
EFFICIENCY ANALYSIS ON
CORE LEVEL VALIDATION AND

BACK-END LAYOUT DESIGN

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Jay Shukla
(13MECE17)

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2015

EFFICIENCY ANALYSIS ON
CORE LEVEL VALIDATION AND

BACK-END LAYOUT DESIGN

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Jay Shukla
(13MECE17)

Under the guidance of

External Project Guide: Internal Project Guide:

Tejinder Singh Syan Dr. N. P. Gajjar
Engineering Manager, Professor (EC Eng.),
Intel Technology India Pvt. Ltd., Institute of Technology,
Bangalore. Nirma University, Ahmedabad.

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2015

Declaration

This is to certify that

1. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

2. Due acknowledgment has been made in the text to all other material used.

- Jay Shukla
13MECE17

iii

Disclaimer

“The content of this thesis does not present the technology, opinions, be-
liefs, or positions of Intel Technology India Pvt. Ltd., its employees, ven-
dors, customers, or associates.”

iv

Certificate

This is to certify that the Major Project entitled “EFFICIENCY ANALYSIS

ON CORE LEVEL VALIDATION AND BACK-END LAYOUT DESIGN”

submitted by Jay S. Shukla (13MECE17), towards the partial fulfillment of the

requirements for the degree of Master of Technology in Embedded Systems, Nirma

University, Ahmedabad is the record of work carried out by him under our supervision

and guidance. In our opinion, the submitted work has reached a level required for

being accepted for examination. The results embodied in this major project, to the

best of our knowledge, haven’t been submitted to any other university or institution

for award of any degree or diploma.

Date: Place:Ahmedabad

Internal Guide & Course Co-ordinator Section Head,EC

Dr.N.P.Gajjar Dr.D.K.Kothari

(Professor,EC) (Professor,EC)

HOD Director

Dr.P.N.Tekwani Dr.K.Kotecha

(Professor,EE) (Director,IT-NU)

v

Intel Technology India Pvt. Ltd.

Certificate

This is to certify that the Major Project entitled “EFFICIENCY ANALYSIS

ON CORE LEVEL VALIDATION AND BACK-END LAYOUT DESIGN”

submitted by Jay S. Shukla (13MECE17), towards the partial fulfillment of the

requirements for the degree of Master of Technology in Embedded Systems, Nirma

University, Ahmedabad is the record of work carried out by him under my supervision

and guidance. In my opinion, the submitted work has reached a level required for

being accepted for examination. The results embodied in this major project, to the

best of my knowledge, haven’t been submitted to any other university or institution

for award of any degree or diploma.

Date: Place:Bangalore

Mr.Prasad Mahajan, Mr.Tejinder Singh Syan,

Physical Design Engineer, Engineering Manager,

Intel Technology India Pvt. Ltd., Intel Technology India Pvt. Ltd.,

Bangalore. Bangalore.

vi

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr.P.N.Tekwani, Head of

Electrical Engineering Department, and Dr.N.P.Gajjar, PG Coordinator of M.Tech

Embedded Systems program for allowing me to undertake this thesis work and for his

guidelines during the review process.

I am deeply indebted to my thesis supervisor Dr.N.P.Gajjar, Professor, E.C.Dept.,

Nirma University and my managers at Intel Technology India Pvt. Ltd., Mr. Rajat

Gupta, Mr. Tejinder Singh Syan and Mr. Saurabh Sharma, for their constant

guidance and motivation.

I also wish to thank Mr. Ravishankar Ramaswamy, Mr. Sekhar Katta, Mrs.

Sunitha Chinnasamy, Miss Deepthi Chilukuri and all other team members at

Intel for their constant help and support. Without their experience and insights, it

would have been very difficult to do quality work.

I also take this opportunity to thank Mr. Rajesh Navale, Mr. Mahajan Prasad,

Mr. Sreenivas Subramanian and Mrs. Poonam Srinivas for helping me to

complete my project work successfully through their experience and suggestions.

I wish to thank my friends of my class for their delightful company which kept me in

good humor throughout the journey.

Last, but not the least, no words are enough to acknowledge constant support and

sacrifices of my family members because of whom I am able to complete the degree

program successfully.

- Jay Shukla

13MECE17

vii

Abstract

Today’s micro-processors contain highly complex and sophisticated design on to a sin-

gle chip. The higher complexity can increase the bugs in the chip which ultimately

affects the functionality of the chip. The complexity in the layout of nanometer scale

design also increases the time to market. Therefore, new microprocessors demand

efficiency improvement at various stages of VLSI design cycle which can be achieved

through automation. The efficiency in VLSI design cycle can be improved at core level

validation and back-End layout design.

The pre-silicon validation plays an important role in order to minimize the bugs in the

chip design before giving it to the fabrication facility. Pre-silicon validation, a multi-

step process, verifies if a chip design sticks to the pre-defined specification and satisfies

the designer’s objective. The new generation processors demand the high amount of

efficiency and coverage in pre-silicon validation.

Firstly, efficiency improvement of core level validation for the three different features

AFD (Array Freeze and Dump), PMON (Performance Monitoring) and SMM (System

Management Mode) can be achieved through randomization and intelligent algorithms.

AFD, the feature of DFT (Design for Testability), compares the expected values of

all the arrays of various clusters with its RTL (Register Transfer Level) values at the

freeze time and dumps the correct value if the matching is incorrect. The randomiza-

tion of array freeze and dump in pre-silicon validation helps to check all the arrays in

a single test and makes to get closer to post-silicon debug scenario. The performance

monitoring monitors the various events at the cluster level and at the core level. To

increase the coverage of validating those events in performance monitoring unit at pre-

silicon validation, the concept of performance monitoring multiplexer is introduced.

This algorithm helps to achieve the coverage of 81.01% with lesser amount of test

cases. At last, the automated validation strategy for system management mode is

suggested which can help to do debug easier with saving valuable amount of time. All

these improvements of the feature validation tries to make the design with minimal

bugs before tape-out.

Secondly, the efficiency improvement of back-end layout design is described. The

physical design of the chip is one of the important phase in VLSI design cycle. The in-

crement in complexity of physical design of the chip is due to continuous shift towards

nanometer scale in the design. Due to some floorplanning and placement changes, re-

routing should be required again with respect to new placement of input and output

viii

logic cells. These repetitive and manual efforts are tedious and cumbersome.

The proposed automated group routing algorithm exploits modular tile based place-

ment and simplified track patterns effectively. It has reduced routing time by 2x with

better control on routing resources and automating the routing at the same time. The

algorithm can be improved with merging more physical properties and various design

rule checks.

Thus, different strategies like Randomized AFD Testing Mechanism, Performance

Monitoring Multiplexer, Automated Validation of System Management Mode and

Automated Group Routing Strategy can be used to improve efficiency at pre-silicon

validation and at back-end layout design.

ix

Contents

Declaration iii

Disclaimer iv

Certificate v

Acknowledgements vii

Abstract viii

List of Figures xiii

List of Tables xv

Acronyms xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Project Overview . 1

1.3 Thesis Organization . 2

2 Rudiments of VLSI Design 4

2.1 Introduction to VLSI Design Flow . 4

2.2 Fundamentals of Validation . 5

2.2.1 Different Validation Strategies 5

2.2.2 Various Components of Validation 6

2.2.3 Pre-silicon Validation approaches 9

2.2.4 Importance of Validation . 9

2.3 Fundamentals of Physical Design Flow 10

2.3.1 Physical Design Flow . 10

2.3.2 Physical Verification of the design 13

2.4 Summary . 15

x

3 Randomized AFD Testing Mechanism 16

3.1 Introduction to DFT . 16

3.2 Differernt Types of Scan Mechanism 17

3.2.1 Scan flip-flop design . 17

3.2.2 Hold-scan flip-flop design . 18

3.2.3 Boundary-Scan Mechanism . 19

3.3 Array Freeze and Dump . 20

3.3.1 Introduction to AFD . 20

3.3.2 AFD Validation Mechanism . 21

3.4 Randomization of AFD Testing . 21

3.5 Challenges Faced During Implementation 23

3.6 Summary . 24

4 Performance Monitoring Multiplexer 25

4.1 Introduction to Performance Monitoring 25

4.2 Performance Monitoring Unit Architecture 26

4.2.1 Fixed and Programmable Counters 27

4.2.2 IA32 PERF CAPABILITIES MSR 28

4.2.3 IA32 PERF GLOBAL CTRL MSR 29

4.2.4 IA32 FIXED CTR CTRL MSR 30

4.2.5 IA32 PERFEVTSEL MSR . 30

4.2.6 IA32 PERF GLOBAL STATUS MSR 31

4.2.7 IA32 PERF GLOBAL OVF CTRL MSR 31

4.2.8 IA32 PEBS ENABLE MSR . 31

4.3 Introduction to Performance Monitoring Multiplexer 33

4.4 Results and Analysis of different strategies used 35

4.5 Summary . 39

5 Automated Validation of SMM 40

5.1 Different IA-32 Architecture Modes . 40

5.2 Importance of System Management Mode 41

5.3 Switching between SMM and other processor operating modes 42

5.3.1 Entering in SMM . 42

5.3.2 Exiting from SMM . 43

5.4 Automated Validation of SMM . 43

5.5 Summary . 44

xi

6 Automated Group Routing Strategy 45

6.1 Introduction to Routing . 45

6.2 Types of Routing . 46

6.2.1 Global Routing . 46

6.2.2 Detailed Routing . 46

6.3 Hierarchy of the design . 47

6.4 Needs of Automated Routing . 48

6.5 Automated Group Routing Algorithm 48

6.6 Summary . 51

7 Conclusion and Future Scope 52

7.1 Conclusion . 52

7.2 Future Scope . 53

Bibliography 54

xii

List of Figures

2.1 VLSI Design Flow . 4

2.2 Different Validation Strategies[1] . 6

2.3 Different Components of Validation . 7

2.4 Typical framework for simulation-based validation[1] 8

2.5 Physical Design Flow . 11

2.6 Short Violation . 13

2.7 Min Length Violation . 14

2.8 Via to Via Violation . 14

2.9 Non-fill Violation . 15

3.1 Scan Flip Flop Design[1] . 17

3.2 Hold Scan Flip Flop Design[1] . 18

3.3 Boundary-Scan Technique[1] . 19

3.4 Randomization of AFD Testing . 22

4.1 Performance Monitoring Unit Architecture 26

4.2 The layout of IA32 PERF CAPABILITIES MSR[12] 29

4.3 The layout of IA32 PERF GLOBAL CTRL MSR[12] 29

4.4 The layout of IA32 FIXED CTR CTRL MSR[12] 30

4.5 The layout of IA32 PERFEVTSEL MSR[12] 30

4.6 The layout of IA32 PERF GLOBAL STATUS MSR[12] 31

4.7 The layout of IA32 PERF GLOBAL OVF CTRL MSR[12] 32

4.8 The layout of IA32 PEBS ENABLES MSR[12] 32

4.9 Performance Monitoring Validation Environment 33

4.10 The flowchart of Performance Monitoring Multiplexer Algorithm 34

4.11 Comparison of Coverage Results of Three Different Test Lists 37

4.12 Final Coverage Results of Two Different Test Lists 38

4.13 Coverages of Different Versions of Algorithm For Test List 1 38

5.1 Transition Among IA-32 Architecture Modes[12] 42

5.2 Automated Validation of SMM . 43

xiii

6.1 Hierarchy of the design . 47

6.2 Distribution of Nets for Group Routing Strategy 48

6.3 Automated Group Routing Strategy . 49

6.4 Congestion Analysis . 50

xiv

List of Tables

4.1 Comparison of Coverage Results of Three Different Test Lists 37

4.2 Final Coverage Results of Two Different Test Lists 37

xv

Acronyms

AFD .Array Freeze and Dump

DFT . Design For Testing

DRC .Design Rule Checking

DUT . Device Under Test

ERC . Electrical Rule Checking

FDIV . Floating Point Divide

FUB .Functional Unit Block

HDL .Hardware Description Language

HVL .Hardware Verification Language

ITRS . International Technology Roadmap for Semiconductors

JTAG . Joint Test Action Group

MSR . Model Specific Register

LVS . Layout Vesus Schematic

PEBS . Precise Event Based Sampling

PMON . Performance Monitoring

PMU . Performance Monitoring Unit

PNR .Place And Route

RTL . Register Transfer Level

SMI . System Management Interrupt

SMM . System Management Mode

TCM .Time Consuming Method

VHDL . VHSIC Hardware Description Language

VHSIC . Very High Speed Integreted Circuit

VLSI . Very Large Scale Integration

xvi

Chapter 1

Introduction

1.1 Motivation

The design complexity of the new generation microprocessors increases the amount of

bugs into the released products. These escaped errors can produce dangerous effects

on the stability and security levels of the systems, undermine the reputation of the

manufacturing companies and cause considerable financial trouble. The recent trends

of complex memory subsystems and non-deterministic communication delays in multi-

core processors, exacerbate the problem. On the other hand, as the chip area advances

to nanometer technology, the complexity of the interconnect design also increases with

great extent. In compact microprocessor chip, the manual efforts of routing and design

rule checking are also increased. To overcome these types of worsening situation, the

processor needs automation with high-coverage and high-efficiency of validation and

routing respectively.

1.2 Project Overview

Pre-silicon functional validation techniques provide platform to find out bugs before

giving the chip design to fabrication facility. If more number of features are validated

at pre-silicon validation with higher coverage, the chances of bugs in post-silicon val-

idation can be minimized. Sometimes, it happens that the simulation takes hours of

time in pre-silicon validation to validate the event which is actually takes only few min-

utes in the real-time. This problem can be solved by increasing validation efficiency

of the feature. In the project, it is shown that how efficiency of core level pre-silicon

validation can be improved for different features like Array Freeze and Dump, Perfor-

mance Monitoring and System Management Mode.

AFD (Array Freeze and Dump), feature of DFT (Design for Testability), allows to

1

CHAPTER 1. INTRODUCTION 2

freeze the state at single point in time and extract arrays data through control register

buses for post-silicon debug usage. To make DFT feature more efficient, it should be

necessary to check the data of arrays are matching with its expected value or not at the

time of signal freeze within the single test to handle all the arrays. It can be achieved

successfully at post-silicon validation only if this kind of analysis done at pre-silicon

validation first.

Second part shows the improved validation strategy for performance monitoring. Per-

formance monitoring provides a mechanism to check the utilization of the available

hardware resources for various programs and applications. The validation of this fea-

ture is required at pre-silicon validation due to its high capability of monitoring internal

micro-architectural events. Previously, the pre-silicon validation was not able to vali-

date all the events of the cluster in performance monitoring with the defined number

of test cases. So, the concept of performance monitoring multiplexer is introduced

which intelligently assigns the events to performance monitoring counters to achieve

more efficiency and coverage with lesser number of test cases.

In the later part, SMM (System Management Mode), one of the feature of IA-32 ar-

chitecture, is described. System management mode plays a major part in handling of

platform-specific power management or thermal events. The validation of this feature

requires different test cases and debugging of those test cases can be done more easily

if the script can somehow help in automated debugging.

The last part of the thesis describes the different routing strategies and required man-

ual efforts to route the nets in the processor chip. To reduce manual effort and to save

valuable amount of time, automated group routing algorithm is introduced. It con-

siders different physical properties like routing length, high fanout net, thin hierarchy

nets and multi-instance nets while doing group routing for various nets. The strat-

egy can help to do quality routing with less congestion and encourage for exploring

different floor-plan possibilities.

1.3 Thesis Organization

The objective of the thesis is to introduce different strategies which can ultimately

improve efficiency of various features in pre-silicon validation and back-end layout de-

sign.

Chapter 2, Rudiments of VLSI Design, introduces with typical VLSI design flow.

CHAPTER 1. INTRODUCTION 3

Chapter 3, Randomized AFD testing mechanism, describes the scanning mechanisms

can be used for DFT. It also explains the random testing mechanism to validate all

the arrays in the processor.

Chapter 4, Performance Monitoring Multiplexer, explains the performance monitor-

ing unit architecture and shows that how coverage can be improved with combination

of proposed multiplexer using minimum number of test cases.

Chapter 5, Automated Validation of SMM, introduces with one of the processor fea-

ture, System Management Mode and suggests automated validation of it.

Chapter 6, Automated Group Routing Strategy, explains different routing strategies

and introduces automated routing strategy to reduce manual effort in layout.

Chapter 7, Conclusion and Future Scope, summarizes the thesis work.

Chapter 2

Rudiments of VLSI Design

2.1 Introduction to VLSI Design Flow

A traditional microprocessor’s design to manufacturing flow, shown in Figure 2.1

consists of various steps that includes a high-level description of processor design spec-

ification, structural specification and physical specification, and then finally, imple-

ments the specified functionalities on a silicon die at fabrication facility.

Figure 2.1: VLSI Design Flow

4

CHAPTER 2. RUDIMENTS OF VLSI DESIGN 5

The VLSI design flow starts with required functionalities and characteristics of the mi-

croprocessor, and how to interface with other digital systems. The architectural model

is based on this predefined specification which is written in a high level programming

language[1]. This model then converted into any Hardware Descriptive Language like

VHDL, Verilog etc. The codes written in the hardware description language design

describes the operation of individual sub-modules of the processor with the and is also

known as the register-transfer level (RTL) model[1]. This RTL model is then verified

to establish its equivalence to the architectural model through simulation based and

formal techniques[1]. These simulation based values are then compared with actual

architectural known values, called as pre-silicon validation or verification. The flow

till this point is also known as “Front End”. The next step is structural specification

to implement this design through synthesis software which maps the logical cells and

different nets according to logic for creating netlist of the design[1]. The physical syn-

thesis and specification stages take care of place and route of the logical cells of the

netlist can be placed on the silicon chip to fulfill the requirement of the timing, power

and die size. From front end to this step is called as “Back End”. And finally, the

design is sent for manufacturing to fabrication facility.

2.2 Fundamentals of Validation

2.2.1 Different Validation Strategies

As described in section above, the processor has to go under several stages before going

to the manufacturing. The validation also continues at various levels with that flow to

check the functionality of the processor. In general, there are three types of validation

done for the processor. Those three validation strategies can be more understood at

various stages through Figure 2.2.1.

Firstly, the pre-silicon stage comes in which the specified architectural model converted

into register transfer level model in hardware description language (HDL). This RTL

model then converted into design netlist through synthesis. After the generation of the

netlist, the place and route of the logical gates and wire connection is done which is

the actual placement of the logic in the silicon die[1]. Thus, prototype of the processor

is manufactured after achieving all the timing and power requirements of the design.

Once prototype is ready, the post-silicon validation is done on that to validate all the

features and functionality of the chip. Then, the mass production of the processor

happens and the processor is released and becomes available to the market.[1]

CHAPTER 2. RUDIMENTS OF VLSI DESIGN 6

Figure 2.2: Different Validation Strategies[1]

2.2.2 Various Components of Validation

As discussed so far, it is easy to understand that the main purpose of the pre-silicon

validation is to verify the processor functionalities with respect to design specification.

Pre-silicon validation process follows certain steps to verify the processor. The differ-

ent components of validation is shown in Figure 2.2.2.

The generator, the initial step in the pre-silicon validation flow, which generates all

different possible relevant input data to the processor design chip with some useful

constraints and data structures[2]. When testing of the chip is going on, the one

should specifically concentrate on pre-defined standard protocol and specification of

the design[2]. Suppose, for example DUT is going to handle all types of USB (Univer-

sal Serial Bus) packets, then the generator should be able to generate all possible USB

packets like, TOKEN, DATA and HANDSHAKE. It should also able to generate the

error packets like that contains CRC (Cyclic Redundancy Check) error[3]. The specific

test contains additional constraints, whose purpose is to direct the generation of the

input stimulus to a specific area. For example, if you are constraining the packets to

be of one of the TOKEN or DATA, then the generator will generate those two packets

only, thereby limiting the area of interest. If you are not giving any specific constraints

then there is a requirement of many different test cases.[3]

CHAPTER 2. RUDIMENTS OF VLSI DESIGN 7

Figure 2.3: Different Components of Validation

After the valid input stimulus are generated as mentioned in the generator section,

now it is time to inject it into the DUT. The driver object performs the function of

taking one stimulus item at a time and injects into DUT until all the stimulus has been

injected[3]. The high level input data is given to the driver and then converted into

list of bits and bytes[3]. Thus, physical level protocol is implemented by the driver-

send the SETUP token and DATA packet that contains the information about how

to configure the USB device, wait for some clock cycles as per the spec, receives the

acknowledge back from the USB device[3]. This output data is given to the collector

component.

The collector is on the output side of your DUT. The main function of this is, to

collect the low level data of bits and bytes from the DUT and convert it into high level

CHAPTER 2. RUDIMENTS OF VLSI DESIGN 8

data[3]. This high level output data is transferred to the scoreboard, the important

and crucial component of the test bench, to check the correct output data came out

as expected and on time.[2]

The process of validation should be end at one point or at the another. After the

completion of the scoreboard stage, the errors and warnings are sent to the simula-

tion end control. Scoreboard also send the results to the coverage for checking the

how much functionality is covered through the applied components. The coverage will

have information from the generator, the device and the scoreboard.[2]

Coverage will provide analysis on actual testing points covered by the validation envi-

ronment. The framework for simulation based validation is shown in Figure 2.4.

Figure 2.4: Typical framework for simulation-based validation[1]

CHAPTER 2. RUDIMENTS OF VLSI DESIGN 9

The Coverage is one method to observe how much affective the applied components[3].

There are majorly two types of coverages- objective coverage and subjective coverage.

Objective coverage includes code coverage to check how much lines of code covered

and toggle coverage to check which signal toggled. Subjective coverage is for interest-

ing scenario we want to hit. It includes frequency coverage to monitor set of event

frequency and functional coverage to monitor user defined scenarios. For example, in

USB verification environment, the input checker checks whether all the USB packets

are generated or not[3]. Output coverage shows that all the parts are tested in the

design or not.

2.2.3 Pre-silicon Validation approaches

Validation process approaches the problem of finding flaws in different ways. there are

basically three functional verification approaches, namely black-box, white-box and

grey-box approaches.

Black-box:

In this approach, we don’t care about what exactly is the system made of. We care

only about the functionality of the DUT and we must be able to predict the outputs

based on the input. The black-box can be chip or an unit of chip.

White-box:

It is opposite to black box approach. Here we have the knowledge of exact implemen-

tation of the unit. Hence we have full control of the behavior of the unit and therefore

we can program for some interesting errors.

Grey-box:

Grey box verification means that a limited number of facilities are utilized in a mostly

black-box environment. Most environments are example of grey-box approach. Pre-

diction of correct results on the interface is occasionally impossible without viewing

an internal signal.

2.2.4 Importance of Validation

Processors are capable of performing computation at astonishingly high speeds and are

extremely integrated, occupying only a few square centimeters of silicon die. The task

of verifying a modern microprocessor and guaranteeing the correctness of its operation

CHAPTER 2. RUDIMENTS OF VLSI DESIGN 10

is increasingly challenging, even for most established processor vendors.[1]

As the number of features grows, in some cases full-system simulation may become

unfeasible. Likewise, increasing capabilities of formal verification tools in the future

will be outpaced by the complexity of critical modules requiring formal analysis. In

this worsening situation, the number of total bugs in processor products and the speed

with which they are discovered in the field is rapidly increasing.

The FDIV (Floating point devision) bug of Intel P5 Pentium floating point unit in-

curred a loss of $475 million to the chip manufacturer[4][5]. The bug resulted in

incorrect return value on floating point division operation due to the missing entries in

the look up table[1]. Another case, an error in the translation look-aside buffer of the

third level cache in the Phenom processor by AMD, forced the manufacturer to delay

the market release by several months[1][6]. Not only this delayed the distribution of

the product to the market, but also created much negative publicity for the company,

and influenced the price of its stock. This concern voiced in the International Technol-

ogy Roadmap for Semiconductors, which states that “without major breakthroughs,

verification will be a non-scalable, show-stopping barrier to further progress in the

semiconductor industry”. ITRS also reports that there are no solutions available to

provide high quality verification of integrated circuits and sufficiently low rate of es-

capes beyond the year 2016.[1]

From above, it is clear that because of the expanding gap between complexity and

verification effort, in the future errors will continue to slip into silicon, potentially

causing much more damage than the infamous FDIV bug[4]. To deliver always higher

performance to end-users, processor manufacturers are forced to design progressively

more complex circuits and employ immense verification teams to eliminate critical

design bugs in a timely manner.[1]

2.3 Fundamentals of Physical Design Flow

2.3.1 Physical Design Flow

Physical Design is a very important step in VLSI design flow after which the chip is

sent to the manufacturing facility. Physical design stage is a combination of physical

synthesis and physical specification. The structural specification implement the design

through synthesis software which maps logic gates, registers and wires, and, generates

a netlist of the circuit. This netlist contains the details of the different cell used and

their interconnections through out the circuit. After verifying the functionality of the

CHAPTER 2. RUDIMENTS OF VLSI DESIGN 11

netlist and its timing, it is sent to physical design flow.

Figure 2.5: Physical Design Flow

As shown in Figure 2.5[7], physical design flow contains various steps like floorplan-

ning, partitioning, placement, clock tree synthesis, signal routing, design rule checks

and timing closure. All of them are described in detail as below.[8]

Floorplanning:-

It is an essential design step for hierarchical, building-module design methodology

because it determines chip quality. It provides early feedback about architectural de-

cisions, estimates chip area delay as well as congestion caused by different wiring. The

defining size of the chip, allocating power routing resources and spacing of different

standard cells are decided in this phase. All the subsequent stages are dependent on

how good floorplan it is. The various iterations should be required before arriving at

one optimum floorplan of the chip.

CHAPTER 2. RUDIMENTS OF VLSI DESIGN 12

Partitioning:-

It enables structural implementation of big complex system into number of small blocks

by using divide and conquer approach. It also requires to handle engineering change

orders. For huge systems, design iterations require very fast turn around time. A

hierarchical partitioning methodology can localize the modifications and reduce the

complexity as well as routing. The partitioning of different small blocks is also re-

ferred as logical partitioning.

Placement:-

It is most crucial step of the physical design flow as the interconnection of the cells and

timing requirement of the system mostly dependent on the placement of the logical

cells. It also determines the routability of the design. There are many reasons for

considering placement as critical step like determining the performance of the circuit,

distribution of the heat on a die surface and power consumption due to placement.

The good placement of the cell can play major role in reducing capacitive load of the

wires.

Clock Tree Synthesis:-

Clock tree synthesis is for meeting design constraints mainly in multi-clock system

design. Generally, it is done after the placement of the cells and before the routing of

the signal nets , to utilize best routing resources for the clock signal. Clock trunk and

spines are routed depending upon the system topology. A good clock tree network will

minimize the clock skew and jitter.

Signal Routing and Design Rule Checks:-

The main objective of the routing is to complete all the required connections, otherwise

the chip would not function well and may even fail. The other objective is to reduce

the routing wire length. There are two types of routing: global routing and detailed

routing. The routing should also be prioritized in order of power routing, clock rout-

ing and signal routing. After completion of routing for the each functional unit block,

the physical design verification of that is very necessary. There are different types

of physical verification methodologies like Design Rule Checks(DRC), Layout Versus

Schematic(LVS), Antenna Rule Checking and Electrical Rule Checking(ERC). The

design rule checks contains checking of shorts, space violation, off-grid, min-length,

via to via violation, corner to corner violation etc.

CHAPTER 2. RUDIMENTS OF VLSI DESIGN 13

Timing Closure:-

After all the above steps are passed successfully, timing of the all the nets should be

checked which should satisfy the timing requirement of the design. Then the chip

design can be send to fabrication facility.

2.3.2 Physical Verification of the design

The physical verification of the design checks the different rules of the design which

should not be violated before giving the design for tap-out. It includes Layout Versus

Schematic(LVS), Electrical Rule Checking(ERC), Antenna and Design Rule Check-

ing(DRC). LVS verifies functionality of the transformed geometries with the netlist

of the design. ERC checks floating power pins connection as well as VDD and VSS

connection of the functional unit blocks.[8] Antenna rule is checked to provide protec-

tion to the gate-oxide against the damage while manufacturing process.[8] The various

design rule checks are as below:

Short: When two different nets are routed on same metal grid, metal short is created.

Short can also be between signal routing, via, power lines, etc.

Figure 2.6: Short Violation

Space: Space violation can further classified into two categories. Min space is the

minimum allowed spaced between tow wires in same metal layer. Max space rule pro-

vides maximum allowed separation between two wires in same metal layer. This rule

is introduced to obtain uniform metal fill.

Min length: Min length rule provides the minimum length of the wire required in

particular metal layer.

CHAPTER 2. RUDIMENTS OF VLSI DESIGN 14

Figure 2.7: Min Length Violation

Max width: Max width provides maximum allowed width of the wire in given metal

layer.

Corner to corner: Corner to corner specifies the minimum separation required between

corners/ends of two wires in same metal layer.

Min jog: Min jog violation is observed when the length of the jog is less than the

threshold values. This is observed when two segments of the same net in same metal

layer have different width.

Valid width: Valid width specifies the set of the allowed metal layer grid widths.

Via to via: Via to via rule provides the required minimum separation between two

vias of the same metal layer. The vias are between same two metal layers.

Figure 2.8: Via to Via Violation

Via to via n-1: Via to via n-1 is similar to the via to via rule. The only difference

CHAPTER 2. RUDIMENTS OF VLSI DESIGN 15

is consideration of vias between one higher and one lower metal layer with respect of

given metal layer.

Cut size: Via cut size rule provides valid via size for a given width of the metal layer.

Via coverage: There are many other rules are classified under this rule.This rule pro-

vides the minimum wire length required to cover up the via. If the wire is shorting

with other wire or it is not on the proper grid or if the dimension of the via is not

proper.

Non-fill: Non-fill violation is observed when the wire in given metal layer is not sitting

exactly on the metal grid. During metal the region which have off-grid wires is left

without filling.

Figure 2.9: Non-fill Violation

Grid rules: Grid rules can be classified into several categories. Off grid issue is ob-

served when the wire of given metal layer is not sitting on the grid or wire width is

not valid.

2.4 Summary

In summary, this chapter introduces with the full VLSI design flow and different val-

idation strategies like pre-silicon validation, post-silicon validation and run-time val-

idation. The chapter includes the description of different components of pre-silicon

validation and three various approaches in it. The later part focuses on physical de-

sign flow with its different verification strategies which is very important part from

design perspective.

Chapter 3

Randomized AFD Testing

Mechanism

3.1 Introduction to DFT

The AFD, array freeze and dump, is a feature of DFT (Design for Testability). The

most exciting single day in the life of any semiconductor product is first silicon, the

day when the first chip completes fabrication[9]. Pre-silicon validation attempts to

find and correct as many bugs as possible before first silicon is created, but the slow

speed of pre-silicon simulation requires years to test only minutes of actual operation.

Sometimes to avoid this kind of testing time at pre-silicon validation, some of the

features are only validated at post-silicon validation. But, to validate the feature at

post-silicon validation often data of pre-silicon validation is used[9]. When at post-

silicon validation bugs are detected, their cause must be found and fixed. The process

of finding the root cause and eliminating design flaws in silicon is called silicon debug.

To aid in post-silicon validation, silicon debug and silicon test, all modern processors

add some circuits used specifically for testing. These are called design for testing

(DFT) circuits.[9]

The main drawback of the modern processors is its decreasing observability and con-

trollability. Without DFT circuits, the only signals that can be directly observed or

controlled are the processor pins. The number of processor pins is increasing but

far more slowly than the number of total transistors[9]. This makes it more difficult

with each processor generation to directly read or write a specific node within de-

sign by the use of the pins alone. DFT circuits help by expanding observability and

controllability[9]. The DFT circuits increase the cost of the design by taking up die

area and consume leakage power, yet, they are used because of great advantages like

reduction in number of steps to fix the bugs and time from tapeout to shipping.[9]

16

CHAPTER 3. RANDOMIZED AFD TESTING MECHANISM 17

3.2 Differernt Types of Scan Mechanism

In design for manufacturability domain, the scan chain components are widely used

techniques. There are three types of scan-chains.[1]

1. Scan flip-flop design

2. Hold-scan flip-flop design

3. Boundary-Scan Mechanism

3.2.1 Scan flip-flop design

To combine a scan chain mechanism in existing design, the data input (scan in) and

output (scan out) with the enable line are attached to the filp-flops as shown in Figure

3.1.

Figure 3.1: Scan Flip Flop Design[1]

The scan chain is having input and output at the starting and at the ending of it

respectively with serial connection of the each scan in and scan out of the various

storage elements. The processor works in normal mode when the enable signal of the

scan chain mechanism is de-asserted. Here, the flip-flops operate as storage elements.

While enabling the signal, the one flip-flop passes data to another serially and the whole

CHAPTER 3. RANDOMIZED AFD TESTING MECHANISM 18

mechanism work as serial register. The validation engineer can get value of the cells

with output wire through suspending the execution[1]. Moreover, an arbitrary internal

state can be pre-set through the scan in functionality, enabling fine-grain controllability

of the device, in addition to observability. There can be variation in different scan

techniques from partial chain, full scan and multiple parallel scan in which some of

the flip-flops are connected, all the elements are connected and parallel arrangement

of the scan chain respectively. The downsides of the scan chain are additional die area

for logic implementation, very slow latch operation and the requirement of the several

additional clock cycles for suspending the current state of the device under test and

enabling the new state.[1]

3.2.2 Hold-scan flip-flop design

To overcome the additional clock cycle issue of changing the states of the system, the

more complex modern design scan chain can be used.

Figure 3.2: Hold Scan Flip Flop Design[1]

Hold-scan flip-flops consists of two basic scan flip-flops connected together, called a

primary and a shadow flip-flop, as shown in Figure 3.2.

CHAPTER 3. RANDOMIZED AFD TESTING MECHANISM 19

This mechanism uses the concept of the capture line and update line. The main aim

of the capture line is to sample the shadow elements and to store the vale of the

main latch. To route the sample data outside the device, the reconfiguration of the

flip-flop can be done as and when required. Meanwhile the device can work normally

and captured data can be taken out as the chain focuses only one shadow flip-flop

elements with separate clock[1]. With asserting the update line, the new state can be

activated on the shadow latches without affecting the operation of the device. The

area required by the hold-scan chain mechanism is quite large as compared to the scan

flip flop design, but, the flexibility of the debugging process using this mechanism is

much more. So, the usage of this mechanism is frequent in the microprocessors.[1]

3.2.3 Boundary-Scan Mechanism

Boundary-scan is another technique often used in structural testing and validation, to

allow individual modules of the processor to be tested in isolation.

Figure 3.3: Boundary-Scan Technique[1]

CHAPTER 3. RANDOMIZED AFD TESTING MECHANISM 20

To test the complex circuit design boards, the boundary-scan chain mechanism was

introduced by the Joint Test Action Group (JTAG). In this, there is JTAG control

which is connected to different logic blocks and scan in and scan out of the integrated

circuit, as shown in Figure 3.3.

These cells carry different functional specification based on the requirement of the

design circuit. Through the inputs of the block, various stimulus can be provided to

the block as well as the verification of the block can be done[1]. The outputs of the

block connected to boundary-scan flip-flop provide the results of the given stimulus.

From the boundary scan chain mechanism, today, it is possible to enable various testing

operations of the chip and also accessing the memory or various registers of the chip.[1]

3.3 Array Freeze and Dump

AFD (Arrays Freeze and Dump) is a design for testing feature which allows to freeze

the state at a single point in time and extract all the arrays data through control

register bus for post-silicon debug usage. To cover full flow of AFD, we need to find

such a break-point at which we can hold the ongoing operation and fetch all the data,

so that we can compare that with the expected data value at that time.

3.3.1 Introduction to AFD

The processor contains large amount of internal arrays spread all over the clusters

which contain data and information for respective cluster. The clusters are having

different arrays like, re-order buffer, memory order buffer, mid-level cache, page miss

handler, etc. A re-order buffer, used in a tomasulo algorithm, allows instructions to be

committed in-order. For re-order buffer, array is having all the stages information of

issue, execute and write result with instruction type, destination, result and validity.

A memory order buffer in modern microprocessor is used to utilize cache and memory

banks fully. It contains different memory bank information. Likewise all the arrays

contain different information regarding their states and cluster classification.

For example, pentium pro processor is having 39 internal arrays[10]. The arrays are

having different size. These range in size from the 8-Kbyte, single-ported instruction

and data caches down to highly multi ported register files with only a few hundred

storage elements. The information of the various states of the arrays are very much

important and crucial for the debug success. To observe the array contents, there is a

requirement of cost-efficient debug mechanism.[10]

CHAPTER 3. RANDOMIZED AFD TESTING MECHANISM 21

3.3.2 AFD Validation Mechanism

To validate the state and data information of the arrays, we need have some design

for testing mechanism. Therefore, array freeze and scan dump, a design for testing

feature, is used for comparing actual value which came from RTL with the expected

value came which came from scan mechanism. The broadcasted freeze command in

the processor is responded by each and every array for debug. When an array receives

the freeze command, it immediately disables the write logic of it, so that the clock of

the processor clock can still run, but, the contents of the array become freeze. The

special enabling mechanisms at the arrays dump the frozen state of the processor.[10]

The processor can be returned back into normal execution mode only after the debug

mode for the array is completed. In that debug mode, an interactive testing operations

are done while keeping the processor stop from its particular running track.

The AFD validation mechanism can be done at two different levels in pre-silicon vali-

dation. First, AFD mechanism at each cluster level can be done. But, it can gradually

increase complexity for handling the data as well as risk of not covering the full AFD

flow and less chances to reach the post-silicon debug scenario. Second, super cluster

level AFD validation, is a much more appropriate way to reach post-silicon debug sce-

nario. Hence, this method also has drawbacks due to such a large number of array size

and for intercepting the test dynamically with assurance of test passing with checker

on normal test flow.

AFD testing mechanism freezes all these arrays information at particular period of

time and their extraction of the information is done. Then, this information is going

to be compared with expected values at that amount of time and if the state is not

having the proper value, we can find out easily what causes the arrays to have faulty

values. As mentioned earlier, we need to deal with large amount of arrays, the test

writing for all them is very difficult task. To overcome this problem, randomized AFD

testing mechanism is introduced at core level pre-silicon validation.

3.4 Randomization of AFD Testing

As mentioned earlier, we need to deal with large amount of arrays in the processor. To

validate them, the test writing for all them separately can consume much more space.

To overcome this problem, randomized AFD testing mechanism is introduced at core

level pre-silicon validation as shown in Figure 3.4.

Randomization of AFD testing mechanism uses only a single test to handle all the

CHAPTER 3. RANDOMIZED AFD TESTING MECHANISM 22

Figure 3.4: Randomization of AFD Testing

arrays of various clusters. Actually, all the arrays are having similar fields inside them

like state information, data information, register bank information, freeze signal infor-

mation, etc. So, instead of writing the tests for all of them separately, it is better to

have randomized approach which can handle all the arrays one after the other not in

any particular order. But, to make all the arrays work fine with single test will require

the necessary unique data information from all the arrays before running the test. For

that automation must be required.

First, hardware verification language (HVL) for files all the arrays are generated

through data and signals from .xml files. Then, automation perl script can gener-

CHAPTER 3. RANDOMIZED AFD TESTING MECHANISM 23

ated header file for only necessary fields and make new reduced form of HVL file from

the original HVL array file. These files save large amount of memory. With the use

of definition file and all the header files of the different arrays are imported into the

random test file. Then, regression list which is generated automatically by script, is

having each of the array listed out with required field to handle test. So, that only

included arrays in that list are going to become a part of testing. In random test, at

freeze state, the actual RTL value is compared with the expected one. If we get the

same result, then the test will pass. Otherwise, we need to resolve the errors either in

the automation side or in the random test.

3.5 Challenges Faced During Implementation

During the implementation of the randomized AFD flow, the biggest challenge is to

pass all the arrays with the single test. Sometimes, the arrays are such big that the

test takes a lot of time to check the whole array. First of all, I have tried to pass all

the arrays separately with the test. In that, I have faced problem with the mismatch

of fields declared in the header files and definition files. The thorough understanding

of definition file helped to resolve those errors. Then, I came across the errors like

the signal and data information were not specified in the header files perfectly. I have

resolved those errors with fetching the fields more powerfully from the respective ar-

ray files. Then, the test encountered new error suggesting that the signal names with

particular bits and proper bank information is required. To resolve that I have written

method of hardware verification language [11] in the header file which can take care

of bank and bits information. This method helped to take the proper signal for the

array. I have checked all the arrays separately with the test several times, the result

showed that all the arrays are working fine. Then, I have tried to combine all the

arrays in a single test. There, I had to maintain the flow of setting up all the arrays

one by one and checking data for those data. I had put one constraint to take a single

array multiple times to check that it has not changed any value in the array. Once all

the arrays checked successfully, the test shows the pass result. I checked the random

test with all the arrays several times as I have done for each array separately. Every

time it showed the pass result and I confirmed randomized flow is working fine.

Then, the normal test flow which contains IA-32 architectural instructions is inter-

cepted with array freeze and dump randomized testing mechanism and tries to find

out the bugs in the chip design before sending it to the fabrication facility. This mech-

anism verifies the arrays of all the clusters with various IA-32 instructions and check

the information they contain. The result shows that this mechanism is very helpful

CHAPTER 3. RANDOMIZED AFD TESTING MECHANISM 24

to get closer to the post-silicon debug scenario and makes it easier to add logic as per

requirement.

3.6 Summary

In summary, this chapter introduces with the different scanning mechanisms of design

for testing. It also explains how those mechanisms combined with randomized AFD

testing mechanism at core level in pre-silicon validation and makes it easier to get

closer to post-silicon debug scenario as well as issues can be found more easily in

different arrays of various clusters.

Chapter 4

Performance Monitoring

Multiplexer

4.1 Introduction to Performance Monitoring

The performance monitoring is a valuable for measuring performance of a program

which can be analyzed to identify the bottlenecks in the program. The performance

monitoring is done through the performance monitoring unit hardware which contains

model specific performance monitoring counters. These on-chip counters are gaining

popularity as analysis and validation tool to observe the application performance.[12]

The performance monitoring counters are broadly classified as fixed counters and pro-

grammable counters. Each thread in processor is having 3 fixed counters and 4 pro-

grammable counters. So, the availability of counters is purely depend on the number

of threads working on CPU at that time.

In performance monitoring unit, the performance monitoring counters measure the

events. The classification of the events can be done with two types: retirement events

and non-retirement events[12]. Retirement events are counted at the retirement phase

of the particular instructions life cycle. Whenever CPU encounters that the particular

event should be monitored at retirement, then during the execution time of the instruc-

tion particular micro-operation is tagged and track it till the end of the instruction to

check whether it is actually retired or not[12]. The other, non-retirement events are

monitored at time of instruction execution.[12]

The performance monitoring capabilities are having two classes. The first class uses

sampling or counting usage for monitoring performance of the events[12]. These mon-

itoring events are non-architectural and they vary from processor to processor. They

25

CHAPTER 4. PERFORMANCE MONITORING MULTIPLEXER 26

are specific to the micro-architecture and can be changed with feature enhancements

in them. The second class refers to architectural performance monitoring events[12].

When the events behave consistently across micro-architectures are called architec-

tural events. The architectural events act consistently across the whole processor

implementations.[12]

4.2 Performance Monitoring Unit Architecture

The basic performance monitoring unit architecture is shown in Figure 4.1. The per-

Figure 4.1: Performance Monitoring Unit Architecture

CHAPTER 4. PERFORMANCE MONITORING MULTIPLEXER 27

formance monitoring unit provides the ability to count the micro-architectural events

which can observe internal working of the processor as it executes various codes. This

unit contains various registers which guides it to monitor the events.

The performance monitoring hardware is spread across different clusters and main

counters are located in the out of order cluster. The performance monitoring unit

receives the event count through increment bus and different internal performance

monitoring register writes.

The register IA332 PERF CAPABILITIES defines the capability of the hardware

to monitor the events. The unit is having 3 fixed and 4 programmable counters

which can be handle by IA32 FIXED CTRx and IA32 PMCx registers respectively.

IA32 FIXED CTR CTRL controls interrupt and threading mechanisms of all the three

fixed counters. To assign particular events to each of the programmable counters,

IA32 PERFEVTSEL register is there. IA32 PERF GLOBAL CTRL is used to con-

trol all the fixed and programmable registers. There is a facility of simultaneous

multi-threading in it as well. IA32 PERF GLOBAL STATUS is used to know status

of the counter whose high bit shows the overflow condition for the respected counter.

To release the overflow bit of the counters, IA32 PERF GLOBAL OVF CTRL can

be useful. IA32 PEBS ENABLE is used for handling precise event based sampling.

Here, both the counter types and various internal performance monitoring registers

are described briefly.[12]

4.2.1 Fixed and Programmable Counters

Both, the fixed and programmable general purpose performance monitoring counters

are 48 bits wide. The counter width can be enumerated using the features in CPUID

instruction. In the previous processors, the performance monitoring counters were 40

bits wide.[12]

4.2.1.1 Fixed Counters

Fixed counters count architectural events that constitutes the basic events that will

be used to form the basic performance metric. These IA32 FIXED CTRx fixed gen-

eral counters are controlled and monitored by registers IA32 FIXED CTR CTRL,

IA32 PERF GLOBAL CTRL and IA32 PERF GLOBAL STATUS. The fixed coun-

ters have the capability to trigger a performance monitoring interrupt upon overflow.

CHAPTER 4. PERFORMANCE MONITORING MULTIPLEXER 28

Fixed Counter 0:

This counter counts the number of instructions that are retired. The term retirement

represents the instructions that are already executed by the processor core and the

changes will be omitted to the whole of the core including the architectural regis-

ters in the order of instruction dispatch. The MSR address of the fixed counter 0 is

0x309.[12]

Fixed Counter 1:

This counter counts unhalted core cycles when the thread is active. This counter will

not increment on certain conditions like frequency switching phase of a performance

state transition, HLT state of the core etc. The MSR address of the fixed counter 1 is

0x30A.[12]

Fixed Counter 2:

The reference cycles are counted by fixed counter 2. The reference cycles indicates the

maximum frequency cycles at which the core can run, even though the core may be

running at lower frequency. The reference clock works at particular fixed frequency

irrespective of frequency changes in the core processor due to the transitions. The

MSR address of the fixed counter 2 is 0x30C.[12]

4.2.1.2 Programmable Counters

There are four general purpose performance monitoring counters used to count the

events programmed in IA32 PERFEVTSEL model specific register. These counters

can be read or write through RDPMC instruction.

4.2.2 IA32 PERF CAPABILITIES MSR

It holds the encoding of the available features in the performance monitoring unit

implemented in the processor. The layout of the register is shown in Figure 4.2.

The LBR FMT contains the information of the instruction pointer. The information,

like, flags and overflow status, should be recorded in PEBS (Precise Event Based Sam-

pling) record will be decided by PEBS REC FMT. The SMM FRZ bit is set to freeze

the PMU on SMM (system management mode). The set bit of PEBS ARCH REG

suggests that PEBS record contains the architectural registers. If PEBS TRAP is

set, then the PEBS will happen before the retirement of macro instruction and PEBS

RECORD will reflect the pre-retirement architectural state. If PEBS TRAP is not

CHAPTER 4. PERFORMANCE MONITORING MULTIPLEXER 29

Figure 4.2: The layout of IA32 PERF CAPABILITIES MSR[12]

set, then the PEBS will happen at the end of the instruction retirement and PEBS

will reflect the machine state after the instruction retired. FW WRITE bit specifies

the architecture supports the full-width or not.[12]

4.2.3 IA32 PERF GLOBAL CTRL MSR

The global control register is used to operate the fixed and programmable general

purpose counters. The respected bits of this register are ANDed with the local enable

bit of its corresponding IA32 PERFEVTSEL or IA32 FIXED CTR CTRL[12]. The

layout of IA32 PERF GLOBAL CTRL is shown in Figure 4.3.

Figure 4.3: The layout of IA32 PERF GLOBAL CTRL MSR[12]

CHAPTER 4. PERFORMANCE MONITORING MULTIPLEXER 30

4.2.4 IA32 FIXED CTR CTRL MSR

The IA32 FIXED CTR CTRL MSR includes three sets of 4-bits field to control the

operation of all the three fixed counters. This register controls on what privilege level

the counter has to count, whether a PMI has to be serviced and whether a fixed counter

work on any thread or not[12]. The layout of IA32 FIXED CTR CTRL MSR is shown

in Figure 4.4.

Figure 4.4: The layout of IA32 FIXED CTR CTRL MSR[12]

4.2.5 IA32 PERFEVTSEL MSR

Figure 4.5: The layout of IA32 PERFEVTSEL MSR[12]

This MSR is used to assign the event, which is to be monitored by the performance

monitoring programmable counters. As there are four programmable registers in the

CHAPTER 4. PERFORMANCE MONITORING MULTIPLEXER 31

unit, to assign the event to each of the counter, there are four performance event selec-

tion registers as well. This register holds several controls like interrupt control, thread

control, pin control, edge detection and operating mode operation and user mode in-

formation. The MSR address of the IA32 PEREVTSELx is start from 186H[12]. The

layout of IA32 PERFEVTSEL MSR is shown in Figure 4.5.

4.2.6 IA32 PERF GLOBAL STATUS MSR

This MSR is used to monitor the overflow status of the fixed and programmable

counters and availability of the hardware through condition change bit. If the condition

change bit is set then performance monitoring hardware is available to monitor the

events[12]. The layout of IA32 PERF GLOBAL STATUS MSR is shown in Figure

4.6.

Figure 4.6: The layout of IA32 PERF GLOBAL STATUS MSR[12]

4.2.7 IA32 PERF GLOBAL OVF CTRL MSR

Whenever the overflow bit of the IA32 PERF GLOBAL STATUS is high for the fixed

or programmable performance monitoring counter, to release the overflow bit this

MSR is used[12]. The layout of IA32 PERF GLOBAL OVF CTRL MSR is shown in

Figure 4.7.

4.2.8 IA32 PEBS ENABLE MSR

The IA32 PEBS ENABLE model specific register is used to enable the precise event

based sampling facility for the programmable counters[12]. The layout of this MSR is

CHAPTER 4. PERFORMANCE MONITORING MULTIPLEXER 32

Figure 4.7: The layout of IA32 PERF GLOBAL OVF CTRL MSR[12]

Figure 4.8: The layout of IA32 PEBS ENABLES MSR[12]

shown in Figure 4.8.

The PEBS facility can be used after assigning the precise event to programmable

counter through IA32 PERFEVTSEL MSR and setting up the corresponding PEBS

bit in IA32 PEBS ENABLE MSR. It allows software to profile workload behavior

relative to a limited set of events. When event counter can reach overflow condition

after the occurrence of a predefined number of events. On overflow of a PEBS-enabled

counter, the PEBS facility is armed. At the occurrence of the next precise event

(counter transition from 0 to 1), the processor will take an assist and capture machine

state in a predefined memory buffer. The load latency facility allows the performance

analyzing tool to calculate the latency in the load visibility in terms of clock cycles

CHAPTER 4. PERFORMANCE MONITORING MULTIPLEXER 33

from micro-operation dispatch to the global visibility of the loaded data. The PS EN

bit allows programmable counter 3 to store precise information.[12]

4.3 Introduction to Performance Monitoring Mul-

tiplexer

The performance monitoring mechanism can monitor the given micro-architectural

events through general purpose performance monitoring programmable counters situ-

ated in performance monitoring hardware unit. Currently, the hardware unit is having

only the four programmable counters to monitor the events. There are hundreds of

events in various clusters to be monitored through those four counters. To validate

the monitoring operation of all those events and increasing the coverage for that re-

quires huge amount of test cases in pre-silicon validation. This scenario is impractical

because it is very difficult to handle all those tests simultaneously in the environment.

So, the intelligent algorithm is required to handle the validation of all the events with

the same counter size and also with lesser amount of test cases to validate most of

them. The block diagram of performance monitoring validation environment is shown

in Figure 4.9.

Figure 4.9: Performance Monitoring Validation Environment

In a given test, the events are having two frequencies. One is non-programmed (non-

config) event frequency which suggests how many number of times the event occurred.

The other is, programmed (config) event frequency which suggests how many number

CHAPTER 4. PERFORMANCE MONITORING MULTIPLEXER 34

of times the occurred event selected by the counter. Initially, both, the non-config and

config event frequencies are at zero. When the event occurs, the count of non-config

event frequency is increased. But, to monitor that event, it should be given to the

counter. There is a possibility that non-config event frequency increased as far as

test cases come, but, very few events get chance to be assigned to the counter. This

scenario can make huge difference between the non-config event frequency and config

event frequency. According to the non-config and config event frequency, we can mea-

sure non-config and config coverage of events. The past analysis without performance

monitoring multiplexer shows that the non-config and config coverages were around

70% and 40% respectively. So, to improve the overall coverage by increasing config

coverage, the algorithm of performance monitoring multiplexer is introduced. The flow

chart of that is as shown in Figure 4.10. There are different test cases for various

Figure 4.10: The flowchart of Performance Monitoring Multiplexer Algorithm

CHAPTER 4. PERFORMANCE MONITORING MULTIPLEXER 35

clusters to validate the features. Different test cases verifies different groups of events.

This groups can be called as event pool. So, from those test cases events enter to the

performance monitoring unit and given to the counter.

As per the flowchart explains, when the events enter into the performance unit from

the event pool, particular event will be given to the all four counters. Then, it will

enter into the time consuming method (TCM) with concurrency action[11] which is

a concept of hardware verification language. TCM’s are defined as the methods that

have the notion of time, as designated by their sampling event. TCM can be subjected

to synchronization or wait. Here, synchronization with two parameters will be given

to the time consuming method, one is the thread and the other is the counter. So, ac-

cording to the thread and counter number, the event is given to calling method. This

sync TCM will check for the config event frequency to be minimum one or wait for

some cycles. This methodology is used to permit the previous event, monitored by that

counter, to complete with sufficient amount of time. After synchronization between

both the actions, it should assign new event to the counter randomly from the event

pool. The new assigned event is compared with the previous event and it should have

occurred once means the new event should have non-config event frequency greater

than zero. The counter should be assigned the new event till both the condition is not

satisfied. After condition became true, the counter will have that event for monitoring

and the config event frequency of the counter is increased. For all the test cases with

given event pool, two threads and four counters the time consuming event is executed

to overcome the problem of less non-config and config coverage.

4.4 Results and Analysis of different strategies used

While implementing the performance monitoring multiplexer, I have gone through

several versions of the algorithm. The different strategies which I followed to increase

coverage are described below. There were three test case lists, but, till the success of

the algorithm, I have taken only one test case list.

In the initial version, I made the counter to check that the event frequency should be

minimum one and the event should not match with the previous event monitored by

that counter. After getting false result of that condition, generate the new event till

condition satisfied. But, it had given 18% overall coverage.

In the second version, I have added concept of rare events on result of the first version.

This was to assign the rare event field to the events which were not covered in the first

CHAPTER 4. PERFORMANCE MONITORING MULTIPLEXER 36

version. This addition of the rare event field to the respected event can be done by

script. The rare events should be handle by three counters out of four. In this version,

the coverage had improved, but, only till 25% with nominal number of events.

The result of previous case showed that the decision of assigning three counters to rare

events was not correct. So, the new version was made with assigning three counters

with different constraints to select events from event pool and only one counter for

rare event. This time overall coverage was 36.72% including small improvement in

config events with constraints of counter 1, counter 2 and counter 3 with 7, 7 and 6

respectively. The modification with different constraints to the counters were tried in

multiplexer version three, but it had not made much impact.

All the three versions and addition of rare event field had not made improvement in

coverage as expected. The main reason behind the failure is that the counter, assigned

to the rare events, is not giving sufficient amount of time to the event to be monitored

by that counter. So, the concepts of rare event field and constraints to counters were

dropped.

Then, in version four, time consuming method with concurrency action is introduced.

In this version, the algorithm is same as in first version, but, the only addition is con-

currency. It helped to get 45.7% overall coverage with good amount of config events.

The new concept of two separate event frequencies, non-config and config event fre-

quency, was introduced. Based on config event frequency the time consuming method

try to make synchronization and after that, on the minimum value of non-config event

frequency as one, the new event should be taken or the counter should be given to

monitor that event. This helped to get overall coverage of 36.47% which was lesser

than the previous case, but, the amount of config events covered was increased. Ulti-

mately, the main concentration is to increase the coverage for config events which was

achieved by this version. It suggests that the direction of the algorithm is perfect. The

same version with some what modification of the environment was applied on different

test case lists. Different test case lists were taken because at the same time the test

cases should be minimal as well with high coverage. The results of different test lists,

test list 1, test list 2 and test list 3 got coverage of 56.47%, 68.23% and 73.73% as

shown in Table 4.1 and Figure 4.11.

CHAPTER 4. PERFORMANCE MONITORING MULTIPLEXER 37

Table 4.1: Comparison of Coverage Results of Three Different Test Lists

Test List Name
Test
List 1

Test
List 2

Test
List 3

Total Tests 114 100 3091
Non-Config Coverage 86.96% 88.43% 92.18%
Config Coverage 25.98% 48.03% 55.28%
Overall Coverage 56.47% 68.23% 73.73%

Figure 4.11: Comparison of Coverage Results of Three Different Test Lists

At last, the events which are having on reference signals were removed. This scenario

helped a lot to get coverage of 62.65% and 81.01% for test list 1 and test list 2 re-

spectively. As test list 3 contains much more number of the tests, so the coverage

measurement was not taken for that list. The full detail of test list 1 and test list 2 is

as shown in Table 4.2 and Figure 4.12.

Table 4.2: Final Coverage Results of Two Different Test Lists

Test List Name
Test
List 1

Test
List 2

Total Tests 114 100
Non-Config Coverage 80.03% 82.24%
Config Coverage 45.29% 79.77%
Overall Coverage 62.65% 81.01%

CHAPTER 4. PERFORMANCE MONITORING MULTIPLEXER 38

Figure 4.12: Final Coverage Results of Two Different Test Lists

The result of Table 4.2 and in Figure 4.12 shows that the test list 2 is the best

suited test case list. Therefore, with use of the performance monitoring multiplexer,

the overall coverage can be increased with increasing non-config and config coverage

as shown in Figure 4.13. Here, the version 5 was taken with old environment to

compare the actual values.

Figure 4.13: Coverages of Different Versions of Algorithm For Test List 1

CHAPTER 4. PERFORMANCE MONITORING MULTIPLEXER 39

4.5 Summary

In summary, the chapter explains performance monitoring unit and various model

specific registers. The later part introduces with the performance monitoring multi-

plexer algorithm which helps to increase the overall coverage to 81.01% in pre-silicon

validation with less number of test cases.

Chapter 5

Automated Validation of SMM

5.1 Different IA-32 Architecture Modes

IA-32 architecture contains various operating modes like virtual-8086 mode, protected

mode, real-address mode and system management mode.[12][13]

The Real-address operating mode provides the programming environment of the Intel

8086 processor architecture with ability to switch to protected mode or system man-

agement mode. After hard reset happens, the logical processor always starts operation

in real-address mode.[12][13]

The Protected mode is also one of the important operating mode of the processor. It

provides a high performance, rich set of architectural features, flexibility and backward

compatibility to existing software base. It implements an environment wherein the op-

erating system task scheduler permits the processor to execute a particular task for a

given period of time while all the other tasks are suspended temporarily. It prevents

unauthorized access to operating system services and resources.[12][13]

The System management mode is a architectural feature of the processors which han-

dles system design specific events like platform-specific power management or thermal

events. When the processor encounters a system management interrupt to the chip

set, it enters to the system management mode. It automatically saves the contents

of processor’s register set when the interrupt occurs and restores the state of register

after the execution of the system management interrupt.[12][13]

Virtual-8086 mode makes the processor to feel like it is running in real mode. Due

to disruptive behavior in a multi-tasking operating system environment of protected

mode, the task scheduler switches logical processor into virtual mode to resume the

40

CHAPTER 5. AUTOMATED VALIDATION OF SMM 41

execution of real mode. In this mode, the processor activates hardware which observes

the sensitive instruction in manner that it cannot disrupt the operation of the overall

software environment.[12][13]

The switching of mode happens when specific bit set which affects that mode. For

system management mode, system management interrupt forces the processor to jump

into system management mode.

5.2 Importance of System Management Mode

The SMI (System Management Interrupt) is the higher than the non-maskable inter-

rupts as well as normal interrupts of the processor. Therefore, system management

mode code is having unique position in the processor to monitor the software running

on top of it, whether it is an operating system or a virtual machine monitors. The

SMM also assists to hardware manufacturers for debugging. The system management

mode is used for several activities.[13]

It handles the system events like memory or chip set errors. It manages the safety

function of the system like shutting down the high CPU temperature with turning

on the fans[12]. It supports security functions and power management. It emulates

hardware of the motherboard which is unimplemented, mouse and keyboard. It also

used to centralize the system configuration, for example, Toshiba and IBM notebook

computers. There are still many more advantages of system management mode.[13]

As the system management mode carries so many uses, it is necessary to validate the

system management mode feature more accurately at pre-silicon validation. There-

fore, if there is an availability of efficient validation technique for system management

mode, it is a great time saving effort. For making the efficient validation of feature,

thorough understanding of the feature is required.

CHAPTER 5. AUTOMATED VALIDATION OF SMM 42

5.3 Switching between SMM and other processor

operating modes

The Figure 5.1 explains the transition of the operation of different modes in the

processor. For system management mode, the processor jumps to system management

mode whenever it receives system management interrupt and the current mode is

either virtual-8086, protected mode or real-address mode. After execution of Return

form system management mode (RSM) instruction in system management mode, the

processor returns to the same state where system management interrupt occurred.

Figure 5.1: Transition Among IA-32 Architecture Modes[12]

5.3.1 Entering in SMM

The processor handles a system management interrupt on an IA-32 architecture in-

struction boundary, defined as interruptible point in the program execution. When the

processor receives an SMI, it waits for ongoing instruction operation to complete and

stores the state information of that time. The SMRAM saves all the current values of

the processor. Then, the processor enters into system management mode and starts

execution of the SMI. The processor also signals the processor’s external hardware

that the handling of system management interrupt has started. This kind of signaling

mechanism is dependent on hardware implementation. The system management mode

cannot acknowledge the sequences of system management interrupt.[13]

CHAPTER 5. AUTOMATED VALIDATION OF SMM 43

5.3.2 Exiting from SMM

After entering into system management mode, the processor can exit from it with

only one instruction i.e. RSM. The RSM instruction cannot be executed in any other

mode than SMM, otherwise an invalid-opcode exception is generated and the processor

stops executing. The RSM instruction is used to restore the processor’s context to

the registers from SMRAM. Then, the interrupted program is called back through

SMIACK. Again, the signal is sent to the external hardware for successful completion

of SMI. If the SMRAM holds the invalid state information, the processor enters into the

shutdown state and indicate that it has entered into shutdown state through generation

of a special bus cycle.[13]

5.4 Automated Validation of SMM

The Figure 5.2 shows the automated validation strategy of the system management

mode.

Figure 5.2: Automated Validation of SMM

All the described steps in previous section should be followed in that particular manner

to run the processor successfully in system management mode. If any of the stage is

not behaving properly, then there is a possibility of different exceptions like undefined

opcode exception, double fault, page fault, general protection exception, etc. Those

CHAPTER 5. AUTOMATED VALIDATION OF SMM 44

errors can be checked by self-check mechanism. To validate them with automated

strategy, one can make such a script which can help to debug the different errors.

In that script, the implementation of the intelligent algorithm should be done which

can fetch the different necessary register information, state information at the time of

changing the mode to SMM and each of the instruction with their cycle timing from

different logger files, so that it can help to find the exception and failing point very

easily. This kind of automated script can save a lot of time of a person by not going

into different logger files deeply each and every time.

5.5 Summary

In summary, this chapter includes description of different modes and their switching

to system management mode. The later part shows the importance of SMM with its

flow after SMI generation and proposes the automation of the SMM validation to save

time by not doing debugging manually.

Chapter 6

Automated Group Routing

Strategy

6.1 Introduction to Routing

The physical design flow process is divided into two major parts, a placement phase

followed by a routing phase. Both the phases are much important in design of the chip

because they deal with timing requirement and available area resources of the chip.

During placement, the different components are placed onto substrate surface so as to

minimize cost criteria such as the total estimated wire length. The routing phase is

the one that determines the actual course of the wires connecting the cells that have

been placed[15]. The routing has to obey various design rules like width of wires and

wire crossing that ensure a technically functioning circuit. The selection of router type

and the prioritizing the layout of critical signals such as clock signals. The structure

of the routing phase is influenced by the design and fabrication technology. The basic

terminologies of the routing are as below:

Nets: Set of two or more pins having same electrical potential

Netlist: Set of all the nets

Via: Connection of two different metal layers

Congestion: Where the tracks of metal layers are not sufficient enough for routing

The following section describes different routing types, hierarchy of the design and, at

last, automated group routing strategy.

45

CHAPTER 6. AUTOMATED GROUP ROUTING STRATEGY 46

6.2 Types of Routing

The routing is typically complex combinatorial problem. The routing may need to

route tens of thousands of nets simultaneously without overlapping. To make it man-

ageable, the routing is usually done by two-stage approach of global routing followed

by detailed routing[15]. The global routing first partitions the routing region into tiles

and decides tile-to-tile paths for all nets, whereas detailed routing determines the exact

tracks and vias for nets.[16]

6.2.1 Global Routing

The main aim of the global routing is to provide a routing plan in which each net

is assigned to a particular routing region. In global routing, the minimal usage of

the total wire length, priority of the signals and balance of the congestion across the

routing region should be taken in consideration[16]. It plays an important role in

obtaining a good overall layout.

Based on the timing constraints and criticality of the net, the routing resources are

assigned from one block of the chip to the another block of chip based on the defined

connectivity in the netlist. There is no end-to-end connection happened in global

routing. But, it decreases the open length between two pins using efficient routing

resources. The global routing generally uses the higher metal layers for routing so that

good timing can be achieved.

6.2.2 Detailed Routing

The main aim of the detailed routing is to facilitate the precise route to every net

within their assigned routing regions. The detailed routing does the end-point pin to

pin routing and close the opens of the chip. Most of the time, lower level metal layers

are used for detailed routing than the global routing. The downgrading of the nets are

done inside the block and connection is done with pin through appropriate metal.[16]

The detailed routing should take care of layout versus schematic issues of pins, valid

antenna length and different design rule check like via-to-via, min-jog, via size etc.

The detailed routing should be done such as to meet timing constraints of the design

chip.

There can be two different models for routing: grid-based model, position of grids vary

from one metal layer to the other and grid-less model, totally randomness in placement

of the metal layers.

CHAPTER 6. AUTOMATED GROUP ROUTING STRATEGY 47

6.3 Hierarchy of the design

As described in Section 2.3.1, partitioning enables structural implementation of big

complex system into number of small blocks by using divide and conquer approach.

This methodology can localize the modifications and reduce the complexity.

Figure 6.1: Hierarchy of the design

A commonly used hierarchical partitioning model is shown in the Figure 6.1. The

lowest design hierarchy level is functional unit block(FUB). A functional unit block

implements the basic functional designs such as adder, multiplier, divider, etc. A

number of functional unit blocks constitute a section. The number of functional unit

blocks are grouped based on their characteristics and physical location in layout. The

functional unit blocks are considered to be a black box at the section level and only

shared attributes are visible at section level. A cluster is made up of different sections.

The group of cluster constitute the full chip. Such methodology enable the designer

to debug design issues very efficiently and effectively with less amount of turn around

time.

CHAPTER 6. AUTOMATED GROUP ROUTING STRATEGY 48

6.4 Needs of Automated Routing

As the chip area advances to nanometer technology, the complexity of the intercon-

nect design also increases with great extent. The floorplan decides how much routing

resources you can have for efficient connection between logical cells. According to

criticality of the nets and timing requirement of those nets decide the metal allocation

for them. But, this strategy takes lot of iterations and huge manual effort. If some

logical change occur in middle of the layout implementation, then the new logic cells

will be implemented or removed. It results in repetitive work of layout with removing

old routing and implementing the new routing which is time consuming and tedious

task. To overcome this cumbersome task, there is a requirement of the automated

routing strategy which can do routing with efficient use of available routing resources.

As newer technologies emerge, either existing routing algorithms should be able to

cope with the new routing constraints, or else new algorithms should be developed.

The following section suggest one of the automated routing strategy i.e. group rout-

ing strategy which saves lot of manual effort and time with better control on routing

resources.

6.5 Automated Group Routing Algorithm

The proposed automated group routing strategy chooses the routing resources based

on the priorities and the physical properties like routing length, fanout etc. The group

routing algorithm is proposed to automate the routing at section level. There are

majorly three steps in automated group routing: distribute all the nets of the section

into groups based on the physical criteria, prioritize the various groups and route the

nets of all the groups in similar manner.

Figure 6.2: Distribution of Nets for Group Routing Strategy

CHAPTER 6. AUTOMATED GROUP ROUTING STRATEGY 49

Figure 6.2 shows distribution of the nets to be routed through group routing. This

distribution of the nets is prioritized in order of thin hierarchical nets, high fanout

nets and remaining nets. All the groups are further divided into priority of clock nets,

timing critical nets and normal nets. After distribution of the nets, there are sub-

divisions as per the routing length of the nets. As per the length of routing, different

class groups with combination of two metal layers are assigned to nets for the routing.

If the routing length is too much then higher metal layer class should be used. The

class 1 uses the higher metal layer as it contains the group of nets which is having

highest routing length. Then, depending on predefined routing length threshold, all

other class from 2 to 5 assigns metal layers in decreasing order. The algorithm for

group routing strategy is as below.

Figure 6.3: Automated Group Routing Strategy

CHAPTER 6. AUTOMATED GROUP ROUTING STRATEGY 50

As shown in Figure 6.3, the automated group routing strategy starts with analyzing

and optimizing the floorplanning which helps to change block placement according to

logic and timing criticality of the net. From that the design engineer can have idea

about the need of routing resources for various nets. Then, initialization of different

metal layer classes will be done with respect to the threshold of the routing length.

After that, the distribution of nets are done according to priority and assignment of

the metal classes as shown in the Figure 6.2. At last, routing is done through existing

automated routing strategy.

After the successful routing of the group of nets, we need to check the various design

rule checks described in Section 2.3.2. We also need to check timing requirements of

the logical cells are met or not with the group routed nets. From both these steps, we

can analyze the efficiency of the automated group routing and if it does not match the

requirement, run the automated group route again after changing the metal allocation

of classes and threshold of routing length. Though fully automated routing solution

never matches up to the quality of the manual routing, still it helps to get rid of

repetitive work and manual effort.

Figure 6.4: Congestion Analysis

CHAPTER 6. AUTOMATED GROUP ROUTING STRATEGY 51

The Figure 6.4 of the congestion analysis of the automated group routing shows

the congestion of one of the metal layer with different color styles dependent on the

routing track availability for that metal layer in that particular region. for example,

green color shows two tracks are available for metal x routing in that particular region.

The early routing strategy was taking 4x amount of time due to manual routing efforts.

The new automated group routing strategy has reduced routing time by 2x.

6.6 Summary

In summary, this chapter includes two different routing strategy and hierarchy of

the design. Later part explains the need of automated routing and how automated

group routing strategy can help to resolve the problem to some extent. This strategy

encourage to observe different floorplan strategy and reduces manual effort of routing

by 2x amount of time.

Chapter 7

Conclusion and Future Scope

7.1 Conclusion

As described in introduction part of the thesis, the high-coverage and high-efficiency

is recommended in pre-silicon validation and layout design respectively.This can be

achieved by introducing the new strategies to the validation of the features and dif-

ferent automated routing strategies. The result and analysis sections of the different

chapter in the thesis shows that the efficiency in AFD and coverage in PMON are

increased by AFD randomization and PMON multiplexer respectively.

The randomized AFD testing mechanism compares the RTL values of all the arrays

with its expected values at the freeze time in the single test. As it is done at super

cluster level, it can help one to reach closer to the post-silicon debug scenario. It

can make post-silicon debug easier than earlier and allows to put necessary logic at

required places with less effort.

The performance monitoring multiplexer increases the coverage for monitoring the

various events in pre-silicon validation. It is also conforming that the number of test

cases require to validate the various events are much lesser than the number of events

which we need to validate. For pre-silicon validation, the performance monitoring

multiplexer has increased the non-config and config coverage from the 70% and 40%

to 82.60% and 79.77% respectively. The final overall coverage of 81.01% is achieved

through performance monitoring multiplexer.

After that, the importance of the system management mode is discussed with its oper-

ation with different other modes. That has suggested the automation of the debugging

for system management mode which can help to increase the overall efficiency of sys-

tem management mode in architecture validation.

52

CHAPTER 7. CONCLUSION AND FUTURE SCOPE 53

The earlier routing strategy takes 4x amount of time due to manual efforts. The au-

tomated group routing strategy saves half of the time by completing routing in 2x

time. It also targets total manual effort through automatic selection and management

of critical nets, faster timing convergence, while ensuring quality layout, considerable

reduction in turnaround time and encouraging for different floorplan possibilities.

7.2 Future Scope

The thesis has discussed various strategies to increase the efficiency of different features

in pre-silicon validation and back-end layout design. In the thesis, the coverage im-

provement of performance monitoring was done at a cluster level. The same algorithm

can be implemented at super cluster level with changing the necessary fields in code

written in hardware verification language. As per the suggested strategy to improve

debugging for system management mode, the script can be developed for that. There

are many other features for which we can find out the root cause of less efficiency and

try to make the pre-silicon validation more efficient.

In back-end layout, the group routing strategy can be improved through concentrating

on different physical aspects which ultimately helps to route more number of the nets

automatically. The merging of the design rule checks can also be done to reduce the

manual efforts of design engineer.

Bibliography

[1] Ilya Wagner, Valeria Bertacco, Post-Silicon and Runtime Verification for Modern

Processor, Springer Publication, 2011. ISBN:9781441980335.

[2] Specman in one day. URL: http://www.asic-world.com/specman/specman

one day4.html (Visited on 04/18/2015).

[3] ASIC Verification. URL: http://chipverification.blogspot.in/2008/03/introduction-

to-specman.html (Visited on 04/18/2015).

[4] FDIV Replacement Program, Statistical Analysis of Floating Point

Flaw:Intel White Paper- Section 3. URL: http://www.intel.com/support/

processors/pentium/sb/CS-013007.htm (Visited on 04/21/2015).

[5] Thomas R. Nicely. Pentium FDIV flaw. URL: http://www.trnicely.net/pentbug/

pentbug.html (Visited on 04/20/2015).

[6] Scott Wasson. Phenom TLB patch benchmarked-A look at how AMD’s

BIOS workaround impacts Phenom performance. URL: http://techreport.com/

review/13741/phenom-tlb-patch-benchmarked (Visited on 04/20/2015).

[7] Physical Design, URL: http://en.wikipedia.org/wiki/Physical design (electronics)

(Visited on 04/26/2015).

[8] Sini Mukundan, Physical Design Flow IV:Routing. URL:http://vlsi.pro/physical-

design-flow-iv-routing(Visited on 04/25/2015).

[9] Grant MacFarland. Microprocessor Design-A practical guide from design planning

to manufacturing, Tata McGraw-Hill, 2006. ISBN:0070619298.

[10] Adrian Carbine, Derek Feltham, “Pentium Pro Processor Design for Test and

Debug”, IEEE Design & Test of Computers, Vol. 15, No. 3, Jul-Sep 1998, pp.

77-82.

[11] Specman e Language Reference Manual, Verisity Design,2002.

[12] Intel 64 and IA-32 Architecture Software Developer’s Manual, June 2014.

54

BIBLIOGRAPHY 55

[13] Tom Shanley, x86 Instruction Set Architecture Comprehensive 32 and 64 bit Cov-

erage, Mindshare Inc., 2009. ISBN: 0977087853.

[14] Delagado B., Karavanic K.L., “Performance Implication of System Management

Mode”, IEEE International Symposium Workload Characterization (IISWC), Sept.

2013, pp 163-173.

[15] R. Venkateswaran, P. Mazumder, “Routing Algorithms for VLSI Design”, Depart-

ment of Electrical Engineering and Computer Science, The University of Michigan,

USA.

[16] Laung-Terng Wang, Yao-Wen Chang, Kwang-Ting (Tim) Cheng. “Electronic De-

sign Automation: Synthesis, Verification, and Test”, Elsevier Inc., 2009. ISBN:

978-0-12-374364-0.

	Declaration
	Disclaimer
	Certificate
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Project Overview
	Thesis Organization

	Rudiments of VLSI Design
	Introduction to VLSI Design Flow
	Fundamentals of Validation
	Different Validation Strategies
	Various Components of Validation
	Pre-silicon Validation approaches
	Importance of Validation

	Fundamentals of Physical Design Flow
	Physical Design Flow
	Physical Verification of the design

	Summary

	Randomized AFD Testing Mechanism
	Introduction to DFT
	Differernt Types of Scan Mechanism
	Scan flip-flop design
	Hold-scan flip-flop design
	Boundary-Scan Mechanism

	Array Freeze and Dump
	Introduction to AFD
	AFD Validation Mechanism

	Randomization of AFD Testing
	Challenges Faced During Implementation
	Summary

	Performance Monitoring Multiplexer
	Introduction to Performance Monitoring
	Performance Monitoring Unit Architecture
	Fixed and Programmable Counters
	IA32_PERF_CAPABILITIES MSR
	IA32_PERF_GLOBAL_CTRL MSR
	IA32_FIXED_CTR_CTRL MSR
	IA32_PERFEVTSEL MSR
	IA32_PERF_GLOBAL_STATUS MSR
	IA32_PERF_GLOBAL_OVF_CTRL MSR
	IA32_PEBS_ENABLE MSR

	Introduction to Performance Monitoring Multiplexer
	Results and Analysis of different strategies used
	Summary

	Automated Validation of SMM
	Different IA-32 Architecture Modes
	Importance of System Management Mode
	Switching between SMM and other processor operating modes
	Entering in SMM
	Exiting from SMM

	Automated Validation of SMM
	Summary

	Automated Group Routing Strategy
	Introduction to Routing
	Types of Routing
	Global Routing
	Detailed Routing

	Hierarchy of the design
	Needs of Automated Routing
	Automated Group Routing Algorithm
	Summary

	Conclusion and Future Scope
	Conclusion
	Future Scope

	Bibliography

