
ULT tools and libraries for Intel
platforms

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Patel Nilaykumar Kantibhai
(13MECE12)

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2015

ULT tools and libraries for Intel
platforms

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Patel Nilaykumar Kantibhai

(13MECE12)

Under the guidance of

External Project Guide: Internal Project Guide:

Indranil Mukherjee Prof.Sachin Gajjar
Engineering Manager, Assistant Professor,
Intel Technology India Pvt. Ltd. EC Branch, EE Department,
Bangalore. Institute of Technology,

Nirma University, Ahmedabad.

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2015

iii

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- Patel Nilaykumar Kantibhai

13MECE12

iv

Disclaimer

”The content of this thesis does not represent the technology,opinions,beliefs,

or positions of Intel Technology India Pvt. Ltd.,its employees,vendors,

customers, or associates.”

v

Certificate

This is to certify that the Major Project entitled “ULT tools and libraries for In-

tel platforms” submitted by Patel Nilaykumar Kantibhai A.(13MECE12),

towards the partial fulfillment of the requirements for the degree of Master of Tech-

nology in Embedded Systems, Nirma University, Ahmedabad is the record of work

carried out by him under our supervision and guidance. In our opinion, the sub-

mitted work has reached a level required for being accepted for examination.The

results embodied in this major project, to the best of our knowledge,haven’t been

submitted to any other university or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Prof. Sachin Gajjar Dr. N.P. Gajjar

Internal Guide Program Coordinator

Dr. D.K.Kothari
Section Head, EC

Dr. P.N.Tekwani Dr. K. Kotecha

Head of EE Dept. Director, IT

vi

Certificate

This is to certify that the Major Project (Phase- II) entitled “ULT tools and li-

braries for Intel platforms” submitted by Patel Nilaykumar K. (13MECE12),

towards the partial fulfillment of the requirements for the degree of Master of Tech-

nology in Embedded Systems, Nirma University, Ahmedabad is the record of work

carried out by him under our supervision and guidance. In our opinion, the submit-

ted work has reached a level required for being accepted for examination.

Indranil Mukherjee

Engineering Manager,

Intel Technology India Pvt. Ltd.,

Bangalore

vii

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr. P.N.Tekwani,

Head of Electrical Engineering Department, and Dr. N.P.Gajjar, PG Coordinator

of M.Tech Embedded Systems program for allowing me to undertake this thesis work

and for his guidelines during the review process.

I take this opportunity to express my profound gratitude and deep regards to

Prof.Sachin Gajjar, guide of my major project for his exemplary guidance, moni-

toring and constant encouragement throughout the course of this thesis. The bless-

ing, help and guidance given by him time to time shall carry me a long way in the

journey of life on which I am about to embark.

I would take this opportunity to express a deep sense of gratitude to Indranil

Mukherjee and Rakshmi Bhatia , Project Managers, Intel Technology India Pvt.

Ltd.. for their cordial support, constant supervision as well as for providing valuable

information regarding the project and guidance, which helped me in completing this

task through various stages.I would also thank to Vandana Kannan and Sangani

Suryanarayana,my Project Mentors for always helping,give good suggestions and

solving my doubts and guide me to complete my project in better way.

I am obliged to R, Durgadoss member of Android Display Driver Development

team, Intel Technology India Pvt. Ltd. for the valuable information provided by

him in his respective field. I am grateful for his cooperation during the period of

my assignment.

Lastly, I thank almighty, my parents, brother, sisters and friends for their con-

stant encouragement without which this assignment would not be possible.

- Patel Nilaykumar Kantibhai

13MECE12

viii

Abstract

Unit level testing in driver development is one of the most crucial part. Through unit

level testing, developer can know basic faults in his code. Because of this testing,

developer can avoid small but disastrous mistakes. On the other hand, if this faulty

(without doing unit level testing) code is passed for validation cycle, lots of man

hours and resources are wasted. The other part of this project is doing register

operations effectively. Register operations (like reading, writing and comparing) in

driver development are small but most crucial parts. In lower level driver in linux,

one of developers job is to configure specific hardware registers in particular way to

make hardware working properly. On the other side, validation or debug engineer

needs to check register status in order to validate or debug various scenarios. In some

scenarios, engineer needs to check whole platform dump so that he can find root

cause of problem or understand that whether driver is working in proper manner or

not.

In this project, main focus is on how to design and implement unit level testing

tools which can detect maximum faults in code before going to validation cycle.

Two tools are designed to check whether BIOS is properly parsed and values are

properly applied to registers. Backlight control is designed to check proper kernel

programming for backlight and Split screen checks for flickers and proper FIFO

buffer programming. For effective register operations, main focus is on how to do

these operations through application layer so that user can have better experience.

Also, register parser tool is developed in such a manner that it can be used on various

hardware platforms without extra efforts. Using this tool, various operations like

reading, writing, comparing can be performed by the user. Register dump (all-

important register of platform) is one of the important feature of this tool which

ix

gives debug information of all important registers of the platform. By this, user

does not need to read what every bit does from platform specific document. This

tool also gives facility of saving all the results so that they can be used for future

reference or can be sent to code owner for corrections.

Contents

Declaration iii

Disclaimer iv

Certificate v

Certificate vi

Acknowledgements vii

Abstract viii

List of Figures xii

Abbreviations xiii

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Problem Statement . 2
1.4 Thesis Outline . 2

2 Literature Survey 4
2.1 Android OS . 4

2.1.1 Linux Kernel . 4
2.1.2 Libraries . 5
2.1.3 Android Runtime . 6
2.1.4 Application Framework . 7
2.1.5 Application Layer . 7

2.2 Developing Android . 8
2.2.1 Application Building Blocks 8
2.2.2 Android Manifest File . 9
2.2.3 Application Lifecycle . 10

2.3 sysfs file system . 13

x

CONTENTS xi

2.3.1 Block directory . 13
2.3.2 Bus directory . 14
2.3.3 Class directory . 14
2.3.4 Devices directory . 14

3 Library and scripts Design and Implementation 16
3.1 Device Id . 16
3.2 Register reading . 18
3.3 Register Write . 19
3.4 Register Dump . 21
3.5 Shell and Python Scripts . 22

4 Tools Design and Implementation 23
4.1 Register parser . 23

4.1.1 Add button implementation 23
4.1.2 Show button implementation 25
4.1.3 Save button implementation 27
4.1.4 Register Dump button implementation 27
4.1.5 Compare button implementation 27

4.2 MIPI BIOS Configurations Checker 28
4.3 MIPI BIOS Sequence block Checker 30
4.4 Backlight Control tool . 32
4.5 Split Screen Detection tool . 34

5 Conclusion 36

6 Future Work 37

References 38

List of Figures

2.1 Android OS Architecture . 5
2.2 Conversion from .java to .dex file . 6
2.3 Activity lifecycle of Android application 12

3.1 Device ID . 17
3.2 Register Read . 18
3.3 Register Write . 20
3.4 Register Dump . 21

4.1 Add and Show Button . 24
4.2 Save,Register Dump and Compare Buttons 26
4.3 MIPI BIOS configuration checker . 29
4.4 MIPI BIOS sequence checker . 31
4.5 Backlight control . 33
4.6 Split Screen Detection . 35

xii

Abbreviations

SoC . System on chip

EDID . Extended display identification data

OpenGl . Open Graphics Library

SDK . Software Development Kit

IDE . Integrated Development Environment

XML . Extensible Markup Language

I/O . Input-Output

MMIO . Memory Mapped Input-Output

CPU .Central Processing Unit

ASIC . Application specific Integrated Circuits

xiii

Chapter 1

Introduction

1.1 Background

A driver developer, In Linux, whenever writes driver for a particular device, He

writes functions in C to configure particular set of registers to make hardware work

in particular way. During the design of driver, developer sometimes needs to check

the value of register to verify his design. Register writing is also needed to configure

hardware manually to test its functionality in various scenarios.Apart from developer

engineers, validation and debug engineers also need to read and write registers to test

various scenarios and find root cause of problem. For reading and writing registers,

Engineers use command line tools which can read and write single registers at a

time. Sometimes developer makes code changes or writes new codes which need

initial level testing to find common but disastrous mistakes. No tools are available

for such testing, developer is forced to do this testing manually.

1.2 Motivation

Command line tools can do only single operation at a time so user needs to type

command for each operation. Also, these command line tools does not give any

debug information regarding registers. Sometimes debug and validation engineer

1

CHAPTER 1. INTRODUCTION 2

need to save register values of various scenarios(in which driver is behaving normally)

and send to owner of that code for corrections in driver.In some driver related

problems, debugger need to take snippet of all registers of platform to understand

problem which is not possible using command line tools. For code modifications,

manual testing in time consuming and tedious task which has lead to development

of unit level tests

1.3 Problem Statement

Main objective of this project is, to deliver library and tools support to developer,

validation and debug engineer to ease their work and save resources. Following are

the parts of this tool.

• Developing C shared library which contains functions for reading and writing

single register and register dump.

• Android tool which calls these files and save results

• Write shell script to install application and give required permissions

• Write python script to parse valid register addresses

• Developing unit level testing tools for early validation of code.

1.4 Thesis Outline

The rest of the thesis is organized is as follow :Chapter 2 gives details regarding

architecture of Android operating system. It explains about basic building blocks

of developing android application like activity, content, service, manifest.xml etc.

Further in this chapter sysfs file system is explained. In chapter 3, all the C functions

which are included in shared library are explained with flowcharts. Last section of

this chapter elaborates scripts written in Python and Shell. In chapter 4, all the

CHAPTER 1. INTRODUCTION 3

tools including ULT and register parser are elaborated with help of flow charts. At

last, chapter 5 and chapter 6, concludes the thesis and gives idea about future work.

Chapter 2

Literature Survey

2.1 Android OS

In the figure 2.1 the diagram of Android operating system architecture is shown.

The Android operating system is a software stack of various layers, where each layer

is a group of various program components. All together it does consist operating

system, middleware and applications. Each layer in the architecture provides dif-

ferent services to the layer just above it. In next sections, the features of each layer

are explained in detail.[1]

2.1.1 Linux Kernel

The first layer is the linux kernel. The whole Android operating system is developed

on top of the linux kernel with some extra changes introduced by Google. This

linux kernel talks with the hardware and have all the required hardware drivers.

Drivers are programs that are written in C which control and communicate with the

underlying hardware. For example, consider the display. All devices has a display

hardware in it. Therefore the kernel must include a display driver to handle display

hardware. This layer also plays role as an abstraction layer between other software

layers and hardware.

4

CHAPTER 2. LITERATURE SURVEY 5

Figure 2.1: Android OS Architecture

All the core functionality of Android, like memory management, networking, secu-

rity settings, process management etc. uses Linux kernel. Because the Android is

developed on a proven and popular foundation, it is easy to the port of Android to

various hardware [1][2].

2.1.2 Libraries

In a next level there are bunch of native libraries developed in C or C++, which offer

consistent performance for number of components. For instance, surface Manager

is mainly responsible for combining various drawing surfaces on a display. It is

responsible for the access for various processes to compose 3D and 2D graphics layers.

OpenGL designs core of various graphic libraries and are being used accordingly for

2D and 3D hardware acceleration. Also, it is very much possible to use 3D and 2D

graphics in the single application in Android. A PacketVideo provides the media

CHAPTER 2. LITERATURE SURVEY 6

framework. It offers libraries for a recording and playing support for all of the media

and images. FreeType libraries are useful for rendering the bitmap and vector font.

For data maintainance and storage, SQLite is used in Android. As mentioned earlier,

it is very light rational management system, which does locate a file for all of the

operations connected to database. WebKit, the browser is being used by Apple

Safari, was modified by Android to fit better in a small size screens[1][3][7].

2.1.3 Android Runtime

At the same level Android runtime is there, where the important component dalvik

virtual Machine resides. It was designed specially for Android running in resource

constrained environment, where the limited CPU, battery, data storage and memory

are major issues. Android does offer an integrated tool named as dx, which translates

generated binary code to .dex form file .jar, after this binary code does become much

more efficient to be executed on small processors.

As a result, it becomes possible to have various instances of dalvik VM which

are executingng on a single device at a time. The Core libraries are designed in Java

and does have the collection of the utilitie, IO, classess and other tools.Figue 2.2

shows the conversion of .dex to .java[2][3].

Figure 2.2: Conversion from .java to .dex file

CHAPTER 2. LITERATURE SURVEY 7

2.1.4 Application Framework

As a very next, there is an application framework, developed in Java. It is the

toolkit which is used by all of the applications, ones which are shipped with mobile

device like SMS or contact box, or applications developed by the Android developer

or Google. It has various components like content providers, Package manager,

activity manager.

The Activity manager is responsible for managing the life cycle of the applica-

tions and gives a common platform of navigation backstack for all the applications,

which are being executed in various processes. A Package Manager maintains track

of all of the applications, which user has installed in device. A Windows Manager

is Java programming language abstraction on top of lower level services which are

offered by the Surface Manager.

Content Providers were built for Android operating system to share the data

with another applications, for example, the contacts of device in address book can

be exported in other application too. A Resource Manager is responsible for saving

localized bitmaps, layout file, strings descriptions and other parts of an application.

A View System generates a set of lists and buttons that can be used in UI. Other

component like Notification manager is useful for customizing display alerts and

various other functions.[4]

2.1.5 Application Layer

Top layer of Android architecture consists all the applications, which are used by

the end user. By installing various different applications, user can make his device

optimized, unique and smart phone. All applications are developed in the Java

programming language[1].

CHAPTER 2. LITERATURE SURVEY 8

2.2 Developing Android

2.2.1 Application Building Blocks

Android application can be considered as collection of various components, of dif-

ferent kinds. These components are mostly quite loosely coupled, to a degree where

one can precisely describe them as the bunch of elements rather than an isolated

cohesive application. In general, these elements execute in a single system process.

It is possible (and very common) to invoke multiple threads in that same process,

and it is also possible to invoke completely different child process if one need to.

Such possibilities are very uncommon though, as Android tries pretty hard to make

various processes transparent to the code[4].

Google gives three different versions of the SDK for Mac OSX, for windows and

one for the Linux flavoured os. The developer can make use of Android plugin in

Eclipse IDE or other IDE like as intelliJ. the very First step for the developer is

to segregate the particular application into the various components, which can be

supported by particular platform. The main building blocks are:

• Activity

• Intent Receiver

• Service

• Content Provider

Activity: It is user interface component and corresponds to single screen at a time.

It means that for a simple application like contacts, the developer needs to have one

particular activity for displaying information about chosen contact, another activity

component for showing contact details of selected name and etc [4][5].

Intent Receiver: It invokes a predefined action via an external event. As an

example,for an application such as Email Inbox, a developer needs to have an intent

CHAPTER 2. LITERATURE SURVEY 9

receiver and have to register his code via XML to invoke the alarm notification,

when there is an email in inbox of user [4][5].

Service: It is a task, which is being executed in background. It does mean the

end user can invoke the application from an activity window and can keep a service

working, while browsing through any other application. For example, he can browse

Google browser application while listening music or holding the call. [4][5].

Content Provider: It is a component, which can allow user to share some of the

data with an other applications and processes. It is a best way for the applications

to talk with each other.Android generally, is shipped with the bunch of applications

like an email, calender, SMS, alarm, browser, contacts, maps and others. Java is

used to develope all the applications [4][5].

2.2.2 Android Manifest File

The AndroidManifest.xml file is a control file which informs the system what is to

be done with every top-level components (specifically services, activities, content

providers and intent receivers as explained below) one has created. For example,

this is a ”glue” which tells which Intents of your Activities are going to receive.

The developer need to define and make list of every component, which he does want

to use in the particular AndroidManifest.xml file. It is the must file for all of the

applications and can be found in a root folder. It can also be possible to specify every

global value for particular package, all the components and their classes used, intent

filter, which tell when and where the certain activity is supposed to start, permissions

and instrumentation like testing and security concerns. AndroidManifest.xml file is

described in following example[6]:

1. 〈?xmlversion = ”1.0”encoding = ”utf − 8”?〉

2. 〈manifestxmlns : android = ”http : //schemas.android.com/apk/res/android”〉

3. 〈package = ”dk.mdev.android.hello”〉

CHAPTER 2. LITERATURE SURVEY 10

4. 〈applicationandroid : icon = ”@drawable/icon”〉

5. 〈activityclass = ”.HelloAndroid”android : label = ”@string/app name”〉

6. 〈intent− filter〉

7. 〈actionandroid : value = ”android.intent.action.MAIN”/〉

8. 〈categoryandroid : value = ”android.intent.category.LAUNCHER”/〉

9. 〈/intent− filter〉

10. 〈/activity〉

11. 〈/application〉

12. 〈/manifest〉

The line 2 is the declaration of name space, which does make a standard Android

attributes visible for that application. In the line number 4 there is one ¡application¿

element, where the developer can specify all of the application level components and

their properties that are being used by that package. Activity class in a line 5 tells

the initial screen which is visible to the user and it may have more than one ¡intent-

filter¿ elements which describes the actions that particular activity supports [3] [6].

2.2.3 Application Lifecycle

In Android, every application is executed in their own method, which supplies

higher performance protected memory, in security and alternative advantages. So

humanoid is accountable to execute and stop working properly those processes once

it’s required. It’s vital that application developers perceive however completely

separate application elements (in explicit BroadcastReceiver, Activity and Service)

impact the lifespan of the application’s method. Not victimization these elements

properly may result within the system killing the application’s method whereas it’s

CHAPTER 2. LITERATURE SURVEY 11

doing vital work. to work out that processes ought to be killed once low on mem-

ory, humanoid places every method into AN ”importance hierarchy” supported the

elements running in them and also the state of these elements. These method sorts

ar (in order of importance).

1. A foreground method is one that’s needed for what the user is presently doing.

numerous application parts will cause its containing method to be thought of

foreground in several ways. A method is taken into account to be within the

foreground if any of the subsequent conditions hold:

• It is running associate Activity at the highest of the screen that the user is

interacting with (its Resume() process has been called).

• It has a BroadcastReceiver that’s presently running (its BroadcastReceiver.onReceive()

instance is executing).

• It has a Service that is currently running code in one of its own callbacks

(Service.onCreate(), Service.onStart(), or Service.onDestroy()).

There will solely ever be a couple of such processes within the system, and these

can solely be killed as a final resort if memory is thus low that not even these

processes will still run. Generally, at now, the device has reached a memory

paging state, thus this action is needed so as to stay the programme responsive.

2. A visible method is one holding an Activity that’s visible to the user on-screen

however not within the foreground (its onPause() methodology has been called).

this could occur, as an example, if the foreground Activity is displayed as a dialog

that permits the previous Activity to be seen behind it. Such a method is taken

into account very vital and can not be killed unless doing thus is needed to stay

all foreground processes running.

CHAPTER 2. LITERATURE SURVEY 12

Figure 2.3: Activity lifecycle of Android application

3. A service method is one holding service that has been invoked with the start-

Service() technique. tho’ these processes don’t seem to be directly visible to the

end user, they’re usually doing things that end user cares regarding (such as

background network information transfer or download), that the system can in-

variably keep such methodes running unless there’s not enough memory to retain

all of foreground and visual process.

4. Background method is the one which is holding an Activity that’s not presently

visible to the user (its onStop() technique is been called). These processes don’t

have any direct impact on end user expertise. Provided they design their Activity

life-cycle properly, the system will kill such processes at any time to reclaim

CHAPTER 2. LITERATURE SURVEY 13

memory for one amongst the 3 previous processes varieties.

Usually there are several of those processes running, in order that they are gen-

erally placed in LRU list to make sure the method that was last seen by the user

is that the last to be killed once running low on memory.

5. An empty method is one that does not hold any application program parts. the

sole reason to stay such a method around is as a cache to enhance startup time

following time a element of its application has to run. As such, the system can

usually kill these processes so as to balance overall system resources between

these empty cached processes and therefore the underlying kernel caches[4][5].

2.3 sysfs file system

sysfs could be a approach for presenting kernel objects, their relationships with each

other and their attributes. It gives 2 components: kernel programming interface

for mercantilism these things via sysfs, and user interfaces to look at and change

these things that are mapped back to kernel objects that they present. sysfs is just

a group of files, symbolic links and directories. The that means of every scheme in

sysfs and their contents is as following:

2.3.1 Block directory

The block directory holds subdirectories for every block device that can be found

within the system. In every block devices directory, there are some attributes that

describe several things, as well as the size of a device and the dev t variety. there’s

a symbolic link which indicates the physical device which the block device indicates

to (in the physical device tree, which is described later in this chapter). Also, there’s

a directory which expose interface to an I/O scheduler[8].

CHAPTER 2. LITERATURE SURVEY 14

2.3.2 Bus directory

The bus directory holds sub-directories for every physical bus kind that has support

registered within the kernel. every bus kind that can be represented has 2 sub-

directories: drivers and devices. The devices directory holds a listing of each device

found thereon variety of bus within the whole system. The devices found are literally

symbolic links which time to the devices directory within a global device tree. The

drivers directory holds directories for every utility that has been registered with the

bus kind. at intervals every of the drivers directories are attributes that permit

viewing and manipulation of driver parameters, and symbolic links that direct to

the physical devices (in the device tree) that the driver is bound to [8][8].

2.3.3 Class directory

Class directory holds representations of each device class which is registered with a

kernel. Sub directories are contained by every device for every class object which

are registered and alloted therewith device category. The directories of every class

device objects hold symbolic links to driver directories and device (in the global

device hierarchy and therefore the bus hierarchy accordingly) that are related to

particular class object[9].

2.3.4 Devices directory

The global device hierarchy is held by device directory. Device directory contains ev-

ery physical device which is found by the bus types registered with kernel. They are

represented in ancestrally correct way. Every device is represented as a subordinate

device of device for which it is physically subordinate .

Mainy, two type of devices are exceptions to this kind of representation: system

devices and Platform devices. Platform devices are mainly peripheral devices which

are inherent to the specific platform. Generally they have MMIO, some I/O ports

which resides at a fixed location that is known. For instance, legacy X86 devices such

CHAPTER 2. LITERATURE SURVEY 15

as the embedded devices of a SoC solution, a floppy controller or a serial controller.

system devices, in various ways, are different than any other device. System devices

are likely to have hardware register read-write accesses for configuring system but

they are not eligible to transfer data.Generally, system devices are not likely to have

drivers that are bound them.Though, at least for them who are represented via sysfs,

are likely to have architecture-specific code which configures them, treats them as

the objects to whom they can export. Examples of system devices are ASICs, timers

and CPUs[9].

Chapter 3

Library and scripts Design and

Implementation

Mainly two libraries are implemented, one is linux shared library and the other is

Java native interface shared library(used in register parser tool). There are mainly

four C functions that are included in these libraries. while using run time it is com-

piled and pushed on the device to basic perform operations like checking platform

type, reading register, writing register.

• Devid : Checks on which platform tool is running.

• Read: Reads register value.

• Write: Writes to register.

• Dumper: Reads Essential registers of whole platform and parse them to get

debug information.

3.1 Device Id

1. As shown in flow chart, first through get pci device() various functions from

shared library libpciaccess are called to get device related data in pci device

16

CHAPTER 3. LIBRARY AND SCRIPTS DESIGN AND IMPLEMENTATION17

structure.

2. In Second step, condition is placed to check whether device is x86 based or not.

3. If it is, its pci device-〉 devid will be checked for platform. According to platform,

particular string will be returned to java layer to further process.

4. If pci device-〉 devid does not match with any known platform, other will be sent.

On reception of other java will invoke one default routine.

Figure 3.1: Device ID

CHAPTER 3. LIBRARY AND SCRIPTS DESIGN AND IMPLEMENTATION18

3.2 Register reading

Figure 3.2: Register Read

1. In first step, It is checked that whether valid set of inputs are passed or not. If

not, One function will be executed which tells how to use.

CHAPTER 3. LIBRARY AND SCRIPTS DESIGN AND IMPLEMENTATION19

2. In next step, reg access init() is called which in turn calls several intel library

functions to initialize platform specific environment to read registers. These

functions are as follows

• Get mmio: According to device id, it will execute pci device map range

from libpciaccess. On successful execution, it will return 0 else error number.

• Get register map : It will give base address of platform from which reading

can be started.

3. Now one for lop is invoked and it will take register offsets one by one and read

their value and prints result on console (From where java layer can read).

3.3 Register Write

1. In first step, It is checked that whether valid set of inputs are passed or not. If

not, One function will be executed which tells how to use.

2. In next step, reg access init() is called which in turn calls several intel library

functions to initialize platform specific environment to read registers. These

functions are as follows

• Get mmio: According to device id, it will execute pci device map range

from libpciaccess. On successful execution, it will return 0 else error number.

• Get register map : It will give top address of platform from which reading

can be started.

3. One pointer is initialized which will point to address passed by user. The data

at that address is read and thrown on shell.

CHAPTER 3. LIBRARY AND SCRIPTS DESIGN AND IMPLEMENTATION20

Figure 3.3: Register Write

CHAPTER 3. LIBRARY AND SCRIPTS DESIGN AND IMPLEMENTATION21

3.4 Register Dump

1. Through get pci device various functions from shared library libpciaccess are

called to get device related data in pci device structure.

2. In next step, reg access init is called.

3. Various if conditions will check which type of platform in running this code.

According to platform array of structure will be passed to a function which takes

every register one by one and read register value.

4. Next, register value is parsed and debug information will be stored in a string.

5. The result will be printed on console from where java layer can read.

Figure 3.4: Register Dump

CHAPTER 3. LIBRARY AND SCRIPTS DESIGN AND IMPLEMENTATION22

3.5 Shell and Python Scripts

A Shell script is written to install android tool on device and give necessary permis-

sions for sysfs entry (to where kernel throws register value asked by tool). It also

changes permission to 777 of reg read, reg write, reg dump so that tool directly can

execute them from user space.

Python Script is used to get valid set of registers from a word file of specific platform.

Flow of Script is as following.

1. First word file is opened in read mode. We read each line of file one by one in

for loop.

2. Line is split in array of words by split() method in python. Whole array is checked

for words like Address offset, memory offset, I/O offset and if found copy next

word which is likely to be address in an array.

3. The resultant array is converted to hexadecimal from string and arranged in

ascending order.

4. The properly arranged array is again converted to string so that whole string of

array is called by java.

Chapter 4

Tools Design and Implementation

4.1 Register parser

The C files explained before runs at back end by invoking process from java layer.

The output generated by that files are printed on console form where java layer takes

that output in input buffer. Further process is done by java layer on that buffer.

The figure 4.1 explains 2 buttons (Add and Show).

4.1.1 Add button implementation

Using this button user can enter various register addresses to see their corresponding

values at a time. Following is flow of actions on clicking this button.

1. On click of this button first, it will be checked whether there is any value in the

edit text (Enter Register). Here user is allowed to enter up to 8 characters only.

2. If value is found, it will be taken in form of string and appended in Array list. If

not found, No action will be taken.

23

CHAPTER 4. TOOLS DESIGN AND IMPLEMENTATION 24

Figure 4.1: Add and Show Button

CHAPTER 4. TOOLS DESIGN AND IMPLEMENTATION 25

4.1.2 Show button implementation

This button is used to display register values in Grid View. Following is working

flow of this button.

1. First, It is checked whether user wants to read register for multiple continuous

or discrete.

2. If single register read is clicked then it will take elements from array list and

append to a cmd (e.g. reg read 0x10 0x20 0x30 .) and make one String to pass

process.

3. If user selects for multiple register, first it is checked that start and end register

values are written or not. If not, Make toast that enter start or end value.

4. Next conditions is that whether start value is less then end or not. If yes, it is

checked that there is any valid registers in that range or not. If not, make toast

to display message.

5. All the valid registers are appended to cmd string to pass reg read.c.

6. One process is created and the above command is passed to process to execute

and output is collected in one buffer.

7. The output will be displayed in GridView. User can click any output from Grid-

View to write that register. When user enters valid value and click on write, in

back end reg write.c is invoked and writes to that register.

CHAPTER 4. TOOLS DESIGN AND IMPLEMENTATION 26

Figure 4.2: Save,Register Dump and Compare Buttons

CHAPTER 4. TOOLS DESIGN AND IMPLEMENTATION 27

Figure 4.2 Shows remaining three buttons(Save, Register Dump and Compare).

Following is explanation for each button.

4.1.3 Save button implementation

Sometimes Debug or validation engineer needs to save register value to send Devel-

oper for possible fault in code. Following is the working procedure of this button.

1. When clicked on this button, an alert box in displayed for giving file name to

which displayed data can be saved.

2. If file name is give, data is saved in filename.txt at location /data /data /com.example

/register parser. User can pull file from device by adb pull command.

4.1.4 Register Dump button implementation

1. On clicking this button reg dumper.c will be executed and output will be printed

on console. From console, java layer will get that data and display in form of

Alert box.

2. In Alert box option is provided for user to save register dump.

4.1.5 Compare button implementation

This button compare register dump with already saved register dump. Following is

working procedure of this button

1. In back end reg dumper.c will be executed and output is taken in java layer.

2. Whole dump will be saved in form of array by splitting it from new line character.

Same will be done for golden.txt.

3. Now for same address, data is compared and if data is differ that value and debug

information is stored in separate array.

CHAPTER 4. TOOLS DESIGN AND IMPLEMENTATION 28

4. The mismatched values will be displayed as output in form of alert box.

4.2 MIPI BIOS Configurations Checker

At the time of device boot up, When BIOS hands over to Android Operating system,

Display driver takes some of the configurations from bios like color format, device

reset timer. These taken configurations are then programmed in display registers.

The aim of these tools is to parse bios binary and cross check that whether registers

are programmed correctly or not. Following is the algorithm of this tool.

1. First step is to copy bios from the memory location at which it is saved to the

location where we can save and manipulate it easily.

2. Next, it is checked that whether the file which is read is not corrupt and contains

Intel’s BIOS signature.

3. MIPI Panel Id is abstracted from a panel specification block and saved in panel

id.

4. A pointer is defined which points header of required block (here configuration

block).

5. Size of total block is taken from size block.

6. According to Panel id, pointer will be over written to point data in block.

7. Now Data is read and saved in packed structure for future comparisons.

8. Registers are read through shared library (explained in Library section) and com-

pared to data in structure. Failure log is printed on screen and failure counter

increases on each failure.

9. At last, total number of failures are returned.

CHAPTER 4. TOOLS DESIGN AND IMPLEMENTATION 29

Figure 4.3: MIPI BIOS configuration checker

CHAPTER 4. TOOLS DESIGN AND IMPLEMENTATION 30

4.3 MIPI BIOS Sequence block Checker

Once device is booted up, to enable MIPI panel, based on panel (whether it is video

mode panel or command mode panel), some command sequences are needed to be

executed in particular order. These commands are written in one of the BIOS block.

The aim of these tools is to parse bios binary to verify whether correct sequences

are being followed or not. Following is the algorithm of this tool.

1. First 6 steps are as explained in MIPI BIOS Configuration Checker part of these

Chapter.

2. In every sequence first byte indicates the type of sequence.

3. Next step is to read sequence in form of 1 byte till two consecutive 0s.

4. If 2 consecutive 0s are detected then from next byte onwards next sequence starts.

5. All the sequences are stored in form of array and then checked whether mandatory

sequences for particular panel are there in the array in proper order or not.

6. If mandatory sequences are found in array then test results 0 and if not then

returns -1.

CHAPTER 4. TOOLS DESIGN AND IMPLEMENTATION 31

Figure 4.4: MIPI BIOS sequence checker

CHAPTER 4. TOOLS DESIGN AND IMPLEMENTATION 32

4.4 Backlight Control tool

Whether backlight is working properly or not is being tested with tool. Following

is the algorithm to implement this tool.

1. First, Device under test is set for not to sleep for 30 minutes through various

Android system calls which includes touch events, opening application, selecting

an option among various options in menu.

2. First condition to be checked is whether display is set to some minimum level of

backlight or not. If not, message is printed and tools returns -1.

3. Next, backlight is set through writing sysfs entry from 0 to 255 in increasing

order with some predefined dely. After writing each value in sysfs, some hardware

register are read to check whether written value are getting affected.

4. If for any value kernel is not programming backlight properly, error message will

be printed with written value and expected values of registers.

5. Once reached to maximum level, values will start to reduce back to 0 and same

procedure will be followed for assurance of perfect kernel programming.

6. If no error is detected then backlight will be set with the value at staring of

execution and exit tool exists with 0 status.

CHAPTER 4. TOOLS DESIGN AND IMPLEMENTATION 33

Figure 4.5: Backlight control

CHAPTER 4. TOOLS DESIGN AND IMPLEMENTATION 34

4.5 Split Screen Detection tool

At hardware layer, frames to be displayed are sent in FIFO buffer. From this buffer

the frame is taken and displayed. If buffer is not properly emptied before the data

is taken, the frame displayed will contain previous frame’s data. This scenario

in turn creates split screen. This tool detects split screen by two different ways.

It continuously checks CRC value of red, green and blue elements of frame and

compares these CRCs with golden values. Another way is it continuously checks

hardware register for overflow. If any of these condition is detected, error status

gets generated.

1. First, some binaries are pushed on the device for basic register operations like

reading and writing registers.

2. Now as we need to compare current CRC with golden CRC, push an image to

Gallery whose CRC is known.

3. Device under test is set for not to sleep for 30 minutes through various Android

system calls which includes touch events, opening activity, selecting an option

among various options in menu.

4. Disable status and navigation bar from display so that when we calculate CRC

of screen they do not add their CRCs.

5. Launch Gallery application and open the pushed image through commands.

6. Next, enable the CRC calculations at hardware layer through writing 1 in par-

ticular register and clear overflow register bit just to make sure that it does not

give wrong detection.

7. Now start loop for 0 to 200 comparing CRC and overflow bit for split screen

detection. If both condition are detected then print status of CRCs and overflow

register and exit with return value -1.

CHAPTER 4. TOOLS DESIGN AND IMPLEMENTATION 35

Figure 4.6: Split Screen Detection

Chapter 5

Conclusion

Unit level testing is perhaps one of the most important part of checking driver

code before submitting it for validation cycle. After submitting this tools, developer

had caught number of issues with code before submitting it for validation. This in

turn, has saved considerable resources.

On the other side, for libraries, the purpose of making them is to give user better

experience for this kind of operations. Apart from basic operations like reading and

writing single registers, these libraries can read simultaneously number of registers.

One advantage of using these libraries for validation and debug engineer is that

they can save the data and send it to owner of code so that he can identify problem

easily and fix it. Also, These libraries not only gives all the important registers of

platform in single click but also it parses that registers and by this user is spared

from peeping in whole platform specific document for registers.

36

Chapter 6

Future Work

There are number of possibilities for expanding unit level testing. Some possi-

bilities are as follows.

• Tests based on panel specs can be designed.

• The major challenge and future focus area is to make these tools to run without

human intervention.

• Scenario based tests can be added.

For libraries, there are various possibilities for expansion based on requirements.

Following are the expansion area for this tool.

• Various functions can be added to check sprite plane, to check edid, etc.

• Functions implementation can be made in a manner that these libraries can

become platform independent.

• Libraries can be made for other os platforms like linux, windows, etc.

37

References

[1] ”Introduction to Android” [Online]. Available:

http://developer.android.com/guide/index.html.

[2] ”ART and Dalvik” [Online]. Available:

https://source.android.com/devices/tech/dalvik/index.html.

[3] ”Android A to Z: What is Dalvik” January 2013 [Online]. Available:

http://www.androidcentral.com/android-z-what-dalvik.

[4] ”Application Fundamentals” [Online]. Available:

http://developer.android.com/guide/components/fundamentals.html

[5] ”Maven: The Complete Reference” [Online]. Available:

http://books.sonatype.com/mvnref-book/reference/android-dev.html

[6] ”The AndroidManifest.xml File” [Online]. Available:

http://lyle.smu.edu/ coyle/cse7392mobile/handouts/s01.The

[7] ”Run native executable in Android” July 2014 [Online]. Available:

http://gimite.net/en/index.php

[8] ”sysfs - The filesystem for exporting kernel objects” August 2011 [Online].

Available: https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt

[9] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman, Linux device

drivers. Third edition, o’reilly, 2005.

38

	Declaration
	Disclaimer
	Certificate
	Certificate
	Acknowledgements
	Abstract
	List of Figures
	Abbreviations
	Introduction
	Background
	Motivation
	Problem Statement
	Thesis Outline

	Literature Survey
	Android OS
	Linux Kernel
	Libraries
	Android Runtime
	Application Framework
	Application Layer

	Developing Android
	Application Building Blocks
	Android Manifest File
	Application Lifecycle

	sysfs file system
	Block directory
	Bus directory
	Class directory
	Devices directory

	Library and scripts Design and Implementation
	Device Id
	Register reading
	Register Write
	Register Dump
	Shell and Python Scripts

	Tools Design and Implementation
	Register parser
	Add button implementation
	Show button implementation
	Save button implementation
	Register Dump button implementation
	Compare button implementation

	MIPI BIOS Configurations Checker
	MIPI BIOS Sequence block Checker
	Backlight Control tool
	Split Screen Detection tool

	Conclusion
	Future Work
	References

