
Encrypted Array Freeze Dump, Scan
Dump and Register Dump – Enabling

Debug for External Customers

Major Project Report

Submitted in fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Juhi Pabuwal
(13MECE07)

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2015

ii

Encrypted Array Freeze Dump, Scan
Dump and Register Dump – Enabling

Debug for External Customers

Major Project Report

Submitted in fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Juhi Pabuwal
(13MECE07)

Under the guidance of

External Project Guide: Internal Project Guide:

Mr. Pankaj Moharikar Prof. Akash Mecwan
System Validation Engineer, Assistant Professor,
Intel India Technology Pvt. Ltd., Institute of Technology,
Banglore. Nirma University, Ahmedabad.

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2015

iii

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- Juhi Pabuwal

13MECE07

iv

Disclaimer

“The content of this paper does not represent the technology,opinions,beliefs,

or positions of Intel India Technology Private Limited,its employees, ven-

dors, customers, or associates”

v

Certificate

This is to certify that the Major Project entitled “Encrypted Array Freeze

Dump, Scan Dump and Register Dump – Enabling Debug for External

Customers ” submitted by Juhi Pabuwal (13MECE07), towards the partial

fulfillment of the requirements for the degree of Master of Technology in Embed-

ded Systems, Nirma University, Ahmedabad is the record of work carried out by

her under our supervision and guidance. In our opinion, the submitted work has

reached a level required for being accepted for examination.The results embodied

in this major project, to the best of our knowledge,haven’t been submitted to any

other university or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Prof. Akash Mecwan Dr. N.P. Gajjar

Internal Guide Program Coordinator

Dr. D.K.Kothari
Section Head, EC

Dr. P.N.Tekwani Dr. K. Kotecha

Head of EE Dept. Director, IT

vi

Certificate

This is to certify that the Major Project entitled “Encrypted Array Freeze

Dump, Scan Dump And Register Dump - Enabling Debug for External

Customers ” submitted by Juhi Pabuwal (13MECE07), towards the fulfillment

of the requirements for the degree of Master of Technology in Embedded Systems,

Nirma University, Ahmedabad is the record of work carried out by her under our

supervision and guidance. In our opinion, the submitted work has reached a level

required for being accepted for examination.

Date: Place: Bangalore

Mr. Pankaj Moharikar Mr. Vinothkumar Ethiraj

System Validation Engineer Engineering Manager

Intel India Technology Pvt. Ltd. Intel India Technology Pvt. Ltd.

Bangalore Bangalore

vii

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr. P.N.Tekwani,

Head of Electrical Engineering Department, and Dr. N. P. Gajjar, Coordinator of

M.Tech Embedded Systems program for allowing me to undertake this thesis work

and for his guidelines during the review process.

I am deeply indebted to my thesis supervisors, Mr. Pankaj Moharikar, System

Validation Engineer at Intel India Technology Pvt. Ltd. and Prof. Akash Mecwan,

Assistant Professor, Institute of Technology, Nirma University for their constant

guidance and motivation. I also wish to thank Mr. Vinothkumar Ethiraj (Manager,

Intel India Technology Pvt. Ltd.), Mr. C. Krishnaraj (System Validation Engineer

at Intel India Technology Pvt. Ltd) and all other team members at Intel for their

constant help and support. Without their experience and insights, it would have

been very difficult to do quality work.

I wish to thank my friends for their delightful company which kept me in good

humor throughout the year.

Last, but not the least, no words are enough to acknowledge constant support

and sacrifices of my family members because of whom I am able to complete the

degree program successfully.

- Juhi Pabuwal

13MECE07

viii

Abstract

Design for Debugging (DFD) and Design for Testing (DFT) are two designing tech-

niques which add certain testability features to microelectronic design. The goal of

debugging is not simply to determine that the chip is not working, but to find out

why it is not working. DFD is basically derived from DFT and is used for debugging

now days.

Till now Intel customers dont have much debug visibility in microprocessor. Cus-

tomers need to call Intel Engineers for debugging at the time of error and Intel

Engineers will go to customer site and solve the error issue. But now a design is

made for extracting data by customers which would facilitate quicker triage of fast

escalating customer issues and decreases the turn-around time for debugging. This

new component is called as Validation Control Unit (VCU) which is added to pro-

vide limited access to data extraction by customers. Customer can collect some

information and then pass it on to Intel for re-solution.

Thesis contain a method which describes how to extract data/values using VCU.

At the base level, a controller, named as VCU, is integrated that abstracts low level

details of the hardware for debugging. In addition, the abstraction layer through an

interface, such as APIs, provides services, routines, and data structures to higher-

level software/presentation layers, which are able to collect test data for validation

and debug of a platform under test. Moreover, VCU provides secure access to the

test architecture.

ix

Thesis contain description of hardware used for debugging. These are connected

between host and platform for data extraction. The data which is dumped for

debugging contains register values, array values and scan chain values. The project is

intended towards validating the data extracted using VCU via JTAG. The encrypted

array dump tool allows the customer to extract internal array and debug scan chains

along with the exposed registers without having an Intel engineer involved. However,

to protect IP, the data they are able to extract will be encrypted and requires an

Intel engineer to decrypt and evaluate it

Contents

Declaration iii

Disclaimer iv

Certificate v

Certificate vi

Acknowledgements vii

Abstract viii

Contents xi

List of Figures xii

Abbreviation Notation and Nomenclature xiii

1 Introduction 1
1.1 Postsilicon Validation . 1
1.2 Design For Debug . 2
1.3 Motivation . 2
1.4 Objective . 3
1.5 Broadwell Server . 3
1.6 Thesis Organization . 5
1.7 Summary . 5

2 Encrypted AFD and Scan Dump Tool Description 6
2.1 Background . 6
2.2 Tool Description . 8
2.3 Tool Flow . 8
2.4 Summary . 11

x

CONTENTS xi

3 Validation Control Unit 12
3.1 Flow of VCU API working . 12
3.2 VCU API Sequence . 15
3.3 Summary . 15

4 In Target Probe and Platform Environment Control Interface 16
4.1 In Target Probe (ITP) . 16
4.2 ITP with Python Console . 19
4.3 Platform Environment Control Interface (PECI) 20
4.4 Summary . 21

5 Data Extraction Steps 22
5.1 Array Freeze and Dump . 22
5.2 Scan Dump . 24
5.3 Register Dump . 25
5.4 Steps for dumping data . 25
5.5 Error Scenarios . 27
5.6 Summary . 28

6 Result 29

7 Conclusion 33

References 35

List of Figures

1.1 Block Diagram of Server . 4

2.1 Comparison of Unlocked Flow (Without VCU) and Locked flow (With
VCU) . 7

2.2 Tool Flow . 8

3.1 Flow of VCU API Working . 14
3.2 VCU API Sequence . 15

4.1 ITP with Cables . 17
4.2 Connection between host and platform using ITP 18
4.3 ITP Plus Python Console . 19
4.4 Response after RdPkgConfig() and WrPkgConfig() commands execu-

tion . 21

5.1 Access of array using JTAG . 23
5.2 Scan Dump . 25
5.3 Front-end Flow . 26
5.4 Back-end Flow . 26
5.5 Scan Dump . 27

6.1 Importing script and running a function 30
6.2 Output data of an array dump after running script 31
6.3 Array Data Comparison - VCU API output with JTAG output 31
6.4 Scan Dump Data Comparison - VCU output with Golden Values . . . 32

xii

Abbreviation Notation and Nomenclature

PSV . Post Silicon Validation

DFT .Design For Testing

RTL .Register Transfer Logic

DFD . Design For Debugging

CUD . Circuit Under Debug

EDS . External Design Specification

IP . Intellectual Property

VCU .Validation Control Unit

API . Application Peripheral Interface

AFD .Array Freeze Dump

ITP . In Target Probe

PECI .Platform Environment Control Interface

JTAG . Joint Test Access Group

LDAT .Local Data Access Test

DMI . Direct Media Interface

PCU . Power Control Unit

xiii

Chapter 1

Introduction

1.1 Postsilicon Validation

Validation techniques may be classified as pre-silicon and post-silicon. Throughout

the pre-silicon method, styles are tested by engineers in a very virtual surround-

ings with difficult simulation, emulation and formal verification tools. However, in

post-silicon validation tests occur on actual devices that runs at real speed once

deployed in industrial, real-world system boards using logic analyser and assertion-

based tools. Presilicon validation is finished on a RTL machine or emulator and has

been the first technique which is successfully utilized by variety of business makers.

Once the primary element is prepared, post-silicon validation is finished in a system

surroundings to get rid of bugs that can not be detected in presilicon validation due

to slow simulation speed that prevents running an out -sized number of tests, tests

not run in a particular mode, innovations in circuit technology, and lots of things.

Typical postsilicon errors are from interactions between totally different elements.

The goal of postsilicon validation is to form certain that no bugs are delievered to

consumers and to confirm that the chips meet its specification. Postsilicon valida-

tion (PSV) is required to demonstrate that the enforced circuit meets its supposed

1

CHAPTER 1. INTRODUCTION 2

behavior.

1.2 Design For Debug

Due to lack of in system controllability and observability, DFD hardware is deployed

to support post-silicon validation which helps in accessing internal signals in system

that is one of the main challenges to PSV. Variety of solutions are planned to

implement the design-for-debug hardware. DFD hardware is employed to rectify

the system. DFD hardware is inserted into the planning to assemble the maximum

amount knowledge from the CUD so as to know the character of the error[2]. At

the time of error in the system, register dump, array freeze dump (AFD) and scan

dump are the important information which need to be accessed and look into for

debugging.

1.3 Motivation

Post silicon validation is very important part in validation of processors/servers. Re-

sponsibility of post silicon validation team does not end up after selling the server-

s/chip to customers. At the time of error scenarios, Intel Engineers need to go to

customer site to collect data and then come back to Intel site for debugging. This is

a long procedure. So, a microcontroller unit is added which would facilitate quicker

triage of fast escalating customer issues and decreases the turn-around time for de-

bugging. With the help of this validation unit, customer can dump data in different

error scenarios and pass it to the Intel engineers. This unit will provide encrypted

data which is important for confidentiality of the company. This thesis provides

debugging facility which will work on future technologies as well. The project will

help in reducing the turn around time for debugging.

CHAPTER 1. INTRODUCTION 3

1.4 Objective

Till now Intel customers dont have much debug visibility in microprocessor. Cus-

tomers have to every time call Intel for debugging and Intel Engineers will go and

solve the issue. Now, a new component called Validation Control Unit (VCU) is

added for providing limited debug access to customers. Customer can collect en-

crypted information and then pass it on to Intel for re-solution. VCU is included

to provide control of and access to design for test features. This is microcontroller

based unit. API is run to talk to VCU for accessing information according to a

security level. Security level is defined in a way that the customers will not be able

to access all the information but only the information which Intel wants customer

to see. In short, a limited access to information is given using VCU.

1.5 Broadwell Server

The platform used for thesis is Broadwell server with multiple cores and sockets.

Broadwell is the codename for the Intel processor family that is the successor to the

Haswell processor family and will be built on Intels 14nm manufacturing process.

Most Broadwell products are targeted at the 2 in 1 tablets and notebooks but there

will also be versions for desktop and server platforms. Broadwell delivers significant

performance advancements over the prior generation, including power efficiency and

security. Broadwell DE, EP and EX are different variants of Broadwell server.

Broadwell-DE processors are designed for low power servers. The latest Intel Xeon

processors take performance, energy-efficiency and compute density to new heights,

while delivering best-in-class support for virtualization, cloud computing, in-memory

computing, big-data analytics and technical computing. Servers based on these pro-

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Block Diagram of Server
[7]

cessors The latest Intel Xeon processors take performance, energy-efficiency and

compute density to new heights and deliver best-in-class support for virtualization,

cloud computing, in-memory computing, big-data analytics and technical comput-

ing. Servers supported by these processors provide the foundation for a standardized,

efficient and agile data center that can help to drive down space, power, cooling and

management costs, while providing exceptional performance and reliability across

the full range of workloads.[6]. New server Xeon microprocessors can feature up to

8 cores with 12 MB L3 cache. The cores support Intels Hyper-Threading, Turbo

Boost, virtualization and Trusted Execution technologies. A new feature known as

CHAPTER 1. INTRODUCTION 5

Processor Trace will be included in Xeon D which will allow capturing details of code

execution, supervisor mode access prevention and extensions to ADC instruction.

1.6 Thesis Organization

The rest of the thesis organized as follows.

Chapter 2 explains the different stages of the tool with its background.

Chapter 3 deals with brief description of Validation Control Unit and how API’s

work.

Chapter 4 gives description ITP and PECI. It also explains how ITP console works.

Chapter 5 describes what is array freeze dump, scan dump and register dump. It

also explains the steps used to access these dumps.

Chapter 6 describes the work done with the result.

Chapter 7 concludes what is the output of whole project.

1.7 Summary

This chapter gives the background details of the thesis with the motivation and

objective in detail. This chapter also gives details of the server on which the project

is tested. The thesis organization gives the brief of every chapter.

Chapter 2

Encrypted AFD and Scan Dump

Tool Description

2.1 Background

External debug by the customer requires extracting architectural and hardware state

under error conditions. Historically this state has been limited to access to registers

exposed in the platform EDS documentation and in a few cases exposure of internal

outstanding request buffers. Internal debug teams have access to all of the registers

which include those not exposed to customers, all internal arrays, debug scan flops,

internal trace data, and all internal flop state. If a customer is unable to root cause

their issue with the state extraction mechanisms at their disposal, they contact

Intel teams to use the internal debug tools to extract the information they need.

Running internal tools to customer systems at remote customer sites slows down

the customer debug throughput and puts a burden on the Intel teams needed to

arrange the tool attachment and running the tool itself. So, the tool is to needed

to do all things faster and efficient way. The encrypted array dump tool allows the

customer to extract internal array and debug scan chains along with the exposed

6

CHAPTER 2. ENCRYPTED AFD AND SCAN DUMP TOOL DESCRIPTION 7

registers without having an Intel engineer involved. However, to protect IP, the

data they are able to extract will be encrypted and requires an Intel engineer to

decrypt and evaluate it. The capability to extract the array and scanout data on

their own represents an important improvement in debug throughput. The tool will

extract data into a format that will be compatible with the internal debug toolset

so all internal tools will be able to operate on the captured information as if it were

captured using internal tools vs the customer scripts. As shown in figure 2.1, the

unlocked ITP flow is the one which was done previously but after the eAFD tool

developed the flow changes to eAFD tool flow.

Figure 2.1: Comparison of Unlocked Flow (Without VCU) and Locked flow (With
VCU)

CHAPTER 2. ENCRYPTED AFD AND SCAN DUMP TOOL DESCRIPTION 8

2.2 Tool Description

The encrypted static data extraction tool is Customer Script (CScript) command

flow initiated on a Python command layer driving an ITP connected via JTAG to

a platform. Many of the CScript commands in this flow will themselves call VCU

API functions to perform trigger setup, data extraction, and data encryption. This

internal toolset is composed of python scripts and processor state definition files

needed to tell the script how to extract and decorate the data for each array and

scanout chain.

2.3 Tool Flow

There are four stages in tool flow (Figure:2.2):

Figure 2.2: Tool Flow

CHAPTER 2. ENCRYPTED AFD AND SCAN DUMP TOOL DESCRIPTION 9

a. Initiate Stage : Make sure that the tool has all the resources it needs to run

successfully, then setup and trigger a freeze. Steps included in the initiation

steps are:

• Compatibility Check: It is done by running CScript commands to verify

the tool can run successfully and includes checking for software versions,

firmware versions, hardware compatibility, and tool connectivity.

• Trigger Setup: It is done by running CScript commands to set up all hard-

ware resources properly to ensure a successful trigger and freeze before

actually enabling the trigger.

• Trigger Enable Setup: It is done by running CScript commands to enable

the trigger and freeze actions.

• Freeze Verify: It is to verify that the trigger has occurred and the re-

quested arrays and scan agents have frozen.

b. Capture Stage : Run the CScript commands to gather information needed

for proper processing of the data, then capture and bundle the data to be sent

to Intel for processing. Steps included in the capture steps are:

• Encryption Enable: Enable encryption is necessary before dumping scan

or arrays to secure confidential data.

• Array Dump: Dump requested array data or all arrays.

• Register Dump: Run CScript commands to dump all available registers.

• Scanout Dump: Dump all scan chain data.

• Data Bundle: Bundle all of the above encrypted data into a format re-

quired for proper processing at Intel.

CHAPTER 2. ENCRYPTED AFD AND SCAN DUMP TOOL DESCRIPTION10

c. Process Stage : Decrypt the bundled data and processes into a format that

can be imported into the internal toolset. Steps included in the process steps

are:

• Data Decrypt: Uses a utility to decrypt the scan and array data.

• Data Decorate: Uses a utility that uses the definition files to generate

internal tool importable data from the decrypted scan and array data.

• Zip Generate: Uses a utility to generate zip files from the register dumps

and decorated scan and array data into a format that can be imported

directly into internal tool for analysing.

d. Analyze Stage : Import the debug data into the internal toolset, then an-

alyze the data using internal log generators such as watch windows, debug

scripts, and manual debug methodologies. Based on the debug results, gener-

ate feedback guidance to be submitted back to the customer. Steps included

in the analyze steps are:

• Zip Import: Zip file processed in the process stage is imported into inter-

nal tool.

• Log Generate: Use internal toolsets to generate logs which can be used

for debugging.

• Manual Review:Use internal toolsets to manually inspect the stub model.

• Feedback Generate: Generate and deliver debug feedback and recom-

mended next steps based on the analysis.

CHAPTER 2. ENCRYPTED AFD AND SCAN DUMP TOOL DESCRIPTION11

2.4 Summary

The chapter gives the details of the tool which is used for extraction of array and

scan chains. Before and after tool development flow for debugging is also discussed.

Description of steps of the eAFD tool is also given.

Chapter 3

Validation Control Unit

The Validation Control Unit (VCU) is intended to facilitate fast and unobtrusive

processor validation under various use conditions including power-on and post-silicon

debug, survivability, electrical validation, manufacturing, and RAS manageability. It

consists of a dedicated on-die microcontroller with associated firmware, ROM, RAM,

and an IO space that serves as the interface to the rest of the Server processor device.

Software is able to request the VCU to coordinate different validation tasks, such as

program various breakpoints, micro breakpoint trigger events, extract stored data,

deliver validation information and provide different levels of access [3]. Request is

sent to VCU through ITP (In Target Probe) via JTAG or through PECI (Platform

Environment Control Interface) using APIs and console.

3.1 Flow of VCU API working

In figure 3.1,a flow diagram for a method of servicing a request from software which

utilizes VCU is illustrated. First of all, a request is generated using an Application

Programming Interface (API) in response to executing a software program, such

as a test and debug program from a third party vendor. The software program

12

CHAPTER 3. VALIDATION CONTROL UNIT 13

is written to fulfil the demand specified by the API, such as calling conventions

recognized by the API. The API is working as an interface between software and

VCU hardware. As an example, code stored in memory of a VCU microcontroller

is executed in response to the request. In this scenario, the code stored in the VCU

may include libraries, routines, data structures, object classes, protocols, etc. In flow

it is mentioned that the API request is executed based on a security level. A VCU

may include a number of levels of secure access, each of which allows different levels

of access to hardware. For example, each level may be associated with an encrypted

passcode. So when the software program begins executing, it may provide a secure

passcode to unlock its security level, which designates what features the software

program is able to access. Therefore, according to the levels of access predefined by

the VCU, the information get dumped into the file.

CHAPTER 3. VALIDATION CONTROL UNIT 14

Figure 3.1: Flow of VCU API Working

CHAPTER 3. VALIDATION CONTROL UNIT 15

3.2 VCU API Sequence

Sequence used by VCU API for accessing data are (Figure 3.2):

a. Opening of sequence with a predefined value to tell VCU that process of read-

ing of array/writing into registers is going to start.

b. Parameters are set which will tell which array to read, how many bits of array

to read etc.

c. Reading of data is done using the function predefined in the library

d. Closing of sequence which will tell reading is finished.

Figure 3.2: VCU API Sequence

3.3 Summary

This chapter describes the main unit (VCU) used for extracting data in encrypted

form to protect Intel IP. The flow of how VCU works is also described. VCU API

Sequence which every function of VCU script follow is also given.

Chapter 4

In Target Probe and Platform

Environment Control Interface

4.1 In Target Probe (ITP)

Standard software debuggers are attached to a running process and can stop ex-

ecution at any point. After halting the process, instructions, their memory loca-

tions, and data currently stored in variables can be looked at. An In-Target Probe

(ITP)(4.1) is a hardware device that stops the processor and provides visibility to

things like registers and variable values. It’s a costly piece of hardware but per-

mits to see at several things on the processor and motherboard. ITPs are generally

used to debug hardware (processors and motherboards).ITP is a device attached to

computer hardware and microprocessor design to regulate a target chip or similar

ASIC at the register level. It typically permits full control of the target device and

permits the engineer to access to individual processor registers, program counter

and instructions among the device. It permits the processor to set breakpoints.ITP

is completely different from In Circuit emulator (ICE) as ITP uses the target device

to execute instead of substituting for the target device.

16

CHAPTER 4. IN TARGET PROBE AND PLATFORMENVIRONMENT CONTROL INTERFACE17

Figure 4.1: ITP with Cables

The ITP is a specialised JTAG master that interfaces into chipsets through a rig-

orously routed non-public scan chain on the target system. The first operations of

the ITP is to provide system interface, execution interface and JTAG interface to

the target system. The system interface tells the tool for debug if power, clock and

access state are available in the target system. The execution interface is employed

to coordinate debug activities with the present execution state of the agents hooked

up to the debug port. The JTAG interface permits for question and editing of reg-

isters and state inside the agents hooked up to the scan chain.[4].

CHAPTER 4. IN TARGET PROBE AND PLATFORMENVIRONMENT CONTROL INTERFACE18

In the apparatus related to this thesis, the ITP is connected between host and

platform (the target machine) and converts API command coming from host to

data understood by JTAG. JTAG pins are attached to VCU, which on receiving

commands from JTAG sets registers and do the function of accessing data for de-

bugging (Figure 4.2). There are many components integrated on the platform like

PCU, PCIe slots, etc. as shown in figure 4.2.

Figure 4.2: Connection between host and platform using ITP

CHAPTER 4. IN TARGET PROBE AND PLATFORMENVIRONMENT CONTROL INTERFACE19

4.2 ITP with Python Console

The console used to send API commands is ITP console which has python features

incorporated in it. Figure 4.3 shows the console window used for the thesis to

dump the data under different error scenario using JTAG. The API is imported

and different parameters are passed to get required data in encrypted form. The

property of the console and commands used in the thesis are:

• ITP console uses the interactive mode of python.

• It is easy to import the script and run the function which is written inside the

script.

• Script is imported using import function on the interactive prompt of python.

Eg: import VCU Script as vcu

• For calling any function within script use: script name.function name(arguments)

Eg: in above eg. Script is imported as vcu : vcu.afd(arguments)

Figure 4.3: ITP Plus Python Console

CHAPTER 4. IN TARGET PROBE AND PLATFORMENVIRONMENT CONTROL INTERFACE20

4.3 Platform Environment Control Interface (PECI)

The PECI is a one-wire interface that provides a communication channel between a

PECI client (the processor) and a PECI master (the PCH).

• Supports operation from 2 Kbps to 2 Mbps data transfers.

• Services provided by PECI includes CPU thermal and power information,

control functions for power limiting and access to Machine Check registers.

Host talks to PECI through StartDebugger hardware. Commands are send in the

same sequence as they are send through ITP to JTAG but here the difference is

command are send through StartDebugger to PECI.

PECI is used to access machine check registers with the same VCU sequence as

ITP via JTAG is using. It is also validated to access registers after different error

scenarios like crash core and Fatal error. The commands used to access registers

through PECI are[8]:

• RdPkgConfig() : This command provides read access to the various registers

within the processor and returns the data which is specified by index and

parameter fields. The index field contains the encoded data for the requested

service and is used with the parameter field to specify the exact data being

requested. This command returns dword(32bit) data everytime. The response

(Responses are data which tells whether the command executed correctly or

not) returned with data are different for different scenarios are illustrated in

figure 4.4

• WrPkgConfig() : This command provides write access to the within the pro-

cessor. This command writes data to the processor which is specified by index

CHAPTER 4. IN TARGET PROBE AND PLATFORMENVIRONMENT CONTROL INTERFACE21

and parameter fields.The response returned with data are different for different

scenarios are illustrated in figure 4.4

Figure 4.4: Response after RdPkgConfig() and WrPkgConfig() commands execution

4.4 Summary

This chapter gives the details of the hardware (ITP and PECI) connected between

host and platform to access data at the time of error scenario. It also describes

in brief how interactive python console helps in debugging and running the scripts

with the knowledge of responses if script fails to extract data.

Chapter 5

Data Extraction Steps

Data accesses is done at the time of failures which helps in debugging. There are

two ways for accessing data: Internal and External. Internal access is done through

directly talking to JTAG/PECI to set value to registers to access/read data without

encryption. External access is the access of data in the encrypted form using a

controller unit via JTAG/PECI. Dump means accessing a value or dumping the

values in a file.

• Array Freeze Dump

• Scan Dump

• Register Dump

5.1 Array Freeze and Dump

Arrays are structures in the RTL. The sizes of array are different for different arrays

and mostly all arrays contain information of state. In order to accurately capture

array data, the array needs to first be frozen to prevent the data from being mod-

ified during the data extraction process. This is known as freezing of array. The

22

CHAPTER 5. DATA EXTRACTION STEPS 23

controller registers, named as Local Data Access Test (LDAT) controllers, are set

to read data of the arrays. LDAT is directly connected to the arrays. Different

set of arrays have different LDAT controllers. To set LDAT controller registers,

JTAG (internally) or VCU (externally) can be used. As shown in figure5.1, ev-

ery LDAT controller is attached to two or more arrays which shows if we want to

dump any data in the array we need to set the particular LDAT controller registers.

Figure 5.1: Access of array using JTAG

Every array used for debugging responds to a freeze command which is broad-casted

in the processor. After receiving this command,write logic of array is disabled im-

mediately which freezes its contents even when the processor clock remains running.

There are two ways of freezing the array:

1.) Debug Mode:This mode stops a running processor and places it in an in-

teractive testing mode. After testing operations have been completed, the processor

can be released into normal execution mode again[5].

CHAPTER 5. DATA EXTRACTION STEPS 24

2.) Internal breakpoint mechanism:An internal breakpoint mechanism sets

a breakpoint at particular instant which freezes the content of array. This mech-

anism can be set up to respond to any of a variety of internal micro-architectural

events.

5.2 Scan Dump

These are internal flops instantiated in the processor logic to capture state specifi-

cally for debug purposes. Scan-out technique provides facility to see data of internal

nodes in the design. Scan-out can work in snapshot mode. It takes a single sample

of the key processor state, saves it in shadow flip flops and shifts it out through the

JTAG port while the processor is running. Shadow flip-flops or latches are used to

provide a non-destructive scan out ability that preserves the existing system state.

This mode is used while the processor is running at full clock frequency, without

disturbing its operation. As shown in figure5.2,each flip-flop has its shadow flip-flop.

When the scan dump command is executed, chain is formed and data get stored

in shadow flip flop. The data stored in shadow flip flop is taken out by inserting

dummy data in.

CHAPTER 5. DATA EXTRACTION STEPS 25

Figure 5.2: Scan Dump

5.3 Register Dump

Some of the registers are exposed to customer as part of the EDS documentation.

Register values are important to determine the architectural configuration being

applied and to determine what errors are being indicated at the point of failure. The

CScripts already have mechanisms to read out these registers as part of their existing

functions. Some of them are control registers, memory input output registers and

status registers.

5.4 Steps for dumping data

a. Array Freeze Dump:

Encrypted array dump is done using VCU via JTAG through ITP. Scripts

are used to set LDAT controller and VCU registers to start array dump after

freezing the data in it. CScipt is called to start array freeze dump at the time

of error. The AFD script is divided into two parts.Following are things done

by front-end script (Figure 5.3)(given to customers) :

CHAPTER 5. DATA EXTRACTION STEPS 26

(1) One by one array will be taken from the list defined in the script.

(2) For individual array the repeated steps will be:

• Freezing using VCU API (breakpoint set)

• Encryption enabling using VCU API

• Dump using VCU API

(3) Wrap all the encrypted dumped data in a zip folder.

Following are things done by back-end script (Figure 5.4)(internal at Intel) :

(1) Load the zip file into the internal tool for decoration , so that it can be

compared easily.

(2) Decryption of data loaded into the tool.

(3) Put all the log generated in the file for manual comparison.

Figure 5.3: Front-end Flow

Figure 5.4: Back-end Flow

CHAPTER 5. DATA EXTRACTION STEPS 27

b. Scan Dump:

Steps to implement scan dump through VCU are similar to VCU API sequence

of array dump. The registers which are set for scan dump are different from

the one which are set for array dump. Linear scan chains are formed for scan

dump as shown in figure5.2. In scan dump first we need to select chains and

units which we want to dump and then freeze all chains as shown in fiure 5.5.

Figure 5.5: Scan Dump

c. Register Dump:

Register dump can be done in several ways i.e. can be directly read setting

VCU as access or using VCU API.

5.5 Error Scenarios

Several error scenarios are generated to dump data to debug further. Some of the

errors are:

a. Crash Cores:When the cores does not respond to any command given by

user then crash core error occurs. It happens due to invalid data written into

registers or several instruction running simultaneously leading to crash core

and hung the system. After core crashes a crash core dump (using VCU API)

CHAPTER 5. DATA EXTRACTION STEPS 28

is done which consists of the registers in which records the working memory of

a computer program when the program has terminated abnormally (crashed).

The processor registers which are dumped in the crash core scenario include

the program counter and stack pointer, memory management information and

other processor and operating system flags and information. Core dumps

are used to assist in analyzing and debugging errors in computer programs.

Array dump, scan dump and register dump also checked in this scenario for

debugging.

b. DMI Error Injection:If there is a break in communication between different

components, it is also considered to be an error. In this scenario debugging is

done through array, scan and register dump.

c. Thermal Error:When processors get heated up, it halt its operation. Due to

some operation which goes to infinite loop the processor gets heated up and

error occurs in the system.

5.6 Summary

This chapter includes the work done as the part of the thesis/project. Details of

different kinds of data extracted using the VCU in encryption form and validating

the data after decryption is given. The steps did for extracting data with block

diagrams is also described. The error scenarios in which the array , register and

scan data are validated is also described in this chapter.

Chapter 6

Result

The VCU microcontroller assembly coding was already written for reading the data.

This thesis is based on writing the script for dumping data through VCU, check-

ing the correctness of encryption and decryption of data and validating the data

in different error scenarios. For validation of data knowledge of some basic JTAG

commands which can directly access the data without any VCU intervention was

important part. This is called to be an internal accessing of data. This data is

always correct until unless ITP is not screwed up. External data which is accessed

through VCU is compared to this data for validation. If the data matches then

VCU API is working perfectly. Parameters are passed in the function defined in the

API to tell VCU which data to dump. This data ,as discussed in previous chapters,

is dumped in encrypted form in different error scenarios and so can be used for

debugging after decryption.

Scripts are written to access array and scan dump data in encrypted form. These

scripts are checked under normal conditions and after spoofing different error sce-

narios. The encrypted data is then decorated and decrypted with internal tool.

This decrypted data is then compared with the golden values and then analyse for

29

CHAPTER 6. RESULT 30

debugging. The validation of this data is necessary before going further.

Figure 6.1 shows how the VCU API script is imported on Python Console and

array dump is done. Figure 6.2 represents the output of array dump after settingg

the parameters. Figure 6.3 shows two logs. One of them is taken using the script

written for tool and other one is taken using the internal script which uses JTAG

directly to access data. Figure 6.4 show the comparison of scan results using VCU

with JTAG values.

Figure 6.1: Importing script and running a function

CHAPTER 6. RESULT 31

Figure 6.2: Output data of an array dump after running script

Figure 6.3: Array Data Comparison - VCU API output with JTAG output

CHAPTER 6. RESULT 32

Figure 6.4: Scan Dump Data Comparison - VCU output with Golden Values

Chapter 7

Conclusion

Postsilicon Validation is considered to be an important step in validation of any chip.

So, DFD is included as a part of postsilicon validation which helps in debugging the

chip even after it has been shipped to customers. This thesis is intended towards

giving the visibility to customers for dumping data, at time of error scenarios, which

can be used for debugging. As we know providing confidential data to customers

may lead to exploitation of the companys IP, so a microcontroller unit is embedded

into the design, named as VCU, which will dump the data and take care of the

encrypting the data before dumping.

In this project, the script for array freeze, scan dump and register dump is writ-

ten which helps in extraction data in different error scenarios. These scripts are

written and validated with encryption enabled and then decryption of encrypted

values.There are two modes: unlocked mode for Intel Engineers and locked mode

for customers. These scripts are checked for unlocked mode where data is dumped

without encryption. Then checked for locked mode where data is dumped with en-

cryption. The extracted data is matched with the golden values. These scripts are

checked for different error scenarios as well. In short correctness of extracted data

33

CHAPTER 7. CONCLUSION 34

using VCU is checked with the validation of proper functioning of encryption and

decryption of data.

Now, in the near future the customers can extract internal array and debug scan

chains along with the exposed registers without having an Intel engineer involved.

However, to protect IP, the data they are able to extract will be encrypted and

requires an Intel engineer to decrypt and evaluate it. The capability to extract the

array and scanout data on their own represents an important improvement in de-

bug throughput. The tool will extract data into a format that will be compatible

with the internal debug toolset. So all internal tools will be able to operate on the

captured information.

References

[1] Hemant Rotithor, Intel Corporation, “Postsilicon Validation Methodology for
Microprocessors”, IEEE, October–December 2000

[2] Nicola Nicolici and Ho Fai Ko, “Design-for-debug for post-silicon validation:
Can high-level descriptions help?”, IEEE,2009

[3] “Test, Validation and Debug Architecture”,International Application Published
Under Patent Corporation Treaty, Publication no. WO 2012/087330 A2

[4] INTEL Corporation, “ITP700 Debug Port Design Guide”, February 2004

[5] Adrian Carbine and Derek Feltham,“Pentium Pro Processor Design for Test
and Debug”, IEEE,1998

[6] Intel Corporation ,“Intel Processor-Based Server Selection Guide”, 2014

[7] https://embedded.communities.intel.com

[8] INTEL Corporation,“Intel Xeon Processor E5-1600/ E5-2600/E5-4600 Product
Families,Datasheet-Volume One”, May 2012

35

	Declaration
	Disclaimer
	Certificate
	Certificate
	Acknowledgements
	Abstract
	Contents
	List of Figures
	Abbreviation Notation and Nomenclature
	Introduction
	Postsilicon Validation
	Design For Debug
	Motivation
	Objective
	Broadwell Server
	Thesis Organization
	Summary

	Encrypted AFD and Scan Dump Tool Description
	Background
	Tool Description
	Tool Flow
	Summary

	Validation Control Unit
	Flow of VCU API working
	VCU API Sequence
	Summary

	In Target Probe and Platform Environment Control Interface
	In Target Probe (ITP)
	ITP with Python Console
	Platform Environment Control Interface (PECI)
	Summary

	Data Extraction Steps
	Array Freeze and Dump
	Scan Dump
	Register Dump
	Steps for dumping data
	Error Scenarios
	Summary

	Result
	Conclusion
	References

