
Validation of Core RAS features for Intel XEON

Server Processor using Random Instruction

Generation Tool

Major Project Report

Submitted in fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

by

Shival Singh

(13MECE16)

Electronics & Communication Engineering branch

Electrical Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382 481

May, 2015

Validation of Core RAS features for Intel XEON

Server Processor using Random Instruction

Generation Tool

Major Project Report

Submitted in fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

by

Shival Singh

(13MECE16)

Under the guidance of

External Project Guide: Internal Project Guide:

Mr. Raghava M Rao Mr. Vijay Savani

Design Automation Engineer, SSV Assistant Professor, EC Department,

Intel Technologies India Pvt. Ltd., EE Branch,Institute of Technology,

Bangalore. Nirma University, Ahmedabad.

Electronics & Communication Engineering Branch

Electrical Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2015

i

Declaration

This is to certify that, the thesis comprises my original work towards the degree of

Master of Technology in Embedded Systems at Nirma University and has

not been submitted elsewhere for a degree.

Due acknowledgement has been made in the text to all other material used.

SHIVAL SINGH

ii

Certificate

This is to certify that the Major Project entitled “Validation of Core RAS fea-

tures for Intel XEON Server Processor using Random Instruction Gen-

eration Tool” submitted by Shival Singh (13MECE16), towards the fulfillment of

the requirements for the degree of “Master of Technology”in “Embedded Systems”at

“Nirma University, Ahmedabad”is the record of work carried out by him under our

supervision and guidance. In our opinion, the submitted work has reached a level

required for being accepted for examination.The results embodied in this major

project, to the best of our knowledge, have not been submitted to any other univer-

sity or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Mr. Vijay Savani Dr. N.P. Gajjar

Project Guide Program Coordinator

Dr. D.K.Kothari

Section Head, EC

Dr. P.N.Tekwani Dr. K. Kotecha

Head of EE Dept. Director, IT

iii

Certificate

This is to certify that the Major Project ”Validation of Core RAS features for Intel

XEON Server Processor using Random Instruction Generation Tool” submitted by

Shival Singh (13MECE16),towards the fulfillment of the requirements for the degree

of Master of Technology in Embedded Systems, Nirma University, Ahmedabad is

the record of work carried out by him under our supervision and guidance. In our

opinion, the submitted work has reached a level required for being accepted for ex-

amination.

Date:

Place:

Mr. Raghava M Rao Mr. Ananda P Chandranna

Design Automation Engineer, SSV Engineering Manager, SSV

iv

Acknowledgements

With immense pleasure, I would like to take this opportunity to thank all those who

helped me for the successful completion of the first phase of the dissertation and for

providing valuable guidance throughout the project work.

I would first of all like to acknowledge Dr. N. P. Gajjar, whose keen interest

and farsightedness helped everyone in Embedded Systems carry out their project

meticulously. I would offer thanks to Mr. Vijay Savani for reviewing this report

and giving valuable suggestions to make it presentable, his keen interest in this

dissertation work right from the beginning has been a great motivating factor in

outlining the flow of my work.

Special thanks to Mr. Ananda P Chandranna, for motivating me throughout

the internship, Mr. Raghava M V Rao, for giving me a chance to work on this

project, providing valuable inputs, reading material and mentoring me throughout

this project. I would also like to thank Sandeep, Poornima and Supreeth for provid-

ing valuable reading material, clearing doubts and guiding me through the course

of completion of this project.

Last but not the least would like to thank my father, mother and sister for

constantly supporting me throughout the course of post graduation, all of this would

not have been possible without them.

The duration of my internship has been a fruitful experience and a great learning

curve.

SHIVAL SINGH

13MECE16

v

Abstract

Geography is history, human technology is shrinking geographical boundaries, now

people can collaborate, access resources present in a remote corner of the world from

their comforting bedrooms, offices and on the move, due to the revolution called

”Internet of things”, cloud computing is gaining popularity day by day. Cloud com-

puting needs lot of storage space, which requires maintaining servers, for storing and

manipulating critical data (for example online retail stores, stock markets, invest-

ment banking firms, social networking sites, search engines), hence it is imperative

that the servers are up and running all the time, and keep the data reliable, and are

easily serviceable even after a catastrophe.

Intel uses a very through validation methodology, making use of architectural

validation technique to spot bugs missed during pre silicon validation, so that the

validation cycle can be reduced to achieve product readiness amidst the growing

competition. The advanced automation infrastructure maintained in Server System

Validation in Intel means that the target under test is continuously bombarded with

random test cases to get a 24/7 coverage.

The approach in designing validation plan, targeting the areas which were left

untouched/ loose ends is explained. Intel architecture uses MCA, to detect, log and

recover from hardware errors, which may lead to compromising server integrity and

even bringing down the system.

RMCA, an advanced version of MCA is discussed at length in this report, the

advantages of this approach is that without increasing the cost of hardware, an

uncorrectable error can be handled (isolated or resolved) by using the operating

system or system software.

Pre requisites of loader include for running test cases targeting RMCA are dis-

cussed, which includes, setting up the platform, where the Silicon to be tested is

mounted, checking the health of Silicon, enabling memory poisoning, and giving the

control to the test case, which is self-driven and doesnt need any OS to operate.

Pre requisites of loader include setting up the Machine Check registers to dis-

able error overflow, enabling poisoning of memory, generating complex instructions

which will access the poisoned memory location, synchronizing the machine check

exceptions across all cores, setting up the handlers for servicing the uncorrectable

errors.

A case study is discussed in the end to describe the step by step approach followed

to debug a failure, from loading the seed to arriving at the cause/ workaround.

vi

Abbreviations

SSV Server System Validation

SVE System validation and Enabling

DIMM Dual Inline Memory Module

RIG Random Instruction Generator

RAS Reliability, Availability and Serviceability

QPI Quick Path Interconnect

SPI System peripheral Interconnect

CMCI Corrected machine-check error interrupt

SMI System Managed Interrupt, Scalable Memory Interconnect

MCIP Machine check in progress

ECC Error Correction Code

SECDED Single Error Correction Double Error Detection

UCR Uncorrected Recoverable Error

MCERR Machine Check Error

RMCA Recoverable Machine Check Architecture

SRAO Software Recoverable action optional

UCNA Uncorrected no action required

MSR Model Specific Registers

MC Machine Check Exception

SRAR Software Recoverable Action Required

MP Multi Processor

ITP In Target Probes

TAP Test Access Ports

DFT Design For Test

DCE Detected but Correctable Error

DUE Detected but Uncorrectable Error

TLB Translational Look aside Buffer

Contents

Declaration i

Certificate ii

Acknowledgements iv

Abstract v

Abbreviations vi

List of Figures v

1 Introduction 1

1.1 Motivation . 1

1.2 Aim of the project . 2

1.3 Thesis Organization . 2

2 Literature Survey 3

2.0.1 Validation History . 3

2.0.2 Comprehensive validation process Followed in Intel 5

3 RAS and MCA(Machine Check Architecture) 7

3.1 Introduction to RAS . 7

3.1.1 Hardware Errors and Self-healing 9

3.1.2 Memory Errors . 11

3.2 Hardware error . 12

3.3 Scope of the project . 12

3.3.1 Real world scenario of a hardware error and how it gets handled 14

3.4 Machine-Check Architecture . 14

i

CONTENTS ii

3.5 Machine-Check Global Control MSRs 15

3.6 Error-Reporting Register Banks . 16

3.6.1 Corrected Machine Check Error Interrupt 16

3.6.2 Detection of Software Error Recovery Support 18

3.6.3 UCR Error Reporting and Logging 19

3.6.4 UCR Error Classification . 19

4 RIG Tool 20

4.1 RIG at Intel . 20

4.2 RIG Architecture . 20

4.2.1 Template . 21

4.2.2 External instruction set rules 22

4.2.3 Simulator . 22

4.2.4 Assembly tool suite . 22

4.2.5 Execution target . 22

4.2.6 RIG Core . 22

4.2.7 Preprocessor/User Interface 23

4.2.8 Generation of Random Code 25

4.3 Infrastructure for validation set up using RIG 28

4.4 Steps involved in test case generation (to target RAS features) using

RIG . 29

4.5 Test case generation . 30

4.6 Significance of content file in system validation 30

4.7 Biasing in RIG and importance of content file 31

4.8 Validation flow . 32

5 SV POST SILICON VALIDATION METHODOLOGY 34

5.1 Introduction . 34

5.2 Validation strategy for Microarchitecture focused Post Silicon Vali-

dation . 35

5.3 Test Template Construction . 35

5.4 Post Silicon Test Flow . 37

5.5 Debugging methodology used in Intel 38

6 Debug techniques 40

6.1 Introduction . 40

6.2 TAP (Test Access Port) . 41

CONTENTS iii

6.2.1 Steps followed while debugging 42

7 RMCA flow and debugging RAS failure 44

7.1 RMCA . 44

7.2 Flow for Debugging RAS failure using RIG Tool 45

8 Result 49

8.1 Bugs found while validating RAS features during this project 50

9 Conclusion and Future Scope 52

9.1 Conclusion . 52

9.2 Future Scope . 53

References 54

List of Figures

2.1 Validation cycle in Intel . 4

2.2 Processor design flow . 5

2.3 Stages in Comprehensive Validation Cycle followed in Intel 6

3.1 Advanced RAS features on a Xeon E7 Server 8

3.2 RAS Flow . 8

3.3 MCA recovery . 11

3.4 Software-assisted MCA recovery process 13

3.5 Diagram depicting the scope of RAS validation in this project 14

3.6 IA32 MCG CAP Register . 15

3.7 IA32 MCG STATUS Register . 16

3.8 IA32 MCi CTL Register . 16

3.9 IA32 MCi STATUS Register . 17

3.10 IA32 MCi ADDR MSR Register . 17

3.11 UCR Support in IA32 MCi MISC Register 18

3.12 IA32 MCi CTL2 Register . 18

3.13 Machine Check Error Classification 19

4.1 RIG architecture . 21

4.2 Template processing flow . 24

4.3 Random Code Generation Flowchart 25

4.4 RIG Diagram . 26

4.5 RIG and infrastructure tools flow . 28

4.6 Events taking place in Validation flow 33

5.1 validation strategy for Micro architecture focused Post Silicon Vali-

dation . 36

5.2 Test Template Construction . 37

iv

LIST OF FIGURES v

5.3 Post Silicon Test flow . 37

6.1 Detailed debug flow . 41

6.2 Debug Flow . 43

7.1 Test structure -the different input files dumped on Target Under Test 46

7.2 Loader GUI while running a seed, the different stages of execution

are shown, viz. Loading, Running, Waiting for completion and Com-

paring results,at the end the seed either passes or fails 47

8.1 Benefit of RAS on Xeon E7 server processor 50

Chapter 1

Introduction

1.1 Motivation

The nature of doing business is changing very rapidly across the world. Leading

companies in computation intensive industries, such as financial trading, retail, and

social networking sites are moving towards a real-time business model in which in-

formation sharing and data transfer takes place at a pretty high rate. This sharply

decreasing product readiness timeline is resulting in increased demand on the per-

formance, capacity, availability of the underlying infrastructure supporting it. In

the wake of increasing competition and requirements, the penalty for infrastructure

going down will result in serious financial loss and will hamper the brand value.

Hence, business-critical operations must be up and running at all times.

For years, Intel has been able to meet the growing challenge of providing high

performing, reliable and always running infrastructure. Advanced reliability, avail-

ability, and serviceability (RAS) and security enhancement for safeguarding the

privacy of data are deep rooted across all of the Intel server products.

These attributes are made possible by exhaustive methodology for testing and

validating platform performance by running focussed test cases (generated by a RIG

tool) across multiple hardware and software environments.

The biggest challenge is in preparing the validation plan (used for generating

test cases which will hit corner cases missed while designing the server processor,

due to limitations of the verification tools to simulate the real time signals) in the

least possible time, which makes the server processors fool proof before shipping it

to the customers at the earliest.

1

CHAPTER 1. INTRODUCTION 2

1.2 Aim of the project

1. Studying and understanding Machine Check Architecture, a mechanism of

detection and correction of hardware errors, primary contributors for uncor-

rectable errors, compromising the integrity and reliability of the servers.

2. Learning how the validation plan is created, what are the parameters to be

considered before generating test scenarios to hit corner cases.

3. Learning the debugging approach used in Intel to root cause different kinds of

failures (hardware, tool specific, test environment specific) .

4. In the process, developing an understanding on the validation flow for hardware

error detection and correction mechanism used by Intel Xeon Server Processor.

1.3 Thesis Organization

Chapter 2 Literature Survey of the project.

Chapter 3 Description of MCA(Machine Check Architecture) and RAS its imple-

mentation in XEON server processor family.

Chapter 4 Description of RIG Tool.

Chapter 5 Post Silicon Methodology followed in Server Validation and Enabling

Group.

Chapter 6 Debug techniques followed to spot a bug.

Chapter 7 RMCA and flow for Debugging RAS failure using RIG Tool.

Chapter 8 Result.

Chapter 9 Conclusion and Future Scope.

Chapter 2

Literature Survey

Various research papers related to Post Silicon Validation were studied.

Hemant Rotithor,Postsilicon Validation Methodology for Microprocessors, IEEE

Design & Test of Computers, Technical Journal, was referred to understand the

validation strategy while designing the test cases. The validation cycle at Intel was

studied and is highlighted in the following sections.

2.0.1 Validation History

This chapter describes how improvement in validation techniques are made and

requirements are met at Intel. CPU post-silicon platform-level validation cycle at

Intel, consists of simultaneous development and testing of system validation (SV),

compatibility validation (CV), and OEMs programs. Figure 2.1

Validation support for server processors requires more complex test development

efforts to support requirements that are quite different from mainstream desktop,

mobile and enterprise product lines. Products also requires high level of integration

to meet customer requirements, posting new challenges to validation. The technolo-

gies used in post-silicon to verify functionality are:

• Analog validation (AV),

• Compatibility validation (CV) and

• System validation (SV)

SV represents controlled, virtual implementation at every interface in a platform

environment. AV verifies signal integrity, and CV runs in a real-life operating system

with peripherals and applications.

3

CHAPTER 2. LITERATURE SURVEY 4

Figure 2.1: Validation cycle in Intel

[11]

Server processor support, however, may demand validating a rich set of periph-

erals with an Intel architecture processor on a single die. This brings the customer

a wealth of inexpensive tool chains, programming language support and scalability

across diverse product offerings. It also brings testing challenges that cannot be met

by reuse alone.

In presilicon validation, the challenges of supporting a large-gate-count CPU

along with large gate count standard I/O functionality are magnified by the sheer

size of the overall model. Currently, the entire silicon model cannot fit into one tool

chain and must be processed in chunks across various tools.

In post-silicon validation, the biggest issue is likely to be the lack of visibility into

the internal states of the silicon for debug during validation runs. Access to the deep

internal states of the silicon, is directly related to reducing debug and verification

times and thereby reducing back-end validation costs.

Three strategies are needed to enable server processor support.

• The first is more exhaustive presilicon validation. The benefits are fewer tape

outs in the back end, resulting in faster time-to-market and reduction in project

cost.

• The second (post silicon validation) is to enhance the built-in-self-test func-

tionality of the processor and core logic at a platform level.

CHAPTER 2. LITERATURE SURVEY 5

Figure 2.2: Processor design flow

• The third strategy is to use a high ratio of known-good building blocks to newly

designed blocks of silicon for internal units, connecting them with an internal

communication bus, enabling isolated testing of each block. By using this

method, stress on front-end tools is reduced and higher-level formal verification

methodologies are made use of. Refer Figure 2.2.

2.0.2 Comprehensive validation process Followed in Intel

As shown in Figure 2.3. There are eight stages in Intels comprehensive validation

program [13]:

CHAPTER 2. LITERATURE SURVEY 6

Figure 2.3: Stages in Comprehensive Validation Cycle followed in Intel

[13]

Chapter 3

RAS and MCA(Machine Check

Architecture)

Various white papers and Intel IA 32 software developers manual pertaining to RAS

and MCA were studied. The details in this chapter describe the understanding made

from them.

Core RAS means RAS features related to Core components only, for example

memory controller, Cache, on chip registers. Project is limited to validation of Core

RAS features only, and specifically, validating L1 cache by corrupting the Main

Memory (DRAM) when accessed by Cache will be flagged as a Machine Check

Error and then the MCA comes into picture.

Figure 3.1 describes the areas where RAS is implemented in Intel Xeon E7 pro-

cessor.

3.1 Introduction to RAS

RAS stands for Reliability, Availability and Serviceability.

Traditionally, server RAS was thought as errors that were to be handled by the

hardware only, and unrecoverable hardware error would result in entire system going

down, causing hindrance to the organization and end user. Since the online trans-

actions are increasing exponentially, hence the infrastructure supporting it should

be up and running all the time, hence they should be able to handle unrecoverable

hardware errors for delivering continuous service to the end user. Modern approach

is designed to handle unrecoverable errors, right from the infrastructure hardware

to the underlying software Figure 3.2.

7

CHAPTER 3. RAS AND MCA(MACHINE CHECK ARCHITECTURE) 8

Figure 3.1: Advanced RAS features on a Xeon E7 Server

[1]

Figure 3.2: RAS Flow

[1]

The modern approach is designed keeping in mind three aspects:

1. Reliability, how the infrastructure preserves data sanctity.

CHAPTER 3. RAS AND MCA(MACHINE CHECK ARCHITECTURE) 9

2. Availability, guaranteeing unhindered operation with minimal impact on per-

formance.

3. Serviceability, how quickly can the infrastructure can be made to function to

its maximum again.

1. Reliability Data sanctity, concerns the protection of data through detecting,

correcting errors and containment of errors in the worst case scenario.

Error detection identifies the errors at the instruction and data level. Error

Correction is a mechanism by which the hardware detects hardware error and

corrects the faulty bits in a memory location.

Error containment segregates the corrupted data and broadcasts it across all

major components and data buses so that the other subsystems can take ap-

propriate action on encountering such errors. [1]

2. Availability Modern design approach provide mechanism to enable continu-

ous operation even on occurrence of uncorrectable errors. The approach makes

use of spare processors, DIMMs and I/O resources in case of a catastrophe.

Making use of BIOS/OS to log and recover from an uncorrectable hardware

error if possible.

3. Serviceability This approach makes use of predictive failure analysis to pre-

dict the components that may lead to uncorrectable errors in the future by

polling the current state of the system thereby reducing the downtime.

System isolation and partitioning is used to segregate the components affected

by uncorrectable errors from components running on server infrastructure to

aid in maintenance.

3.1.1 Hardware Errors and Self-healing

Hardware errors affect computed data stored in memory, data in transit between

components. Such errors can affect the precision and sanctity of data used in com-

putations. Hardware errors fall into two categories: soft (transient errors) and hard

(permanent errors).

Soft errors occur mostly due to surrounding radiations in the form of random

signal affecting electronic circuits at the molecular level, such as alpha particles or

cosmic rays dislodging electrons and therefore transferring charge, thereby changing

CHAPTER 3. RAS AND MCA(MACHINE CHECK ARCHITECTURE) 10

the logic behavior of one or more gates. Soft errors seriously affect dynamic random

access memory (DRAM). Soft errors, can be corrected by circuitry that can change

the logic state of a failing bit.

Hard errors are permanent physical failures at the hardware level, e.g., a stuck

bit in a data bus, a bad bit in a dual inline memory module (DIMM), or a faulty

internal circuit in a processor.

Hard errors can be corrected only by physical replacement with a spare compo-

nent.

Self-healing systems can diagnose and recover themselves automatically from

component level hardware failures. Self-healing requires a robust failure detection,

interpretation, handling and failure isolation capabilities.

The method to ensure reliability is to detect and correct error wherever possible,

recovering from errors by replacement of failing component or memory interconnects,

and preventing errors that may spring up in the future.

Error correcting codes (ECCs) were devised to detect and correct multiple bit

hardware errors. One ECC in common use is SECDED (single error correct double

error detect), which allows the correction of one bit in an error or detection of a

double-bit error in a memory block. [5]

Currently the Xeon D 1520 and 1540, launched in April, 2015 can correct up to

4 bits in a memory block. Hardware errors can be classified under two categories

1. Correctable

2. Uncorrectable

(a) Recoverable uncorrected

(b) Non recoverable uncorrected

i. Fatal Error Blue screen error, this error is not supported by Random

Instruction Generation Tool

ii. Non Fatal Error

Correctable Errors are handled in Silicon using ECCs and doesnt result in slowing

down the systems performance.

If the error is not correctable, processor signals the OS to take over. OS checks

whether the uncorrectable error is recoverable or not, if it is recoverable, OS finds

out whether any task is using the poisoned data, if not, then it unmaps it form the

main memory and flags it as suspicious, if an application is using the poisoned data

CHAPTER 3. RAS AND MCA(MACHINE CHECK ARCHITECTURE) 11

Figure 3.3: MCA recovery

[1]

, then it transfers the control to the application software to perform the recovery

action, if recovery is not possible, the task is aborted, else the poisoned memory

is reconstructed. If the uncorrectable error is fatal in nature, then the OS signals

system shutdown (the error was fatal uncorrectable error). Figure 3.3

3.1.2 Memory Errors

The most common cause of crashes in a large scale systems are memory errors, to

recover from a memory failure, replacement of the faulty module is the commonly

used practice. Hence, memory modules are amongst the most frequently replaced

server components. But, memory replacement is quite costly. ECC was developed

in the 1990s to reduce the frequent replacement of memory modules by detecting

hardware errors in the form of bit flips in memory modules and recovering from

them.

ECC reduces fatal memory errors responsible for system crashes, helping the

systems maintain an illusion of operating error-free when the error rate is limited to

a particular range.

There have been a lot of advancements in ECC technology, for example IBM

Chipkill (trademark), which can detect and correct up to eight-bit flips in memory.

Chipkill is used with memory sparing method, keeping a spare memory module on

a channel, so that it can be used in case a memory module gets corrupted above the

correcting capability of chipkill technology. Chikill technology is helpful in improving

reliability of a server. [7, 8, 6] Intel also provides an improved ECC feature along with

the hardware called Enhanced Double Device Data Correction (DDDC), allowing

CHAPTER 3. RAS AND MCA(MACHINE CHECK ARCHITECTURE) 12

recovery from two back to back DIMM failure due to bit flips. MCA Recovery is an

Intel Xeon processor family E7 family feature allowing the Silicon layer to lay down

the rules for recovery of uncorrectable hardware errors making use of Operating

System, Virtual Machine Management and even application software.

As shown in Figure 3.4, in case the hardware error is a correctable error, the

Silicon using the intrinsic ECC technique corrects it and notifies the OS to keep track

of the number of times correctable error was hit, so as to improve the predictive error

analysis . If the error cannot be resolved by the hardware, it signals a machine check

to the OS. The OS then checks whether the faulty page causing the uncorrectable

error is currently in use by the memory or not, if it is not being used, then it is

disassociated from the memory and marked for repairing. If the page is currently

mapped to the memory, the application using it is notified that it has cached a

poisonous data, and the application checks whether or not the corrupted data can

be marked for repairing. If the data cannot be repaired, then the OS signals for

termination of the application currently holding the poisonous data.

The striking feature of this approach is the co-ordination between hardware and

software while detecting whether the hardware error is correctable or uncorrectable.

This collaboration can save a lot of resources, since the cost of including all of this

in the hardware would result in huge pressure on the designers and would prove

costly.[1]

3.2 Hardware error

Examples of hardware error sources include the following:[9]

• Processor machine check exception (for example, MC no.)

• Chipset error signals (for example, SCI, SMI, SERR#, MCERR#)

• I/O bus error reporting (for example, PCI Express root port error interrupt)

• I/O device error

3.3 Scope of the project

RAS validation is a very important concept for maintaining quality and efficiency

of a server.

CHAPTER 3. RAS AND MCA(MACHINE CHECK ARCHITECTURE) 13

Figure 3.4: Software-assisted MCA recovery process

[1]

Machine Check Architecture is a mechanism for validating RAS for a number of

core and uncore components.

In SSV, the scope is limited only to validate the machine check raised by core compo-

nents. For example, cache, Memory controller etc. after main memory is poisoned.

Refer Figure 3.5

In this project, the main memory is poisoned by RIG using the DFX while gener-

ating the random code.

Now, as soon as a component tries to access the poisoned memory location, a ma-

chine check is signalled, RIG also generates the code for the machine check handler

(for servicing the hardware error).

The topic of discussion in this report is limited to poisoned memory access by the

cache, and the steps to validate whether the cache is able to recover from the dif-

ferent severity of errors while being exercising other instructions related to security,

power management etc.

CHAPTER 3. RAS AND MCA(MACHINE CHECK ARCHITECTURE) 14

Figure 3.5: Diagram depicting the scope of RAS validation in this project

3.3.1 Real world scenario of a hardware error and how it

gets handled

Suppose Flipkart is using an Intel Xeon server, after a finite time duration, on a

certain instant, the main memory gets corrupted because of frequent reading and

writing into it, and a customer logs in to its website to purchase an expensive mo-

bile, things go smoothly, but as soon as he tries to make payment, the application

handling this transaction access a poisoned memory location, at this instant a ma-

chine check will be signalled, the processor will detect whether it is correctable or

uncorrectable, suppose hardware is not able to correct it, its poison tag is enabled

and the core signals a Machine Check Error across all other cores with poison tag

enabled, so that other cores do not try to access the memory location with a poison

tag

3.4 Machine-Check Architecture

Machine-check architecture provides a mechanism for detecting and reporting hard-

ware (machine) errors, such as cache errors, ECC errors, system bus errors, TLB

errors and parity errors.

There are two kinds of Machine Check Registers, one for setting up the machine

check banking registers and the other ones are used to record the errors detected

CHAPTER 3. RAS AND MCA(MACHINE CHECK ARCHITECTURE) 15

Figure 3.6: IA32 MCG CAP Register

[10]

during machine check. Machine Check Exception (MC) is signaled when the proces-

sor encounters an uncorrectable machine check error. The machine check exception

is a mechanism by which the processor begins to thoroughly analyze an exception

after it crosses a certain threshold (that is when the hardware is no longer to resolve

the hardware error). The machine check exception handler collects the details of

the processors state from the machine check MSRs.

The processor on being able to recover from a hardware error, signals a CMCI

(Corrected Machine Check Interrupt). To keep track of the number of times a

particular hardware unit encountered a hardware error for predictive failure analysis

by the OS. [10]

3.5 Machine-Check Global Control MSRs

The machine check global control MSRs include the IA32 MCG CAP, IA32 MCG

STATUS and IA32 MCG CTL.

IA32 MCG CAP MSR

The IA32 MCG CAP MSR is a read-only register providing information about the

machine-check architecture of the processor. Figure 3.6 shows the structure of the

register in Intel Xeon family processors.[10]

IA32 MCG STATUS MSR

The IA32 MCG STATUS MSR describes the current state of the processor after a

machine-check exception has occurred (see Figure 3.7).[10] Where:

CHAPTER 3. RAS AND MCA(MACHINE CHECK ARCHITECTURE) 16

Figure 3.7: IA32 MCG STATUS Register

[10]

Figure 3.8: IA32 MCi CTL Register

[10]

IA32 MCG CTL MSR

IA32 MCG CTL controls the reporting of machine-check exceptions. If present,

writing 1s to this register enables machine-check features and writing all 0s disables

machine-check features.[10]

3.6 Error-Reporting Register Banks

Each error-reporting register bank can contain the IA32 MCi CTL, IA32 MCi STA-

TUS, IA32 MCi ADDR, and IA32 MCi MISC MSRs. The number of reporting

banks is indicated by bits [7:0] of IA32 MCG CAP MSR (address 0179H).[10]

3.6.1 Corrected Machine Check Error Interrupt

CMCI improves the efficiency of processor in the sense that the processor no longer

has to continuously poll the correctable error count, to find whether it has ex-

ceeded a particular threshold. The software can program the threshold value in

IA32 MCi CTL2 MSRs register to deliver a local interrupt.

CHAPTER 3. RAS AND MCA(MACHINE CHECK ARCHITECTURE) 17

Figure 3.9: IA32 MCi STATUS Register

[10]

Figure 3.10: IA32 MCi ADDR MSR Register

[10]

System software is required to enable CMCI for each IA32 MCi bank that sup-

port the reporting of hardware corrected errors if IA32 MCG CAP[10] = 1.

CHAPTER 3. RAS AND MCA(MACHINE CHECK ARCHITECTURE) 18

Figure 3.11: UCR Support in IA32 MCi MISC Register

[10]

Figure 3.12: IA32 MCi CTL2 Register

[10]

3.6.2 Detection of Software Error Recovery Support

Bit 24 of IA32 MCG CAP (MCG SER P) is used to detect whether software error

recovery support is enabled or not. When 24th bit is set, indicates that software error

recovery is supported by the processor. When this bit is cleared, it indicates that

software error recovery is not supported by the processor. Hence in case bit number

24 is set, would mean that if the hardware is not able to correct the hardware error

by itself, it will have to issue shutdown.

The type of error which can be recovered by use of a system software are called

Uncorrected Recoverable Errors (UCR). UCR error indicates that it has been de-

tected as an uncorrectable error, but has not corrupted the processor to an extent

such that the state of the processor can be restored by taking use of system soft-

ware. The processor can resume its normal operation once recovery has been done

by system software. The machine check handler by using error logging technique by

making use of error reporting MSRs to analyze and implement actions for recovering

from UCR error.

CHAPTER 3. RAS AND MCA(MACHINE CHECK ARCHITECTURE) 19

Figure 3.13: Machine Check Error Classification

[10]

3.6.3 UCR Error Reporting and Logging

IA32 MCi STATUS MSR is used to report UCR errors and existing corrected or

uncorrected errors.

When IA32 MCG CAP[24] is set, a UCR error is indicated by the following bit

settings in the IA32 MCi STATUS register:

• PCC (bit 57) = 0

• UC (bit 61) = 1

• Valid (bit 63) = 1

3.6.4 UCR Error Classification

With the S and AR flag encoding in the IA32 MCi STATUS register, UCR errors

can be classified as, refer Figure 3.13:

Chapter 4

RIG Tool

4.1 RIG at Intel

As shown in Figure 4.1. RIG used at Intel is a template-driven pseudo-random

instruction stream generator. It is used during both pre and post silicon to validate

the RTL and silicon. The test results are validated against reference CPU model.

Templates, written in C++ and assembly language (IA-32 and/or IA- 64), describe

where and how randomness will be introduced into the test cases. An architectural

reference CPU model is used to generate the test cases and serves as a basis of

comparison against the device under test. As each random instruction is generated,

the instruction is simulated. After each test case, template-specified memory ranges

are compared after running the test case on simulator with that on the hardware

under test. Hardware abstraction is used so the templates can run in many differ-

ent environments. RIG at Intel is used in System Validation (SV), Compatibility

Validation (CV), Architectural Validation (AV), and Micro-Architectural validation

(uAV). RIG templates are designed to generate directed-random assembly code. A

copy of generated assembly code is given to the golden reference model and the hard-

ware under test. A checker tool compares the architectural states during simulation

and flags the differences. RIG at Intel currently supports the IA-32 and IA-64 ISAs.

4.2 RIG Architecture

There are seven main components to the RIT architecture. Each component is

described in the following sections.

20

CHAPTER 4. RIG TOOL 21

Figure 4.1: RIG architecture

4.2.1 Template

The template is one of the users primary interfaces into the RIG architecture. Via

the template, the user provides the framework in which the random data and in-

structions will be placed. This defines the structure of the test that will run on the

DUT. In a template, you do the following:

• Configure the target test environment

• Customize the distribution of random code generation

• Control the test execution.

Everything necessary to ensure correct execution of the template is contained within

the template. The template concept in RIG gives this control to the user, who can

change the format of the test, with no impact on the other elements of RIG.

CHAPTER 4. RIG TOOL 22

4.2.2 External instruction set rules

The RIG architecture provides built-in code generation capability (rules) for the

IA-32 and IA-64 instruction sets. This portion of the RIG architecture allows plug-

and-play extensions to the built-in code generation mechanisms without adversely

affecting the core of RIG and without having to create a new version of RIG.

4.2.3 Simulator

The simulator in the RIG architecture is responsible for simulating the test case

defined by the template. This includes both fixed and randomly generated code.

Fixed code refers to the hand-written assembly code present in the template. Ran-

dom code refers to the instructions generated randomly by RIG.

4.2.4 Assembly tool suite

The assembly tools suite is responsible for assembling, linking and binding the as-

sembly language portion of the template. The output of the assembly tool suite, an

executable module, is then loaded onto the simulator.

4.2.5 Execution target

The execution target represents the final destination of the test case defined by

the template. Examples of execution targets would be SV test vehicles or an RTL

model.

4.2.6 RIG Core

The RIG core is the heart of the RIG architecture and is resposible to binding all

the attributes into a single entity.Test Architectural changes shouldnt impact the

RIG core to a large extent, it should be designed to provide a common architecture

and interface.

The RIG core is designed to be as adaptive to the targeted microprocessor architec-

ture as possible, allowing RIGs for both future and existing microprocessors to be

developed off the same foundation.

CHAPTER 4. RIG TOOL 23

4.2.7 Preprocessor/User Interface

The use of RIG can be typically divided into two phases: template development

and validation. During template development, templates are being written and

debugged. This phase requires heavy use of the template preprocessor. The template

preprocessor essentially prepares the template for use by RIG.

Template Processing Template processing flow is described in the Figure 4.2.

After pre-processing template source code, two output files are generated by the

micro pre-processor.

• C++ file

• Assembly code file

The C++ file contains all of the C++ code present in the template, as well as

the auto-generated code. The assembly code file contains all of the assembly code

present in the template. Space will be reserved in the assembly code for the random

data and random code blocks that is filled in later by RIG. Everything that occurs

during the pre processing stage is automatic and should not concern the template

writer.

The template writer may add intelligence several ways: Biasing in Templates:

A critical part of template writing. Biasing is one of the easiest methods of gener-

ating random code. Almost every random value the rules module generates can be

controlled by biasing. For preventing access to a particular register, or lowering the

instances of such an access, biasing is a fairly simple solution. Bias files are used

for controlling the generation of a random code stream (output) without modifying

and recompiling existing templates. Inside the template, biasing is divided into two

phases:

• initial biasing

• dynamic biasing

Initial biasing occurs only in the Init Region of a template. Any code in the

Init Region is executed once. It is the first piece of code RIG executes inside the

template. Biasing that occurs within the Init Region will occur only once. Initial

Biasing allows global adjustments to be made on code generation. For example,

if a template should not generate any random floating-point instructions, then the

CHAPTER 4. RIG TOOL 24

Figure 4.2: Template processing flow

floating-point branch of the instruction tree should be biased to zero. Dynamic bi-

asing can occur throughout template execution. Bias files are useful for eliminating

certain instructions from occurring and Increasing the probability of an instruction

to occur randomly Libraries: Template writers can create libraries that will ran-

domly be placed into the code stream. These libraries allow the user to exercise

more control over a block of code without having to specify exactly where the code

goes. Post-emulation checks via the Rules Module: After each random instruction is

executed on the simulator, there is a check to make sure the results of the execution

are desirable. If the instruction places the processor in an undefined state, the rules

module will discard the instruction. After the rules module completes its check, it

will call any other functions that have been specified by the template writer.

CHAPTER 4. RIG TOOL 25

Figure 4.3: Random Code Generation Flowchart

4.2.8 Generation of Random Code

RIG generates random code only as it is needed, in a track laying style, analogous to

railroad workers laying down track only right in front of a train as it needs it. RIG

is linked to a behavioral simulator that simulates the test as it is being generated.

The Code Generation diagram above, illustrates the flow of random code gen-

eration. The simulator is reset before the generation of each test. RIG examines

the simulators Instruction Pointer (IP) to determine whether it lies within one of

the templates random code blocks. If it does, then the templates C++ code corre-

sponding to the IP is called to direct random code generation. Again, since C++

is used to describe how to generate test code, the user has great flexibility. The

user may explicitly specify instructions to introduce, read instructions from a file,

or ask RIG to generate instructions randomly (subject to the current biasing state).

If the IP does not point to a random code block, then RIG directs the simulator

to simulate the invariant template assembly instructions, without RIG intervention,

until a random code block is encountered. This process continues until a template

CHAPTER 4. RIG TOOL 26

Figure 4.4: RIG Diagram

directive is encountered signaling that test generation has completed.

RIG templates are developed and run to produce directed-random assembly code.

The assembly code is run on both the golden architectural reference model and the

RTL model. A checker tool compares the architectural states during simulation and

flags any mismatches. RIG at Intel currently supports the IA-32 and IA-64 ISAs.

A typical structure of Random Test Tool is shown in Figure 4.4

Random Test Tool takes the following input files to generate a Test. Platform

Specific File: It is a large file describing the number of available processors, their

CPUID information, the available memory, APIC IDs, Non-Uniform Memory Access

configuration, and specific Machine Status Register data. The Figure 4.4 describes

CHAPTER 4. RIG TOOL 27

the input and output files pertaining to an RIG.

Description of the files :

1. Working File: The working file allows enabling various workarounds within

RTT. Generally, workarounds are added to bypass certain processor fuse, ar-

chitectural simulator, environment or Random Test Tool bugs. This file allows

the flexibility to supersede certain changes which the validation engineer wants

to disable/ enable while generating test cases.

2. Automation File: This file is used when Random Test Tool is working under

automation Infra structure.

3. Content File: This option allows us to do things like specialized cache setup,

power management setup, etc.

4. Simulation File: These files are used to simulate the processor model of

current working processor.

5. Test1: The Test1 file basically contains the command line used to generate

the Test, and when the generator is generating the Tests for the loader, it

indicates start of execution by signaling Test generation completed message as

a marker to loader for starting execution.

6. Test2: When the loader starts the execution it reads Test2 file and sets target

configuration accordingly.

7. Test3: Code and data segments are present in this file and it contains the op

codes of the instructions which are executed by the loader on the target under

test. It also contains the description of:

Location of System Data Structures and Support Code:Shows where the sys-

tem control blocks (page table structures, GDT, IDT, and LDT) and the setup,

completion, and other non-random code modules were placed in memory.

8. Test4: Test4 file contains information generated by simulator which is to be

compared with expected result (on the target) in order to make a decision

whether the test case passed or failed.

9. Reporting file: The reporting file is generated by RIG to aid in debug.

A great deal of information is contained in this file(s). Some of the most

often used information is the assembly code run on each thread, and the error

CHAPTER 4. RIG TOOL 28

Figure 4.5: RIG and infrastructure tools flow

message block decode information. Whenever user is debugging a failure, user

will want to generate the reporting file to gain extra information.

4.3 Infrastructure for validation set up using RIG

Random test instruction generation at a high level consists of following modules

(Figure 4.5)

CHAPTER 4. RIG TOOL 29

4.4 Steps involved in test case generation (to tar-

get RAS features) using RIG

Random test case generation in RIG is divided into 3 sections, launcher, generator

and executor.

1. Launcher

2. Test Generator

3. Test Executor

1. Launcher module It parses the command line and checks for its validity and

splits one platform capabilities file into desired number of files, by considering

all memory and other resource constraints. Random Test Tool takes these

spitted Platform capabilities file and other input parameters, and produces

more number of standalone Tests. Random Test Tool is already developed

module which generates the test cases.

2. Test Generator In this phase, the tool collects the parameters from the in-

put file and selects the weightage for each parameter and generates the test

instructions, in case of input files, designed to target RMCA, the test case is

divided into 3 major sections; the set up section, which is used to set up the

processor registers before poisoning the main memory; the random section,

which contains the instructions which will try to access the poisoned mem-

ory locations; completion section, which will do the cleaning up of poisoned

memory locations :

(a) Set up code

i. Encode memory Poisoning Non Repeated Setup code

It allows poisoned status to be synchronously transferred with data

to the receiver.

ii. Apply processor Workarounds

A. Disable MC Exception Overflow Broadcast

B. Disable LLC Writeback Machine Check Exception Signalling

C. Disable Speculative Data Access and Prefetch

iii. Initialize per package registers

CHAPTER 4. RIG TOOL 30

A. Elect a non random cafe thread from each package for memory

poisoning.

B. Unlock the memory poisoning DFX (Design For Testing) mech-

anism on all sockets.

C. Memory poisoning DFX must be unlocked on all sockets.

D. Initialize PCIe registers per package.

iv. Inject machine check errors using ITP based DFT.

v. Enabling RMCA feature

vi. Enabling memory poisoning feature

vii. Completion Code

A. Disable RMCA

B. Disable Memory Poisoning

C. Enable Machine Check Exception Overflow broadcast (disabled

in non repeated setup code)

3. Test Executor Executor is used to run the Test onto the target and check

whether the results are matching with the golden reference values obtained

from running the Test on the simulator.

4.5 Test case generation

Content file contains a set of text blocks called switch. These switch form a large

control panel that lets you select processor operating modes and other operational

characteristics, aspects of the architecture to be tested, and instructions to be fo-

cused. When RIG is run, it reads these settings in the content file and generates

the test code accordingly.

4.6 Significance of content file in system valida-

tion

In case of RAS validation through RIG, content file plays a vital role in shaping the

effectiveness of test instructions generated for introducing uncorrectable errors by

poisoning memory locations (e.g introducing bit flips purposely in some cache lines)

to check whether a system is able to recover from an uncorrectable machine check

CHAPTER 4. RIG TOOL 31

exception or not. We can even specify how many cache lines to poison (by choosing

a random number in switch). The content file contains certain switch which can

be used to mold the generation of test cases in a desired manner so as to target a

particular feature of a processor design (in this case the hardware error handling

capability of a processor in a cache, QPI, SPI).

For making the content file, the validation engineer has to keep in mind a lot of

factors e.g

• Whether it will be compatible with set up.

• Whether it will be able to cover all the corner cases.

• Whether it will take the least time to hit corner cases, since validation has to

be done in a specified amount of time.

• Since generation of a test case according to content file takes a lot of parameters

e.g no. of active processors, no. of active threads, no. of test instructions,

memory of the host, the types of operating modes(since each operating mode

has a limited amount of physical memory associated with it) it is targeting.

Before actively testing a processor with huge amount of test cases, firstly the

health of Silicon (processor arriving from fab yet to be released in the market)

is to be tested by running a specific amount of Tests within a given set up,

this stage is the Silicon bring up stage. Once enough confidence is build, the

validation engineers set up the test plan to extensively fire random test cases

generated by RIG and monitor the response of processor.

4.7 Biasing in RIG and importance of content file

Biasing is generally used to control the degree of randomness. Consider an example,

if MUL has an absolute weight of 35% and MOV has an absolute weight of 90%,

then, on average, MUL occurs 90 % of the time. Absolute weights should sum to

100%. Biasing fall into broadly two categories:

• Absolute,

• Relative.

Relative biasing signifies the priority of a particular instruction compared to others,

and absolute biasing signifies the amount of contribution a particular instruction will

CHAPTER 4. RIG TOOL 32

have. Absolute biasing if being mentioned in percentage should add up to 100%.

Hard coding the Bias values to particular instruction results in uniform distribution

of instruction by a Random Instruction Generator, resulting in poor quality of test

cases generated, and it will take a lot of time to hit corner case scenarios.

By maintaining flexibility in selecting test instructions, the quality of test case

also increases, as different selections will result in different scenarios.

In case of RIG Tool used in Intel for validation, every mnemonic has a bias asso-

ciated with it. Mnemonics might be combined into sub-groups, for example branch-

ing instructions, looping instructions or floating-point instructions. The mnemonics

weights within a sub-group should sum to 100%.

Say the sub-group floating-point is set to 80%, and ADD within floating-point,

was set to 10%, then ADD occurs, on average, 8% of the time. If we are interested

in directing our test case at floating-point, then set its group weight to 100% and

all others groups to 0%. ADD now occurs 10% of the time. The more flexible a tool

is towards biasing, weights and groups, the easier it is to focus towards a particular

area for validation.

This gives an added advantage to the validation engineer to control the RIG to

generate test case scenarios according to the requirement.

The pseudo random nature of RIG brings in the advantage of generating test

cases to target the different sections of platform such as control unit, cache, RAM,

memory management unit, high speed interconnects etc.

The content file is used to do just that, by using random selection of instructions,

different aspects of a processor are targeted.

e.g Exercising on generating Load/store instructions validate interconnects/bus

to handle data traffic.

Exercising on generating a lot of exceptions validates the ability of handling

interrupts.

Exercising on generating a lot of critical sections validates the ability of synchro-

nization capability.

4.8 Validation flow

CHAPTER 4. RIG TOOL 33

Figure 4.6: Events taking place in Validation flow

Chapter 5

SV POST SILICON

VALIDATION METHODOLOGY

5.1 Introduction

Post Silicon validation approach consists of a host machine running on top of a

preferred operating system (windows/linux) to interact with the target under test,

programming the BIOS to initialize and check whether the core and uncore com-

ponents on the platform are functional or not and facilitate running of seeds by

jumping to the start of the test code to validate the MCA, once all the pre req-

uisites have been done by the loader (i.e running BIOS, initializing the memory

poisoning instructions and checking the stability of the hardware). The failures are

then diagnosed, reproduced and analyzed, and a workaround is provided to remove

hindrance from validation activity.

In system Validation, the prime aim is to validate the CPU and chip set (plat-

form) in an embedded environment (using which we can control the test case and

reproduce a failure) using a loader (software and hardware interface) to download

the random test cases generated using RIG tool into the platform for running it to

validates Silicon. Multiple hooks are provided to maintain flexibility while testing,

PCI (Peripheral Component Interconnect) and external graphic cards are provided

to generate test instructions to test computational capability of a processor. The

test used for SV are intended to find the complications arising from the interaction of

processor with the different types of peripherals, be it related to graphics, network,

audio and video input devices etc.

Typical microarchitecture based specifications such as cache coherence, memory

34

CHAPTER 5. SV POST SILICON VALIDATION METHODOLOGY 35

ordering, multi-threading capabilities are pretty difficult to hit, the need of the hour

is a random test tool generator which can generates random test scenarios for even

the most rarest of rare complex scenarios not possible to imagine by the validation

engineers.

5.2 Validation strategy for Microarchitecture fo-

cused Post Silicon Validation

Microarchitecture based validation strategy involves generation of test cases to hit

critical/corner cases. This approach consists of step by step calculated and accu-

mulated test strategy to generate precise validation vectors which are bound to hit

scenarios rarely possible in a real world scenario, so that the customer doesnt face

reliability issue, even in the most challenging scenario.

The validation strategy for these scenarios has evolved over a period of time,

by conducting research on the type of bugs faced during pre silicon , post silicon

validation and root causing them and finding the reason why they were hit, and

coming up with a better validation approach each time. Identification of the correct

attributes plays an important role in product readiness. The following are the best

known methods for designing microarchitecture-focused tests:

5.3 Test Template Construction

With the help of validation strategy, validation test plan is laid out, which describes

the different functional areas of the processor to be targeted and hence begins the

construction of test templates which are used to create different test scenarios to

exercise the validation plan on the chipset. Figure 8 shows the distinct phases of a

test template construction. In the validation plan is, different properties under each

partition are validated separately by a unique test template. The properties under

each test template are used to generate a test algorithm to validate it. The biasing is

varied depending upon the different stages of validation and the condition of Silicon

being validated. For example, for the first stepping, the instructions causing some

gating issues are dropped to continue the validation cycle. The test template is used

an input for RIG tool to generate instructions to exercise the different improbable

conditions. Test template fall into two categories:

1. Independent parameters

CHAPTER 5. SV POST SILICON VALIDATION METHODOLOGY 36

Figure 5.1: validation strategy for Micro architecture focused Post Silicon Validation

2. Dependent parameters

CHAPTER 5. SV POST SILICON VALIDATION METHODOLOGY 37

Figure 5.2: Test Template Construction

Figure 5.3: Post Silicon Test flow

5.4 Post Silicon Test Flow

Postsilicon test flow is shown in Figure 5.3. The test templates and respective

parameters are used by a collection of host machines running on Intel Xeon Server

Processors to generate test executable.

The executables generated by the RIG are separated into two sections. The

first section contains executables compatible with previous generation processor.

The second section contains executables compatible with upcoming and previous

CHAPTER 5. SV POST SILICON VALIDATION METHODOLOGY 38

generation processors. The first set of executables are sent to hardware reference

checker, the second of the two executables are sent to a server executing a reference

model of the processor to be validated. Both the ends generate compare file at the

end of the test case. The compare file generated from the above set up are compared

with the result generated after running the test case on the target under test. The

results are generated depending upon the comparison; a seed may even fail to load,

it is marked as load error; it may get stuck at a particular instruction/region, it is

marked as a hung. The hardware checker provides a high throughput. The failures

are then debugged using the ITP tool, used to tap into the architectural states of the

processor at the time of failure. The test flow goes on continuously for a particular

length of time, till the validation goals are met.

5.5 Debugging methodology used in Intel

The bugs which are hardest to find are those that result from extremely improbable

events, often the product of corner cases in several different components of a complex

design. This type of bug is hard to find using hand-written tests because test writers

cannot guarantee that every possible interaction is exercised. Only Random testing

might find this case, but each of the conditions is so improbable that finding an error

that occurs at the conjunction of these cases requires a prohibitively large number

of simulation/execution cycles.

Finding real bugs are very difficult in multiprocessor environment that needs de-

bug expertise apart from integration and automation tools. We used logic analysers,

In Target Probes and trace files for debugging the failure in Postsilicon environment.

For this the target platform should provide necessary debug hooks and integra-

tion tools should not interfere with the regular transaction in the bus.

All XEON family processors support an In-Target Probe (ITP) for program

execution control, register/ memory/IO access and breakpoint control. This tool

provides functionality commonly associated with debuggers and emulators. An ITP

uses on-chip debug features of the processor to provide program execution control.

Use of an ITP will not affect the high speed operations of the processor signals,

ensuring the system can operate at full speed with an ITP attached.

In-Target Probe (ITP) is a debug tool which allows access to on-chip debug

features via a small port on the system board called the debug port. The ITP com-

municates to the processor through the debug port using a combination of hardware

and software. The software is an application running on a host PC. The hardware

CHAPTER 5. SV POST SILICON VALIDATION METHODOLOGY 39

consists of a PCI board in the host PC connected to the signals which make up the

processors debug interface. Due to the nature of the ITP, the processor may be con-

trolled without affecting any high speed signals. This ensures that the system can

operate at full speed with the ITP attached. Intel uses the debug port for internal

debug and system validation and recommends that all Xeon family processor-based

system designs include a debug port.

Chapter 6

Debug techniques

6.1 Introduction

The silicon debug process starts after the arrival of initial silicon and continues

even after the product has been given a nod for volume production. The duration

of debug process lasts from months to even years, depending upon the feedback

from the customers . Once the chip design is complete, the design is sent to the

fabrication unit for production. The first lot of chips after being manufactured

are sent back to the design team and post-silicon validation for initiating extensive

debugging. Silicon debug phase is very crucial and mistakes made during this phase

can be hazardous to Intel’s reputation and profit. If bugs are found during Silicon

debug, subsequent refinement in chip design (steppings), delay in product shipment

to customers, and in worst case product recall is the only choice left. Refer Figure

6.1

During the introduction, importance of Silicon debug was highlighted so as to hit

the corner cases in the least possible time. For accomplishing this task, the debug

team must outline an exhaustive plan to hit critical cases in the design as early as

possible to meet the organisational goal, which will benefit the higher authorities

to plan out the product readiness on time, thereby holding an edge on the rival

companies. The strategy used to outline the bug prone areas and devise an effective

validation approach is called validation plan.

The functional validation plan is used to validate whether all the features of the

product work according to the specifications given by the customer. For example,

to validate an ALU would mean to test whether all the operations being performed

by it are precise to the extent desired by the customer. Lets take an example of

40

CHAPTER 6. DEBUG TECHNIQUES 41

Figure 6.1: Detailed debug flow

subtracting two 32-bit numbers, it requires 264 different input combinations, an

impossibly large test cases to cover sequentially. Hence, a lot of planning is needed

to define the instructions and data to be exercised to confirm the behaviour of a

design exhaustively. Functional validation is usually done in systems where the

product will be used.

6.2 TAP (Test Access Port)

TAP used at Intel is called ITP (In Target Probe), it is a debug tool allowing access

to the on chip features using a debug port. ITP is used to tap into the architecture

specific details of a Silicon using a combination of hardware on top of a software. In

SV, the target under test is controlled by a host PC running on windows operating

CHAPTER 6. DEBUG TECHNIQUES 42

system, the software part of ITP runs on the host machine (using a Xeon server

processor). The hardware part of the ITP consists of a PCI board on the host

PC connected to the debug port, which make up the processors debug interface.

With the help of ITP, the processor can be controlled without affecting high speed

signals, hence ITP does not affect a systems performance. Intel uses the debug port

for internal debug and system validation and recommends that all Intel Xeon family

processors include a debug port.

The primary function of an ITP is to provide a control and query interface

for multiple processors. With the help of ITP, program execution is controlled

and architecture specific registers of a processor along with system memory and

I/O can be accessed. Thus one has the flexibility of starting and stopping the

program execution using a variety of breakpoints, step through the assembly code

instructions running on the target, as well as read and write registers, memory and

I/O. The on-chip debug features are controlled by an application running on an Intel

processor-based PC with a PCI card slot.

6.2.1 Steps followed while debugging

The steps of the debug flow are as follows [12], refer Figure 6.2:

1. Controlling the Failure

2. Isolating the Faulting Circuit

3. Root Causing the Failure

4. Expanding the Problem

1. Controlling the Failure

This is the most important step in the debug process. For functional failures,

controlling the failure involves spotting the segment of code which is the reason

why the test case is hitting failure.

2. Isolating the Faulting Circuit

Once the segment of code and conditions that caused the failure has been

spotted, the next step is to spot the circuit failing on the chip. It requires

extracting the internal details on the chip at the time of failure. Design team

facilitates a higher level of debugging by increasing the visibility of internal

state of the chip while minimally affecting the actual device operation.

CHAPTER 6. DEBUG TECHNIQUES 43

Figure 6.2: Debug Flow

3. Root Causing the Failure

After isolating the failing circuit as far as possible using the techniques de-

scribed above, the next step in the debug process is to identify what was

causing the identified failing circuit, and whether anything was missed during

the design process resulting in missing the bug during design phase. For some

failures, isolating the failing circuit (logic) is enough to understand the cause

of the failure.

4. Expanding the Problem

Once the root cause of the problem has been found, the design team must

understand why they missed this bug and is their a chance of hitting other bugs

related to this faulty design and accordingly refine the pre silicon verification

tools and test it further. Once all of these steps are complete, the debug

engineer can consider the issue closed, and can move on to the next issue.

So in the complete SV system, starting from RIG tool generation, seed execu-

tion, debugging the failures and disposing them in the shortest possible time

is the key challenge. Efforts need to put so as to improve the methodology for

capturing the critical bugs in the shortest possible time. Hence, there is need

for better throughput and cross product coverage to cover all corner cases.

Chapter 7

RMCA flow and debugging RAS

failure

7.1 RMCA

(Recoverable Machine Check Architecture) is a mechanism of extending the machine

check architecture by making use of system software to recover from an uncorrectable

error. This feature is enabled in a Random Instruction Generation Tool by following

a step by step y approach as described below:

The test code is divided into 3 main sections, the set up section, the random

section and the completion section. The RIG tool sets up the target, and each

section is used to perform a specific task before the running the test cases, the

following describes the functions of each section:

1. Non Repeated Set up code

(a) Encode memory Poisoning Non Repeated Setup code

It allows poisoned status to be synchronously transferred with data to

the receiver.

(b) Apply processor Workarounds

i. Disable MC Exception Overflow Broadcast

ii. Disable LLC Writeback Machine Check Exception Signalling

iii. Disable Speculative Data Access and Prefetch

(c) Initialize per package registers

i. Elect a non random cafe thread from each package for memory poi-

soning.

44

CHAPTER 7. RMCA FLOW AND DEBUGGING RAS FAILURE 45

ii. Unlock the memory poisoning DFX (Design For Testing) mechanism

on all sockets.

iii. Memory poisoning DFX must be unlocked on all sockets.

iv. Initialize PCIe registers per package.

2. Repeated Set up Code

(a) Inject machine check errors using ITP based DFT.

(b) Enabling RMCA feature

(c) Enabling memory poisoning feature

3. Repeated Completion Code

(a) Disable RMCA

(b) Disable Memory Poisoning

(c) Enable Machine Check Exception Overflow broadcast (disabled in non

repeated setup code)

4. Non Repeated Completion Code

(a) Poison status is cleared from the memory

(b) It will be notified to all other threads by syncing them before exiting

(c) Only one thread is needed to clear poisoned memory

7.2 Flow for Debugging RAS failure using RIG

Tool

Describe the setup needed before running tests What are the debugging files gener-

ated by the tool How the test is loaded How is a seed deemed pass/fail by satellite

Snapshot of satellite How to narrow down whether a failure is due to tool, environ-

ment, part issue ? Once we have identified the failure, confirm it by reproducing, to

check the frequency

Setup required before validating a test case intended to validate RAS features

• The BIOS should be programmed to enabling poisoning of memory which has

to be corrupted in order to validate whether the processor is able to successfully

recover form it as mentioned in the product specifications.

CHAPTER 7. RMCA FLOW AND DEBUGGING RAS FAILURE 46

Figure 7.1: Test structure -the different input files dumped on Target Under Test

• The test cases are generated by the allotted generators which contain the

platform, target, attribute, automation setup files.

• The test cases are dumped in a shared folder accessible to the loader. Figure

7.1 describes the types of files generated by the RIG.

• Once the loader is restarted, it restarts the platforms and BIOS gets loaded,

BIOS is used to initialize the peripherals on the platform and checks whether

each of them is functioning or not, once the BIOS performs this check it signals

to the loader that it can start running scripts built on python framework to

enable poisoning of main memory by using special instructions to read and

write to CR after halting the threads using ITP.

• The loader recreates target initialization and platform configuration file after

resetting. The loader after running the python scripts signals the test case to

take control, and loads the address of start of test.

• The test code then takes control of the target and begins executing the setup

code, which contains instructions for poisoning the cache memory. The test

code then starts executing the random section which contains instructions

generated by exercising the attributes from the input files.

Loader GUI is shown in Figure 7.2

• On accessing a poisoned memory location, a machine check exception is sig-

nalled by the processor.

• The error is logged in machine check bank registers. Machine check handler 18

is called, the control jumps to the handler section which analyses the machine

check banks, whether it is correctable or not. Register states are described in

• If the error is uncorrectable, it signals an MCERR (Machine Check Error)

with poisoned tag to all other threads.

CHAPTER 7. RMCA FLOW AND DEBUGGING RAS FAILURE 47

Figure 7.2: Loader GUI while running a seed, the different stages of execution are

shown, viz. Loading, Running, Waiting for completion and Comparing results,at

the end the seed either passes or fails

• If any other thread tries to access this particular memory location, it will signal

an uncorrectable error.

• After the end of test is signalled by the loader, it matches the memory location,

exceptions of the simulators results with that on the hardware.

In case of a mismatch, the relevant error code along with the debug details

grepped by the error info script is dumped in a file by the loader.

• Depending on the type of error code, the debug engineers try to go behind a

failure.

• Let us discuss the debug steps to be followed for an exception mismatch failure

on an Intel Xeon Server Processor and how it was root caused. The parsed

error information file is shown in Figure

• In case of an exception mismatch failure, we root cause why the exception

was missed/ not taken by mapping the CS:EIP of the instruction causing the

exception.

• The exception may have been missed because it hit another exception preced-

ing it or the environment would not have been set up properly.

• The next step involves introspecting the environment by setting up the same

scenario for checking whether the input files have the correct attributes or

CHAPTER 7. RMCA FLOW AND DEBUGGING RAS FAILURE 48

not. Once it is made sure, then the hardware configuration is examined by

replacing the memory modules and then recreating the failure again.

• If we are still hitting the failure, then it means the memory modules were not

the culprit for the failure.

• As a next debug step, the Silicon is replaced. If the failure is reproducible

again, then we are sure it has nothing to do with RTL

• Next step is to check whether we were hitting similar issue with earlier mi-

croarchitectures. This would give us an idea whether there is something wrong

in the tool. If the failure is unique to this microarchitecture, then we need to

check whether we hit this fail because of missing the setup before loading the

test seed. This way we narrow down to the cause of a failure viz. Environment,

RTL or Tool issue.

• By now it s clear that it is not a hardware failure, then the debug engineers

go after the collateral set up, by verifying whether something was missed in

setting up the test scenario.

• As part of the next debug step, the test case is tweaked to generate all the

instructions (including poison code/data fetch) from a single thread where

memory is being poisoned, to check whether we missed programming the DFT

on other sockets, since it is a pre-requisite to unlock memory poisoning DFT

in the repeated setup code for each socket, may be it was missed leading to

the processor not pulling a machine check.

• On performing the above experiment, we found that the seed passed since

one of the package (where DFX was not unlocked), on accessing a poisonous

code/data instruction was not able to pull a machine check, and since the

golden reference model was anticipating a machine check on accessing poi-

sonous memory location, their was an exception mismatch.

• Workaround for this failure, while generating the test case, unlock DFX for

each socket.

Chapter 8

Result

This section describes the advantages gained after enabling and validating RAS fea-

tures. It describes the understanding made from reading Intel documents describing

how the validation engineers design the test plan to create complex scenarios by

making use of instructions targeting different operational parameters, and how the

RIG tool creates a test case by setting the relevant environment, for example the

number of memory blocks to be poisoned, the steps to enable memory poisoning

across all the cores, setting up the interrupt handlers to service the machine check

interrupts, broadcasting or receiving machine check errors across all the cores.

It describes how the debug efficiency increases by using the automation setup to

manage test cases, run them on the target mounted on a platform and resolve them

by using efficient failure prediction/ triaging tools.

Learned the debugging approach followed in Intel, to root cause a failure by

carrying out the relevant experiments.

It describes the debugging approach using the RIG automation setup, to gain

an understanding of Intel Recoverable/Enhanced Machine Check Architecture.

The major advantage of using a microarchitecture based Random Instruction

Generator is that it is more efficient in spotting corner cases by running test cases on

the actual hardware, which helps in catching the real time failures taking place due

to timing constraints, parallel execution of instructions across multiple processors

under stressful conditions.

The advantages of RAS on Intel Xeon E7 processor are discussed in the Figure 8.1.

49

CHAPTER 8. RESULT 50

Figure 8.1: Benefit of RAS on Xeon E7 server processor

[1]

8.1 Bugs found while validating RAS features dur-

ing this project

1. Failure Title: Exception Mismatch

Failure Description: Exception Machine Check was not taken, even after

accessing a poisonous memory location by an instruction.

Failure Reason: The thread trying to access poisonous memory location was

present in a different socket, where the Design For Test was not unlocked (pre

requisite before running a RAS test case), due to which that socket could not

interpret the machine check.

Failure workaround: It was caused due to missing of DFT by tool, hence

classified as RIG issue.

CHAPTER 8. RESULT 51

2. Failure Reason : Encountering Poison Data while Memory Mirroring is En-

abled May Cause an Invalid Machine Check [14]

Problem: Memory mirroring is a RAS feature which may allow the mem-

ory subsystem to survive an uncorrectable memory error. Due to this er-

ratum, under a complex set of conditions, when mirroring and poisoning

are both enabled and poison is encountered on one mirror channel, an in-

valid uncorrectable machine check may occur along with the expected cor-

rected error. They will be reported as an uncorrectable Cache Hierarchy Er-

ror, IA32 MCi Status with MCACOD = 0000 0001 0011 0100 and MSCOD

= 0000 0000 0001 0000, along with a corrected Memory Controller Error,

IA32 MCi Status with MCACOD = 0000 0000 1010 cccc and MSCOD[2] = 1

in combination with IA32 MCi Misc[32] = 1.

Implication: Due to this erratum, a spurious uncorrectable machine check

may occur.

Workaround:A BIOS code change has been identified and may be imple-

mented as a workaround for this erratum

Chapter 9

Conclusion and Future Scope

9.1 Conclusion

This project talked about the importance of RAS amidst the changing business

needs and the important features underlining RAS. It talked about how RAS is

implemented on an Intel Xeon Processor, thus detailing Machine Check Architecture

of the Intel Xeon Series processors. It talked about the validation flow which is in use

in Intel Server Validation Group, describing how RIG works, what are the different

input files and output files of an RIG.

It listed the requirements of a platform on which the target processor is to be

mounted before firing test cases to check its validity as well as the parameters which

the validation engineer has to keep in mind before generating content for testing the

platforms.

Cause of hardware errors, how does Intel architecture handles reporting/ correcting

or flagging of a correctable/uncorrectable error were discussed.

Implementation of Intel MCA and its improvised versions to develop more efficient,

robust and self healing systems.

Development of test content for validating the core components of an Intel XEON

server processor, and debugging different types of machine check errors using RIG

tool.

52

CHAPTER 9. CONCLUSION AND FUTURE SCOPE 53

9.2 Future Scope

With the advancement in process technology and the growing business needs of

clients for servers, will put lot of pressure on the time to market a particular product.

Since post silicon validation cycle is an important step in a products life cycle, so

improvement to cut short the debug process would save a lot of time.

The automation set up and the Random Instruction generator Tool being used today

can be used more efficiently to hit corner cases earlier than what is the rate right

now.

Validation engineers are always in pursuit of improving the validation cycle, so as

to catch as much bugs as possible in the functioning and complex interactions of

different modules with each other through the processor. The goal is to make Intel

Xeon server processors 100% reliable and available.

The current technique used to define the coverage of test case (test plan), failure

collection and failure analysis are mostly manual in nature, automating them to

work collectively would save a lot of quality time needed for debugging failure and

yielding a higher validation throughput.

The introduction of Enhanced Machine Check Architecture (EMCA) has further

raised the bar for Machine Check Architecture’s functioning, this technique can be

further improved to make MCA more robust in handling the failures which cannot

be corrected even by EMCA right now.

References

[1] ”Intel Xeon Processor E7 Family:Reliability, Availability, and Serviceability”

White Paper on The Intel Xeon Processor E7 Family RAS Features, 2011

[2] Intel Corporation; Kumar, Mohan; Demshki, Michael; and Shiveley, Robert.

”Advanced Reliability for Intel Xeon Processor-based Servers.” March 2010.

[3] ”RAS features of the Mission-Critical Converged Infrastructure” Reliability,

Availability, and Serviceability (RAS) features of HP Integrity Systems: Su-

perdome 2, BL8x0c, and rx2800 i2 Converged Infrastructure, June 2010

[4] ”Reliability, Availability, and Serviceability for the Always-on Enterprise” Intel

Solutions White Paper/ RAS Technologies for the Enterprise, August 2005

[5] Dao, T.T, Fairchild Camera and Instrument Corporation. ”SEC-

DED Nonbinary Code for Fault-Tolerant Byte-Organized Mem-

ory Implemented with Quaternary Logic.” IEEE Transactions

on Computers v. C-30 Issue 9 (1981). Accessed May 12, 2011,

http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=1675864.

doi:10.1109/TC.1981.1675864.

[6] Hewlett-Packard Development Company, L.P. ”RAS Features of the Mission-

Critical Converged Infrastructure.” June 2010.

[7] IBM Corporation; Mitchell, Jim; Henderson, Daniel; Ahrens, George; and Vil-

larreal, Julissa. ”IBM Power Platform Reliability, Availability, and Serviceabil-

ity (RAS)”, accessed June 5, 2009.

[8] IBM Corporation; Neaga,Gregor; Buratti, Pierluigi; Kellermann, Helmut

; linkert, Peter; Labauve, Christian ; Raffel, Gordon. Continuous Avail-

ability Systems Design uide. December 1998. Accessed on May 12, 2011,

http://www.redbooks.ibm.com/redbooks/pdfs/sg242085.pdf.

54

REFERENCES 55

[9] ”http://msdn.microsoft.com/en-us/library/windows/hardware/ff559382

(v=vs.85).aspx”, accessed 17 Nov, 2014

[10] Intel 64 and IA-32 Architectures Software Developers Manual

[11] Hemant Rotithor,Postsilicon Validation Methodology for Microprocessors,

IEEE Design & Test of Computers, Technical Journal, Oct-Dec 2000

[12] B. Gottlieb. ” The crazy mixed up world of silicon debug [IC validation]”,

Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE

Cat No 04CH37571) CI CC-04, 2004

[13] Intel Internet Source, http://download.intel.com

[14] Intel Xeon Processor E5 Product Family Specification, Jan 2015

	Declaration
	Certificate
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Motivation
	Aim of the project
	Thesis Organization

	Literature Survey
	Validation History
	Comprehensive validation process Followed in Intel

	RAS and MCA(Machine Check Architecture)
	Introduction to RAS
	Hardware Errors and Self-healing
	Memory Errors

	Hardware error
	Scope of the project
	Real world scenario of a hardware error and how it gets handled

	Machine-Check Architecture
	Machine-Check Global Control MSRs
	Error-Reporting Register Banks
	Corrected Machine Check Error Interrupt
	Detection of Software Error Recovery Support
	UCR Error Reporting and Logging
	UCR Error Classification

	RIG Tool
	RIG at Intel
	RIG Architecture
	Template
	External instruction set rules
	Simulator
	Assembly tool suite
	Execution target
	RIG Core
	Preprocessor/User Interface
	Generation of Random Code

	Infrastructure for validation set up using RIG
	Steps involved in test case generation (to target RAS features) using RIG
	Test case generation
	Significance of content file in system validation
	Biasing in RIG and importance of content file
	Validation flow

	SV POST SILICON VALIDATION METHODOLOGY
	Introduction
	Validation strategy for Microarchitecture focused Post Silicon Validation
	Test Template Construction
	Post Silicon Test Flow
	Debugging methodology used in Intel

	Debug techniques
	Introduction
	TAP (Test Access Port)
	Steps followed while debugging

	RMCA flow and debugging RAS failure
	RMCA
	Flow for Debugging RAS failure using RIG Tool

	Result
	Bugs found while validating RAS features during this project

	Conclusion and Future Scope
	Conclusion
	Future Scope

	References

