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Abstract

Registers and memories defines software interface to device, and resembles large
part of programmer’s guide. As registers define HW/SW interface for device, it’s
very important that register perform as expected for correct operation of design.
Thus registers need to be verified through product life cycle.

With increased design size and complexity, today’s design contains several hun-
dreds to thousands of registers. From specification, documentation to design im-
plementation, verification of each register, each bit and there property involves lot
of effort and complexities, which consumes time. Moreover maintaining separate
register specification document for each purpose, and manually updating these doc-
uments for multiple iterations through product life cycle is error prone and tedious
task as number of register increases above few hundred.

Use of single source written in high level language like SystemRDL help reduce
complexity for generating documents of software, design and verification.

Thesis describe a methodology which provides low maintenance, almost zero time
and reusable register design and verification environment. Project leads to stable
and promising OVM based register verification environment, and Register Abstrac-
tion Layer (RAL) is discussed. A methodology provides a complete solution form
register specification in .xls format to RAL files to reusable verification components
and environment.

Thesis presents useful RDL constructs for modelling scalable register descrip-
tions, like registers arrays, reg-files and register field instantiation. A sample exam-
ple for RDL specification helps understand SystemRDL constructs, field, register,
register file and addressmap instantiation.

Thesis also describes Register Model, lists main components in register model
with overview of each. Register Model use flow specified in thesis helps understand-
ing how RAL is integrated into existing environment.

At the end results are discussed, for register verification test with use of BFM
(insted of processor). The results are compared with simulation results of C test
run on processor. Result are impressive with 21.46% reduction in CPU time with
specified methodology. Also, use of methodology results large improvement in veri-
fication efficiency by reducing register verification time to period of week instead of
month.
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Chapter 1

Introduction

Design verification is the process which ensures that a design will meet its re-
quired specifications. This chapter introduces the basic concepts of hardware design
and verification, and will cover the methods/techniques of design verification and
verification challenges.

During a design process we transforms a set of specifications into an implemen-
tation that satisfy all specification. Specifications gives an idea about functionality
of design but doesnt specify how to be achieve the functionality. Lower abstraction
layer, specify more of design details. The increase in details with decrease in level
of abstraction can be seen in below figure [1.1].

Figure 1.1: Design Flow

2



CHAPTER 1. INTRODUCTION 3

1.1 Verification

Design verification is the reverse process of design, it starts with implementation
to prove that design meets the given specifications. For every step of deign there will
be at least one verification step. For example, for design step that converts functional
specifications into an algorithmic implementation, will require a verification check to
ensure that the algorithm performs the specified functionality. In general verification
can be performed in various areas like functional verification, timing verification,
layout verification, electric verification etc. In this chapter we discuss only functional
verification and refer to it as design verification.

At lower abstraction verification can be classified in two types. First type verifies
that two versions of design are functionally equivalent and is called as equivalence
checking. One common scenario of equivalence checking is comparing two versions
of circuits at the same abstraction level. For example RTL and Net-list equivalence
checking.

1.2 Basic Verification Principle

There can be two types of design error. One, the error may exist in design, not in
specifications. May be because of wrong implementation process. Second, the error
is in specifications itself. A human error may result in any of these errors. Common
human error may be in interpreting design functionality. To avoid such errors,
we may use a software program to synthesize an implementation, directly from
the specifications. Error may still result, even with this approach. This synthesis
approach is limited in practice due to two reasons. First, as most of specifications and
functionality is in form of conversational language, such as English instead of usual
mathematical language such as Verilog or C++. Second, at such high abstraction
level functional requirements may not represent timing behavior, instead timing
requirements are clearer at lower abstraction level (implementation level).

Another more widely used method to reduce such errors is through redundancy.
With this approach, same specifications are implemented two or more times using
different approaches and results of approaches are compared. Although in practice
more than two approaches are rarely used, as more errors may occur with each
alternative verification approach also cost and time can be insurmountable.

Second type of error which exists in the specifications. It can be unspecified
functionality, conflicting requirements, and unrealized features. One way to catch
this the type of error is with use of redundancy, since specifications are already at
the top of the abstraction hierarchy and so there is no reference/golden model, which
can be used to compaire.
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1.3 Verification Methodology

A good verification methodology starts with a test-plan which details the specific
functionality which is to be verified, so that the specifications are satisfied. A test
plan consists of various features, operations, corner cases, transactions etc. So if
we verify these items then we can say that we have verified specifications. To track
progress over a test plan, a ”score boarding” scheme is used. In score boarding,
the items from the test plan are marked as done when they are fully verified. Its
necessary that we measure a quality of verification. Most commonly used coverage
standard of measurement are functional coverage and code coverage. Functional
coverage approximates the percentage of functionality that is verified, whereas code
coverage represents the percentage of code simulated.

Apart from test plan, a method of verification is to decide between, what lan-
guage should be used. For example, arithmetic operators are often in verification
code, but rarely in design codes. Moreover, in contrast to verification code, design
code generally has to be synthesized. So, ideal verification language must resemble
a software language more than hardware language. Vera, Verilog, C/C++, Java and
System-verilog are most popular verification languages.

Mainly there are two verification methodologies, simulation based verification
and formal method based verification. The differentiating factor between method-
ologies is vectors. Simulation based verification methodologies depends on vec-
tors, while formal method based verification methodologies doesnt. Other factor
that distinguish simulation-based and formal method based verification, is that for-
mal method verification is output oriented where output properties are provided
by designer, and simulation is input oriented where input is provided by designer.
Whereas, the methodology which takes input vectors and verifies formally around
the neighborhood of vector is known as Semi-formal verification. Since semi-formal
methodology is a mixture of formal based and simulation based technology, its not
explained separately here.

1.3.1 Simulation Based Verification

The most widely used verification method is simulation based verification. In
simulation based verification, the RTL is integrated in a test bench, test bench is
provided with input to be applied to DUT, and design output is compared with
golden/ref. output. A test bench include a code that supports functionality of
the design, and quiet sometimes TB generates input stimulus and measures output
against the reference output, too. The stimulus to be provided as input can be
generated prior and in design it can be read from database while execution/sim-
ulation. Or it can be generated on fly while simulation run. In a same way, the
golden/reference output is either generated in before in advance or during simula-
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tion. Afterwards, a golden/reference model is simulated in lock step with the design,
and results from both models are compared.

There can be event driven simulator or cycle based software or hardware sim-
ulator. Whenever an input of gate or the variable to which the block is sensitive,
changes a value event based simulator will evaluate the block of statement or gate.
A change in value is known as an event. While circuit is partitioned according to
clock domains, in cycle based simulation. And each sub circuit is evaluated once
at each edge of clock in cycle based simulator. That is why, simulator speed gets
affected by event count. Lower the event count in circuit faster will be event based
simulation. Whereas cycle based simulator can run faster for circuit with high event
count. In practice, most of circuits will have enough large number of events that
cycle-based simulators performs much better than event-driven simulator. However,
cycle-based simulation has its own drawbacks. A clock domains must be well de-
fined in circuit to be simulated with cycle based simulator. For example, a circuit
which doesnt have clear clock domain for example asynchronous circuit cannot be
simulated in a cycle-based simulator because, we does not have a transparent clock
domain definition since there is no clock involved.

1.3.2 Formal Method Based Verification

The formal method-based verification methodology does not require the genera-
tion of test vectors like in simulation based verification methodology; otherwise, it
is similar. Formal verification can be classified into two major categories:

• Formal equivalence checking

• Formal property verification

Functional equivalence between two implementations is determined by equiva-
lence checking, whereas the other type of formal verification is property checking.
Property checking mainly takes two inputs a design and a properties which are a
partial specification of the design, and proves or disproves that the design holds
the property. A property is essentially mimics a design description, and it acts to
confirm the design through redundancy. ”Model checker” is a program that checks
a property. The idea behind property checking is to search the entire state space
for points that fail the property.

Some practical problems with property verifiers embody long iteration times in
decisive the right constraining parameters, and debugging failures within a prop-
erties and design. Since only portion of design in provided to property verifier,
an environment around the portion of design must be modeled properly. Most of
practical experience shows that an outsized share of time (appr. 70%) is spent in
obtaining the right constraints during verification. Second, debugging a property is
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tough once the property is written in a language apart from the one used in design.
For example, the properties may be written in System-Verilog while design is written
with Verilog.

1.4 Verification Challenges

From a cycle of project development, we can perceive the problem in design veri-
fication. A design engineer sometimes constructs a design based on provided specifi-
cations. However, a verification engineer should verify a design in all possible cases,
usually in practice for complex designs we have huge number of cases. Even with
a significant investment of resources in verification, it’s commonplace for a fairly
complicated chip to go through more than one tape-outs before it goes to market
for revenue.

The impact of design verification cant be ignored. A faulty chip not solely drains
budget through re-spin prices, it conjointly increases time-to-market, affects overall
revenue, shrinks market shares, and forces the corporate into taking part in the
catch-up game. To scale back verification time and price is one amongst major
challenges in SOC or ASIC development process.

Majorly there are four areas where a design projects face verification challenges.
One, there is no specific decent way to study a functional situations that must be
tasted. Second, additionally it takes an excessive amount of effort to make a random
test-bench. Third, its hard to attain coverage closure. Random testing is good to
achieve up to first 80% of coverage. however the last 20% of coverage is specifically
tough to attain. It conjointly needs several manual iterations, consuming time and
efforts.

There are lot of efforts going on in industry to reduce, verification cost both in
terms of money and time. Lots of efforts are being done for automation of verification
environment, to address these challenges.

Here in this project I have implemented Register Abstraction Layer with pro-
prietary system-verilog class library, for automation in Register Verification. Im-
plementation has much of resemblance to UVM register model. So much of part is
explained with reference of UVM register model.



Chapter 2

Register Verification

Sometimes the tiniest things will do the largest tasks when it comes to verification.
Configuration registers is good samples for this. Configuration registers are very
important for correct functioning of design, so we’d like to verify every bit/field of
each register in SOC or IP. Registers and memory components represent large share
of todays complex designs. On-chip registers outline the software system interface to
the chip, and typically represent the most important portion of the chip specification
or programmer’s guide. Its an increasing challenge to maintain documentation,
implementation and maintenance with increase in number of registers. Probability
of introducing errors in process and productivity gets affected, if we have to manage
these components manual.[3]

Most times, though, registers have a regular structure, defined by their field at-
tributes. Using this characteristic, it is possible to define a flow where the register
architecture is defined in a high level register description language like SystemRDL,
which in turn is used to generate the design, documentation and verification com-
ponents. This helps to reduce the often tedious and error-prone task of managing
registers, and enables design, verification and firmware teams to work more effi-
ciently from consistent and synchronized views of the chip design.

2.1 Need For Register Verification

To understand importance or need for register verification, let’s take an example.
Most of the host interface bus protocols contain a base address register (BAR) that is
generally used for memory mapping. Assume the size of the BAR is 32 bits, and the
number of read-only bits (with default value 0) within the BAR represents the size
of memory the device requires. Now, per protocol, the host writes 0xFFFF FFFF
to the BAR and then reads back to calculate the required memory / I/O space
for the device. If the read value is 0xFFC0 0000, then that means the memory /

7
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I/O space allocated to that device is 2MB where the last 22 bits are ready-only
bits. Lets say Read/Write attributes for the BAR have not been verified properly
and the design has a bug where the 22nd bit is writable instead of read-only. In
this case, the host writes 0xFFFF FFFF to the BAR; when it reads back, it finds
0xFFE0 0000, which represents 1MB of the memory size while the intended size is
2MB. Incomplete attribute verification of a single bit can reduce memory allocation
to half. Sometimes such errors consumes lot of time to debug and uncover the main
cause for fault, if detected later in design development cycle.

2.2 Legacy Flow

Register definition starts as architect prepare specifications. As specifications
become ready verification engineer, software engineer and hardware engineer starts
coding different views of register description based on function specifications. And as
soon as design is completed verification engineer and software engineer start running
tests. As an when any bug is discovered design and specifications must be changed,
but by mistake or due to scenarios and priorities, it may happen that designer might
would have updated design but document is not updated or vice versa. This process
iterated multiple times during the course of project. Bug is not only source of
change here marketing request may also come in between adding or removing any
feature, requiring specifications to be modified and accordingly downstream code to
be modified. As we see this flow is prone to error, documents, design, verification
and software may go out of sync during this process. (ref. Fig:2.1)

Generally coding an RTL for registers is long effort for designer (lets say 3 weeks),
as there in complex industrial design there can be hundreds s of registers with each
register having numerous fields with each field having different attribute. Once de-
signer is done with his work, verification engineer will develop a reusable randomized
verification environment with tests like reset value check and read write or attribute
check tests, lets say verification engineer takes more 2 weeks (at least). Moreover
closure based on verification feedback is time intensive process. Overall there is huge
effort in months plus maintenance overhead, when address mapping is modified or
register is added or removed.

This flow is prone to errors, as there could be disconnect in between design-
document, design, verification environment and software. The automated register
design and verification (DV) flow streamlines this process.
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Figure 2.1: Legacy Flow[3]

2.3 Basic Register Verification Principle

There are various methods to reduce efforts required in verification of registers,
make it risk free and less time consuming. Register Verification strategies are well
explained in Cadence’s article on ”Incisive Verification Article”[6] . In below section
we will see at few methodologies which we can apply to any kind of register veri-
fication. We will see how small pre-planning can help us make register verification
more effective and much easier.

2.3.1 Test plan development

For any verification first thing to do is to create verification plan. Register verifi-
cation plan is devidied into three major test groups.

1. Reset value or default value verification
Tese tests must cover reset value or default value verification of each field of
each register.

2. Attribute verification
These test are intended to perform attribute testing of each field of each reg-
ister. Attribute can be RW (read write), RO(read only), RW/1C(read write
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one to clear), WO(write only) etc. Moreover each field in register can have
different attribute.

3. Functional verification
Registers are not just read write, but most of times there will be some func-
tionality to be performed based on current value of register or some FSM might
be expected to get executed. Functional register verification tests covers these
kind of cases and make sure that desired or expected functionality is getting
executed.

2.3.2 Verification Strategies

For register verification we write to register then read it and based on write value
and attribute/mask of register we will generate expected value for that particular
transaction and compare expected and actual read value. In register verification
each bit of register must be exercised for both 1 and 0 value. In terms of verification
methodology we must get 100% functional coverage for register attribute and default
value verification. With directed testing its very difficult and time consuming any
may lead to bug later on in future. Example explained in Sec:2.1, puts real value in
putting together a good strategy.

2.3.3 Test Case Development

If we develop test case for each register, we will land up with hundreds or thou-
sands test cases, which will be difficult to manage. Moreover, during test run each
time design need to be initialized before we start with register verification, which
takes time. Also time for design initialization depends on design complexity. We
may also want to run regression several times, as we have random test cases. If we
consider time for design initialization be 1 minute, with thousands of such tests we
can get idea of amount of resources and time we will require to finish the register
verification.

A quite good approach is to have one test covering default value and/or attribute
check for all registers. In this case we will be able to save time require for design
initialization. So we will reduce regression and simulation time significantly. It may
even reduce regression time from a couple of days to few hours. For functional
verification we may require to have separate test for each functionality based on
scenario. But for reset/default value verification and attribute verification its better
to reduce no of test cases, as we are not doing much in it.
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2.3.4 Considering Corner Cases

We must consider all possible scenarios while developing test for verification. Sim-
ilarly there can be various corner cases for register verification lets discuss few most
common.

For example if there is error in encoding/decoding of register address, that is
if in design both address locations are swapped. Lets say first address as AX and
other address as BX. Now due to bug in design whenever you try to write on address
Ax, you are actually writing on to address BX. And when we read form Ax design
read from Ax and returns data. It’s difficult to catch such bugs. Even with help
of all register verification utility, its quite difficult to catch. Such scenario requires
manual debugging.

Its better to use register modeling utilities for register verification so as to achieve
100% coverage. Also register model reduces tedious and error prone manual process
of maintaining verification environment. Also register model provides quite impres-
sive way to synchronize various teams during ASIC development cycle. One can use
third party register models, if there are no project specific modification to be done
in register modeling utility. Even if there are few modifications to be done we can
write wrapper around such third party models to add project specific features.

Register model must be hooked up to proper location in verification environment.
We can integrate register model as independent utility for register verification or can
hook up it like any other monitor to perform auto verification of all configuration
registers.



Chapter 3

Register Model And Integration
Overview

Register specification involves various attributes like base address, default value,
access modes, security attributes etc. With all those various attributes changing
repeatedly during design process, register verification process is becoming growing
challenge. For every change we need to propagate the change down the complete
environment and various TB components. There has to be modification in TB for
each change register or field or memory is tedious and time costly task. Moreover
older manual approach may cause defects or errors as number of registers to verify
exceeds two hundreds and so.

This chapter consist of brief introduction about various types of register, register
attributes, register model and basic register access flow using register model.

3.1 Register Specification

Hardware functional blocks connected to host processors are managed via memory
mapped registers. This means that each bit in the software address map corresponds
to a hardware flip-flop. In order to control and interact with the hardware, software
has to read and write the registers and so the register description is organized using
an abstraction which is referred to as the hardware-software interface, or as the
register description.

H/w s/w interface maps addresses in Input output memory to registers, where
registers are identified by mnemonics. Each register is divided into fields, where
each field may have more than one bit, refer (fig.3.1). That is field may have single
bit, or can be large enough as register. Moreover each field has different attributes,
it can be R/O (read only), R/W (read write), RW/1C (read write 1 to clear) etc.
One may have reserved registers or fields, to be used in future or might not been

12
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used at all in design.

Considering IP we can say registers can be grouped in to two types. First, regis-
ters those can be accessed by host. These are configuration registers mostly. Second,
registers those are internal to IP and not visible to host. Usually controlstatus reg-
isters fall under second category. Although IP may have sub IP’s in it, and same
applies to them.

Figure 3.1: Fields in Register

Each register has it’s own attributes, for instance address offset, name, descrip-
tion and size. There can be more complex attributes for each register, like key and
lock value, mirror or shadow registers and hierarchical path to register etc. We
will see them in followed sections. Apart from all these attributes each register or
field may have some user defined attributes. Further we can block, it’s a group of
registers. Block also contains it’s own attributes, like base address, disc and name.
Table 3.1 groups various attributes related to register, field and block.

Table 3.1: Register, Field and Block basic attributes
Field Attributes Register Attributes Reg. Block Attributes

Description Description Description
Name Name Name

Starting bit Offset Address Base Address
Size Reset Value -

Access Width -

Register specifications are maintained by RTL team, in form of .xls sheet. Which
then used to write register description in SystemRDL language, generating .rdl file.
We will see more about SystemRDL in next section

3.2 SystemRDL Overview

SystemRDL is industry de-facto standard, by SPIRIT consortium and maintained
by Accellera. It was specifically developed describe and implement a various control
status registers. The register description then can be used for generating various
register description views for specifications, h/w design, s/w development and doc-
umentation. Which can then help synchronizing verification, design and s/w teams.
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Information about the registers in a circuit design is required throughout its life-
time, from initial architectural specification, through creation of an HDL description,
verification of the design, post-silicon testing, to deployment of the circuit.Register
specification must be accurate and in sync. As the register specified by the archi-
tects and the registers used by user for programming must be same. SystemRDL
descriptions are used as inputs to software tools that generate circuit logic, test pro-
grams, printed documentation, and other register artifacts. Generating all of these
from a single source ensures their consistency and accuracy. The description of a
register may correspond to a register in an preexisting circuit design, or it can serve
as an input to a synthesis tool that creates the register logic and access interfaces.

For verification register description in systemRDL language must be converted
to language which can be used to read register description. SystemRDL descriptions
are used as inputs to software tools to generate SV classes. Next chapter will describe
systemRDL in detail.

Most engineers use third part tools, those converts .rdl into desired format instead
of SV classes. Aim is to get register description into format that is easy to integrate
into working verification environment. Usually output will be classes extended from
predefined base classes. Base classes are nothing but derived classes, extended from
OVM or UVM components.These derived classes are part of RAL model.

3.3 Register Model Use Flow

Register model can be used as tool for implementing control registers and mem-
ory in verification environment. Register model is an application package. Used to
automatically create object oriented abstract model for control registers and mem-
ories inside design. RAL model has predefined tests and may also have functional
coverage model to make sure that every bit of all registers has been exercised.

Register model is completely based on concept of register abstraction layer(RAL).
RAL can support automation of register verification in complex designs, with large
register sets. With RAL we can generate verification components automatically,
which improves verification productivity. It also provides tests, assertions, backdoor
paths and coverage, from high level specs. Components need to be generated once
only and then we can compile them with other components. Then we can verify
front-door access to all registers and verify functionality. Also provides fast back-
door register access which can be used to speed up verification, once basic tests are
passed.

The Register Abstraction Layer (RAL) file is description of registers accessible
to host in form of System Verilog classes. That is RAL files are set of system-Verilog
classes, that represents description of registers. Set of RAL files describing registers,
sometimes is referred as “register map” or “model”.
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Figure 3.2: Steps Involved In Using Register Model

Flow chart 3.2 above shows register model use flow. Whenever there is any
change in specification user don’t have to make changes to model manually, instead
user has to rerun script and software tool and register model get automatically
updated. In verification environment register’s are accessed with there names us-
ing RAL predefined methods, so environment also get updated with RAL file data
implicitly. In next chapter we will see more about register model in detail.

3.4 Register Model Integration Overview

To be able to use register model, one must have an adaptor class available for
the bus agent that is going to be used to interact with the DUT bus interface. If
adaptor class is available, then the register model object needs to be constructed
and a handle needs to be passed around the test bench environment using either
the configuration and/or the resource mechanism. To perform read and write on to
physical register transaction need to be generated on to bus. Which is done by bus
agent, so there has to be bus agent which can send transaction to bus driver. Note
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that information in RAL files is not in form of transaction packet, which need to be
generated in order to access physical register. Adapter class then used to interpret
RAL file data and generate sequence item that can be send to bus driver.

There can be more that one masters trying to access physical register. The
register model is kept updated with the current hardware register state via the bus
agent monitor, and a predictor component is used to convert bus agent analysis
transactions into updates of the register model. So updater is another object, which
converts observed bus transactions into RAL file updates. Following table (3.2)
groups basic constructs required for integration of register model.

Table 3.2: Basic Constructs Required For Register Model Integration
Construct Description

Register Model Register Map in form of SV classes
Adapter SV class, that can interpret register map and call se-

quence with bus compatible sequence item.
Bus Agent SV class, that can send interpreted sequence item to

driver
Predictor SV class that observes bus agent’s transactions and in-

terpret transaction to update RAL update

Above table (3.2) groups basic constructs required for integration of register
model. We will see more about register model integration in Implementation chap-
ter. For SV class based implementation and more about agent, monitor, sequencer
and other OVM concepts one can ref [1] and for more vedios on OVM or UVM refer
Verification Academy [2]



Chapter 4

SystemRDL

Register model is description of all registers in design. We saw in earlier chapter
that we use systemRDL language to write register model. In this chapter we will
discuss details of register model and systemRDL.

4.1 SystemRDL

We have already seen register specification and it’s importance. We have seen
that each register block, register and field has it’s own attributes.SystemRDL is
a language for the design and delivery of intellectual property (IP) products used
in designs. SystemRDL semantics supports the entire life-cycle of registers from
specification, model generation, and design verification to maintenance and docu-
mentation. Registers are not just limited to traditional configuration registers, but
can also refer to register arrays and memories.SystemRDL is designed to increase
productivity, quality, and reuse during the design and development of complex dig-
ital systems. It can be used to share IP within and between groups, companies,
and consortium’s. This is accomplished by specifying a single source for the regis-
ter description from which all views can be automatically generated, which ensures
consistency between multiple views. A view is any output generated from the Sys-
temRDL description, e.g., RTL code or documentation like .html.xml.

SystemRDL was created to minimize problems encountered in describing and
managing registers. Typically in a traditional environment the system architect
or hardware designercreates a functional specification of the registers in a design.
This functional specification is most often text and lacks any formal syntactic or
semantic rules. This specification is then used by other members of the team in-
cluding software, hardware, and design verification. Each of these parties uses the
specification to create representations of the data in the languages which they use
in their aspect of the chip development process. These languages typically include

17
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Verilog, VHDL, C, C++, Vera, e, and SystemVerilog. Once the engineering team
has an implementation in a HDL and some structures for design verification, then
design verification and software development can begin. During these verification
and validation processes, bugs are often encountered which require the original reg-
ister specification to change. When these changes occur, all the downstream views
of this data have to be updated accordingly. This process is typically repeated
numerous times during chip development. In addition to the normal debug cycle,
there are two additional aspects thatcan cause changes to the register specification.
First, marketing requirements can change, which require changes to a registers spec-
ification. Second, physical aspects, such as area and timing constraints can drive
changes to the registers specification. There are clearly a number of challenges with
this approach:

1. The same information is being replicated in many locations by many individ-
uals.

2. Propagating the changes to downstream customers is tedious, time-consuming,
and error-prone.

3. Documentation updates are often postponed until late in the development
cycle due to pressures to

complete other more critical engineering items at hand. These challenges often
result in a low-quality productand wasted time due to having incompatible register
views. SystemRDL was designed to eliminate these problems by defining a rich
language that can formally describe register specifications. Through application of
SystemRDL and a SystemRDL compiler, users can save time and eliminate errors
by using a single source of specification and automatically generating any needed
downstream views.

Syntax for systemRDl is much resembling to verilog. This report skips discussion
on lexical conventions in SRDL like white spaces, comment, identifiers, strings and
numbers; however one can refer SystemRDL v1.0 manual by SPIRIT Consortium[8].
Separating SRDL from register model is very hard, since SRDL is standard for
writing register model. So in next section we start with register model, during
which SRDL symantics are covered. Before we start with SRDL and register model
let’s see basic cocepts of SRDL.

4.1.1 Key Concepts in SRDL

1. component: A basic building block in SystemRDL that acts as a container
for information. Similar to a structur class in programming languages.

2. property: A characteristic, attribute, or a trait of a component in System-
RDL.
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3. field: The most basic componentobject. Fields serve as an abstraction of
hardware storage elements.

4. register: A set of one or more fields which are accessible by softwareat a
particular address.

5. register file: A grouping of registers and other register files. Registerfiles can
be organized hierarchically.

6. address map: Defines the organization of the registers, register files, and ad-
dress maps into a software addressable space. Address maps can be organized
hierarchically.

4.2 Register Model

This subclause describes the key concepts of SystemRDL and documents general
rules about how to use the language to define hardware specifications. Subsequent
clauses contain overview about working with each of the individual components in
SystemRDL.

A componentin SystemRDL is the basic building block or a container which
contains properties that further describe the components behavior. There are four
structural components in SystemRDL: field, reg, regfile, and addrmap. Additionally,
there are two non-structural components: signal and enum.Components can be de-
fined in any order, as long as each component is defined before it is instantiated. All
structural components (and signals) need to be instantiated before being generated.

4.2.1 Defining Components

To define components in SystemRDL, each definition statement shall begin with
the keyword corresponding to the component object being defined. All components
need to be defined before they can be instantiated. Various component types and
keywords in systemRDL are listed in table4.1.

SRDL components can be defined in two ways: definitively or anonymously.

• Definitive defines a named component type, which is instantiated in a separate
statement. The definitive definition is suitable for reuse.

• Anonymous defines an unnamed component type, which is instantiated in the
same statement. The anonymous definition is suitable for components that
are used once.
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Table 4.1: Component Types
Component Keyword

Field field
Register reg

Register File regfile
Address Map addrmap

Signal signal
Enumeration enum

A definitive definition of a component appears as follows.
component type name [property;]*;

An anonymous definition (and instantiation) of a component appears as follows.
component [property;]* instance name;

And each property is specified as a name=value pair, e.g., name=foo.
The component definition body (specified within the curly braces ) is comprised of
one or more of following

1. Default property assignments

2. Property assignments

3. Component instantiations

4. Nested component definitions

Example:

• Definitive field component definition for myField
field myField ;

• anonymous field component definition for myField
field myField;

Here, in definitive field definition “myfield”is user defined type name of compo-
nent, which can be instantiated multiple times with any instance name. While in
anonymous definition “myfield”is instance name.



CHAPTER 4. SYSTEMRDL 21

4.2.2 Instantiating Components

Similar to defining components, SRDL components can be instantiated in two
ways definative and anonymous.

1. A definitively defined component is instantiated in a separate statement, as
follows.
type name instance name [[number] | [number : number]];

where,

(a) type name is the user-specified name for the component.

(b) instance name is the user-specified name for instantiation of the compo-
nent.

(c) number is a simple decimal or hexadecimal number.

• [number] specifies the size of the instantiated component array.

• [number : number] specifies the specific indices of the array. This
form of instantiation can only be used for field or signal components

2. An anonymously defined component is instantiated in the statement that de-
fines it.

Components need to be defined before they can be instantiated. In some cases, the
order of instantiation impacts the structural implementation, e.g., for the assigning
of bit positions of fields in registers. Also in case of defining regfiles in addrmap
order of register impacts the structural implementation.

4.2.3 Component Properties

Component properties define the specific function and purpose of a component,
as well as its interaction with other instantiated components. Property types in-
clude boolean, string, numeric, sizedNumeric,unsizedNumeric, accessType (enum),
addressingType (enum), precedenceType (enum).

Each component type has its own set of pre-defined properties. Properties may
be assigned in any order. User-defined properties can also be specified to add addi-
tional properties to a component that are not predefined by the SystemRDL specifi-
cation. A specific property shall only be set once per scope. All component property
assignments are optional. A property assignment appears as follows.
property name [= value];

When value is not specified, it is presumed the property name is of type boolean
and set to true.
Example:
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0 field myField {
1 rclr; // Bool property assign, set implicitly to true

2 woset = false; // Bool property assign, set explicitly

// to false

3 name = my field; // string property assignment
4 sw = rw; // accessType property assignment

6 };

4.2.4 Assigning Default Values

Default values for a given property can be set within the current or any parent
scope. Any components defined in the same or lower scope as the default property
assignment shall use the default values for properties in the component not explicitly
assigned in a component definition. A specific property default value shall only be
set once per scope.A default property assignment appears as follows.
default property name [= value];

When value is not specified, it is presumed the property name is of type boolean
and the default value is set to true. The descriptions for the types of values that
are legal for each property name.
Example:

0 reg {
1 default name = ‘‘default name’’;

2 field {} f1; // assumes the name ‘‘default name’’from

//above

3 field { name = ‘‘new name’’} f2; // name assignment

// overrides ‘‘default name’’

4 } some reg;

4.2.5 Dynamic Assignment

Some properties may have their values assigned or overridden on a per-instance
basis. When a property is assigned after the component is instantiated, the as-
signment itself is referred to as a dynamic assignment. Properties of a referenced
instance shall be accessed via the arrow operator (-¿). A dynamic assignment ap-
pears as follows.
instance name -> property name [= value];

In the case where instance name is an array and if the component type is field or
signal, the fact the component is an array does not matter, the assignment is treated
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as if the component were a not an arrray. While if the component is an array and
the component type is reg, regfile, or addrmap The user can dynamically assign the
property for all elements of the array by eliminating the square brackets ([ ]) and
the array index from the dynamic assignment.
array instance name -> property name [= value];

Or user can dynamically assign the property for an individual index of the array by
using square brackets ([ ]) and specifying the index to be assigned within the square
brackets.
array instance name [index] -> property name [= value];

Example 1:
This example assigns a simple scalar.

0 reg {
1 field {} f1;

2 f1->name = ‘‘New name for Field 1’’;

3 } some reg;

Example 2:
This example assigns an array.

0 reg {
1 field {} f1;

2 f1->name = ‘‘New name for Field 1’’;

3 } some reg[8];

4 some reg->name = ‘‘This value is applied to all elements in

// the array’’;

5 some reg[3]->name = ‘‘This value is only applied to the 4th

// item in the array of 8’’;

4.2.6 Property Assignment Precedence

There are several ways to set values on properties. The precedence for resolving
them is (from highest to lowest priority):

1. dynamic assignment
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2. property assignment

3. default property assignment

4. SystemRDL default value for property type

4.2.7 Scoping

SystemRDL is a statically scoped language, where the root scope is the outermost
scope. The body of any defined component is its own scope. All component names
within a given scope shall be unique. All instance names within a given scope shall
be unique. However, there can be a component and instance with the same name
in the same scope.

The only component definitions visible at any scope shall be those defined in the
current scope and any parent scope, up to and including the root scope. To resolve
a component name, SystemRDL searches from the current scope to the outer scope
until it finds the first matching component name.

The root scope shall only contain component definitions and signal instantiations.
No other component instantiations shall be allowed in the root scope. Therefore,
all component instantiations shall occur within an addrmap component definition.
The roots of an addrmap hierarchy are those addrmaps that are defined, but not
subsequently instantiated. Only instances instantiated in the current scope can be
referenced within that scope. A child instance can be referenced via the dot operator
(.). A instance reference appears as follows.
instance name [. child instance name]*

Dynamic assignments that are specified at an outer scope override those that are
specified at an inner scope. No more than one assignment of a property per scope
is allowed in SystemRDL.

4.2.8 Universal Properties

The name and desc properties can be used to add descriptive information to the
SystemRDL code. The use of these properties encourages creating descriptions that
help generate rich documentation. All components have a instance name already
specified in SystemRDL; name can provide a more descriptive name and desc can
specify detailed documentation for that component. Universal properties are listed
as follows in table(4.2). Where, Dynamic indicates whether a property can be
assigned dynamically.
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Table 4.2: Universal Properties
Property ImplementationApplication Type Dynamic

Name Specifies a more descriptive name (for docu-
mentation purposes).

string Yes

Desc Describes the components purpose. string Yes

4.3 Example with systemRDL

Let’s take example that will explain register model and how to use systemRDL
language to create it.

Example 1 Let’s assume we have IP named ACV which has instances of
subIP’s. Consider ACV has single instance of I2C and two instances SPI each.
Now register specifications of ACV will have registers of SPI, I2C and it’s own con-
figuration and controlsignal registers. Since SPI has 2 instances SPI 0 and SPI 1,we
will have same registers but with different base address. Following tables (A.1,
A.2 and A.3)summarizes the register memory map for IP ACV. For Register Field
Description refer Appendix[A].

Now, we want to build a single register model for our IP, that will have disctiption
of all registers of IP and it’s subIP’s. To start with we need SRDL for each subIP
as well as for ACV, since root RDL can’t have register and addrmap in one scope.
i.e. root RDL or top addrmap can have only addrmap’s which are not instantiated
anywhere and dynamic assignments in it. Let’s write SRDL for ACV first.

SRDL for ACV: RDL for ACV can be written as follows,

addrmap ACV reg f i l e
{

name=”ACV reg f i l e ” ;
desc=” This i s r e g i s t e r f i l e / block , conta in s

d e s c r i p t i o n o f c o n f i g or c o n t r o l / s t a t u s
r e g i s t e r s o f ACV. We can wr i t e r e g i s t e r
d e f i n a t i o n in sape ra t e f i l e and then
inc lude that f i l e in r e g i s t e r d i s c r i p t i o n
us ing ‘ i n c lude OR we can wr i t e everyth ing
in one s i n g l e f i l e as we are doing here
s i n c e complexity i s l e e s and i t ’ s more
redab l e in one page and b e t t e r f o r
understanding . ” ;
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reg a c v c t r l 0 d e f // reg d e f i n a t i o n
{

name=” a c v c t r l 0 r e g ” ;
desc=”Contro le Reg i s t e r ” ;
regwidth =32; // type numeric
shared=FALSE; // type boolean
// anonymously d e f i n i n g f i e l d s s i n c e not reused
f i e l d
{

name=”SCPOL” ;
desc =””;
hw=R/W; // hardware a c c e s s a b i l i t y
sw=R/W; // so f tware a c c e s s a b i l i t y

}SCPOL[ 3 1 : 2 1 ] ;

f i e l d
{

name=”FRF” ;
desc =””;
hw=R/W; // hardware a c c e s s a b i l i t y
sw=R/W; // so f tware a c c e s s a b i l i t y

}FRF[ 2 0 : 0 ] ;
} ;

reg acv RSVD 0 def
{

name=”acv RSVD 0 ” ;
desc =””;
regwidth =32; // type numeric
shared=FALSE; // type boolean
f i e l d
{

name=”RSVD1” ;
desc =””;
hw=R/W; // hardware a c c e s s a b i l i t y
sw=R/W; // so f tware a c c e s s a b i l i t y

}RSVD1 [ 3 1 : 0 ] ;
} ;

// i n s t a n t i a t i n g r e g i s t e r s
a c v c t r l 0 d e f a c v c t r l 0 @ 0x0000 ;

// use @ f o r s t a t i c address o f f s e t ass ignment
acv RSVD 0 def acv RSVD 0 @ 0x0004 ;

} ;
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Similarly, we can write SRDL code for all other subIP’s. For SPI we can instan-
tiate I2C reg file twice; each with different base address. No need to write same
RDL twice. We also need to write one intermediate addrmap for SPI. where we can
instantiate register blocks, and then instantiate address map in top address map.
SRDL for all subIP’s and top SRDL code is given in appendixB.

So we saw systemRDL basics and how to use systemRDL for creating register
model. We have already discussed in brief about how to use register model for
register verification in previous chapters. We will see how we integrated register
model in environment and used it for register verification.
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Implimentation

In this chapter we will discus, about our implementation of RAL for register
verification. Through which one can expect to understand flow of integration, and
components that are required for integration as well as how register access happens
for verification perpose.

Table 3.2 summarises basic components required for register verification using
RAL framework/ model. Let’s see discuss on each component about it’s role and
implementation in verification environment. We saw register model in previous
chapter in brief. Starting with adapter.

5.1 Adapter

The register model access methods generate bus read and write cycles using
generic register transactions. These transactions need to be adapted to the tar-
get bus sequence item. The adapter needs to be bidirectional in order to convert
register transaction requests to bus sequence items, and to be able to convert bus
sequence item responses back to bus sequence items. The adapter should be imple-
mented by extending it from one of specific base class from RAl model, for UVM
RAL model it must be extended from uvm reg adapter base class. Fig.(5.1) shows
existence of adapter in register access flow.

Adapter in this project implementation is is unidirectional and it converts reg-
ister description in RAL file into bus agent transaction, when register model ac-
cess method is called. In this project adapter checks for user defined attribute
”access path” which represents set of ovm(in this project) components, which are
involved in current transaction. As environment maintains list of components in
correlation with key which is access type here. Based on the value of access path
we select which agent to be used.

28
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Figure 5.1: Register Abstraction Layer [2]

So, basically adapter will be called by UVM/OVM internal method for reg access
whenever there is call to register model’s method ex. read, write or read and check
etc. Upon call to adapter will read register name which is to be accessed and looks
for existence of particular register in regs queue. regs queue is simply an associative
array which is maintained by RAL model internally in base class, which has all
register in it. Where register name is key and value is pointer to particular regis-
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ter class object. This queues are generated dynamically in build phase of ovm(in
this project). Then adapter calls extended ral class method to get address of regis-
ter. Once it has and address it calls OVM/UVM api ‘ovm do with, and constrains
bus agent’s transaction package to desired value. And hence data gets converted to
bus transaction packet. This can be done in many other ways based on programmers
logic and project needs.

5.2 Bus Agent

Bus agent is just like any other OVM(in this project) agent, mainly it has se-
quencer, driver and monitor. In this case since this agent components are build to
communicate with bus it’s called as bus agent. bus agent’s driver must be capable of
communicating to DUT, so it generate pin level transactions to communicate with
DUT. In this project we call an agent which intern calls an agent which calls bus
driver. Since there are other operations to be performed before writing on to bus.

For simplicity of understanding let’s assume we have only single agent. In pre-
vious section we saw adapter calls Bus sequence with constraints. Bus equence
then sends transaction packet, while bus sequencer pass modified transaction to
bus driver driver writes/reads on/from bus. If transaction is read transaction then
once transaction is complete, read value is returned via calling function, in test
where we have called read api of UVM/OVM RAL model.

5.3 Predictor

RAL model internally maintains mirrored value for each register. which is updated
on each transaction to register. This update of mirror value can be done manually by
calling update and predict methods along with read and write operations respectively
or, it can be updated manually using monitor class generated by same software tool
which is used to convert systemRDL into RAL files. This monitor keeps track of
bus agents transactions and on each transaction it updates mirror values accordingly.

It based on project which method to choose either manual or automatic update.
If project has more than one masters who can access register mutually. Then in
this case RAL will not be aware of any changes or transactions happened by other
master on registers, and register verification will fail. In such case it’s recommended
to use monitor based mirror value update. But if project has only one master, then
manual update can be used. For predictor we can simplly created method in RAL
base class.
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5.4 Front Door and Backdoor Access

There are two ways of accessing design registers in a verification environment:
front door and back door. Front door is by using the design register bus. This
consumes cycles and follows the register bus protocol. Backdoor is a zero simulation
time access by mapping to the design register directly using the HDL path and allows
quick configuration of registers. Thus, configuring by backdoor saves simulation
time, especially useful for full-chip and sub-chip simulations where several registers
need to be setup.

Backdoor access also helps in uncovering address decode design bugs. Since the
mirror register gets updated while doing front-door or back-door writes, writing a
register in front door and reading it from the backdoor flags any mismatch between
design and the mirror register.

5.5 Test and Test sequence

In test we can override environment configuration in build phase, to setup envi-
ronment for register verification. Along with that we will call user sequence in test
run phase, which is our test sequence. In test sequence we will use RAL base class
methods to access register in sequence body. The simplest flow for register verifi-
cation can be think as read, write and then read and compare with previous value
in register to verify attributes or reset value. Here attributes are register access
attributes, like r/w or r/o etc.

Tests in this project are be made to perform default value check and register
access attribute check. For functionality check we have different tests.

5.6 Considering Corner Cases

We seen simple sequence for register verification, usually it won’t be the case. Since
there can be many register hows functionality will be different that usual.

5.6.1 Lock Bit

There can be register who’s one or more bit’s may depend on bit/bit’s of other reg-
ister. Bit’s other register on which attribute of bit depends are called lock bits. For
lock bits we can specify, an user defined attribute and then implementing methods
in base class to handle the scenario. This is one time effort and reduces time and
efforts required later in test development stage.
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Or we can take them as corner case and address them separately. Here in this
project we have implemented methods in base class to take care of lock bit’s and
used lock as user defined attribute for each filed.

5.6.2 Write Only Register

Write only register can’t be verified using front door sequences, since we can’t read
them as it will always return zero. In this project we have used backdoor access to
verify such registers. To use backdoor access we need to define hierarchical path to
register in RDL. And at time of erification we can write oin register using front door
sequence and read using backdoor sequence.

Back door sequences also reduce verification time since it avoids important sys-
tem clock cycles involved in bus transaction.

5.6.3 Special Bits

Bit’s like reset or enable bit can’t be verified since on reset design will start initial-
izing again, similarly in case of enable bit if we disable it subIP or module or block
of design will be disabled. We need to avoide writing on such bit’s in test sequence.

Apart from corner cases discussed, there can be other corner cases. Like there
can be sequence which writes on to register during design initialization process.

5.7 Implementation Algorithms

Test Algorithm

Configuration of environment is optional here, it is completely need based. But
mostly there will be one or other component or sequence in environment which need
to be disabled for scope of test.

1. START

2. Configure Environment

3. Call register verification’s user test sequence

4. STOP
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Test Sequence Algorithm

To reduce maintenance of register verification, we will be using base class methods
to get pointer to reg file or register by it’s name. So even if there is any change,
changes will be automatically reflected in environment after regeneration of RAL
files.

We need to update RAL before we do write in attribute check, and update
method does read operation on register. Since we are performing read before write
then we can do reset value check in same test before attribute check. This method
will reduce one extra read operation. But care must be taken for R/W1C attribute
registers, which are read and write to clear i.e. write 1 to clear.

We can also perform all register check in single file but this is not recommended,
as we discussed in sec(2.3.3). So we have implemented separate test sequence for
each subIP. And there are such 15 subIP’s in this project.

1. START

2. Get top RAL class pointer

3. Get required file pointer

4. Get Register pointer
+++++++++++ Reset Value Check Started +++++++++++

5. Read register value and Check
+++++++++++ Reset Value Check Done +++++++++++
+++++++++++ Attribute Check Started +++++++++++

6. Update RAL

7. Get write data

8. write register

9. read and check register val
+++++++++++ Attribute Check Done +++++++++++

10. Repeat step 4 to 9 for each register in file

11. Get next file pointer and repeat step 4 to 10

12. STOP
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RAL access sequence Algorithm

RAL access sequence is smiler to adaptor in UVM RAL methodology. It takes
register name, write data and operation op-code as parameters. Then in step 1 it
calls user defined get addr function. Since address format and address translation
strategy night be different from register to register, this function is user defined so
one can design address translation according to project. Once we get address, this
sequence will choose op-code to constrain with bus seq based of access path value
and other user defined attributes passed for readwrite function call. Then it executes
sequence with inferred constrain on registered sequencer. Agent does all read/write
on bus and returns read data, if it is read operation.

1. START

2. get register address

3. get command or op-code

4. initiate sequence with data, address and command constraints

5. STOP



Chapter 6

Simulation and Results

6.1 Simulation

This chapter describes simulation of test for register verification. Also we will
discuss and compare result of simulation of register verification test using C SV
handshake with processor as RTL and using RAL without processor (that is we use
BFM instead of processor). For simulation and debugging we use Synopsiss VCS
tool. For debugging and coverage VCS provides various features like DVE and URG
etc.

For simulation setup, since we are using UNIX HDL simulation front-end envi-
ronment for project specific customization and creating compilation and simulation
flow. We have created compilation and simulation flow where we define parameters
needed for compilation and simulation with register model and BFM, included flow
specific include directories and file and other customization. we also need to modify
RTL to exclude processor and connect BFM, we have used pre-processor directives
to keep integrity of other compilation and simulation flows intact.

6.2 Results

Register model is readily available by third party vendors. With use of register
model its just one time effort to integrate register model and setup the environ-
ment. But it gives tremendous benefits, as it helps reduce verification time and
efforts, other benefits include;

35



CHAPTER 6. SIMULATION AND RESULTS 36

• Reduced maintenance cost:
During development cycle there can be change in base address or register offset
due to addition or removal of feature or module as part of bug fix or change in
specification. For such changes, we will have to make change at every place in
environment where we are accessing register by its address. But with register
model we only need to update RDL files and re-generate RAL files, provided
we are using standard APIs provided by register model for accessing register
by its name. As described in section 2.3.3, weeks of time to maintain and add
new tests has been reduced into hours. During project time to develop new
test was approx. 90 min., if all corner cases are already known.

• Ease of use:
To access registers of any nodule, one dont have to know about agent to be
used and all other deep stuff. Instead one can use API for read write to register
buy its name, address or type by providing all required arguments.

• Reuse:
RDL and RAL files are reusable at SOC level. And since register model is same
throughout project APIs for register access are same, which reduces efforts of
test developer. Again developer doesnt need to know which agent to be used
and how APIs are implemented. Although register access sequences and RAL
integration to local IP environment is not reusable at SOC. Since IP goes as a
RTL into SOC, and SOC environment will use standard host to slave protocol
to communicate with IP.

• Scalability:
Test sequences with use of register model are scalable and can accommo-
date addition/removal of register automatically as per updated RAL file. The
resone why we call implementation as automated register verification, cause
for simple addition or removal of register there is no need to modify test se-
quence except to regenerate RAL files. Test sequence need to be modified only
in scenario of corner cases.

• Better control over test scenario:
With register model and BFM we avoid use of RTL of processor. With pro-
cessor we would have to write C program where we will access registers, but
accessing register in particular scenario we need to have some communication
between C and SV domain. Special scenarios may include initialization of
IP, entering to some power down mode etc. Simplest way is to communicate
by read and write to register which is time consuming. On other hand with
register model and BFM (instead of processor), complete test can be written
in SV. Which provides better control as more SV and OVM constructs are
available for test development.
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• Improvement in simulation time:
As processor consumes significant cycles for stuff other than register access,
like reading data from ROM/SRAM, servicing interrupts etc. With use of
BFM we can save those cycles during test simulation. With the use of register
model and BFM time for test simulation has been reduced by 21.46% for
test used to generate results, also improvement in simulation time depends on
scenario to be exercised and no C to SV domain handshakes involved.

Fig.6.1 shows simulation wave form with C test and processor, while fig.6.2
shows simulation wave form with register model and BFM for register verifi-
cation of same module.

Figure 6.1: Simulation waveform for C based register verification test

Figure 6.2: Simulation waveform for SV test or RAL based register verification test

Fig.6.3 and Fig.6.4 shows snippet from simulation logs of both tests, with CPU
time taken for simulation of two tests for same module.

Time for C test execution = 1160 sec.
Time for SV or RAL based test execution = 911 sec.
Percentage of time saving = (((1160911)/1160) ∗ 100)% = 21.4%
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Figure 6.3: CPU time taken for C based register verification test execution

Figure 6.4: CPU time taken for SV test or RAL based register verification test
execution



Chapter 7

Conclusion and Future Scope

7.1 Conclusion

Use of register model eliminates error prone and time consuming process, and it
provides an almost zero-time, low maintenance, and reusable register design and
verification system. Allows design, verification and firmware teams to work more
efficiently from consistent and synchronized views of the chip design.

Flow presented in thesis is repeatable and can be used across various blocks,
SOC and chip level. The flow with register model provides lot of saving of efforts,
enhanced productivity, firm and stable design with better verification. As seen
earlier, greater than a months effort can be cut down to less than a weeks by this
approach, provides significant improvement in test execution time(about 21.46%).

Use of RAL methodology can successfully reduce register verification time from
month to week duration with implementation of RAL. Which will help reduce time
to market the product and improves the IP quality, by adding an important feature
to IP.

7.2 Future Scope

• Backdoor Access:
Backdoor access provides fast and easy access to registers. Once basic tests
are passed, that is once we are sure of register front door access is working
correctly we can use backdoor access everywhere else. This methodology helps
reduces execution time, in further process of verification.

• Monitor:

39
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There can be more than one agents in IP, trying to access register; register
may get modified by hardware; set value by strap or can be forced with some
value. Monitor can be developed with backdoor accesses to keep mirror copy
of register in sync with actual register value. This also helps to cover more
range of register attributes for example: W/O (write only), as with W/O we
cant read back value we have written, so in order to verify W/O we need to
read it via backdoor.

• Coverage:
Current version of implementation of RAL model doesnt support coverage
and checkers. Register toggle coverage can be good measure to determine an
amount of block verification, as most of activities turn down to register level
bit changes. So no of bits toggled collectively in functional verification tests,
can predict how much functionality of block has been verified by tests.
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Appendix A

Register Description

Appendix contains register discription for example 1, explained in chapter (4).

ACV

Register Block Name: acv reg blk
Base address: 0x0000

Table A.1: ACV Register Memory Map
Name Address Offset Width Description

acv ctrl 0 0x0000 32 bits Control register 0
Reset Val: 0x00

acv RSVD 0 0x0004 32 bits Reserved Register
Reserved location for future use,
write has no effect, read returns 0
Reset val: 0x00

SPI

Register Block Name: s0 reg blk Register Block Name: s1 reg blk
Base address: 0x0100 Base address: 0x0200

Table A.2: SPI Register Memory Map
Name Address Offset Width Description

CTRLR0 0x0000 32 bits Control register 0
Reset Val: 0x00

SSIENR 0x0004 1 bits SSI Enable Register
Reset val: 0x00
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I2C

Register Block Name: i2c reg blk
Base address: 0x0500

Table A.3: I2C Register Memory Map
Name Address Offset Width Description

SR 0x0000 8 bits Status register 0
Reset Val: 0x06

IMR 0x0004 4 bits Interrupt Mask Register
Reset val: 0x03
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ACV Register Discription

acv ctrl o

Name: ACV Control Register 0
Size: 32bits
Address Offset: 0x0000
ReadWrite Access: R/W
Reset Val: 0x0000

Table A.4: acv ctrl 0 Register Field Description
bits Name Access Description
31:21 SCPOL R/W -
20:0 FRF R/W -

acv RSVD 0

Name: ACV Reserved Register 0
Size: 32bits
Address Offset: 0x0004
ReadWrite Access: R/w
Reset Val: 0x0000

Table A.5: acv RSVD 0 Register Field Description
bits Name Access Description
31:0 RSVD1 R/W Write has no effect, Read returns

0
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SPI Register Discription

spi ctrl o

Name: SPI Control Register 0
Size: 32bits
Address Offset: 0x0000
ReadWrite Access: R/w
Reset Val: 0x0000

Table A.6: spi ctrl 0 Register Field Description
bits Name Access Description
31:21 sctrl 2 R/W -
20:16 sctrl 1 R/O -
15:0 sctrl 0 R/W -

ssi e o

Name: SPI SSIENR 0
Size: 32bits
Address Offset: 0x0004
ReadWrite Access: R/w
Reset Val: 0x0000

Table A.7: spi ssienr Register Field Description
bits Name Access Description
31:1 reserved3 R/W Reserved for future use
0:0 EN R/W Enable bit
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I2C Register Discription

SR

Name: Status Register
Size: 32bits
Address Offset: 0x0000
Reset Val: 0x0006

Table A.8: SR Register Field Description
bits Name Access Description
31:8 RSVD0 R/W reserved for future use
7:0 inptr sts R/W -

IMR

Name: Interupt Mask Register 0
Size: 32bits
Address Offset: 0x0004
ReadWrite Access: R/w
Reset Val: 0x0003

Table A.9: IMR Register Field Description
bits Name Access Description
31:4 RSVD1 R/W Write has no effect, Read returns

0
3 int 3 R/W interrupt 3 mask bit
2 int 2 R/W interrupt 2 mask bit
1 int 1 R/W interrupt 1 mask bit
0 int 0 R/W interrupt 0 mask bit



Appendix B

Example 1 Complete SRDL

B.1 RDL Top

ex top.rdl

‘ i n c lude ” l ib udp . r d l ”
addrmap top addrmap {

‘ i n c lude ” e x i 2 c . r d l ”
‘ i n c lude ” e x s p i . r d l ”
‘ i n c lude ” ex acv . r d l ”
name=”top addrmap ” ;
desc=”tp ” ;
a c v r e g f i l e ACV reg f i l e i@0x0000 ;
s p i r e g f i l e s p i r e g f i l e i 0 @ 0 x 0 1 0 0 ; //0 x100
s p i r e g f i l e s p i r e g f i l e i 1 @ 0 x 0 2 0 0 ; //0 x200
I 2 C r e g f i l e I 2C reg f i l e@0x0500 ;

} ;

B.2 ACV Register File

ex acv.rdl

‘ i n c l ude ” l ib udp . r d l ”
addrmap a c v r e g f i l e {

name=” a c v r e g f i l e ” ;
desc=” ” ;

47
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reg a c v c t r l 0 d e f { // reg d e f i n a t i o n
name=” a c v c t r l 0 r e g ” ;
desc=”Contro le Reg i s t e r ” ;
regwidth =32; // type numeric

// anonymously d e f i n i n g f i e l d s s i n c e not reused
f i e l d {

name=”SCPOL” ;
desc =””;
AccessType = ”RW” ; // hardware a c c e s s a b i l i t y

// so f tware a c c e s s a b i l i t y
}SCPOL[31 :21 ]=11 ’ b0 ;

f i e l d {
name=”FRF” ;
desc =””;
AccessType = ”RW” ; // hardware a c c e s s a b i l i t y

// so f tware a c c e s s a b i l i t y
}FRF[20 : 0 ]=21 ’ b0 ;

} ;

reg acv RSVD 0 def{
name=”acv RSVD 0 ” ;
desc =””;
regwidth =32; // type numeric
f i e l d {

name=”RSVD1” ;
desc =””;
AccessType = ”RW” ; // hardware a c c e s s a b i l i t y

// so f tware a c c e s s a b i l i t y
}RSVD1[31 : 0 ]=32 ’ b0 ;

} ;
a c v c t r l 0 d e f a c v c t r l 0 @ 0x0000 ;
acv RSVD 0 def acv RSVD 0 @ 0x0004 ;
} ;

B.3 SPI Register File

ex spi.rdl

‘ i n c lude ” l ib udp . r d l ”
addrmap s p i r e g f i l e {
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name=” s p i r e g f i l e ” ;
desc=” This i s r e g i s t e r f i l e / block , conta in s

d e s c r i p t i o n o f c o n f i g or c o n t r o l / s t a t u s
r e g i s t e r s o f SPI . ” ;

reg CTRLR0 def { // reg d e f i n a t i o n
name=” a c v c t r l 0 r e g ” ;
desc=”Contro le Reg i s t e r ” ;
regwidth =32; // type numeric

// anonymously d e f i n i n g f i e l d s s i n c e not reused
f i e l d {

name=” s c t r l 2 ” ;
desc =””;

AccessType = ”RW” ; // hardware a c c e s s a b i l i t y
} s c t r l 2 [ 31 : 21 ]=11 ’ b0 ;

f i e l d {
name=” s c t r l 1 ” ;
desc =””;
AccessType = ”RO” ; // hardware a c c e s s a b i l i t y

} s c t r l 1 [ 20 : 16 ]=5 ’ b0 ;

f i e l d {
name=” s c t r l 1 ” ;
desc =””;
AccessType = ”RW”;// hardware a c c e s s a b i l i t y

} s c t r l 0 [ 15 : 0 ]=16 ’ b0 ;
} ;

reg SSIENR def{
name=”acv RSVD 0 ” ;
desc =””;
regwidth =32; // type numeric

f i e l d {
name=”re se rved3 ” ;
desc =””;
AccessType = ”RW” ; // hardware a c c e s s a b i l i t y
} r e s e rved3 [ 31 : 1 ]=31 ’ b0 ;

f i e l d {
name=”EN” ;
desc =””;
AccessType = ”RW” ; // hardware a c c e s s a b i l i t y
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}EN[ 0 : 0 ] = 1 ’ b0 ;
} ;

// i n s t a n t i a t i n g r e g i s t e r s
CTRLR0 def CTRLR0@0x0000 ;
// use @ f o r s t a t i c address o f f s e t ass ignment
SSIENR def SSIENR@0x0004 ;
} ;

B.4 I2C Register File

ex i2c.rdl

‘ i n c lude ” l ib udp . r d l ”

addrmap I 2 C r e g f i l e {
name=” I 2 C r e g f i l e ” ;
desc=” This i s r e g i s t e r f i l e / block , conta in s

d e s c r i p t i o n o f c o n f i g or c o n t r o l / s t a t u s
r e g i s t e r s o f I2C . ” ;

reg SR def // reg d e f i n a t i o n
{

name=”SR reg ” ;
desc=”Contro le Reg i s t e r ” ;
regwidth =32; // type numeric

// anonymously d e f i n i n g f i e l d s s i n c e not reused
f i e l d
{

name=”RSVD0” ;
desc =””;

AccessType = ”RW” ; // hardware a c c e s s a b i l i t y
}RSVD0[31 : 8 ]=24 ’ b0 ;

f i e l d
{

name=” i n t r s t s ” ;
desc =””;

AccessType = ”RW” ; // hardware a c c e s s a b i l i t y
} i n t r s t s [ 7 : 0 ] = 8 ’ b0110 ;

} ;
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reg IMR def
{

name=”IMR” ;
desc =””;
regwidth =32; // type numeric
f i e l d
{

name=”RSVD1” ;
desc =””;
AccessType = ”RW” ; // hardware a c c e s s a b i l i t y

}RSVD1[31 : 4 ]=28 ’ b0 ;
f i e l d
{

name=”i n t 3 ” ;
desc=”i n t e r r u p t 3 mask b i t ” ;
AccessType = ”RW” ; // hardware a c c e s s a b i l i t y

} i n t 3 [ 3 : 3 ] = 1 ’ b0 ;
f i e l d
{

name=”i n t 2 ” ;
desc=”i n t e r r u p t 2 mask b i t ” ;
AccessType = ”RW” ; // hardware a c c e s s a b i l i t y

} i n t 2 [ 2 : 2 ] = 1 ’ b0 ;
f i e l d
{

name=”i n t 1 ” ;
desc=”i n t e r r u p t 1 mask b i t ” ;
AccessType = ”RW”;// hardware a c c e s s a b i l i t y

} i n t 1 [ 1 : 1 ] = 1 ’ b1 ;
f i e l d
{

name=”i n t 0 ” ;
desc=”i n t e r r u p t 0 mask b i t ” ;
AccessType = ”RW” ; // hardware a c c e s s a b i l i t y

} i n t 0 [ 0 : 0 ] = 1 ’ b1 ;
} ;
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B.5 RAL Files

Output of software tool consist of SV class files, one for each RDL file and one
for top rdl. Along with RAL files it also generates monitor, which can be used
for updating RAL using predictor if one has specified backdoor path to all regis-
ters. In this example we haven’t considered backdoor access. Out put is as follow:
my exoutput:
outputovmI2C reg file regs.svh
outputovmacv reg file regs.svh
outputovmspi reg file regs.svh
outputovmtop addrmap ral env.svh
outputovmtop addrmap ral rtl monitor.svh

For environment, systemverilog and ovm related other resources, one can refer
([4], [5] and [7]).


