.dfsg-2.1_amd64.deb

controller1@janki:~$ sudo dpkg -i bison_2.5.dfsg-2.1_amd64.deb

libbison-dev_2.5.dfsg-2.1_amd64.deb

controller1@janki:~$ rm bison_2.5.dfsg-2.1_amd64.deb \

libbison-dev_2.5.dfsg-2.1_amd64.deb

3. Install and compile NetBee.

controller1@janki:~$ wget -nc http://www.nbee.org/download

/nbeesrc-jan-10-2013.zip

controller1@janki:~$ unzip nbeesrc-jan-10-2013.zip

controller1@janki:~$ cd nbeesrc-jan-10-2013/src

controller1@janki:~$ cmake .

controller1@janki:~$ make

controller1@janki:~$ sudo cp ../bin/libn*.so /usr/local/lib

controller1@janki:~$ sudo ldconfig

controller1@janki:~$ sudo cp -R ../include/* /usr/include/

controller1@janki:~$ cd ../..

4. Clone CPqD switch from its Git repository.

controller1@janki:~$ git clone https://github.com/CPqD/ \

ofsoftswitch13.git

controller1@janki:~$ cd ofsoftswitch13

controller1@janki:~$ git checkout \

d174464dcc414510990e38426e2e274a25330902

CHAPTER 4. WORKING WITH ODL 59

controller1@janki:~$./boot.sh

controller1@janki:~$./configure

controller1@janki:~$ make

controller1@janki:~$ sudo make install

controller1@janki:~$ cd ..

Create tap interfaces connect them to the switch and bridge them to VMs. Connect

the switch to ODL. The instructions are summarised below.

controller1@janki:~$ sudo udatapath/ofdatapath \

--datapath-id=000000000001 --interfaces=h1,h2 ptcp:6680 &

controller1@janki:~$ secchan/ofprotocol tcp:127.0.0.1:6680 \

tcp:ip_of_controller:6653

Figure 4.10: CPqD switch attached to ODL and VMs

The connection is shown in figure 4.10 on page 59. Apply the same REST calls

for meter and its associated flow as described above here. Ping the hosts and notice

CHAPTER 4. WORKING WITH ODL 60

the difference in RTT.

Before meter: average RTT = 1.030 ms

After meter: average RTT = 1.089 ms

4.4 WCBench

WCBench is to be cloned form its Git repository. The steps followed are summarised

below:

controller1@janki:~$ git clone https://www.github.com/dfarrell07 \

/wcbench

Cloning into ’wcbench’...

remote: Counting objects: 565, done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 565 (delta 0), reused 0 (delta 0), pack-reused 561

Receiving objects: 100% (565/565), 157.94 KiB | 223.00 KiB/s, done.

Resolving deltas: 100% (299/299), done.

Checking connectivity... done.

controller1@janki:~$ cd wcbench/

controller1@janki:~/wcbench$./wcbench.sh -c

./wcbench.sh: 47: ./wcbench.sh: declare: not found

./wcbench.sh: 50: ./wcbench.sh: Syntax error: "(" unexpected

Issue: Declare not found and Syntax error:

Solution:

Changed shebang line from ”#!/usr/bin/env sh” to ”#! /bin/bash”

CHAPTER 4. WORKING WITH ODL 61

controller1@janki:~/wcbench$./wcbench.sh -c

CBench is installed

controller1@janki:~/wcbench$./wcbench.sh -i

Installing OpenDaylight dependencies

Downloading OpenDaylight Helium 0.2.3

Unzipping OpenDaylight Helium 0.2.3

odl-openflowplugin-flow-services added to features installed

at boot

odl-openflowplugin-drop-test added to features installed at

boot

controller1@janki:~/wcbench$./wcbench.sh -o

Starting OpenDaylight

Will repeatedly attempt connecting to Karaf shell until it’s ready

Issued ‘dropAllPacketsRpc on‘ command via Karaf shell to

localhost:8101

Issued ‘log:set ERROR‘ command via Karaf shell to localhost:8101

controller1@janki:~/wcbench$./wcbench.sh -r

Collecting pre-test stats

Running CBench against ODL on localhost:6633

Collecting post-test stats

Collecting time-irrelevant stats

Average responses/second: 29787.57

/home/controller1/results.csv not found or empty, building fresh

one

controller1@janki:~/wcbench$./stats.py -g ram flows

This generates the graph with number of runs on x-axis and RAM used (in MB)

and Flows per second on y-axis. Total RAM used in the above run is around 3600

MB. Flows added to the switch by the controller per second are around 30,000 as

CHAPTER 4. WORKING WITH ODL 62

depicted in graph 4.11 on page 62.

Figure 4.11: Stats from running wcbench once

To run wcbench repeatedly, loop wcbench.sh script can be used.

Issue: No support for Ubuntu:

Solution:

Changed ./wcbench.sh to support Ubuntu 14.04.

Code snippet:

CHAPTER 4. WORKING WITH ODL 63

To find the OS

python -mplatform | grep Ubuntu

return=$?

if [[$return == 0]]; then

OS=ubuntu

else

python -mplatform | grep fedora

return=$?

if [[$return == 0]]; then

OS=fedora

else

echo "OS is not supported"

fi

fi

Install required packages

echo "Installing OpenDaylight dependencies"

if [[$OS == "ubuntu"]]; then

sudo apt-get install java-1.7.0-openjdk unzip wget

elif [[$OS == "fedora"]]; then

sudo yum install -y java-1.7.0-openjdk unzip wget

fi

The full code can be accessed from [14]

CHAPTER 4. WORKING WITH ODL 64

Issue: Ctrl+c to kill loop wcbench.sh

Solution:

loop wcbench.sh script didnot have option to run the script for a given number

of time. Once started, it had to be stopped through ctrl+c. The script was

changed to accept an argument for the number of times it needs to be run.

This change is now merged into its master branch at GitHub [14]. Code

snippet:

loop_no_restart()

{

num_runs=$1

echo "Looping WCBench without restarting ODL"

for ((runs_done = 0; runs_done < $num_runs; runs_done++));

do

echo "Starting run $(expr $runs_done + 1) of $num_runs"

start_odl

Do this last so fn returns same exit code

run_wcbench

done

}

4.5 Comparing SDN with traditional network

Few simulators support OpenFlow protocol. NS3 is one of them. NS3 simulator

source code and its installation steps can be found at [31] and [32] respectively.

NS3 was installed through Bake. A network was created in simulator with a switch

attached to 4 hosts. Leftmost host is to ping rightmost host and RTT to be calcu-

lated. The network connection is shown in figure 4.12 on page 65. RTT for both

CHAPTER 4. WORKING WITH ODL 65

Figure 4.12: SDN and traditional network simulated in NS3

the networks was found to be same.

Issue: NS3 simlautor to compare the networks

1. bridge in traditional network cannot be compared with OVS in

SDN.

2. no traditional switch module in NS3

3. NS3 uses an internal SDN controller and hence no account of

time taken between OVS and controller.

This makes the comparison unfair though the RTT is same for both

networks as discussed at NS3 Google Group [34].

Chapter 5

Installing OpenStack setup

3 node architecture OpenStack Icehouse setup was installed. OS used is Ubuntu

Desktop 14.04. Physical configurations of 3 nodes is summarised in table 5.1 on

page 66. RabbitMq is used as a messaging queue and MySQL as database. Initially

Controller Neutron Compute

RAM (in GB) 4 4 4

Storage (in GB) 200 80 200

CPU Core i3 Pentium Core i3

Table 5.1: Physical configurations of nodes

nova network was setup and then Neutron. Pictorial representation of installation

is depicted in figure 5.1 on page 67. Installation guides can be found at [] and [].

Following the guides strictly doesnot give a working setup. Few changes were made

to have a fully functional setup. Few issues are discussed here.

Issue: VM s not getting IP address

Solution:

dnsmasq service neds to be installed.

neutron$ sudo apt-get install dnsmasq

66

CHAPTER 5. INSTALLING OPENSTACK SETUP 67

Figure 5.1: OpenStack installation setup

Installation is a cumbersome process which takes around 5 hours with continuous

human attention required.

Issue: Installation takes 5 hours

Solution:

Automated the installation through Python script.

Code snippet:

CHAPTER 5. INSTALLING OPENSTACK SETUP 68

#Writing to /etc/hosts

def write():

with open("/etc/hosts", "a") as hostfile:

hostfile.write(neutron_internal_ip + "\t" + neutron_host

+ "\n")

hostfile.write(compute_internal_ip + "\t" + compute_host

+ "\n")

hostfile.write(controller_internal_ip + "\t" +

controller_host + "\n")

5.1 Within the nodes

5.1.1 Creating a network

Whenever a network and a subnet are created, its namespace is created in Neutron.

It could be validated with the command

compute$ sudo ip netns

compute$ qdhcp-network_id

The namespace 2 interfaces:

1. one loopback

2. DHCP interface having an IP address in the created network range. This interface

serves DHCP requests. Let it be called tap-xyz.

Interface tap-xyz is attached to one of the ports of bt-int. br-int is an OVS integra-

tion bridge. This bridge is then connected to another bridge called tunnel bridge

representated as br-tun through patch ports and veth pairs. br-tun is then attached

to physical interface to data network. At this point of time, br-int has 2 flows with

CHAPTER 5. INSTALLING OPENSTACK SETUP 69

drop and normal actions making it act like a simple L2 switch broadcasting all the

messages as they come.

Code snippet:

neutron:~$ sudo ovs-ofctl dump-flows br-int

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=385.819s, table=0, n_packets=679,

n_bytes=96106, idle_age=8, priority=1 actions=NORMAL

cookie=0x0, duration=385.708s, table=22, n_packets=0,

n_bytes=0, idle_age=385, priority=0 actions=drop

5.1.2 Launching an instance

This is done on Compute node. After creating a network, a VM is attached to it.

VM gets attached to linux bridge. LInux bridge implements IP tables for security.

Linux bridge is then connected to br-int which in turn to br-tun and then to physical

interface to data network. GRE tunnel is created between Neutron and Compute

node for data network packets. GRE tunnel attaches to br-tun on both nodes. It is

the job ovs agent running on both nodes to ensure that the bridges and tunnel are

created. VM’s configuration details could be found in file located at \var \lib \nova

\instances \instance-id

5.1.2.1 Creating a router

A router when created has its own namespace in Neutron node. Router is used to

connect two networks. The router’s namespace will have 3 interfaces:

1. loopback

2. attaching to 1 network

CHAPTER 5. INSTALLING OPENSTACK SETUP 70

3. attaching to another network

Interfaces attaching to the networks have IPs. These IPs act as the gateway for

the networks. These interfaces are connected to the br-int bridge on Neutron. The

whole connection between Compute and Neutron is shown in figure 5.2 on page 70.

The bridge configurations at the end is shown below.

Figure 5.2: Within Compute and Neutron nodes

CHAPTER 5. INSTALLING OPENSTACK SETUP 71

neutron$ sudo ovs-vsctl show

f9f9a961-bd7f-45e9-81e1-f7fbdecc48ca

Bridge br-tun

Port "gre-0a6b0086"

Interface "gre-0a6b0086"

type: gre

options: {in_key=flow, local_ip="ip_of_neutron",

out_key=flow, remote_ip="ip_of_compute"}

Port br-tun

Interface br-tun

type: internal

Port patch-int

Interface patch-int

type: patch

options: {peer=patch-tun}

Bridge br-int

fail_mode: secure

Port br-int

Interface br-int

type: internal

Port patch-tun

Interface patch-tun

type: patch

options: {peer=patch-int}

ovs_version: "2.0.2"

CHAPTER 5. INSTALLING OPENSTACK SETUP 72

compute$ sudo ovs-vsctl show

819c7929-e1b3-47e8-a979-d2e803ad0e8c

Bridge br-tun

Port patch-int

Interface patch-int

type: patch

options: {peer=patch-tun}

Port "gre-0a6b0087"

Interface "gre-0a6b0087"

type: gre

options: {in_key=flow, local_ip="ip_of_compute",

out_key=flow, remote_ip="ip_of_neutron"}

Port br-tun

Interface br-tun

type: internal

Bridge br-int

fail_mode: secure

Port patch-tun

Interface patch-tun

type: patch

options: {peer=patch-int}

Port br-int

Interface br-int

type: internal

ovs_version: "2.0.2"

Chapter 6

Integrating ODL with OpenStack

OpenStack uses OVS for internode communciations. OVS are managed by ons

agent running on both Neutron and Compute node. It does Layer 2 jobs. ODL has

southbound plugin to manage OVS switches. This means that the OVS bridges of

OpenStack can be managed by ODL as well. ODL can be used as SDN controller

for OpenStack. ODL has ovsdb northbound plugin which takes REST calls from

Neutron as shown by 1 in figure 6.1 on page 74. This plugin then directs ovsdb

southbound plugin and OpenFlow plugin to configure the OVS switches in Neutron

and Compute node as shown by 2 in same figure. When VM is created, a GRE

tunnel is formed between both nodes as shown by 3 in same figure.

6.1 Integrating ODL with OpenStack

Steps to integrate them are as shown below: [34]

1. Install required features in ODL

opendaylight-user@root>feature:install odl-base-all\

odl-aaa-authn odl-restconf odl-nsf-all odl-adsal-northbound\

odl-mdsal-apidocs odl-ovsdb-openstack odl-ovsdb-northboun

odl-dlux-core

73

CHAPTER 6. INTEGRATING ODL WITH OPENSTACK 74

Figure 6.1: ODL integrated with OpenStack

2. Start with clean OpenStack slate with no networks or routers created.

3. Stop neutron server running on Controller node.

controller$ sudo service neutron-server stop

4. Stop OVS agent on both Neutron and Compute nodes.

sudo service neutron-plugin-ovs-agent stop

5. On both Neutron and Compute node, stop OVS switches and clear its configu-

rations and then start it.

sudo service openvswitch-switch stop

sudo rm -rf /var/log/openvswitch/*

sudo rm -rf /etc/openvswitch.conf.db

sudo service openvswitch-switch start

CHAPTER 6. INTEGRATING ODL WITH OPENSTACK 75

OVS switch configurations on both Neutron and Compute node should look like

this

sudo ovs-vsctl show

9f3b38cb-eefc-4bc7-828b-084b6yjolgffd

ovs_version: "2.0.2"

6. Set ODL to be OVS switch’s manager.

sudo ovs-vsctl set-manager tcp:ip_of_controller:6640

OVS switch configurations on both Neutron and Compute node should look like

this

sudo ovs-vsctl show

9f3b38cb-eefc-4bc7-828b-084b6yjolgffd

Manager "tcp:172.16.21.56:6640"

is_connected: true

Bridge br-int

Controller "ip_of_controller:6633"

fail_mode: secure

Port br-int

Interface br-int

ovs_version: "2.0.2"

Note that ODL has created integration bridge br-int.

7. On all three nodes, Controller, Compute and Neutron, direct ML2 plugin of

Neutron to ODL.

In /etc/neutron/plugins/ml2/ml2_conf.ini ensure following

fields are set as shown:

CHAPTER 6. INTEGRATING ODL WITH OPENSTACK 76

mechanism_drivers = openvswitch

[ml2_odl]

password = admin

username = admin

url = http://ip_of_controller:8080/controller/nb/v2/neutron

8. Reset Neutron database.

controller$ mysql -u root -p

mysql> DROP DATABASE neutron;

mysql> CREATE DATABASE neutron;

mysql> GRANT ALL PRIVILEGES ON neutron.* TO ’neutron’@’localhost’

IDENTIFIED BY ’NEUTRON_DBPASS’;

mysql> GRANT ALL PRIVILEGES ON neutron.* TO ’neutron’@’%’

IDENTIFIED BY ’NEUTRON_DBPASS’;

9. Verify that the integration is successful. If it is successful, curl to ODL’s Neutron

northbound plugin will return networks running on OpenStack.

curl -u admin:admin http://ip_of_controller:8080/controller/nb/

v2/neutron/networks

{

"networks" : []

}

Since there are no networks, it returns NULL.

The final bridge connections are as shown.

CHAPTER 6. INTEGRATING ODL WITH OPENSTACK 77

neutron$ sudo ovs-vsctl show

192a6b47-6993-4a70-9952-c38fd609d10c

Manager "tcp:ip_of_controller:6640"

is_connected: true

Bridge br-int

Controller "tcp:ip_of_controller:6633"

is_connected: true

fail_mode: secure

Port "gre-ip_of_compute"

Interface "gre-ip_of_compute"

type: gre

options: {key=flow, local_ip="ip_of_neutron",

remote_ip="ip_of_compute"}

Port "tap-network1"

Interface "tap-network1"

type: internal

Port br-int

Interface br-int

ovs_version: "2.0.2"

compute$ sudo ovs-vsctl show

7442b848-af5d-44ba-b28d-3e07a8e54326

Manager "tcp:ip_of_controller:6640"

is_connected: true

Bridge br-int

Controller "tcp:ip_of_controller:6633"

is_connected: true

fail_mode: secure

Port "tap-VM1"

Interface "tap-VM1"

CHAPTER 6. INTEGRATING ODL WITH OPENSTACK 78

Port br-int

Interface br-int

Port "gre-ip_of_neutron"

Interface "gre-ip_of_neutron"

type: gre

options: {key=flow, local_ip="ip_of_compute",

remote_ip="ip_of_neutron"}

ovs_version: "2.0.2"

6.2 Advantages of using ODL with OpenStack

Few of the advantages of using ODL with OpenStack are

1. Only 1 bridge br-int is created. This makes debugging easy.

2. No need to run neutron-plugin-openvswitch-agent on Neutron and Compute nodes.

Job of this plugin is done by ODL.

3. Whenever a device is to be added in Neutron, its driver is to be written in ML2

plugin of Neutron. ODL already has various southbound plugins so with ODL +

OpenStack setup, no new drivers need to be written.

4. Underlay network can also be managed with ODL. This leads to better utilization

of physical underlay network.

5. All ODL apps can be run with OpenStack.

6.3 Negative point of using ODL with OpenStack

neutron-plugin-ovs-agent is responsible for creating bridges and GRE tunnel. With

ODL, ODL creates the bridges. GRE tunnel end points are to be explicitly given to

ODL to create the tunnel.

CHAPTER 6. INTEGRATING ODL WITH OPENSTACK 79

Issue: VMs not getting IP:

Solution:

Define the IP to attach GRE tunnel end point to. On both Neutron

and Compute, find the ip of OVS and assign IP to it.

compute$ ovs-vsctl get Open_vSwitch . _uuid

#This will return id of br-int

compute$ ovs-vsctl set Open_vSwitch <uuid-returned> \

other_config:local_ip=ip1

Chapter 7

Conclusion

It can be concluded that SDN is a new hope into easing a network administrators

work. Since there is a single controlling entity i.e the controller, evolution can be

made faster. SDN also makes adding a new application in a network faster and

easier. It addresses the limitations of the physical routers, switches and various

network devices with increase in network traffic.

New versions of ODL controller are released and are to be released which signi-

fies that it is going to be a next age of networking. Since they have a SNMP4SDN

plugin, Ethernet switches are also going to be in market for quite a long time. With

SDN, a dumb switch can be converted into a firewall. This tells that almost any-

thing can be done in a network based on SDN concept. Support for IoT in Lithium

release of ODL guarantees a long future for ODL and existence of SDN in every

aspect of networking.

In days to come, traditional networks are expected to be replaced by SDNs. As

SDN decouples control and data plane, adding new applications into a network be-

comes easier and hence new applications can also be expected to come up. Since

SDN makes routing devices independent of vendors, any application that can be

thought of could most probably be deployed. Vendors like Cisco and Brocade have

come up with hteir own ODL based propertiary controller named Cisco Extensible

Network Controller (XNC) and Vyatta Controller respectively. These are commer-

80

CHAPTER 7. CONCLUSION 81

cial grade controllers.

ODL controller promises SDN to be a reality. It could be taken to a next level

and combined with cloud. OpenStack is gaining popularity. Companies like PayPal

are usng it. Using ODL in cloud platform like OpenStack brings all advantages

of SDN to cloud. It encourages to make efficient use of physical underlay network

as well as OpenStack overlay network. ODL takes over job of layer 2 agent (OVS

agent) in OpenStack. ODL can also be configured to replace L3 agent of neutron

and do all routing tasks. Only task Neutron will be left with is DHCP service.

Bibliography

[1] G. Thomas, “Software Defined Networking (SDN) for the non-technical CXO”

27 October 2013 [Online]. Available: http : //cxounplugged.com/2013/10/

software− defined− networking − sdn [Accessed 9 December 2014].

[2] K. Barker, “What is control plane and data plane,” 14 August 2011. [Online].

Available: https : //learningnetwork.cisco.com/thread/33735 [Accessed 9 De-

cember 2014].

[3] OpenDayLight Blog post by Neela Jacques submitted on April 1, 2015. [Online].

Available: http : //www.opendaylight.org/blogs/neela− jacques [Accessed 25

April 2015].

[4] OpenDayLight wiki page for “Simultaneous Release: Lithium Release Plan”

last modified on 21 April 2015 and accessed on 23 April 2015. [Online]. Avail-

able: https : //wiki.opendaylight.org/view/Simultaneous Release : Lithium

Release P lan [Accessed 25 April 2015].

[5] OpenHub web page accessed on 23 April 2015. [Online] Available:

https : //www.openhub.net/p/opendaylight [Accessed 25 April 2015].

[6] OpenDayLight wiki page on ”Project list” last modified on 12 March 2015. [On-

line]. Available: https : //wiki.opendaylight.org/view/Project list [Accessed

25 April 2015].

82

BIBLIOGRAPHY 83

[7] OpenDayLight web page ”OpenDaylight Helium – The Rise of Open SDN,”

2014. [Online]. Available: http : //www.opendaylight.org/software [Accessed

25 April 2015].

[8] ”SNMP Object Navigator,” [Online]. Available: http : //tools.cisco.com/

Support/SNMP/do/BrowseOID.do?local = en&substep = 2&translate =

Translate&tree = NO [Accessed 25 April 2015].

[9] ”SwitchDB.txt,” [Online]. Available: https : //wiki.opendaylight.org/

images/3/34/SwitchDB.txt [Accessed 25 April 2015].

[10] ”File:SNMP4SDN TopologyDiscovery.jpg,” 14 September 2013. [Online].

Available: https : //wiki.opendaylight.org/view/File : SNMP4SDN

TopologyDiscovery.jpg [Accessed 25 April 2015].

[11] ”SNMP4SDN:Installation Guide,” 5 December 2014. [Online]. Available:

https : //wiki.opendaylight.org/view/SNMP4SDN : Installation Guide

[Accessed 25 April 2015].

[12] Conference paper on ”On Controller Performance in Software-Defined

Networks”. Available:https : //www.usenix.org/system/files/conference/

hot− ice12/hotice12− final33 0.pdf [Accessed 25 April 2015].

[13] oflops GitHub repository of Andreas Wundsam Andreas Wundsam and last

modified 5 months ago. Available: https : //github.com/andi− bigswitch/

oflops/tree/master/cbench [Accessed 25 April 2015].

[14] WCBench GitHub repository of Daniel Farrell. Available:

https : //github.com/dfarrell07/wcbench [Accessed 25 April 2015].

[15] OpenFlow Switch Specification Version 1.3.4 (Protocol version 0x04),

27 March 2014. [White Paper] Available: https : //www.opennetworking.org

/images/stories/downloads/sdn−resources/onf−specifications/openflow/

openflow − switch− v1.3.4.pdf [Accessed 9 December 2014].

BIBLIOGRAPHY 84

[16] OVSDB manaual. Available: http : //openvswitch.org/ovs −

vswitchd.conf.db.5.pdf [Accessed 25 April 2015].

[17] “Mininet website,” [Online]. Available: http : //mininet.org/ [Accessed 9 De-

cember 2014].

[18] ”Introduction to Mininet,” [Online]. Available: https : //github.com/mininet/

mininet/wiki/Introduction− to−Mininet [Accessed 9 December 2014].

[19] ”Download/Get Started With Mininet,” [Online]. Available:

http : //mininet.org/download/ [Accessed 9 December 2014].

[20] Source code of Open vSwitch. Available: http : //openvswitch.org/download/

[Accessed 25 April 2015].

[21] CPqD GitHub repository authored by Eder Leo Fernandes 23 days ago. Avail-

able: https : //github.com/CPqD/ofsoftswitch13 [Accessed 25 April 2015].

[22] Blog on ”Difference between private and floating IP. Available: https :

//www.rdoproject.org/Difference between F loating IP and private IP

[Accessed 25 April 2015].

[23] Blog on ”Effective Data Protection for Cloud Computing and its Rel-

evance in the Nigeria Economy” posted on June 16, 2011. Available:

https : //toyinogunmefun.wordpress.com/2011/06/16/effective − data −

protection − for − cloud − computing − and − its − relevance − in − the −

nigeria− economy/ [Accessed on 22nd April 2015].

[24] Blog on ”An economic view on Cloud Computing.” by Peter Hanselman,

Posted on May 22, 2011. Available: https : //peterhanselman.

wordpress.com/2011/05/22/cloudnomics/ [Accessed on 22nd April 2015].

[25] Blog on ”How cloud based software solutions drive innovative performance

management” by Srinivasan Sankar and Beenu Nishani Dewasurendra. Avail-

BIBLIOGRAPHY 85

able: http : //www.cimaglobal.com/Our − locations/SriLanka/Thought −

leadership − update/2013 −managing − innovation/How − cloud − based −

software − solutions − drive − innovative − performance − management/

[Accessed on 22nd April, 2015].

[26] OpenStack Installation guide on Ubuntu. Avaliable: http : //docs.openstack.

org/icehouse/install−guide/install/apt/content/ch overview.html [Accessed

on 22nd April 2015].

[27] Git Hub repository by Chaima Ghribi last updated 2 months ago. Available:

https : //github.com/ChaimaGhribi/OpenStack − Icehouse− Installation

/blob/master/OpenStack− Icehouse− Installation.rst [Accessed on 23 April

2015].

[28] OpenDayLight download page. Available: http : //www.opendaylight.org

/software/downloads. [Accessed 25 April 2015].

[29] Question about adding meter to OVS at ODL ask-answer forum. Available:

https : //ask.opendaylight.org/question/2461/problem − adding − meter −

postman/. [Accessed 25 April 2015].

[30] Question about adding meter to OVS at ODL ask-answer forum. Available:

https : //ask.opendaylight.org/question/2473/ovs − 231 − openflow − 13 −

meter − feature/. [Accessed 25 April 2015].

[31] Source code of NS3. Available: https : //www.nsnam.org/release/ns −

allinone− 3.22.tar.bz2. [Accessed 25 April 2015].

[32] Installtion steps of NS3. Available: https : //www.nsnam.org/wiki/

Installation#Building ns− 3 with build.py. [Accessed 25 April 2015].

[33] NS3 Google Group discussion dated February 2 2015. Available:

https : //groups.google.com/forum/#!topic/ns− 3− users/4PEPXvZ32dI

BIBLIOGRAPHY 86

[34] OpenDayLight wiki on ”OpenStack and OpenDayLight” last modified on

22 January 2015. Available: https : //wiki.opendaylight.org

/view/OpenStack and OpenDaylight. [Accessed on 23 April 2015].

	Declaration
	Disclaimer
	Certificate
	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Abbreviation Notation and Nomenclature
	Introduction
	Background
	Motivation
	Problem Statement
	Thesis Organization
	Supporting Technologies

	Software Defined Networking
	Introduction to Software Defined Networking
	Need of separating these planes
	SDN Architecture
	Difference between traditional and SDN based network

	OpenDayLight Controller
	OpenDayLight User Interface
	SNMP4SDN
	Benchmarking ODL

	OpenFlow
	Message Format
	OF Switch Components
	OF Pipeline
	Flow Table

	Open vSwitch
	OVS architecture

	CPqD
	Mininet overview
	Positives of Mininet
	Installing Mininet
	Limitations

	Dwelling into OpenStack
	Understanding on Cloud Computing
	Cloud for Developers

	OpenStack
	Architecture of OpenStack
	Types of network
	Floating IP

	Working with ODL
	Working with Mininet
	Custom topologies in Mininet

	Working with Ethernet switch
	Configuring SNMP in Linux Computer
	Using SNMP4SDN plugin

	Bandwidth throttling through ODL
	Using CPqD switch

	WCBench
	Comparing SDN with traditional network

	Installing OpenStack setup
	Within the nodes
	Creating a network
	Launching an instance

	Integrating ODL with OpenStack
	Integrating ODL with OpenStack
	Advantages of using ODL with OpenStack
	Negative point of using ODL with OpenStack

	Conclusion
	References

