
Graphics Output Protocol(GOP)
Validation Automation

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

By

Ankurkumar Patel

(13MECE20)

Electronics & Communication Engineering Branch

Electrical Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2015

Graphics Output Protocol(GOP)
Validation Automation

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

Ankurkumar Patel

(13MECE20)

Under the guidance of

External Project Guide: Internal Project Guide:

Ramadeva, Dwarakanath Prof.Sachin Gajjar

Engineering Manager,VPG, Assistant Professor, EC Department,

Intel Technology India Pvt. Ltd., Institute of Technology,

Bangalore. Nirma University, Ahmedabad.

Electronics & Communication Engineering Branch

Electrical Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2015

iii

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- Ankurkumar Patel

13MECE20

iv

Disclaimer

”The content of this paper does not represent the technology,opinions,beliefs,

or positions of Intel Technology India Pvt. Ltd.,its employees,vendors,

customers, or associates.”

v

Certificate

This is to certify that the Major Project entitled “Graphics Output Proto-

col(GOP) Validation Automation” submitted by Patel Ankurkumar G.

(13MECE20), towards the partial fulfillment of the requirements for the degree

of Master of Technology in Embedded Systems, Nirma University, Ahmedabad is

the record of work carried out by him under our supervision and guidance. In our

opinion, the submitted work has reached a level required for being accepted for

examination.The results embodied in this major project, to the best of our knowl-

edge,haven’t been submitted to any other university or institution for award of any

degree or diploma.

Date: Place: Ahmedabad

Prof.Sachin Gajjar Dr. N.P. Gajjar

Internal Guide Program Coordinator

Dr. D.K.Kothari

Section Head, EC

Dr. P.N.Tekwani Dr. K. Kotecha

Head of EE Dept. Director, IT

vi

Certificate

This is to certify that the Major Project (Phase- I) entitled “Graphics Out-

put Protocol Validation Automation” submitted by Patel Ankurkumar

G.(13MECE20), towards the partial fulfillment of the requirements for the de-

gree of Master of Technology in Embedded Systems, Nirma University, Ahmedabad

is the record of work carried out by him under our supervision and guidance. In

our opinion, the submitted work has reached a level required for being accepted for

examination.

Ramadeva, Dwrakanath

Engineering Manager,VPG

Intel Technology India Pvt. Ltd.

Bangalore

vii

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr. P.N.Tekwani,

Head of Electrical Engineering Department, and Dr. N.P.Gajjar, PG Coordinator

of M.Tech Embedded Systems program for allowing me to undertake this thesis work

and for his guidelines during the review process.

I take this opportunity to express my profound gratitude and deep regards to

Prof.Sachin Gajjar, guide of my major project for his exemplary guidance, moni-

toring and constant encouragement throughout the course of this thesis. The bless-

ing, help and guidance given by him time to time shall carry me a long way in the

journey of life on which I am about to embark.

I would take this opportunity to express a deep sense of gratitude to Ramadeva,

Dwarakanath ,Engineering Manager,Intel Technology India Pvt. Ltd. for his cor-

dial support, constant supervision as well as for providing valuable information re-

garding the project and guidance, which helped me in completing this task through

various stages.I would also thank to T, Nithin,my Project Mentor for always help-

ing,giving me good suggestions, solving my doubts and guide me to complete my

project in better way.

I am obliged to P, Raghupathy and S, Vidhya K staff members of Firmware

validation team, Intel Technology India Pvt. Ltd. for the valuable information

provided by them in their respective fields. I am grateful for their cooperation

during the period of my assignment.

Lastly, I thank almighty, my parents, brother, sisters and friends for their con-

stant encouragement without which this assignment would not be possible.

- Ankurkumar Patel

13MECE20

viii

Abstract

Graphics output is important in the pre-boot space to support modern firmware

features. These features include the display of logos, the localization of output to

any language, setup and configuration screens.

Graphics output may also be required as part of the startup of an operating sys-

tem. There are potentially times in modern operating systems prior to the loading

of a high performance OS graphics driver where access to graphics output device

is required. The Graphics Output Protocol supports this capability by providing

the Extensible Firmware Interface(EFI) Operating system(OS) loader access to a

hardware frame buffer and enough information to allow the OS to draw directly to

the graphics output device.

Validation of such protocol will require large amount of tests to be executed on

them. The automation of these tests will effectively reduce the time required in

Validation phase of the Product Development Life-Cycle and man power.

In this Project efforts are made to reduce the resources requirement and human

intervention.Reduction in human intervention will cause great reduction in execu-

tion time, because normal execution of such tests approximately takes a day while

the automation can complete that execution in approximately 2 hours.In this case

the whole execution will be managed and supervised by validation server so human

Involvement is not at all required.

Contents

Declaration iii

Disclaimer iv

Certificate v

Certificate vi

Acknowledgements vii

Abstract viii

List of Figures xii

Abbreviation Notation and Nomenclature xiii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Problem Definition . 2

1.4 Objective . 3

1.5 Scope . 3

1.6 Requirements . 3

1.7 Project Work Flow . 4

1.8 Gantt Chart . 5

ix

CONTENTS x

2 Literature review 6

2.1 High Definition Media Interface(HDMI) 6

2.1.1 Features of HDMI . 6

2.1.2 Applications of HDMI . 7

2.2 Display Port(DP) . 8

2.2.1 Important features of Display Port 1.3 8

2.2.2 Important features of Display Port 1.2 9

2.3 Basic Input Output System(BIOS) 11

3 Unified Extensible Firmware Interface (UEFI) 15

3.1 Introduction . 15

3.2 Compatibility Support Module . 17

3.3 Intel EFI . 17

3.4 UEFI Driver Model Goals . 17

3.5 Requirements of UEFI . 20

4 GOP Automation Framework 21

4.1 GOP . 21

4.1.1 Advantages of GOP . 21

4.1.2 Major differences between GOP drivers and legacy VBIOS . . 21

4.1.3 Major differences between GOP drivers and legacy VBIOS . . 22

4.2 GOP Automation . 22

4.3 Automation framework . 23

4.3.1 Tools required . 23

4.3.2 Tools developed . 23

4.3.3 Prerequisites . 24

4.4 Validation Server Setup . 24

4.5 Master Program Flow in Windows 25

4.6 VBTUpdater Program Flows . 26

4.7 UEFI Shell Execution Flow . 27

CONTENTS xi

4.8 Operation States . 27

4.9 GOPAutomationSlave.efi Program Flow in UEFI Shell 28

4.10 Action as per gaf.dat files machine states 29

5 Conclusion 31

6 Future Work 32

Bibliography 33

List of Figures

1.1 Project Flow Chart . 4

1.2 Gantt Chart . 5

2.1 BIOS Overview[6] . 13

2.2 Legacy BIOS vs. EFI BIOS[6] . 14

4.1 GOP Automation[7] . 22

4.2 Validation Server Execution flow[7] 24

4.3 GOPAutomationMaster.exe Execution Flow [7] 25

4.4 VBTUpdater.exe Execution Flow[7] 26

4.5 EFI shell Execution Flow [7] . 27

4.6 Operation States[7] . 27

4.7 GOPAutomationSlave.efi Execution Flow[7] 28

4.8 Decoding gaf.dat with machine states[7] 29

xii

Abbreviation Notation and Nomenclature

GOP . Graphics Output Protocol

VBT . VBIOS Table

VBIOS . Video BIOS

BIOS . Basic Input Output System

DP . Display Port

eDP . Embedded Display Port

HDMI . High Definition Media Interface

CSM .Compatibility Support Module

EFI .Extensible Firmware Interface

UEFI . Unified Extensible Firmware Interfaces

VGA . Video Graphics Array

VBE . Video BIOS Enable

PCI .Peripheral Component Interconnect

EPL .Eclipse Public License

EDID . Extended Display Identification Data

IHV . Independent Hardware Vendors

GUID . Global Unique Identifier

GPT . Global Page Table

SMM . System Management Module

OS . Operating System

USB .Universal Serial Bus

IBM . International Business Machine

LCD . Liquid Crystal Display

IA . Intel Architecture

DVI . Digital Video Interface

DUT . Device Under test

ACPI . Advanced Configuration and Power Interface

xiii

LIST OF FIGURES xiv

ROM . Read Only Memory

OSPM . System-directed configuration and Power Management

POST . Power-On Self-Test

Chapter 1

Introduction

1.1 Background

For over 37 years, Intel Corporation has been in a unique position of designing and

providing Graphics firmware that are optimized along the three axes of performance,

cost, and compatibility. Successfully meeting these requirements across many gen-

erations has resulted in complex designs that impose severe validation requirements

on the drivers.

Some of the important issues unique to Intel that necessitate rigorous validation

are the high volumes of display firmware that are shipped and used in a very diverse

set of applications. The high volume of firmware shipped implies that the cost of

a bug escape is extremely high in loss of customer revenue and reputation of prod-

uct reliability. Thus, Intel puts an extraordinary amount of effort in ensuring the

firmware thoroughly validated.

Intel has tackled the validation challenge in ways that include expanding the scope of

validation in pre-silicon and post silicon, making older techniques more efficient and

validating across as many levels of abstraction as applicable to break the problems

1

CHAPTER 1. INTRODUCTION 2

complexity and innovating better techniques to address complexity of new firmware

features.

The validation process of firmware requires lots of time, considerable amount of

efforts, large number of human resources and equipment. Requirement of reduction

in time required to develop and ship the firmware leads us to automation of such

complex validation process.

1.2 Motivation

Validation techniques for Graphics firmware may be broadly classified as windows

firmware validation and Android firmware validation .Windows firmware validation

can be further classified into GOP validation,OS display driver validation and Me-

dia validation where GOP validation will have some predefined tests to check for

functionality but executing these tests will require lot more methodology and lot

more resources and it is becoming complex day by day because more and more new

features are getting added in each and every release. Need for a powerful method-

ology capable of finding problems with firmware becomes more pronounced as more

complex drivers are designed and deployed.

1.3 Problem Definition

GOP validation test cases are becoming complex and bigger as the GOP is becoming

Complex due to addition of new features and availability of so many displays in

market, apart from that display resolution are becoming bigger and new displays

are coming in market with high definition capabilities. GOP validation is required

to characterize the behavior of GOP and they should meet the specification. As the

complexity of the firmware increases, the number of tests to be done also increases.

So to carry out firmware validation efficiently we require content development as

CHAPTER 1. INTRODUCTION 3

well as automation frame work.

1.4 Objective

One of the major goal of GOP validation is detecting bugs that have emerged during

development of GOP. In addition, the goal includes to Validate specific features to

ensure that the driver meets the functional requirements as defined in the functional

specifications. GOP validation is required to face system and testing environment

failures analysis and provide the root cause analysis at the fastest turn-around time,

such that in case there is a real problem, it can be repaired immediately, enabling

another Firmware iteration start in order to keep up with the time-to-production

schedule.

1.5 Scope

The scope of the project is to give insight of firmware validation, automation used

in firmware validation and debug techniques. Further description of how we can

develop content and automation frame work used in firmware validation, which

helps in reducing the time required for validation of Intel Firmware.

1.6 Requirements

For the project work carried out at Intel, needs an in-depth knowledge of the GOP

firmware, Display technologies, understanding of the post silicon environment and in

particularly the firmware validation environment like Hot plugging, Host validation

server Interface, Platform Structure is required. For the coding purpose, in-depth

knowledge of C language, EFI shell coding techniques, Visual Studio and other tools

specific for C coding at Intel is needed.

CHAPTER 1. INTRODUCTION 4

1.7 Project Work Flow

Figure 1.1: Project Flow Chart

In this project we have to write the scripts in C language specific tool for validating

GOP firmware, for that first we need to learn some basic tool which are involve in

validation. To validate a firmware we should have clear idea about the execution

flow of validation , for that we need to manually execute test scripts After having

understanding of validation execution flow we need to divide the flow in manual and

CHAPTER 1. INTRODUCTION 5

automatic functioning things . Then we need to develop code for the manual things

then we need to validate our script and if in this process we hit some bug then we

need to debug that. In the end we are trying to automate the whole process.

1.8 Gantt Chart

The timeline of project work from the start of the project is shown in below gantt

chart.

Figure 1.2: Gantt Chart

Chapter 2

Literature review

2.1 High Definition Media Interface(HDMI)

HDMI can deliver high quality sound or vision without the risk of quality loss due

to the conversion or compression of a video or audio signal. HDMI pictures are

smoother and sharp. Sound is also crisp and taut, without any distortion. And of

course, using the single cable HDMI can get rid of a lot of messy cables snaking

around your home theatre kit .Because of its digital nature, HDMI also works well

with fixed-pixel displays such as LCD, plasma or DLP screens and projectors. A

HDMI cable allows you to exactly match pixel-by pixel the native resolution of the

screen with whatever source device you’ve got connected. HDMI systems will also

automatically convert a picture into its most appropriate format, such as 16:9 or

4:3.HDMI signals are digital in nature while conventional TVs and radios operate

on analog signals, on the contrary HDTVs works on digital signals. HDMI has some

built-in smarts that allow you to control any device connected via HDMI through

the one remote.[1]

2.1.1 Features of HDMI

• HDMI technology eliminates unnecessary signal conversions

6

CHAPTER 2. LITERATURE REVIEW 7

• HDMI technology supports standard, enhanced, or high-definition video at 24

bits/pixel, 165MHz max clock frequency.

• HDMI technology supports up to 8 channel digital audio on a single cable

eliminating costly A/D signal conversions.

• HDMI offers Bi-directional control signal transfer.

• HDMI offers 5 Gbps bandwidth, 55 percent spared for future expansion.

• HDMI offers 1 simple, user-friendly connector.

• HDMI technology is backward compatible to DVI hot plug enabled assemblies

upto 5 meters in length

2.1.2 Applications of HDMI

• For Connecting HD-TVs, Digital Flat-Panel Displays and Other Components

with HDMI Connections to Digital DVD Player, Digital A/V Receiver and

Other Equipment with HDMI Connections

• Entertainment Center: DVD Player, DTV, Camcorder, Computer Display

Devices, especially LCD Panels/monitor

• Blue ray disc video and HD DVDs

HDMI interface is most useful when used with digital audio or video devices includ-

ing gaming consoles such asPS3and Xbox 360 as well as Blue-Ray players and set

top boxes. HDMI cable supports single cable interface as well as any major PC/TV

video format. Best use of HDMI cable is observed with high-definition video with

up to eight digital audio channels[1]

CHAPTER 2. LITERATURE REVIEW 8

2.2 Display Port(DP)

It’s the industry replacement for outmoded display technologies such as DVI, LVDS

and VGA and it’s currently being built into all new PC chipsets, GPU’s and display

controllers from major silicon manufacturers. Display Port utilizes a state-of-the-art

digital protocol and provides an expandable foundation to enable amazing digital

display experiences. Designed for low power implementation and high performance,

Display Port enables the next generation display technology while providing compat-

ibility with existing equipment. Designed specifically for usage in space-constrained

applications like ultra-thin notebooks, netbooks and graphic cards where connector

space is at a premium and where display performance really matters.[2]

Display Port is designed to be the future-ready, scalable solution for high perfor-

mance digital display connectivity. It enables the highest resolutions, the fastest

refresh rates and deepest color depths over standard cables.[2]

Display Port has unique features and capabilities that enable exciting new types

of displays and display usages. And it doesn’t require PC owners to replace all

of their equipment because simple adaptors allow Display Port enabled devices to

connect to monitors and projectors that use older technologies such as DVI, HDMI

and VGA.[2]

2.2.1 Important features of Display Port 1.3

• Next Generation Revolutionary Display Interface Technology

– Micro-packet architecture over 1- 4 lanes

– Up to 8.1 Gbps per lane-32.4 Gbps over 4 lanes

– Allowing for overhead - 25.92 Gbps over 4 lanes

– Increased bandwidth allows 5K monitors (5120 x 2880) with a single cable

CHAPTER 2. LITERATURE REVIEW 9

and no compression

– Multiple display support-two 4K UHD monitors (3840 x 2160) using

VESA Coordinated Video Timing supported from a single connector

– Continued support for video conversion to VGA, DVI and HDMI

– Support for HDCP 2.2 and HDMI 2.0 with CEC

– Support for 4:2:0 pixel structure which enables 8K x 4K displays

– Ability to support UHD monitor @60Hz and 24-bit color over (2) lanes

while assigning other 2 lanes for alternate data types such as USB as

allowed in Dock Port

2.2.2 Important features of Display Port 1.2

• Revolutionary Display Interface Technology

– Micro-packet architecture over 1- 4 lanes

– Up to 5.4 Gbps per lane-21.6 Gbps over 4 lanes

– Auxiliary channel for bidirectional data communications at 1 Mbps/ 720

Mbps Optional

– Powered connectors (providing up to 1.5W)

– Multiple display support-63 separate AV streams supported from a single

connector

– Scalable for large and small devices, displays, and cables

• Designed Specifically for High Performance Graphics and Flat Panel Displays

– Low voltage compatibility for integration into the latest chipsets, GPU’s

and display controllers

– Low power and scalable lanes for integration directly in LCD panels

– Low EMI and RFI

CHAPTER 2. LITERATURE REVIEW 10

– Compact external connector with optional latching

– Mini Display Port connector is space efficient for high performance for

laptops, netbooks and multi-output graphics cards

• Long Cable Support

– Up to 15 meters and beyond

– Higher bandwidth active cables and hybrid cables also available (utilize

DP power pin)

• High Performance is Standard

– Beyond high definition; WQXGA at 10 bit color

– Beyond Full HD 3D stereo support at 120hz

– DP v1.2 enables High Color Range Quad Full HD delivered over a stan-

dard Display Port connector (up to 4K x 2K at 60 FPS and 24 bpp)

• Ultra-low Latency for super-fast response

• High performance over standard cables

• Enables Exciting New Display Designs

– Unique direct drive monitor (DDM) capability enables ultra-thin moni-

tors

– Audio and HDCP enable high definition content playback and built-in

speakers on multi-function displays

• Ubiquitous Connectivity to Any Display

– Interoperability with DVI and HDMI signaling over Display Port Con-

nector

– Compatibility with existing displays via simple adapters

CHAPTER 2. LITERATURE REVIEW 11

– Dual-mode Display Port PCs can be connected to DVI, VGA and HDMI

monitors and projectors.

• Reduces Wiring and enables Higher Performance in Laptops

– Embedded Display Port (eDP) enables lighter weight internal cabling

– Embedded Display Port reduces system power enabling longer notebook

battery life

– Enables higher-performance notebook LCDs for emerging applications

such as 3D stereo, 120Hz refresh rates and the deepest color depths

2.3 Basic Input Output System(BIOS)

BIOS is the first code run by a PC when powered on. It acts as a layer between OS

and Hardware. BIOS initialize the various platform components like CPU initial-

ization, core initialization, memory and chipset initialization etc. The BIOS must

do its job before your computer can load its operating system and applications.[6]

The basic input/output system (BIOS), also known as the System BIOS or ROM

BIOS, is a de facto standard defining a firmware interface.

The BIOS software is built into the PC, and is the first code run by a PC when

powered on (’boot firmware’). The primary function of the BIOS is to set up the

hardware and load and start a boot loader. When the PC starts up, the first job for

the BIOS is to initialize and identify system devices such as the video display card,

keyboard and mouse, hard disk drive, optical disc drive and other hardware.

The BIOS then locates software held on a peripheral device (designated as a ’boot

device’), such as a hard disk or a CD/DVD, and loads and executes that software,

giving it control of the PC. This process is known as booting, or booting up, which

is short for bootstrapping.[6]

CHAPTER 2. LITERATURE REVIEW 12

BIOS software is stored on a non-volatile ROM chip built into the system on the

motherboard. The BIOS software is specifically designed to work with the particular

type of system in question, including having knowledge of the workings of various

devices that make up the complementary chipset of the system. In modern com-

puter systems, the BIOS chip’s contents can be rewritten, allowing BIOS software

to be upgraded.[6]

BIOS features are as follows:

• It acts as a layer between OS and Hardware

• It gets your computer up and running

• Initializes the hardware like Microprocessor, memory, chipset, devices, periph-

erals etc.

• Provides Power Management functionality through ACPI

• Loads and hands control over to the OS boot loader

• Provides a set of standardized routines for the OS to use

• Abstracts motherboard and silicon specifics from the OS

• Prepares system to run an OS

• Provides runtime services to the OS e.g. disk and video

The Advanced Configuration and Power Interface (ACPI) is a specification which

was developed to establish industry common interfaces enabling robust operating

system (OS)-directed motherboard device configuration and power management of

both devices and entire systems. ACPI is the key element in Operating System-

directed configuration and Power Management (OSPM).[6]

CHAPTER 2. LITERATURE REVIEW 13

Figure 2.1: BIOS Overview[6]

Power-On Self-Test (POST) refers to routines run immediately after power is ap-

plied,by nearly all electronic devices.POST includes routines to set an initial value

for internal and output signals and to execute internal tests, as determined by the

device manufacturer. These initial conditions are also referred to as the device’s

state.

Currently, Industry has migrated from Legacy BIOS to a standard and modular

EFI BIOS. EFI BIOS offers new & improved features and flexibility for code devel-

opers. The difference between Legacy BIOS and EFI BIOS is shown in fig. 2.2.

BIOS code used today supports legacy BIOS as well as EFI BIOS by means of a

CSM module. All the OS are not compatible with the EFI BIOS; CSM module is

used to run appropriate BIOS code. When CSM mode is ON, system will boot to

legacy BIOS and if CSM mode is OFF, System will boot to native EFI BIOS.

CHAPTER 2. LITERATURE REVIEW 14

Figure 2.2: Legacy BIOS vs. EFI BIOS[6]

The CSM translates the information generated under the EFI environment into

the information required by the legacy environment and makes the legacy BIOS

services available for booting to the operating system and for use in runtime.[6]

Chapter 3

Unified Extensible Firmware

Interface (UEFI)

3.1 Introduction

In computing, the Unified Extensible Firmware Interface (UEFI) is a specification

that defines a software interface between an operating system and platform firmware.

UEFI is meant to replace the Basic Input Output System (BIOS) firmware inter-

face, originally present in all IBM PC-compatible personal computers. In practice,

most UEFI firmware images provide legacy support for BIOS services. UEFI can

support remote diagnostics and repair of computers, even without another operating

system.[3]

Intel developed the original EFI (Extensible Firmware Interface) specification. Some

of the EFI’s practices and data formats mirror those from Microsoft Windows In

2005, UEFI deprecated EFI 1.10 (the final release of EFI). The Unified EFI Forum

manages the UEFI specification.

The original motivation for EFI came during early development of the first Intel-

15

CHAPTER 3. UNIFIED EXTENSIBLE FIRMWARE INTERFACE (UEFI) 16

HP Itanium systems in the mid-1990s. BIOS limitations (such as 16-bit processor

mode, 1 MB addressable space and PC AT hardware) were unacceptable for the

larger server platforms Itanium was targeting. The effort to address these concerns

began in 1998 and was initially called Intel Boot Initiative; it was later renamed to

EFI.[3]

In July 2005, Intel ceased development of the EFI specification at version 1.10,

and contributed it to the Unified EFI Forum, which has evolved the specification as

the Unified Extensible Firmware Interface (UEFI). The original EFI specification

remains owned by Intel, which exclusively provides licenses for EFI-based products,

but the UEFI specification is owned by the Forum.[3]

Version 2.1 of the UEFI (Unified Extensible Firmware Interface) specification was

released on 7 January 2007. It added cryptography, network authentication and the

User Interface Architecture (Human Interface Infrastructure in UEFI). The current

UEFI specification, version 2.4, was approved in July 2013.[3]

The interface defined by the EFI specification includes data tables that contain

platform information, and boot and runtime services that are available to the OS

loader and OS. UEFI firmware provides several technical advantages over a tradi-

tional BIOS system:

• ability to boot from large disks (over 2 TB) with a GUID Partition Table

(GPT)

• CPU-independent architecture

• CPU-independent drivers

• flexible pre-OS environment, including network capability

• modular design

CHAPTER 3. UNIFIED EXTENSIBLE FIRMWARE INTERFACE (UEFI) 17

3.2 Compatibility Support Module

The Compatibility Support Module (CSM) is a component of the UEFI firmware

that provides legacy BIOS compatibility by emulating a BIOS environment, allow-

ing legacy operating systems and some option ROMs that do not support UEFI to

still be used. CSM also provides required legacy System Management Mode (SMM)

functionality as an addition to features provided by the UEFI SMM. This is op-

tional, and highly chipset and platform specific. An example of such a legacy SMM

functionality is providing USB legacy support for keyboard and mouse, by emulating

their classic PS/2 counterparts.[3]

3.3 Intel EFI

Intel’s implementation of EFI is the Intel Platform Innovation Framework, code-

named ”Tiano.” Tiano runs on Intel’s XScale, Itanium and IA-32 processors, and

is proprietary software, although a portion of the code has been released under the

BSD license or Eclipse Public License (EPL) as TianoCore. TianoCore can be used

as a payload for coreboot.[3]

Phoenix Technologies’ implementations of UEFI include its SecureCore and Se-

cureCore Tiano products. American Megatrends offers its own UEFI firmware

implementation known as Aptio, while Insyde Software offers InsydeH2O, its own

implementation of Tiano.[3]

3.4 UEFI Driver Model Goals

• Compatible

Drivers conforming to this specification must maintain compatibility with the

previous EFI and UEFI Specification.

CHAPTER 3. UNIFIED EXTENSIBLE FIRMWARE INTERFACE (UEFI) 18

• Simple

Drivers that conform to this specification must be simple to implement and

simple to maintain. The UEFI Driver Model must allow a driver writer to

concentrate on the specific device for which the driver is being developed. A

driver should not be concerned with platform policy or platform management

issues. These considerations should be left to the system firmware.

• Scalable

The UEFI Driver Model must be able to adapt to all types of platforms. These

platforms include embedded systems, mobile, and desktop systems, as well as

workstations and servers.

• Flexible

The UEFI Driver Model must support the ability to enumerate all the devices,

or to enumerate only those devices required to boot the required OS. The min-

imum device enumeration provides support for more rapid boot capability, and

the full device enumeration provides the ability to perform OS installations,

system maintenance, or system diagnostics on any boot device present in the

system.

• Extensible

The UEFI Driver Model must be able to extend to future bus types as they

are defined.

• Portable

Drivers written to the UEFI Driver Model must be portable between platforms

and between supported processor architectures.

CHAPTER 3. UNIFIED EXTENSIBLE FIRMWARE INTERFACE (UEFI) 19

• Interoperable

Drivers must coexist with other drivers and system firmware and must do so

without generating resource conflicts.

• Describe complex bus hierarchies

The UEFI Driver Model must be able to describe a variety of bus topologies

from very simple single bus platforms to very complex platforms containing

many buses of various types.

• Small driver footprint

The size of executables produced by the UEFI Driver Model must be minimized

to reduce the overall platform cost. While flexibility and extensibility are goals,

the additional overhead required to support these must be kept to a minimum

to prevent the size of firmware components from becoming unmanageable.

• Address legacy option rom issues

The UEFI Driver Model must directly address and solve the constraints and

limitations of legacy option ROMs. Specifically, it must be possible to build

add-in cards that support both UEFI drivers and legacy option ROMs, where

such cards can execute in both legacy BIOS systems and UEFI-conforming

platforms, without modifications to the code carried on the card. The solution

must provide an evolutionary path to migrate from legacy option ROMs driver

to UEFI drivers.

CHAPTER 3. UNIFIED EXTENSIBLE FIRMWARE INTERFACE (UEFI) 20

3.5 Requirements of UEFI

A UEFI driver is required for any PC hardware device needed for the boot process

to complete.Hardware devices can be categorized into the following:

• Graphic output devices: Simple text, graphics output

• Console devices: Simple input provider, simple input ex, simple pointer - mice,

serial I/O protocol (remote consoles)

Note that independent hardware vendors (IHVs) can choose not to implement all

of the required elements of the UEFI specification. For example all elements might

not be implemented on a specialized system configuration that does not support

all the services and functionality implied by the required elements. Also, some

elements are required depending on a specific platform’s features. Some elements are

required depending on the features that a specific driver requires. Other elements

are recommended based on coding experience, for reasons of portability, and/or

for other considerations. It is recommended that you implement all required and

recommended elements in your drivers.[3]

Chapter 4

GOP Automation Framework

4.1 GOP

The Graphics Output Protocol (GOP) is enabled by UEFI driver to support graphic

console output in the pre-OS phase.The ultimate goal of GOP is to replace legacy

VGA BIOS and eliminate VGA HW functionality.[4]

4.1.1 Advantages of GOP

• Easier portability and fewer resource constraints

• All GPUs within a platform become ”equal”; no more unique ”VGA enabled”

GPU

• No more messy and hard-to-maintain proprietary INT15 handshaking between

platform and GPU

4.1.2 Major differences between GOP drivers and legacy

VBIOS

• Accessed through UEFI protocols vs. Interrupts and VGA/VBE interface

21

CHAPTER 4. GOP AUTOMATION FRAMEWORK 22

• Boot only services vs. both boot and OS run-time services

• Written in C instead of x86 assembler (not a spec requirement)

4.1.3 Major differences between GOP drivers and legacy

VBIOS

• Accessed through UEFI protocols vs. Interrupts and VGA/VBE interface

• Boot only services vs. both boot and OS run-time services

• Written in C instead of x86 assembler (not a spec requirement)

4.2 GOP Automation

Figure 4.1: GOP Automation[7]

CHAPTER 4. GOP AUTOMATION FRAMEWORK 23

GOP Automation flow is shown in fig. 4.1.Here GOPAutomationMaster will run

in windows environmet and GOPAutomationSlave will run in EFI environment.For

different tests VBT settings are different so GOPAutomationMaster will modify the

VBT as per test need then it will merge the modified VBT and GOP driver with

system BIOS.then it will flash the modified BIOS to the system and will change the

CMOS settings to always off to select GOP.then it will make the system to boot to

EFI where GOPAutomationSlave will take charge and GOPAutomationSlave will

run all the tests and will make the system to boot to windows.then GOPAtomation-

Master will parse the logs and will send the final log to server.

4.3 Automation framework

4.3.1 Tools required

1. EFIFlash: Tool to flash BIOS in EFI shell

2. EPCS Util: Tool to read CMOS settings

3. EasyUEFI: Tool to change boot order from UEFI to Windows

4.3.2 Tools developed

1. GOPAutomationMaster.exe to RUN in windows environment

2. GOPAutomationSlave.efi to RUN in UEFI environment

3. VBTUpdater.exe to run in Windows environment

4. BoottoEFI.exe - Program to use EasyUEFI for changing boot sequence

5. ChangeBIOSConfig.exe - Tool to change CMOS Settings.

6. Test Selector - Tool for selecting testcases

7. Log Parser - executable to summarize logs.

CHAPTER 4. GOP AUTOMATION FRAMEWORK 24

4.3.3 Prerequisites

1. Dedicated client machine (pool) for GOP automation

2. USB drive must be connected to the system

3. Pre-loaded image of WIN 8 (bypassing login screen)

4. Pre-installed EasyUEFI application for boot order changing

5. Server environment should dump all utils/tools and tsel.csv file in a pre-determined

location

4.4 Validation Server Setup

Figure 4.2: Validation Server Execution flow[7]

validation server execution flow is shown in fig. 4.2. Validation Server is required

to eliminate human intervention in validation procedure, it will trigger the things

which is supposed to be automated in client machine using a specific framework

which runs on server. The server provides connections with different DUTs which is

required for test execution. Which will ultimately introduces reusability of resources

in validation.

CHAPTER 4. GOP AUTOMATION FRAMEWORK 25

4.5 Master Program Flow in Windows

Figure 4.3: GOPAutomationMaster.exe Execution Flow [7]

GOPAutomationMaster.exe flow is shown in fig.4.3. GOPAutomationMaster.exe

is supposed to be executed on DUT in OS environment.it will check if USB is

present or not. If it found that USB containing test cases is not connected than

it will inform validation server that USB is not present.gaf.dat is the file which

contains the information about the state of the automation. If it founds that USB

is present than it will check for gaf.dat file and if it founds gaf.dat is not present

which means it is the first execution than it knows that BIOS is required to be

created and flashed, so it will go to VBTUpdater.exe followed by BootToEFI.exe, if

CHAPTER 4. GOP AUTOMATION FRAMEWORK 26

it founds that that the gaf.dat is present than it will decode the state if it is state

4 than it runs the Log Parser to get summarized log and stops the execution of

GOPAutomationMaster.exe.[5]

4.6 VBTUpdater Program Flows

Figure 4.4: VBTUpdater.exe Execution Flow[7]

VBTUpdater.exe flow is shown in fig. 4.4. VBTUpdater.exe changes the configu-

ration settings and then merges the BIOS with VBT and GOP and copy it to the

USB.VBTUpdater.exe will read tsel.csv which contains information about different

test cases and will modify VBT for each test cases merge with GOP and BIOS and

creates modified BIOS to be flashed and will copy that file to USB drive.it will read

the gaf.dat file and will check if it is state 3 than it will reset it to state 0 and will

run all tests, if it founds that it is the last test execution than it will update state

to 4 in gaf.dat file and will return the control to GOPAutomationMaster.exe

CHAPTER 4. GOP AUTOMATION FRAMEWORK 27

4.7 UEFI Shell Execution Flow

Figure 4.5: EFI shell Execution Flow [7]

The flow of BootToEFI.exe is shown in fig. 4.5. BootToEFI.exe will reboot the

system to EFI shell and will load and run the Startup.nsh, here Startup.nsh will

call the GOPAutomationSlave.efi

4.8 Operation States

Figure 4.6: Operation States[7]

Different states of operations for GOP automation are as shown in fig. 4.6.

CHAPTER 4. GOP AUTOMATION FRAMEWORK 28

4.9 GOPAutomationSlave.efi Program Flow in UEFI

Shell

Figure 4.7: GOPAutomationSlave.efi Execution Flow[7]

The flow of GOPAutomationSlave.efi is shown in fig. 4.7. GOPAutomationSlave.efi

is supposed to run on EFI shell environment.it will check for USB if USB is not

present than it will abort the execution and report it to Validation server, if it

founds that USB is present than check for gaf.dat if it is not present than it is first

time execution, BIOS is required to be flashed for that modified BIOS is required so

it will check for BIOS if it is not present it will abort the execution and if it founds

BIOS present than it will create gaf.dat, set state as state 1,flash the BIOS using

CHAPTER 4. GOP AUTOMATION FRAMEWORK 29

EFI shell and reboot, and on reboot control goes to windows and it will booted back

to EFI shell, if it founds USB present than it will read and decode gaf.dat file if

state is 1 than EPCSUtils enable GOP in CSM module ,update state 1 to state 2

and reboot the system then control goes to windows and it will make system boot

back to EFI shell, if it founds state as state 2 in gaf.dat than it will execute all test

cases, set state as state3 and reboot the system to windows.[8]

4.10 Action as per gaf.dat files machine states

Figure 4.8: Decoding gaf.dat with machine states[7]

CHAPTER 4. GOP AUTOMATION FRAMEWORK 30

Decoding of gaf.dat file and action as per decoding is described in fig. 4.8.If it is

state 1 than action required will be calling BootToEFI.exe. if it is state 2 than

call BootToEFI.exe and reboot ,if it is state 3 than one set of execution completed

control back to VBTUpdater.exe, if it is state 4 than all execution is completed so

delete gaf.dat,rom01.bin and tsel.csv.

Chapter 5

Conclusion

GOP validation process is the most exciting and challenging stage of display driver

development process. The purpose of debug is to identify and resolve any bugs in

firmware to ensure that firmware operates correctly for customers over the speci-

fication range. Firmware validation has become increasingly important to qualify

products because of the following reasons: development alone does not fully account

for many parameters impacting the firmware performance, efficient validation can

lead us to achieve power/performance goals and quality measures.

We have expanded the automation to a level where we can submit the test con-

tent from validation server. This will help in doing work fast and more efficiently as

we can control all the validation stuff remotely.

31

Chapter 6

Future Work

The server execution team is responsible for execution of test suite on server and

for providing logs of the execution. For that they have to flash BIOS manually on

each machine which is consuming significant time and resources. In this project we

have implemented the method to flashing BIOS without human intervention.The

server execution people will use our method to flash the BIOS and will be able to

reduce their efforts and they will also integrate it with the existing server framework.

Some peer teams at Intel are also trying to automate their validation process.our

framework will help them in automating their process by using some part of our

code and some of the tools developed by us.

32

Bibliography

[1] ”HDMI Specifications”, [Online],Website,November 2014,

http : //www.microprocessor.org/HDMISpecification13a.pdf

[2] V ESA, ”Display Port”, [Online],Website,November 2014,

http : //www.vesa.org/displayport− developer/why − displayport/

[3] UEFI, ”UEFI and GOP”, [Online],Website,November 2014,

http : //www.uefi.org/sites/default/files/resources/UPFS11 P4 UEFI

GOP AMD.pdf

[4] ”Graphics Output protocol”, [Online],Website,November 2014,

https : //coderwall.com/p/0xcxtq/uefi− shell− graphics− output− protocol

[5] Intel, ”UEFI Guide”, [online],Website,November 2014,

http : //www.intel.com/content/dam/doc/guide/uefi − driver − graphics −

controller − guide.pdf

[6] Intel, Advanced Configuration and Power Interface Specification,

Revision5.0, December 6, 2011

[7] Intel, GOP Automation Framework Reference Manual, June 2014

[8] Intel, EDK II BuildSpecification, June 2014.

33

