
⁕⁺₀ⁱ⁾₀⁵₂ⁱ  ⁱ₀‹₀⁻⁼ ⁎⁻₄⁆  ⁻₀₃⁾ⁱ
⁕⁺₀ⁱ⁾₀⁵⁻⁺ ⁺⁰ ⁸⁵⁰₀⁵⁻⁺

⁙⁶⁻⁾ ⁜⁾⁻⁶ⁱ₀ ⁞ⁱ⁼⁻⁾₀

 ₁⁹⁵₀₀ⁱ⁰ ⁵⁺ ⁼⁾₀⁵⁸ ₁⁸Π⁸⁸⁹ⁱ⁺₀ ⁻ ₀⁴ⁱ ⁾ⁱ⁽₁⁵⁾ⁱ⁹ⁱ⁺₀ⁿ

⁻⁾ ₀⁴ⁱ ⁰ⁱ⁾ⁱⁱ ⁻

⁙ⁿ₀ⁱ⁾ ⁻ ⁱ⁴⁺⁻⁸⁻₅
⁵⁺

⁑⁸ⁱ₀⁾⁻⁺⁵ⁿ ′ ⁏⁻⁹⁹₁⁺⁵₀⁵⁻⁺ ⁑⁺⁵⁺ⁱⁱ⁾⁵⁺

‴⁑⁹ⁱ⁰⁰ⁱ⁰  ₅ⁿ₀ⁱ⁹ⁿ‵

By

⁍⁴₅ ⁙⁴ⁱ₀
‴‽‿⁙⁑⁏⁑‾⁁‵

⁑⁸ⁱ₀⁾⁻⁺⁵ⁿ ′ ⁏⁻⁹⁹₁⁺⁵₀⁵⁻⁺ ⁑⁺⁵⁺ⁱⁱ⁾⁵⁺ ⁎⁾⁺⁴
⁑⁸ⁱ₀⁾⁵⁸ ⁑⁺⁵⁺ⁱⁱ⁾⁵⁺ ⁐ⁱ⁼⁾₀⁹ⁱ⁺₀

⁕⁺ⁿ₀⁵₀₁₀ⁱ ⁻ ⁱ⁴⁺⁻⁸⁻₅
⁚⁵⁾⁹ ⁺⁵₂ⁱ⁾ⁿ⁵₀₅

⁍⁴⁹ⁱ⁰⁰‹‿⁄‾ ⁀⁄‽
⁙₅ ‾‼‽⁁

⁕⁺₀ⁱ⁾₀⁵₂ⁱ  ⁱ₀‹₀⁻⁼ ⁎⁻₄⁆  ⁻₀₃⁾ⁱ
⁕⁺₀ⁱ⁾₀⁵⁻⁺ ⁺⁰ ⁸⁵⁰₀⁵⁻⁺

⁙⁶⁻⁾ ⁜⁾⁻⁶ⁱ₀ ⁞ⁱ⁼⁻⁾₀

 ₁⁹⁵₀₀ⁱ⁰ ⁵⁺ ⁼⁾₀⁵⁸ ₁⁸Π⁸⁸⁹ⁱ⁺₀ ⁻ ₀⁴ⁱ ⁾ⁱ⁽₁⁵⁾ⁱ⁹ⁱ⁺₀ⁿ

⁻⁾ ₀⁴ⁱ ⁰ⁱ⁾ⁱⁱ ⁻

⁙ⁿ₀ⁱ⁾ ⁻ ⁱ⁴⁺⁻⁸⁻₅
⁵⁺

⁑⁸ⁱ₀⁾⁻⁺⁵ⁿ ′ ⁏⁻⁹⁹₁⁺⁵₀⁵⁻⁺ ⁑⁺⁵⁺ⁱⁱ⁾⁵⁺

‴⁑⁹ⁱ⁰⁰ⁱ⁰  ₅ⁿ₀ⁱ⁹ⁿ‵

By

⁍⁴₅ ⁙⁴ⁱ₀

‴‽‿⁙⁑⁏⁑‾⁁‵

Under the guidance of

⁑₄₀ⁱ⁾⁺⁸ ⁜⁾⁻⁶ⁱ₀ ⁓₁⁵⁰ⁱ⁆ ⁕⁺₀ⁱ⁾⁺⁸ ⁜⁾⁻⁶ⁱ₀ ⁓₁⁵⁰ⁱ⁆

⁙⁾› ⁵⁴₂ ⁜₀⁴⁷ ⁜⁾⁻› ⁻ⁱⁿ⁴ ⁾⁵₂ⁱ⁰⁵
Senior Project Manager, EC Department,
ST Microelectronics Pvt. Ltd., Institute of Technology,
Greater Noida. Nirma University, Ahmedabad.

⁑⁸ⁱ₀⁾⁻⁺⁵ⁿ ′ ⁏⁻⁹⁹₁⁺⁵₀⁵⁻⁺ ⁑⁺⁵⁺ⁱⁱ⁾⁵⁺ ⁎⁾⁺⁴
⁑⁸ⁱ₀⁾⁵⁸ ⁑⁺⁵⁺ⁱⁱ⁾⁵⁺ ⁐ⁱ⁼⁾₀⁹ⁱ⁺₀

⁕⁺ⁿ₀⁵₀₁₀ⁱ ⁻ ⁱ⁴⁺⁻⁸⁻₅
⁚⁵⁾⁹ ⁺⁵₂ⁱ⁾ⁿ⁵₀₅

⁍⁴⁹ⁱ⁰⁰‹‿⁄‾ ⁀⁄‽
⁙₅ ‾‼‽⁁

⁐ⁱ⁸⁾₀⁵⁻⁺

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-
nology in Embedded Systems at Nirma University and has not been submitted
elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

‹ ⁍⁴₅ ⁙⁴ⁱ₀

i

⁏⁑⁞⁕⁒⁕⁏⁍⁑

This is to certify that the Major Project entitled “⁕⁺₀ⁱ⁾₀⁵₂ⁱ  ⁱ₀‹₀⁻⁼ ⁎⁻₄⁆
 ⁻₀₃⁾ⁱ ⁕⁺₀ⁱ⁾₀⁵⁻⁺ ⁺⁰ ⁸⁵⁰₀⁵⁻⁺” submitted by ⁙⁴ⁱ₀ ⁍⁴₅ ⁙›
‴‽‿⁙⁑⁏⁑‾⁁‵, towards the partial fulfillment of the requirements for the degree of
“⁙ⁿ₀ⁱ⁾ ⁻ ⁱ⁴⁺⁻⁸⁻₅” ⁵⁺ “⁑⁹ⁱ⁰⁰ⁱ⁰  ₅ⁿ₀ⁱ⁹ⁿ” of ⁚⁵⁾⁹ ⁺⁵₂ⁱ⁾ⁿ⁵₀₅ ⁻
 ⁵ⁱ⁺ⁱ ′ ⁱ⁴⁺⁻⁸⁻₅‸ ⁍⁴⁹ⁱ⁰⁰ is the record of work carried out by him
under our supervision and guidance. In my opinion, the submitted work has reached
a level required for being accepted for the examination. The results embodied in
this major project, to the best of our knowledge, haven’t been submitted to any
other university or institution for award of any degree or diploma.

⁐₀ⁱ⁆ ⁜⁸ⁱ⁆ ⁍⁴⁹ⁱ⁰⁰

⁕⁺₀ⁱ⁾⁺⁸ ⁓₁⁵⁰ⁱ⁆ ⁜⁓ ⁏⁻‹⁻⁾⁰⁵⁺₀⁻⁾

Prof. Yogesh Trivedi Dr. Nagendra Gajjar
Sr. Associate Professor Embedded Systems
Nirma University Nirma University

⁐⁵⁾ⁱ₀⁻⁾⁆ ⁔⁛⁐⁆

Dr. K. Kotecha Dr. P. N. Tekwani
Director, IT-NU Head of EE Dept.

ii

⁏ⁱ⁾₀⁵Π₀ⁱ

This is to certify that the Major Project entitled “⁕⁺₀ⁱ⁾₀⁵₂ⁱ  ⁱ₀‹₀⁻⁼ ⁎⁻₄⁆  ⁻₀‹
₃⁾ⁱ ⁕⁺₀ⁱ⁾₀⁵⁻⁺ ⁺⁰ ⁸⁵⁰₀⁵⁻⁺” submitted by ⁍⁴₅⁙⁴ⁱ₀‴‽‿⁙⁑⁏⁑‾⁁‵,
towards the partial fulfillment of the requirements for the degree of Master of Tech-
nology in Embedded Systems, Nirma University, Ahmedabad is the record of work
carried out by him under our supervision and guidance. In our opinion, the submit-
ted work has reached a level required for being accepted for examination.

Mr. Vaibhav Pathak
Senior Project Manager

ST Microelectronics Pvt. LTD
Greater Noida

iii

⁍⁷⁺⁻₃⁸ⁱ⁰ⁱ⁹ⁱ⁺₀ⁿ

I would like to express my gratitude and sincere thanks to ⁐⁾› ⁜›⁚›ⁱ⁷₃⁺⁵,
Head of Electrical Engineering Department, and ⁐⁾› ⁚›⁜›⁓⁶⁶⁾, PG Coordina-
tor of M.Tech Embedded Systems program for allowing me to undertake this thesis
work and for his guidelines during the review process.

I take this opportunity to express my profound gratitude and deep regards to
⁜⁾⁻›⁻ⁱⁿ⁴ ⁾⁵₂ⁱ⁰⁵, guide of my major project for his exemplary guidance, mon-
itoring and constant encouragement throughout the course of this thesis. The bless-
ing, help and guidance given by him time to time shall carry me a long way in the
journey of life on which I am about to embark.

I would take this opportunity to express a deep sense of gratitude to Project
Manager ⁙⁾› ⁵⁴₂ ⁜₀⁴⁷ ,Senior Project Manager, ST Microelectronics
Pvt Ltd. for his cordial support, constant supervision as well as for providing valu-
able information regarding the project and guidance, which helped me in completing
this task through various stages.

I would also thank to ⁙⁾›⁙⁺⁵ⁿ⁴  ⁴⁾⁹,my Project Mentor for always help-
ing,give good suggestions and solving my doubts and guide me to complete my
project in better way.

I am obliged to ⁜⁾ⁱⁱ₀⁵ ⁱ⁾⁹ staff member of ISTB team, ST Microelectronics
Pvt. Ltd. for the valuable information provided by her in her respective fields. I
am grateful for her cooperation during the period of my assignment.

Lastly, I thank almighty, my parents, brother, sisters and friends for their con-
stant encouragement without which this assignment would not be possible.

‹ ⁍⁴₅ ⁙⁴ⁱ₀
‽‿⁙⁑⁏⁑‾⁁

iv

⁍ⁿ₀⁾₀

In recent years with advent of digital era, technologies like Digital Television,
Internet, Local Area Network, IP telephony have evolved the concept of Digital
Home. Interactive set-top box, also called Headed Gateway fulfills need of residen-
tial gateway, digital set-top box and telephony as a Complete Solution. Here in
this thesis such a Home gateway system is presented which has residential gateway
with IP telephony as Front End and Digital set-top box as Back End. Gateway is
cable modem based device (Euro-DOCSIS) which is dual CPU architecture, Cable
modem and ARM core. Digital set-top box has all audio/video decoding capabili-
ties. Both are self-sufficient and independent enough. This whole system has Linux
based operating system with kernel 3.10.

This thesis includes integration and full software system validation of Interactive
Set-top box (ISTB). Integration over here means to unite together various software
components along with kernel, with valid release and build complete software of
ISTB. Full system software validation is process of being assured that product is
meeting specified requirements. Thus ISTB software validation means to check func-
tionalities like Linear TV use case, Local Media Playback, Data Browsing, etc.

Sanity testing is a type of software validation process which is performed after
verification of software and assures previous bugs are resolved and working fun-
cionality is not broken. Software integration of ISTB is similar to sanity testing
where software components with new releases are integrated and get surity of so-
lution of previous limitations. Full system validation is post sanity process where
when a full system performance is validated with all specified requirements i.e. use
cases related to ISTB.

ISTB use cases are classifies as:

∙ Functional
∙ Parallel
∙ Stress
∙ Robustness

Full system software validation is burdensome, time consuming and more prone
to human error. Automation of such testing using Python and XML language makes
validation process efficient and less complex.

v

⁏⁻⁹⁼⁺₅ ⁜⁾⁻Π⁸ⁱ

⁛⁞⁓⁍⁚⁕ ⁍⁕⁛⁚ ⁜⁞⁛⁒⁕⁘⁑⁆

STMicroelectronics is the worlds fifth largest semiconductor company with net rev-
enues of US$8.51 billion in 2009. Offering one the industrys broadcast product port-
folios, ST serves customers across the spectrum of electronics applications with in-
novative semiconductor solutions by leveraging its vast array of technologies, design
expertise and combination of intellectual property portfolio, strategic partnerships
and manufacturing strength. STMicroelectronics was created in 1987 by the merger
of SGS Microelectronic of Italy and Thomson Semiconductors of France with the aim
of becoming a world leader in the sub-micron area. The new company pursued on
aggressive growth strategy, investing heavily in R&D, forging strategic alliances with
blue-chip customers and academia, building up an integrated presence in major eco-
nomic regions, and honing one of the worlds most efficient manufacturing operations.

According to the latest industry data, ST is the worlds fifth largest semiconductor
company with market leadership in many fields. For example, ST is the leading
producer of application-specific analog chips and power conversion devices. It is
also the #1 supplier of semiconductors for the Industrial market and for set-top-box
applications, and occupies leading positions in fields as varied as discrete devices,
camera modules for mobile phones and automotive integrated circuits.

⁏⁛⁞⁜⁛⁞⁍⁑ ⁞⁑ ⁜⁛⁚ ⁕⁎⁕⁘⁕⁆

STMicroelectronics was one of the first global industrial companies to recognize
the importance of environmental responsibility and, over the past 15 years, the
Companys sites have received more than 100 awards for excellence in all areas of
Corporate Responsibility, from quality to corporate governance, social issues and
environmental protection. The Companys corporate responsibility policy is detailed
in its Principles for Sustainable Excellence.

⁜⁞⁛⁐⁏ ⁜⁛⁞⁒⁛⁘⁕⁛⁆

ST offers one of the worlds broadest product ranges, with over 3,000 main types of
products. The carefully balanced portfolio includes both application-specific prod-
ucts containing a large proprietary IP content and multi-segment products that

vi

range from discrete devices to high-performance microcontrollers. St pioneered and
continues to refine the use of platform-based design methodologies for complex ICs
in demanding applications such as set-top-boxes, secure smart cards and mobile
multimedia, which minimizes development time and cost. The balanced portfolio
approach allows ST to address the needs of all microelectronics users, from global
strategic customers for whom ST is the partner of choice for major System-on-chip
(SoC) projects to local enterprises that need fully-supported general-purpose devices.

⁙⁍⁚⁒⁍⁏⁞⁕⁚⁓ ⁙⁍⁏⁔⁕⁚⁑⁆

To provide its customers with an independent, secure a cost-effective manufac-
turing machine, ST operates a worldwide network of front-end (wafer fabrication)
and back-end (assembly and test and packaging) plants. STs principal wafer tabs
are presently located in Agrate Brianza and Catania (Italy), Crolles, rousset and
Tours (France), and Singapore. The wafer tabs are complemented by world-class
assembly-and-test facilities located in China, Malaysia, Malta, Morocco and Singa-
pore.

⁞⁑ ⁑⁍⁞⁔ ⁍⁚⁐ ⁐⁑⁑⁘⁛⁜⁙⁑⁚⁆

Since its creation, ST has maintained an unwavering commitment to R&D and in
2009 it spent US$2.37 billion I n R&D, which is approximately 28% of its rev-
enue, and includes the R&D activities related to ST Ericsson, as consolidated by St.
Among the industrys most innovative companies ST draws on a rich pool of chip
fabrication technologies, including advanced CMOS (Complementary Metal Oxide
Semiconductor), mixed-signal, analog and power processes, and is a partner in the
International Semiconductor Development Alliance (ISDA) for the development of
next-generation CMOS technologies.

⁔⁑ ⁗⁚⁛⁘⁑⁐⁓⁑ ⁚⁑⁛⁞⁗⁆

ST has developed a worldwide network k of strategic alliances, including product
development with key customers, technology development with customers and other
semiconductor manufacturers, and equipment-and Cad-development alliances with
major suppliers. These industrial partnerships are complemented by a wide range
of research programs conducted with leading universities and research institutes
around the world. By augmenting its rich portfolio of proprietary technologies and
core competencies with complementary expertise from a variety of carefully chosen
strategic partners, ST has developed an unsurpassed capability to offer leading-edge
solutions to consumers in all segments of the electronics industry.

Many of STs research and development programs are managed by its AST (Ad-
vanced System Technology) organization, whose mission is to develop the strategic

vii

system knowledge that will be required within 3-5 years by Sts product divisions.
Among ASTs significant recent achievements are innovative technologies for digital
consumer, networking, mobile security, and on-chip interconnect.

  ⁍⁕⁚⁍⁎⁘⁑ ⁑⁏⁑⁘⁘⁑⁚⁏⁑⁆

STs technical, marketing, and manufacturing strengths are matched and further
enhanced by au unswerving commitment to Sustainable excellence that has earned
prestigious awards around the world. Since 1991, the Companys sites have received
more than 70 awards for excellence in all areas of Corporate Responsibility, from
quality to corporate governance, social issues a d environmental protection.

STs commitment to environmental responsibility has resulted in substantial reduc-
tions over the years in the consumption of energy, water, paper, and hazardous
chemicals, increased recycling of waste products and a significant cut in greenhouse-
gas emissions. St has constantly pushed the boundaries of excellence in Corporate
Responsibility, achieving outstanding performance in key areas such as occupational
health and safety- including the certification of 16 manufacturing sites and 4 non-
manufacturing sites to the international standard OHSAS 18001; the application
of low-power technology to its wad e product range; an bridging the digital divide
through the Digital Unify Program, led by the STMicroelectronics Foundation.

⁒⁍⁏  ⁍⁚⁐ ⁒⁕⁓⁞⁑ ⁆

The group totals approximately 50,000 employees, 16 advanced research and devel-
opment units, 39 design and application centers, 17 main manufacturing sites and
78 sales offices in 36 countries. Corporate Headquarters, as well as the head quarters
for Europe and for Engineering Markets, are in Geneva. The Companys U.S. Head-
quarters are in Carrollton (Texas); those for Asia-Pacific are based in Singapore and
Japanese operations are headquarters in Tokyo. The recently- established Greater
China region, which includes Hong Kong, China and Taiwan, is head quartered in
Shanghai.

The Company now has around 900 million outstanding shares, 72.4% of which are
publicly traded on the various stock exchanges. The balance of the shares is held by
STMicroelectronics Holding II B.V., a company whose shareholders are CassiaDe-
posite Prestiti and Finmeccanica of Italy, and Areva of France.

viii

⁏⁻⁺₀ⁱ⁺₀ⁿ

⁐ⁱ⁸⁾₀⁵⁻⁺ ⁵

⁏ⁱ⁾₀⁵Π₀ⁱ ⁵⁵

⁏ⁱ⁾₀⁵Π₀ⁱ ⁵⁵⁵

⁍⁷⁺⁻₃⁸ⁱ⁰ⁱ⁹ⁱ⁺₀ⁿ ⁵₂

⁍ⁿ₀⁾₀ ₂

⁏⁻⁹⁼⁺₅ ⁜⁾⁻Π⁸ⁱ ₂⁵

⁘⁵ⁿ₀ ⁻ ⁒⁵₁⁾ⁱⁿ ₄⁵

⁘⁵ⁿ₀ ⁻ ⁸ⁱⁿ ₄⁵⁵

⁍⁾⁻⁺₅⁹ⁿ ₄⁵⁵⁵

‽ ⁕⁺₀⁾⁻⁰₁₀⁵⁻⁺ ‽
1.1 Motivation . 1
1.2 Thesis Objective . 2
1.3 Thesis Structure . 3

‾  ₅ⁿ₀ⁱ⁹ ⁍⁾⁴⁵₀ⁱ₀₁⁾ⁱ ⁀
2.1 Hardware Architecture . 5

2.1.1 Gateway . 5
2.1.2 Set-top Box . 7

2.2 Software Architecture . 11
2.2.1 KernelSpace . 11
2.2.2 UserSpace . 14

‿ ⁕⁺₀⁾⁻⁰₁₀⁵⁻⁺ ₀⁻ ⁐⁛⁏ ⁕  ‽⁂
3.1 Reference Model . 17
3.2 Ranging & Registration . 21

ix

⁀ ⁙⁜⁑⁓  ₀⁾ⁱ⁹ⁿ ‾⁀
4.1 Introduction . 24
4.2 Multiplexed MPEG . 25

4.2.1 MPEG Transport Streams . 26
4.2.2 Types of the MPEG-TS . 27
4.2.3 Single and Multiple Program Transport Streams 27

⁁ ⁱ⁾ⁿ⁵⁻⁺ ⁏⁻⁺₀⁾⁻⁸  ₅ⁿ₀ⁱ⁹ ‾⁅
5.1 Repo Tool . 30
5.2 Git . 31

⁂ ⁱⁿ₀⁵⁺ ‿⁁
6.1 Software Testing Methods . 36

6.1.1 Black Box Testing . 36
6.1.2 White Box Testing . 36
6.1.3 Grey Box Testing . 36

6.2 Types of Testing . 37
6.3 Sanity testing & Smoke testing . 38
6.4 Test Case . 39
6.5 Patch . 40

⁃ ⁘⁵⁺₁₄ ⁺⁰ ⁔⁾⁰₃⁾ⁱ ⁑⁺₂⁵⁾⁻⁺⁹ⁱ⁺₀  ⁱ₀₁⁼ ⁀‾
7.1 Linux Environment Setup . 42

7.1.1 ssh Key Generation . 42
7.1.2 Build Process . 43
7.1.3 Set IP Address to download the object 43
7.1.4 Test Execution . 44
7.1.5 SDK2 Environment . 45

7.2 Hardware Setup . 46

⁄  ⁻₀₃⁾ⁱ  ₅ⁿ₀ⁱ⁹ ⁕⁺₀ⁱ⁾₀⁵⁻⁺ ′ ⁸⁵⁰₀⁵⁻⁺ ⁀⁄
8.1 Software Integration . 48
8.2 Software System Validation . 50
8.3 Prerequisite . 51
8.4 Manual Execution . 52
8.5 Automation of System testing . 55

⁏⁻⁺⁸₁ⁿ⁵⁻⁺ ⁂‼

⁞ⁱⁱ⁾ⁱ⁺ⁱⁿ ⁂‽

x

⁘⁵ⁿ₀ ⁻ ⁒⁵₁⁾ⁱⁿ

2.1 ISTB System Architecture . 5
2.2 Gateway Hardware . 6
2.3 Various hardware components inside an STB 7
2.4 ST Micro Connect . 9
2.5 JTAG . 10
2.6 Stack View of ISTB Software . 11
2.7 Classified view of ISTB software . 12

3.1 Reference Model . 18
3.2 Downstream Packet Structure . 19
3.3 Upstream Packet Structure . 20
3.4 CM Ranging and Registration . 22

4.1 MPEG Streams . 26
4.2 Transport Stream Packet Format . 26
4.3 Transport Stream Format . 27
4.4 Multi Program Transport Stream . 28

5.1 Stored as change in each file . 32
5.2 Snapshots over the time are stored 32
5.3 The Three States . 33

6.1 Smoke v/s Sanity testing . 39

7.1 Hardware Setup . 46

8.1 Software Development process . 48
8.2 Linear TV use case . 52
8.3 ZAP use case . 53
8.4 Local Media PlayBack use case . 54
8.5 Digital Video Recording . 54
8.6 TestFramework files . 56
8.7 Results for Sanity testing . 58
8.8 Results for MediaPlayer testing . 59

xi

⁘⁵ⁿ₀ ⁻ ⁸ⁱⁿ

3.1 Upstream-Downstream Parameters 20

8.1 Verdict Description . 58

xii

⁍⁾⁻⁺₅⁹ⁿ

API . Application Programming Interface

ADSL . Asymmetric digital subscriber line

BE . Back End

BER . Bit Error Rate

CA . Conditional Access

CEL .Cable Europe Labs

DVB . Digital Video Broadcasting

DVR . Digital Video Recording

DVD . Digital Versatile Disc

ECL . EuroCableLabs

ES . Elementary Stream

FE .Front end

FEC . Forward Error Correction

GW .Gateway

HDMI . High Definition Multimedia Interface

HFC .Hybrid Fiber Coax

I2C . Inter-Integrated Circuit

IR . Infra-Red

ISTB . Interactive Set-top Box

ISO . International Standards Organization

JTAG . Joint Test Action Group

MPEG . Moving Picture Experts Group

MPTS . Multi Program Transport Stream

MSPS . Mega Symbols Per Seconds

NIM .Network Interface Module

OS . Operating System

PES . Packetized Elementary Stream

xiii

PID . Packet Identifier

PS . Program Stream

PSI .Program-specific Information

PSTN .Public switched telephone network

RTOS . Real Time Operating System

SoC . System on Chip

SPI . Serial Peripheral Interface

SPTS . Single Program Transport Stream

SSH . Secure Shell

STMC . ST Micro Connect

TS .Transport Stream

UART . Universal Asynchronous Receiver/Transmitter

USB . Universal serial bus

VCS . Version Control System

xiv

⁏⁴⁼₀ⁱ⁾ ‽

⁕⁺₀⁾⁻⁰₁₀⁵⁻⁺

‽›‽ ⁙⁻₀⁵₂₀⁵⁻⁺

Electronic products have become living requirement of men kind. Such as television

has become such vital part of home in modern world that it is hard to imagine life

without television. Television has emerged from analog to digital & mono color to

Ultra High Definition. Definition of  ⁱ₀‹₀⁻⁼ ⁎⁻₄ can be given as a digital appliance

which contains tuner as input and output is displayed on connected Television and

converting source signal into such a form that can be presented on television screen.

A ₀ⁱ₃₅ is:

∙ Gateway is a proxy server or router that creates a bridge between two networks

∙ Gateway Rule - Connected client and Gateway must be in same subnet

In modern era a  ⁱ₀‹₀⁻⁼ ⁻₄ and ⁓₀ⁱ₃₅ (generally called modem) are most

common home entertainment electronics product found. So instead of having two

different electronic products, a ⁻⁹⁼⁸ⁱ₀ⁱ ⁿ⁻⁸₁₀⁵⁻⁺ would be a smarter move. This

complete solution is Interactive Set-top Box(⁕ ⁎).

1

⁏⁔⁍⁜⁑⁞ ‽› ⁕⁚⁞⁛⁐⁏⁕⁛⁚ 2

ISTB gives user the flexibility of interaction with two Worlds (TS based Linear TV

and Internet-based Operator Services). It is having a gateway along with IP tele-

phony in Front-end(FE) and Set-top box capabilities in Back-end(BE). Both are

self-reliant and independent. Thus it gives a smart unification of two most common

home entertainment gadgets.

⁸⁵⁰₀⁵⁻⁺ process with respect to software project management can be defined

as process of analyzing that software product or system delivers the result which is

fulfilling all specified requirements and purposes. It might be broached as ⁿ⁻₀₃⁾ⁱ

⁽₁⁸⁵₀₅ ⁻⁺₀⁾⁻⁸.

‽›‾ ⁴ⁱⁿ⁵ⁿ ⁛⁶ⁱ₀⁵₂ⁱ

Main aspiration of the thesis is Integration and Validation of software system of

Interactive Set-top Box,

∙ High level examination or checking of software product about meeting cus-

tomer’s requirement or specifications

Software validation is process of evaluation of software at the end of or during

development to find specified requirements are met or not.

Moreover validation process covers ratification of following use cases:

∙ Linear TV

∙ ZAP

∙ Trick Mode

∙ MediaPlayer

∙ Digital Video Recording(DVR)

∙ Data Browsing (Wired & Wireless)

⁏⁔⁍⁜⁑⁞ ‽› ⁕⁚⁞⁛⁐⁏⁕⁛⁚ 3

∙ Video Streaming

To write script for Sanity testing and System testing(explained later) in automated

environment.

‽›‿ ⁴ⁱⁿ⁵ⁿ  ₀⁾₁₀₁⁾ⁱ

Thesis structure is as follows. Chapter-2 introduces Interactive Set-top Box and ex-

plains both Hardware and Software architecture of ISTB. Chapter-3 explains DOC-

SIS protocol in depth. In chapter-4 a small description of MPEG stream is given

where MPEG transport stream and various containers are described. In Chapter-5,

a small explanation of version control in software development is given. Chapter-

6 gives brief idea of testing and software testing of ISTB, mainly sanity testing.

Chapter-7 deals with set up environment required for ISTB testing in both software

(Linux) and hardware. Chapter-8 gives in brief the process of software integration

and validation of ISTB system and the execution of ISTB sanity and system testing

in manual and automated environment.

⁏⁴⁼₀ⁱ⁾ ‾

 ₅ⁿ₀ⁱ⁹ ⁍⁾⁴⁵₀ⁱ₀₁⁾ⁱ

⁕⁺₀ⁱ⁾₀⁵₂ⁱ  ⁱ₀‹₀⁻⁼ ⁎⁻₄ is CM-CMTS based architecture, which provide a return

channel and Internet access from HFC network. This system is Data Over Cable

Service Interface Specification - DOCSIS 3.0 compliant. Full system is divided into

two parts.

∙ Gateway, code named as Alicante

∙ Set-top Box, code named as Cannes

Gateway as in front-end is based on Cable modem (CM) based device. All data com-

putation are done at gateway side. Set-top Box in back-end does all multimedia com-

putation. The system maintains total 16x4 channels meaning 16 downstream and

4 upstream channels, of which 8 downstream channel are allocated for video/audio,

8 channels for downstream data and 4 channels for upstream data. Cable Modem

Termination System (CMTS) as head-end is located in back bone where data from

CMTS and Digital Video Broadcasting (DVB) is merged and Muxed data comes

as an input at ISTB tuners.[8] ⁕ ⁎ system architecture is explained in figure-2.1.

Hardware and Software Architecture of ISTB is explained below.

4

⁏⁔⁍⁜⁑⁞ ‾›   ⁑⁙ ⁍⁞⁏⁔⁕⁑⁏⁞⁑ 5

Figure 2.1: ISTB System Architecture[1]

‾›‽ ⁔⁾⁰₃⁾ⁱ ⁍⁾⁴⁵₀ⁱ₀₁⁾ⁱ

‾›‽›‽ ⁓₀ⁱ₃₅

Gateway (Front end) here is Cable Modem based device which extracts row data

for Set-top Box (Back end) and Internet packets from Muxed input from CMTS.

Cable modem follows Euro-DOCSIS 3.0 specification. It is dual SoC IC which con-

tains ARM Cortex-A9 processor and ST-40, STMicroeclectronics solution as Cable

Modem.

₁⁺ⁱ⁾ : The very first module that incoming RF streams deal with is tuner. Re-

quested data is extracted according to the tuning.

⁜⁻₃ⁱ⁾  ₁⁼⁼⁸₅ : Requirement to run various hardware components and peripher-

als is satisfies by power supply. In case of satellite feed device power mechanised

antennae might be used to get allignment in different directions.

⁏⁔⁍⁜⁑⁞ ‾›   ⁑⁙ ⁍⁞⁏⁔⁕⁑⁏⁞⁑ 6

Figure 2.2: Gateway Hardware[1]

⁏⁜ : As shown in figure-2.2 ARM Cortex A9 is central processor or host proces-

sor. Here dual core processor is used. ARM Cortex A9 is used for low power and

cost-sensitive devices. It is designed around dual-issue suparscalar and out-of order

dynamic length pipeline (8-11 stages). It’s micro-architecture supports 16, 32 or

64KB four way associative L1 caches, with an optional L2 cache providing up to

8MB of cached memory. Working frequency is around 800 MHz as maximum with

voltage overdrive. 128 MB DDR3 RAM is connected with it.

⁏⁸ⁱ ⁙⁻⁰ⁱ⁹ : ST-40, STMicroelectronics solution is used as Cable Modem which

is Euro-DOCSIS 3.0 compliant. CM as a terminal device handles the transition be-

tween TS packet and IP datagram. Initiation of TS packet happens at output port

of CMTS which travels through HFC network and termination happens at inout of

CM. CM provides two way connectivity between System and server. It supports

Quadrature Amplitude Modulation (QAM).

⁏⁔⁍⁜⁑⁞ ‾›   ⁑⁙ ⁍⁞⁏⁔⁕⁑⁏⁞⁑ 7

⁜ⁱ⁾⁵⁼⁴ⁱ⁾⁸ⁿ : Supplementary components other than CPU, many peripheral de-

vices are supported by ISTB providing additional features.

 ⁎⁆ To store recorded media into externel device

 ⁍⁍⁆ Same purpose as USB but with higher data transfer speed

⁑₀⁴ⁱ⁾⁺ⁱ₀⁆ For data browsing for connected client

⁍⁞⁆ To capture debug prints

⁕‾⁏⁆ Main CPU uses this to talk with peripherals like front end, display controllers.

 ⁜⁕⁆ Used to connect not-volatile memory

‾›‽›‾  ⁱ₀‹₀⁻⁼ ⁎⁻₄

Hardware components of Set-top Box are[2]:

Figure 2.3: Various hardware components inside an STB[2]

⁒⁾⁻⁺₀ ⁜⁺ⁱ⁸ : It is hardware peripheral device which contains a micro-controller

which acts as co-processor and mediocre between CPU and user input. An in-

frared(IR) receiver continuously listens to remote control. It is situated at outer

frame of box that connects some input buttons.

⁏⁔⁍⁜⁑⁞ ‾›   ⁑⁙ ⁍⁞⁏⁔⁕⁑⁏⁞⁑ 8

⁒⁾⁻⁺₀ ⁱ⁺⁰ : It is made up of tuners which tunes to particular channel and demod-

ulator which converts RF signal and feeds to decoders in form of transport stream.

Technically it is also termed as Network Interface Module (NIM).

⁍ ⁐⁵⁵₀⁸ ⁐ⁱ⁻⁰ⁱ⁾ : Output of front end more specifically of demodulator is re-

ceived by digital decoder. This input is further demultiplexed and decompressed.

The task of the demultiplexer is to separate all streams packaged together. This

streams contain video, audio and specified data like Program Specific Information

(PSI) tables. MPEG-2 or MPEG-4 format is then achieved by performing decom-

pression by the decoder. Further processing on set of data is done by CPU now like

graphical and memory operations.

⁏⁜ : It is ARM based CPU same as used in Gateway. Linux based RTOS runs

on this PC and it handles all peripherals.

⁐⁵⁵₀⁸  ₀⁻⁾ⁱ : It is suppliment or optional component inside ISTB. Necessity

of storage is for steady storage of all kind of data. Its communication with CPU is

controlled by device drivers of RTOS modules.

⁏⁍ ⁙⁻⁰₁⁸ⁱ : It is categorized under most important component of ISTB. Virtu-

ally it is lifeline for all solution providers. It is also known as Integrated Conditional

Access Module (ICAM). Placement of this module is done just before the demulti-

plexer so that encrypted signal can easily be descrambled. There exists an interface

for smart card to provide security feature.

 ⁹⁾₀ ⁏⁾⁰  ⁸⁻₀ : Conditional Access implementation is done using this slot to

use smart card. Each card stores unique subscriber ID. It also used in decrypting

the channels.

⁏⁔⁍⁜⁑⁞ ‾›   ⁑⁙ ⁍⁞⁏⁔⁕⁑⁏⁞⁑ 9

⁓⁾⁼⁴⁵ⁿ ⁑⁺⁵⁺ⁱ : It is most powerfull co-processor which is dedicated for accel-

eration of graphics. Purpose of this component is to provide Graphical User In-

terface(GUI) to customer. After introduction of 3-D menus, this components have

evolved more and has become an essential component for ISTB.

⁞ⁱ₀₁⁾⁺ ⁜₀⁴ : Here in case of cable modem based device this provides path to

communicate with head end. This is helpful in case where customer wants to buy

PPV (Pay Per View) directly using credit cards.

⁔⁾⁰₃⁾ⁱ  ⁱ₀ ₁⁼ ⁏⁻⁹⁼⁻⁺ⁱ⁺₀ⁿ

  ⁙⁵⁾⁻ ⁏⁻⁺⁺ⁱ₀ : It is used to load compiled image of kernel in host machine

to the SoC of development board. It is intermediary device which connects JTAG

interface of target board with host PC and gives facility to host PC to boot target

board, to download image into target board. The installation and usage of Micro-

connect is easy. The package supplies software utilities and firmware containg target

packs for particular development boards.

Figure 2.4: ST Micro Connect[1]

⁏⁔⁍⁜⁑⁞ ‾›   ⁑⁙ ⁍⁞⁏⁔⁕⁑⁏⁞⁑ 10

⁍⁞ : Debug information is obtained via serial communication between target

board and host machine using UART.

⁖⁍⁓: This intermediary medium gives ease to load kernel image into development

board.

Figure 2.5: JTAG[1]

⁏⁔⁍⁜⁑⁞ ‾›   ⁑⁙ ⁍⁞⁏⁔⁕⁑⁏⁞⁑ 11

‾›‾  ⁻₀₃⁾ⁱ ⁍⁾⁴⁵₀ⁱ₀₁⁾ⁱ

ISTB software is divided into two parts as shown in figure-2.6, userspace and ker-

nelspace. Kernelspace includes Linux kernel 3.10, all kernel modules & drivers de-

veloped by STMicroelectronics and open source community. Broad Classification of

ISTB software is shown in figure-2.7.

Figure 2.6: Stack View of ISTB Software

‾›‾›‽ ⁗ⁱ⁾⁺ⁱ⁸ ⁼ⁱ

KernelSpace as specified above is made up of Linux kernel and kernel modules. Linux

kernel here is kernel version 3.10 which is most widely used in embedded systems.

It is responsible for all process management, memory management and security. Of

many kernel modules developed by STMicroelectronics some are explained below:

⁏⁔⁍⁜⁑⁞ ‾›   ⁑⁙ ⁍⁞⁏⁔⁕⁑⁏⁞⁑ 12

Figure 2.7: Classified view of ISTB software

⁒⁾⁻⁺₀ⁱ⁺⁰ ⁑⁺⁵⁺ⁱ : The Frontend Engine (FE) component wraps all of the func-

tionalities performed by different digital, analog tuner/demod sources, and IP tuner

sources. The Frontend Engine is the top level component and it exposes different

objects. A demodulation object is a logical object inside the The Frontend Engine

component that represents different combinations of tuner and demod hardware

blocks. The demodulation object can tune to and demodulate all digital and analog

broadcast standards, such as DVB-S/T/C, DVB-S2/T2, ITU-T J83 B Annex A &

B (cable), etc. A common logical object type is used to exploit similarities between

different types of digital and analog RF sources. Different types of source objects

can be instantiated with different configuration parameters to support various use

cases. The demodulation objects are logical objects that demodulate an RF input

signal. Each demodulation object can either perform a digital demodulation or ana-

log demodulation or both, depending on the capability of each of the logical objects.

⁾⁺ⁿ⁼⁻⁾₀ ⁑⁺⁵⁺ⁱ : The Transport Engine (TE) provides functionality for the

processing of transport MPEG streams. Additional variants are provided to sup-

⁏⁔⁍⁜⁑⁞ ‾›   ⁑⁙ ⁍⁞⁏⁔⁕⁑⁏⁞⁑ 13

port operator differences. The Transport Engine exposes the functionality through

an API that is HW independent, meaning that the API does not expose any HW

specific control. All HW specific configurations are centralized and performed at

STKPI initialization. A default configuration is provided by the system that should

fit the majority of customer needs. However, changes to this default can be made

to suit exceptional use cases; a significant number of the APIs in this document are

only required to facilitate such exceptional use cases. Thus main task is to do PID

filtering of Transport stream via demuxing.

 ₀⁾ⁱ⁹⁵⁺ ⁑⁺⁵⁺ⁱ : The Streaming engine (SE) provides functionality both for

the decoding of streams of media data and rendering to a suitable device at the cor-

rect time and for encoding media data in real time for transmission of local storage.

The functions can be combined in order to enable real time transcoding of media

data.

⁐⁵ⁿ⁼⁸₅ ⁑⁺⁵⁺ⁱ : The Display Engine (DE) also called Video Backend (VIBE) is

responsible for displaying the video and audio content on HDMI which is given by

SE. There are mainly four objects of DE:

⁐ⁱ₂⁵ⁱⁿ: A device is an object owning all of the sibling objects. Most current

chipsets have only one single device, but there have been some chipsets like the

STi7200 that had two independent display blocks.

⁜⁸⁺ⁱ: A plane is an object managing a virtual or a real layer on which some

content can be displayed. This content can be a single color (in case of a background

plane) or a picture (in case of Graphic or Video plane).

⁛₁₀⁼₁₀: An output is an object managing the various types of video outputs

present on a chipset (HDMI, YPbPr, CVBS, etc.).

 ⁻₁⁾ⁱ: A source is an object representing a source of pictures. It can be a

single picture or a succession of pictures. Depending on the hardware constraints,

this source can be connected to one or more planes. The source will in fact feed all

⁏⁔⁍⁜⁑⁞ ‾›   ⁑⁙ ⁍⁞⁏⁔⁕⁑⁏⁞⁑ 14

the planes that are connected to it.

‾›‾›‾ ⁿⁱ⁾ ⁼ⁱ

UserSpace contains those componets which are directly not having privileged per-

missions like KernelSpace components. These components are as:

⁜⁏⁜⁐ : This is protocol developed by ST for communication between CM and CM

master. The main functionality of STPCPD driver is to transfer control command

between eCM and eSAFEs. STPCPD driver uses specific packet format to transfer

control commands according to PCPDv2 protocol.

ⁱ⁏⁙⁙ⁿ₀ⁱ⁾ : The main functionality of eCMMaster application is send/receive

control pcpd packets to/from eCM to guide eCM to start and come online. eCM-

Master is responsible for NVM exchange, and software download.

⁚⁙ (Non-Voletile Memory): The nvmdb library provides an API interface for

NVM access. Whenever the user seeks to retrieve data, the request will be sent to

the nvmdb library. nvmdb library manages all the NVM data. NVMdb will first try

to retrieve data from the local cache. Local cache is a memory area on the RAM

maintained by NVMdb library. It flushes this cache into the flash after a specific

time interval. This database include CM related data like MAC address of CM, CM

certificate, etc.

ⁱ⁞⁻₁₀ⁱ⁾ : The erouter is an (eSAFE) device, normally implemented in conjunction

with cable modem device. The erouter can also deployed without using the cable

modem entity. It can also function as a wireless router and performs the functions

of a router and includes the functions of a wireless access point.

⁏⁔⁍⁜⁑⁞ ‾›   ⁑⁙ ⁍⁞⁏⁔⁕⁑⁏⁞⁑ 15

⁓⁐ⁱ₂⁏⁻⁺₀⁾⁻⁸ : The main functionality of gwdevcontrol application is receive

events from eCMMaster application and to take actions when reset event is issued

from eCM to eCMMaster. gwdevcontrol directly communicates with eCMMaster.

ⁿ₀‹⁼⁼ⁿ : This module contains a gstreamer application using playbin2. This pro-

vides a Media Player, a Zapper and a Live Recorder. The GStreamer core module

is needed.

 ₃⁐₃⁏⁸⁵ⁱ⁺₀ : The main functionality of SW DwClient is to check the software

image availability of backend download the image, flash, and re transmit the frontend

images.

⁏⁴⁼₀ⁱ⁾ ‿

⁕⁺₀⁾⁻⁰₁₀⁵⁻⁺ ₀⁻ ⁐⁛⁏ ⁕ 

Introduction of cable data service to cable television subscribers is one of most suc-

cessful stories in history of internet. In few years Multiple system operators trans-

formed themselves from being providers of entertainment video into being most

popular providers of both entertainment and affordable, broadband data services in

North America and Europe. All credit goes to DOCSIS (Data Over Cable Service

Interface Specification). The first standard was developed by CableLabs in Mid

90’s in order to standardize IP traffic over North America and South America cable

networks. This standard was then adapted by European cable plants around 2000.

ISTB is EuroDOCSIS compliant so that further explanation is given in context of

EuroDOCSIS. Some important milestone in history of EuroDOCSIS is as:

In October 1999, decision was made among group of European cable operators to

create European version of DOCSIS specification. The main reason behind that was

that DOCSIS specification was the only mature specification available at that time.

Four months later they adapted DOCSIS by adding Annex N.

In may 2000, EuroDOCSIS certification board was founded. This board decides if

product went through certification process or not. The first certification was started

in June 2000. In 2004 EuroCableLabs (ECL) was founded which then turned into

16

⁏⁔⁍⁜⁑⁞ ‿› ⁕⁚⁞⁛⁐⁏⁕⁛⁚ ⁛ ⁐⁛⁏ ⁕  17

Cable Europe Labs (CEL). In 2014 cable Europe Labs has merged into CableLabs

as most European MSOs were now member of CableLabs.

Major goal of EuroDOCSIS is to create means of transporting data bidirectionally

across the existing Hybrid Fiber Coax (HFC) plant between subscriber devices and

the internet, at high speed. Various versions of EuroDOCSIS are explained as

below[10]:

∙ First version of EuroDOCSIS-1.0 was introduced in 1999 which was basic

principle architecture for communication between its two key components CM

and CMTS. Enhanced version of this as EuroDOCSIS-1.1 was released in

April-1999 after four months with enhanced Quality of Service and security

capabilities.

∙ EuroDOCSIS-2.0 was released in 2001 with enhanced upstream transmission

speed using advanced modulation techniques. In this version of EuroDOCSIS,

with QAM-64 single channel was able to transmit around 38Mbits/s and for

QAM-256 speed was 51Mbits/s.

∙ EuroDOCSIS-3.0, currently used standard, was released in 2006. Both up-

stream and downstream channel speed has increased in this version along with

support of IPv6.

∙ In October 2013, latest version 3.1 has been release with addition of OFDM

and advance error correction techniques. Commercial deployment of 3.1 will

start in 2016.

‿›‽ ⁞ⁱⁱ⁾ⁱ⁺ⁱ ⁙⁻⁰ⁱ⁸

Reference model is shown for data over cable architecture is shown in figure-3.1.

Layered Architecture. The architecture has two key components: Cable Modem

⁏⁔⁍⁜⁑⁞ ‿› ⁕⁚⁞⁛⁐⁏⁕⁛⁚ ⁛ ⁐⁛⁏ ⁕  18

& Cable Modem Terminating System which are connected to each other via HFC

network. The CMTS is connected to cable operator’s backbone which links Eu-

roDOCSIS system to the internet. Customers can access internet via their PC,

generally referred as Customer Premises Equipment, by connecting it to CM.

Figure 3.1: Reference Model

⁏⁙  : The CMTS is cable access device which is located at operator’s site. Its

main task is providing the connection between cable network and the data network

(backbone). The CMTS is built out of chassis where one or more linecards reside.

A linecard consists of :

∙ Modulator- to modulate the downstream signal (as many modulators as there

are downstream channels)

∙ Demodulator - to demodulate upstream channel (as many demodulators as

there are upstream channels)

∙ Network termination where data network ends

⁏⁔⁍⁜⁑⁞ ‿› ⁕⁚⁞⁛⁐⁏⁕⁛⁚ ⁛ ⁐⁛⁏ ⁕  19

One CMTS can, dependant from number of downstreams & upstreams, feed few

hundred to 10000 homes. There are two types of CMTS exist: bridged CMTS and

routed CMTS.

A ⁾⁵⁰ⁱ⁰ ⁏⁙  ”bridges” all traffic that goes through it. That means that it

does not modify the structure or content of MAC frame. When packet enters a

bridged CMTS, the CMTS regenerates the signal and checks physical address of

destination and forwards the new copy only to which address belongs. The bridged

CMTS has an IP address but this is only used for management purpose.

A ⁞⁻₁₀ⁱ⁰ ⁏⁙ ⁿ have access to network layer IP address and contains software

that enable them to determine which of several possible paths between those ad-

dresses is the best for particular transmission. Routed CMTSs will change source

and destination MAC addresses of the MAC header.

⁏⁙ [10]: Cable modem is a specific type of device which is used to provide bi-

directional data services to a customer’s end using DOCSIS protocol over cable

network. It acts as a gateway to home LAN which connects Customer Premises

equipment with Cable Modem Terminating System (CMTS) via cable operator net-

work.

Figure 3.2: Downstream Packet Structure

⁏⁔⁍⁜⁑⁞ ‿› ⁕⁚⁞⁛⁐⁏⁕⁛⁚ ⁛ ⁐⁛⁏ ⁕  20

⁐⁻₃⁺ⁿ₀⁾ⁱ⁹ : The downstream is continue stream of MPEG-2 packets formatted

according to ITU-T H.222.0. The content of MPEG-2 packets is usually digital

video, however EuroDOCSIS uses this formatting to its DOCSIS-MAC layer. The

real transportation of this stream happens as specified in ITU-T J.83 Annex-A or

Annex-B. Annex-A & Annex-B describe both a transmission system that allows for

transmission of Low-delay video applications.

Figure 3.3: Upstream Packet Structure

⁼ⁿ₀⁾ⁱ⁹ : Upstream is output from CM to input to CMTS. Various medium

access used for upstream are FDMA, TDMA. In FDMA, the frequency spectrum is

divide among different customers, with each customer having exclusive possession

of some frequency band. In TDMA, users take turns, each one getting channel

bandwidth for little burst of time. Some of parameters are explained in table-3.1.

Table 3.1: Upstream-Downstream Parameters

Parameter Downstream Upstream
Frequency Range 108-862 MHz 5-65 Mhz

Modulation QAM-64 , QAM-256 QPSK or QAM-16
Channel Bandwidth 8MHz Variable

Symbol Rate QAM-64 -> 5.056941 msps
QAM-256 -> 5.360537 msps

Variable

⁏⁔⁍⁜⁑⁞ ‿› ⁕⁚⁞⁛⁐⁏⁕⁛⁚ ⁛ ⁐⁛⁏ ⁕  21

‿›‾ ⁞⁺⁵⁺ ′ ⁞ⁱ⁵ⁿ₀⁾₀⁵⁻⁺

When CM is plugged into network, it must establish two way communication with

CMTS before it works properly. It is clear that CM & CMTS use two channel

to communicate with each other. CMTS uses downstream & CM uses upstream.

When CM wants to receive data, it just tune to downstream. To send data CM uses

upstream which is more challenging then finding downstream. CM knows nothing

meaning centre frequency or bandwidth. It also does not know how far CMTS is

which has impact on transmission power. At last but not the least CM cannot

transmit whenever it wants to. If two modems transmit at same time, signal will

collide.

Once CMTS can communicate with CMTS, it becomes part of IP network. Eu-

roDOCSIS uses IP-based protocols to manage & configure CMs, so every CM must

have an IP address.

Communication between CM and CMTS happens at layer-2 of OSI model. When

CM Communicate with CMTS successfully, it is said that layer-2 connectivity is es-

tablished. Layer-2 connectivity is all about gaining access to medium, which in case

is HFC network. Communication between CM & CMTS happens through exchange

of MAC messages.

⁏⁙ ⁵⁺⁵₀⁵⁸⁵₆₀⁵⁻⁺ :

There are different steps that CM has to take in order to become operational and

to provide internet to customer. Figure shows detailed initialization process of CM

in which first ranging and then registration will make CM operational.

⁐⁻₃⁺ⁿ₀⁾ⁱ⁹ ⁴⁺⁺ⁱ⁸ ⁽₁⁵ⁿ⁵₀⁵⁻⁺⁆:

After powered up, CM starts scanning for downstream first. It is searching for valid

⁏⁔⁍⁜⁑⁞ ‿› ⁕⁚⁞⁛⁐⁏⁕⁛⁚ ⁛ ⁐⁛⁏ ⁕  22

Figure 3.4: CM Ranging and Registration

downstream channel. It may have to search several QAM channels before finding one

with EuroDOCSIS data. Possible downstream channels are on interval of 250KHz

starting from 112MHz. CM listens to a valid signal when synchronization of QAM

symbol timing, synchronization of FEC framing, synchronization of MPEG-2 packe-

tization. Once downstream channel is locked similarly it scans for upstream channel

once it collect upstream parameters. A bandwidth is allocated by CMTS after both

upstream and downstream channels are locked and this is completion of Ranging.

This is also called layer-2 connectivity.

⁞ⁱ⁵ⁿ₀⁾₀⁵⁻⁺ :

After ranging IP connectivity is established between CM and CMTS. Exchange of

time of day occurs and CM is given IP address by CMTS using DHCP. This is called

registration. This is also called layer-3 connectivity.

⁏⁔⁍⁜⁑⁞ ‿› ⁕⁚⁞⁛⁐⁏⁕⁛⁚ ⁛ ⁐⁛⁏ ⁕  23

⁎ⁿⁱ⁸⁵⁺ⁱ ⁜⁾⁵₂₅ :

If configured accordingly, modem also has to initiate Baseline Privacy after regis-

tration process. Baseline privacy provides cable modem users data privacy across

cable network. It does this by encrypting traffic flows between CM & CMTS. If CM

is configured to run baseline privacy, CMTS registration is immediately followed by

initialization of CM baseline privacy security function. If CM is not to run baseline

privacy, the modem is operational after successful completion of ranging and regis-

tration. If modem BPI fails, modem is operational (manageable and controllable)

but is not allowed to forward traffic from CPE.

⁏⁴⁼₀ⁱ⁾ ⁀

⁙⁜⁑⁓  ₀⁾ⁱ⁹ⁿ

⁀›‽ ⁕⁺₀⁾⁻⁰₁₀⁵⁻⁺

⁙⁜⁑⁓

MPEG is one of the most popular audio/video compression technique. MPEG is

not a single standard instead it is collection of standards for different application

based on alike concepts and principles. MPEG is abbreviation of Motion Picture

Expert Group which was set up by International Standards Organizations (ISO) for

compression of video.

Two compression MPEG does:

∙ Video Compression

∙ Audio Compression

Both audio and video are multiplexed and transmitted in terms of stream. That is

called elementary stream.

An ⁱ⁸ⁱ⁹ⁱ⁺₀⁾₅ ⁿ₀⁾ⁱ⁹ ‴⁑ ‵ is defined as output of video or audio encoder. As

its name suggests it is elementary meaning it contains only one type of data, either

24

⁏⁔⁍⁜⁑⁞ ⁀› ⁙⁜⁑⁓  ⁞⁑⁍⁙  25

audio, video. An elementary stream is commonly calles as ”elementary”, ”audio”,

”video”, ”data” streams. The format of ES is as according to the codec or data of

stream but it carries a header when packatized into Packatized Elementary stream

(PES). A video ES contains all the video data of a sequence with header and sub

parts.

In practical purposes, the continuous ES data either audio or video from codes is

broken down into packets. The headers in these packets which contains time stamps

for synchronizing are identification of the packets. A ⁜⁷ⁱ₀⁵₆ⁱ⁰ ⁑⁸ⁱ⁹ⁱ⁺₀⁾₅

 ₀⁾ⁱ⁹‴⁜⁑ ‵ defines carrying of the output of an audio or video encoder (ele-

mentary streams) in packets within MPEG program stream and MPEG transport

stream.

⁀›‾ ⁙₁⁸₀⁵⁼⁸ⁱ₄ⁱ⁰ ⁙⁜⁑⁓

Following two types of multiplexing is permitted by MPEG

⁙⁜⁑⁓ ⁜⁾⁻⁾⁹  ₀⁾ⁱ⁹: It is set of densely coupled Packetized Elementary

stream (PES) packets on same time-line. These streams are appropriate for trans-

ference in error-free environment. This type of data can easily be processed by

software. Video playback and network applications are implemented using these

streams.

⁙⁜⁑⁓ ⁾⁺ⁿ⁼⁻⁾₀  ₀⁾ⁱ⁹: PES packets are cracked into fixed sized transport

packets which provides technique to combine one or more streams independent of

time bases. Thus it can be used in transmission where probability of packet loss is

more and even if packet loss is tolerated. Advantage of using transport stream is

that it is possible to send more than one program at a time.

⁏⁔⁍⁜⁑⁞ ⁀› ⁙⁜⁑⁓  ⁞⁑⁍⁙  26

Figure 4.1: MPEG Streams[3]

⁀›‾›‽ ⁙⁜⁑⁓ ⁾⁺ⁿ⁼⁻⁾₀  ₀⁾ⁱ⁹ⁿ

A transport stream contains a sequence or series of transport packets of fixed size

of 188 bytes. Each packet is made up of 184 bytes of payload and 4 byte header. 4

byte header is divided into 13 bit of packet identifier (PID), 1 bit of Transport Error

Indicator, 1 bit of Payload Unit Start Indicator and 1 bit of Transport Priority. This

is shown below in figure-4.2.

Figure 4.2: Transport Stream Packet Format[3]

⁏⁔⁍⁜⁑⁞ ⁀› ⁙⁜⁑⁓  ⁞⁑⁍⁙  27

The transport stream packet format is illustrated in figure-4.2. Figure-4.3 shows

two elementary streams are multiplexed in one MPEG-2 transport. Each packet

associated with PES has unique PID value in packet header (64 and 51 in the

figure-4.3). Video packets have PID 51 and audio packetes have PID 51. As it

is seen that there are more video content/data than audio and they are not evenly

spaced oin time. Thus MPEG-TS is not Time division multiplexing. Packets having

any PIDs can be placed into TS at any time. If no packets are available then the

multiplexer inserts null packed which are identified with PID value of 0x1FFF.

Figure 4.3: Transport Stream Format[3]

⁀›‾›‾ ₅⁼ⁱⁿ ⁻ ₀⁴ⁱ ⁙⁜⁑⁓‹ 

MPEG-TS may be used widely as in Digital Video Broadcasting (DVB) as well as in

communication network. A strong error correction mechanism makes MPEG frames

so robust. It is constructed so close to characteristics of cable or radio channel that

it expects Bit Error Rate (BER) of better than 10−‽‼. All variants of DVB has its

own coding defined and modulation techniques for particular channel environment.

⁀›‾›‿  ⁵⁺⁸ⁱ ⁺⁰ ⁙₁⁸₀⁵⁼⁸ⁱ ⁜⁾⁻⁾⁹ ⁾⁺ⁿ⁼⁻⁾₀  ₀⁾ⁱ⁹ⁿ

A Single Program Transport Stream may be referred as only one TV program or

stream which contains a video and appropriate video.

Information necessary to decompress and regenerate the encoded stream is also

stored in SPTS. It may also have other type of PES other than just audio and

⁏⁔⁍⁜⁑⁞ ⁀› ⁙⁜⁑⁓  ⁞⁑⁍⁙  28

video. A common timebase is shared by each PES.

In practical use in DVB, more than one SPTS streams are muxed together to gen-

erate Multiple Program Transport Stream. This aggregation also carries program

specific control information required for co-ordinfation.

Figure 4.4: Multi Program Transport Stream[3]

Transport stream consists of so many related elementary streams (audio and video

streams). These elementary stream must be decoded in synchronisation to make

sure audio-video playback is as expected. In case of digital TV program or radio

program, it is necessary for stream decoding to be synchronised, while in case of

programs offering downloading, it is not necessary. Time stamps are attached to

control synchronisation in transport stream.

⁏⁴⁼₀ⁱ⁾ ⁁

ⁱ⁾ⁿ⁵⁻⁺ ⁏⁻⁺₀⁾⁻⁸  ₅ⁿ₀ⁱ⁹

A version control system (or revision control system) is a system that tracks incre-

mental versions of development file-system including files and directories over the

course time. Obviously, solely stalking the different versions of a user’s files and

directories isn’t very captivating in itself. Permitting to explore changes which out-

came in each version is what makes version control system effective.

A Revision Control System is repository, collection of stored file, usually source

code of computer programs with observed access. All changes made to source code

is stalked with who made the change, time stamps of change, rational for change

and enhancement introdecued or previous problem resolved by the change.

Such systems are significant for distributive, participative or colloborative develop-

ment. For a large software development project, potential to stalk all the changes

with time stamps and to revert back the changes if necessary, can make all differ-

ence between well-controlled and managed system and uncontrolled first come, first

served system.

29

⁏⁔⁍⁜⁑⁞ ⁁› ⁑⁞ ⁕⁛⁚ ⁏⁛⁚⁞⁛⁘   ⁑⁙ 30

⁁›‽ ⁞ⁱ⁼⁻ ⁻⁻⁸

⁞ⁱ⁼⁻ is repository management tool which is build above Git. Repo combines

together many Git Repositories and able to upload to revision control system and

software developments flow becomes automated. It is not designed to take place of

Git, it enhance the capabilities of Git and makes it easier to use. It is an executable

Python script which can be stored anywhere in the system path. In working with

source file, repo is used for across-network operations. For e.g. by executing only

single Repo command, it is possible to download multiple repositories into local

working directory. Following command is generic for Repo usage:

repo COMMAND OPTIONS

Brackets [] contains optional arguments. Information of any command can be ob-

tained when repo is installed by running

repo help COMMAND

Repo is installed by giving following command. It gets installed in current direc-

tory. A .repo/ directory is created which has Git repository of Repo source and

some standard manifest files. Very important file called manifest.xml is generated

which is symlink to selected manifest in .repo/manifests/ directory.

repo init -u URL [OPTIONS]

Options:

∙ -u: URL is given from where manifest directory to be retrieved

∙ -b: Specify manifest-branch.

∙ -m: Manifest file in directory is chose. By default it chooses default.xml, in case

⁏⁔⁍⁜⁑⁞ ⁁› ⁑⁞ ⁕⁛⁚ ⁏⁛⁚⁞⁛⁘   ⁑⁙ 31

of no manifest.xml.

repo sync [PROJECT LIST]

New changes are downloaded and local environment is updated. If it is supplied no

arguments then all project files are synchronized.

⁁›‾ ⁓⁵₀

Git is an open-source version-control system developed to maintain very large projects

those are distributed over multiple repositories. Local operations such as local com-

mits, branching, edits and diffs are permitted by Git. As mentioned in section-

5.1, Repo tool is applied for across-network operations. For example, Either using

Git commands for each component or using one repo command files from multiple

repositories can be downloaded. This gives freedom to install components at desired

locations.

The considerable difference between Git and any other VCS is the manner in which

Git deals with data. Mostly other systems takes care of the list of files which en-

countered change. The fashion in which information stored here is they possess

bunch of files and changes occurred in those files over the span of time.[7], as shown

in figure-5.1.

⁏⁔⁍⁜⁑⁞ ⁁› ⁑⁞ ⁕⁛⁚ ⁏⁛⁚⁞⁛⁘   ⁑⁙ 32

Figure 5.1: Stored as change in each file[7]

Git doesn’t take care of the data in this manner. It stores the data in fashion of

pictures or snapshots of a mini file-system. Every time there is a commit in Git

meaning some change in files, a snapshot of what all files look like at that moment

is taken and stored as a reference to that snapshot. To be well organized, if any of

files have not changed, it doesn’t store the file again and it just a link them to the

previous identical files. Git takes care of data like ⁿ₀⁾ⁱ⁹ ⁻ ⁿ⁺⁼ⁿ⁴⁻₀ⁿ. Figure-5.2

explains this graphycally.

Figure 5.2: Snapshots over the time are stored[7]

⁏⁔⁍⁜⁑⁞ ⁁› ⁑⁞ ⁕⁛⁚ ⁏⁛⁚⁞⁛⁘   ⁑⁙ 33

⁴ⁱ ⁴⁾ⁱⁱ  ₀₀ⁱⁿ

Git has three main states in that project files can reside in: committed, modified,

and staged. Committed state means that the data is stored in local database. Mod-

ified state means that file is modifies but have not committed it to database. Staged

state means that modified file is marked in its current version to appear in next

commit snapshot. This takes to the three main components of a Git project: work-

ing directory, Git directory and staged directory.

Figure 5.3: The Three States[7]

The Git directory is the direcoty where metadata of the project and object database

is stored. This is the most essential part of Git. When user does git clone this file di-

rectory is copied. The working directory is a local database of one version of project

which is ready to be used or modified. These files are pulled out of the database in

the Git directory. The staging area is intermediary area inside Git directory which

has information of what will go into next commit. Its sometimes referred to as the

index, but its also common to refer to it as the staging area. The Git work flow is

as follows:

1. Update files with changes needed.

2. Add those changes into staged area and take snapshot.

⁏⁔⁍⁜⁑⁞ ⁁› ⁑⁞ ⁕⁛⁚ ⁏⁛⁚⁞⁛⁘   ⁑⁙ 34

3. Commit those changes which are already there in staged area and save the changes

as snapshot permanently.

⁓⁵₀ ⁏⁻⁹⁹⁺⁰ⁿ⁆

◇ ⁵₀ ⁸⁻⁺ⁱ: It copies the git repository to current working directory.

◇ ⁵₀ ⁰⁰: It adds locally changed files into staging area. ◇ ⁵₀ ⁾⁹: It removes the

file from staging area and local directory.

◇ ⁵₀ ⁻⁹⁹⁵₀: Once changes are done and added to staged area, this command

will commit the staged area content to project history.

◇ ⁵₀ ⁿ₀₀₁ⁿ: This command shows the status of staged area with full details. Three

types of files are shown over here, untracked which are unchanged, modified which

are changed but not yet added in staged area and staged which are added to staged

area.

◇ ⁵₀ ⁴ⁱ⁷⁻₁₀: It is multiple used command meaning it checks out a different

branch or it can be use to switch to other branch by updating index.

◇ ⁵₀ ⁾ⁱⁿⁱ₀: Current index is reset and reverted back to last commit state.

◇ ⁵₀ ⁰⁵Σ : If gives the difference between current index and current directory, if

there is any.

◇ ⁵₀⁷: Graphical Tcl/Tk based interface to a local Git repository.

⁏⁴⁼₀ⁱ⁾ ⁂

ⁱⁿ₀⁵⁺

In general, testing is finding out how well something works. In hardware and soft-

ware development, testing is part of the overall process to check whether objectives

are being met or not. For e.g. in software development, project objectives are tested

first and then design is prepared. When design gets completed, coding is done and

at various points code is tested at module level by programmer, by group of pro-

grammer at component level and in the end all components are combined together

at system level.

Software testing is activity of assesment of s/w product to identify differences be-

tween given input and expected output. It also evaluates quality of software product.

This process must be done in simultaneous with development process. Thus soft-

ware testing starts with verification and ends with verification.

ⁱ⁾⁵Π₀⁵⁻⁺ : Verification is the process to make sure the product fulfills the

predecided objectives at starting of development. In other words, to make sure the

product behaves the way we want it is designed to.

35

⁏⁔⁍⁜⁑⁞ ⁂› ⁑ ⁕⁚⁓ 36

⁸⁵⁰₀⁵⁻⁺ : Validation is process of being assured that the product is confirming

specified requirements in the end of developement process. In either words, to chek

whether customer’s requirements are met or not.

⁂›‽  ⁻₀₃⁾ⁱ ⁱⁿ₀⁵⁺ ⁙ⁱ₀⁴⁻⁰ⁿ

There are different methods which can be use for Software testing as follows:

⁂›‽›‽ ⁎⁸⁷ ⁎⁻₄ ⁱⁿ₀⁵⁺

In this technique of testing, interior working knowledge is known by tester. Tester is

clueless about system architecture and source code. Typically in black box testing, a

tester will interact with system’s user interface and will examine output by providing

inputs without knowing how system works.

⁂›‽›‾ ⁴⁵₀ⁱ ⁎⁻₄ ⁱⁿ₀⁵⁺

White box testing also called open box or glass testing in which detailed investigation

of structure of code and internal logic is done.In order to perform white box tesing,

a tester has to have full knowledge of source code and system architecture.

⁂›‽›‿ ⁓⁾ⁱ₅ ⁎⁻₄ ⁱⁿ₀⁵⁺

Grey Box testing falls in between black box and white box testing where tester has

limited knowledge of internal working of system. Unlike black box testing here tester

has access to some design documents and has some knowledge of source code. Thus

tester have more ability in testing and can prepare more test scenarios.

⁏⁔⁍⁜⁑⁞ ⁂› ⁑ ⁕⁚⁓ 37

⁂›‾ ₅⁼ⁱⁿ ⁻ ⁱⁿ₀⁵⁺

Types of tesing are immense in numbers. Some of them are[5]:

∙ Unit testing

∙ Functional testing

∙ System testing

∙ Stress testing

∙ Performance testing

∙ Regression testing

⁺⁵₀ ₀ⁱⁿ₀⁵⁺ : Unit testing is process of testing each and every unit or related

bunch of units of system. It comes under white box testing. Here usually tester

checks that system output for given input is same as expected.

⁒₁⁺₀⁵⁻⁺⁸ ₀ⁱⁿ₀⁵⁺ : Functional testing checks that specified customer require-

ment functionality is working properly. It comes under black box testing.

 ₀⁾ⁱⁿⁿ ₀ⁱⁿ₀⁵⁺ : This is type of testing which tests the system performance under

adverse situations. Testing is done beyond limits of the specifications. It comes

under black box testing.

⁜ⁱ⁾⁻⁾⁹⁺ⁱ ₀ⁱⁿ₀⁵⁺ :This testing is conducted to evaluate the speed and poten-

tial of system to assure that system is producing results withing specified time as

mentioned in performace requirements. It comes under black box testing.

⁞ⁱ⁾ⁱⁿⁿ⁵⁻⁺ ₀ⁱⁿ₀⁵⁺ : Regression testing is the testing after modification of a com-

ponent, group of components or system to be sure that modifications are working

⁏⁔⁍⁜⁑⁞ ⁂› ⁑ ⁕⁚⁓ 38

correctly and not affecting to other modules to produce unexpected results. It comes

under black box testing.

Of the above discussed testing types, following tests are included for Interactive

Set-top Box testing:

∙ Functional testing

∙ Parallel testing

∙ Stress testing

∙ Robustness testing

⁂›‿  ⁺⁵₀₅ ₀ⁱⁿ₀⁵⁺ ′  ⁹⁻⁷ⁱ ₀ⁱⁿ₀⁵⁺

 ⁹⁻⁷ⁱ ₀ⁱⁿ₀⁵⁺

Initial testing process which is conducted to check whether the product under test

is stable/ready for further testing is called Smoke testing. This term comes from

hardware testing as in hardware testing initially it is checked that it does not catch

fire or smoked when powered on.

Few test cases are required to be created once to perform testing before starting

Smoke testing. These test cases are then executed in advance to start actual testing

to check ⁾⁵₀⁵⁸ ₁⁺₀⁵⁻⁺⁸⁵₀₅ ⁻ ₀⁴ⁱ ⁼⁾⁻⁾⁹ ⁵ⁿ ₃⁻⁾⁷⁵⁺ Π⁺ⁱ ⁻⁾ ⁺⁻₀.

 ⁺⁵₀₅ ₀ⁱⁿ₀⁵⁺

Once a Software build is received with minor issue fixes in code, Sanity testing is

carried out to ensure whether the bugs reported in previous build are resolved and

no regression is introduced because of these fixes i.e. previous functionalities are

working fine. The main purpose of Sanity testing to verify the planned functionality

is working as expected. In figure-6.1 graphical representation of Smoke testing &

⁏⁔⁍⁜⁑⁞ ⁂› ⁑ ⁕⁚⁓ 39

Figure 6.1: Smoke v/s Sanity testing[6]

Sanity testing in software testing is illustrated. Here are the few consolidated points

of Sanity testing:

∙ Sanity testing follows narrow and deep approach with detailed testing of some

limited features.

∙ Sanity testing is used to verify the requirements of end users are meeting or

not.

∙ Sanity testing to check the after minor fixes the small section of code or func-

tionality is working as expected & not breaking related functionality.

⁂›⁀ ⁱⁿ₀ ⁏ⁿⁱ

ⁱⁿ₀ ⁿⁱⁿ are the collection of various steps, conditions and inputs which are used

to perform the testing. The main object of this activity is to ensure whether the

⁏⁔⁍⁜⁑⁞ ⁂› ⁑ ⁕⁚⁓ 40

Software Passes or Fails in terms of its functionality and other aspects. Moreover

test cases are written to keep track of testing coverage of Software. In general there

is no standard template to write test case.

Following test cases are mainly designed for ISTB testing purpose:

∙ Linear TV

This use case checks basic functionality of set-top Box and checks 8-tuners of

STB in which 8 different channels are locked on 8-different tuners one by one

basis. This is the most basic use case with respect to ISTB validation.

∙ ZAP

Zapping implies changing channel while one is already going.

∙ Trick Mode

Increasing the speed of playback in forward & backward direction

∙ DVR

To store video in digital format into local storage

∙ MediaPlayback

Play Recorded Media

∙ Data Browsing (Wired & Wireless)

Internet browsing using Ethernet & Wi-Fi

∙ Robustness

To check ability of system to cop-up with run time errors

⁂›⁁ ⁜₀⁴

A patch is a piece of software designed to fix problems with, or its supporting data.

It involves fixing previously reported bugs or security vulnerabilities and improve

performance. Although patches are created to fix problems, poorly designed patches

⁏⁔⁍⁜⁑⁞ ⁂› ⁑ ⁕⁚⁓ 41

sometimes can introduce new problems. Patch is a UNIX program that updates text

files according to instructions contained in a separate file, called a patch file. The

patch file (shortly patch) is a text file that consists of a list of differences between

original and updated file and is produced by running the related diff program. Up-

dating files with patch is often referred to as applying the patch or simply patching

the files. Updating files with patch is often referred to as ⁼⁼⁸₅⁵⁺ ₀⁴ⁱ ⁼₀⁴ ⁻⁾

ⁿ⁵⁹⁼⁸₅ ⁼₀⁴⁵⁺ ₀⁴ⁱ Π⁸ⁱⁿ.

First the contributor creates patch and submits to maintainer. The project main-

tainer then studies the patch and applies to main code. Various tools are available

for that. These tools make patch creation and management easy and efficient. These

tools are key in building an active community of contributors to open source project

development.

⁍⁼⁼⁸₅⁵⁺ ₀⁴ⁱ ⁼₀⁴:

Patches can be applied using following two ways:

∙ ⁼₀⁴ ‹⁰⁾₅‹⁾₁⁺ ‹⁼‽ ⁼₀⁴⁺⁹ⁱ

It doesn’t actually change the files. It checks what would happen if patch was ap-

plied.

∙ ⁼₀⁴ ‹⁼‽ ‹⁕ ⁼₀⁴⁺⁹ⁱ : This is to apply patch.

∙ ⁵₀ ⁼⁼⁸₅ ⁼₀⁴※Π⁸ⁱ›⁼₀⁴ : This is another way to apply way using Git.

This -p option strips out prefixes according to the option given with it. If patch was

generated using git diff then -p1 would be appropriate.

⁏⁴⁼₀ⁱ⁾ ⁃

⁘⁵⁺₁₄ ⁺⁰ ⁔⁾⁰₃⁾ⁱ ⁑⁺₂⁵⁾⁻⁺⁹ⁱ⁺₀

 ⁱ₀₁⁼

⁃›‽ ⁘⁵⁺₁₄ ⁑⁺₂⁵⁾⁻⁺⁹ⁱ⁺₀  ⁱ₀₁⁼

Any flavour of linux either fedora or ubuntu is required as software environment for

testing purpose.

⁃›‽›‽ ⁿⁿ⁴ ⁗ⁱ₅ ⁓ⁱ⁺ⁱ⁾₀⁵⁻⁺

Secure Shell (SSH) is a cryptographic network protocol for secure data communi-

cation, remote services and other secure network services between two networked

computers that connects. Connection is done between a server and a client via a

secure channel over an insecure network. Public and private keys are generated

by ssh-keygen. ssh-copy-id copies local host’s, client’s public key to remote host’s,

server’s authorized key files. It also assigns proper permissions to remote-host home,

server home, /ssh; and /ssh/unauthorized keys.[1] Omit following steps if access to

git repository is already granted. Use following commands:

ssh-keygen -t rsa -C

emailaddress : f /.ssh/id rsa

42

⁏⁔⁍⁜⁑⁞ ⁃› ⁘⁕⁚ ⁍⁚⁐ ⁔⁍⁞⁐⁍⁞⁑ ⁑⁚⁕⁞⁛⁚⁙⁑⁚  ⁑⁜ 43

⁃›‽›‾ ⁎₁⁵⁸⁰ ⁜⁾⁻ⁱⁿⁿ

he term build refers either to the process of converting source code files into stan-

dalone software artifact(s) that can be run on a computer. One of the most impor-

tant steps of a software build is the compilation process where source code files are

converted into executable code. In software version, the build number is often used

as a version identifier. As software is divided into various components/modules, all

components, kernel, it is necessary to have Makefile for each.[1]

1 Source files are converted into object files by compiler.

2 These object files are then converted into Executables by Linker.

Go to /build path/build/sdk2-build.b2163-d127 a9/ as a normal user and follow the

below commands.

∙ make clean: To clean previously compiled build

∙ make modules: All sdk2 modules are built

∙ make module name: Specific sdk2 module is built

∙ make .clean module name: Specific module is cleaned

∙ make .modules install module name: Specific component is installed

∙ make all: To build and install kernel, all sdk modules

⁃›‽›‿  ⁱ₀ ⁕⁜ ⁍⁰⁰⁾ⁱⁿⁿ ₀⁻ ⁰⁻₃⁺⁸⁻⁰ ₀⁴ⁱ ⁻⁶ⁱ₀

Executable generated, as explained above, can be run on the target platform using

JTAG connection and logs can be observed on serial port while execution of source

code on the target. For that Micro Connect is connected as interfacing equipment

between target and host. So IP addresses are assigned to Micro connect and target

board. Go to build path/build/config.in Set the JEI, TARGET IP and Gateway IP.

⁏⁔⁍⁜⁑⁞ ⁃› ⁘⁕⁚ ⁍⁚⁐ ⁔⁍⁞⁐⁍⁞⁑ ⁑⁚⁕⁞⁛⁚⁙⁑⁚  ⁑⁜ 44

∙ JEI = The IP address of Micro connect.

∙ TARGETIP = IP address of the target board where kernel loaded.

∙ GWIP = IP address of Gateway.

⁃›‽›⁀ ⁱⁿ₀ ⁑₄ⁱ₁₀⁵⁻⁺

Once build process is completed and executable files are generated related to source

code compiled, to test ISTB devices and drivers, this target image is to be in-

stalled on the development board. Once downloaded into target board, to perform

validation process various use cases are performed. These use cases are in actual re-

quirements by the customer. To validate all use cases board is first booted. In order

to do this, configuration file in the build directory is updated for JEI, TARGETIP

& GATEWAY IP.

∙ make run

The board is booted after execution of this command. VMLinux which is executable

file of kernel and contains some other object files, is loaded into the target board

SoC.

Booting is the first process when target board is initialised. All the hardware compo-

nents are initialised as well as they are brought together to work and load operating

system which make the system operational. As soon as board is powered up, the

control is given to bootstrap process in BIOS in ROM. This process is responsible

for initialisation of hardware.

∙ ssh rootIP address of target

Log in as a root user on the target platform. This should be done on different ter-

minal as done to boot kernel.

⁏⁔⁍⁜⁑⁞ ⁃› ⁘⁕⁚ ⁍⁚⁐ ⁔⁍⁞⁐⁍⁞⁑ ⁑⁚⁕⁞⁛⁚⁙⁑⁚  ⁑⁜ 45

∙ ./framework go.sh

Load Modules: Various modules developed by ST which are required to run use

cases are loaded. Linux utility “Modprobe” is used to accomplish this. It loads run

time modules and its dependencies.

∙ Run/Application

⁃›‽›⁁  ⁐⁗‾ ⁑⁺₂⁵⁾⁻⁺⁹ⁱ⁺₀

SDK2 provides a unified software devlopment platform for STs class 4 devices using

the Linux operating system.It includes low level drivers (STKPI) and an application

layer (STMediaFramework).[1]

∙ STMediaFramework

User level set of managed APIs and components for multimedia applications de-

vlopement.

∙ STKPI

Kernel level managed API.

⁏⁔⁍⁜⁑⁞ ⁃› ⁘⁕⁚ ⁍⁚⁐ ⁔⁍⁞⁐⁍⁞⁑ ⁑⁚⁕⁞⁛⁚⁙⁑⁚  ⁑⁜ 46

⁃›‾ ⁔⁾⁰₃⁾ⁱ  ⁱ₀₁⁼

To set up the hardware to carry out the testing following are the required compo-

nents. Hardware requirements as follows:

∙ STMC

∙ Target Board

∙ Stream Server

∙ JTAG

∙ UART

∙ HDMI cable for connection with TV

∙ TV

∙ Power adapters

Figure 7.1: Hardware Setup[1]

⁏⁔⁍⁜⁑⁞ ⁃› ⁘⁕⁚ ⁍⁚⁐ ⁔⁍⁞⁐⁍⁞⁑ ⁑⁚⁕⁞⁛⁚⁙⁑⁚  ⁑⁜ 47

Different components are:

 ⁻⁏:

The System on chip contain two ARM processors, one SH-4 (used for floating point

calculations), One ARMv7.

  ⁙⁵⁾⁻⁻⁺⁺ⁱ₀:

MicroConnect is used to load compiled image of kernel into targe SoC. ST Micro

connect(STMC) is a host-target interface from STMicroelectronics. Target develop-

ment board board’s JTAG connector is connected with STMC, image is downloaded

and programs are debugged. It is easy to install and use the ST Micro Connection

Package provides software utilities and firmware,including Target Packs for certain

ST evaluation boards.

 ₀⁾ⁱ⁹  ⁱ⁾₂ⁱ⁾:

All the required testing video steams are stored in stream server to be viewed in

digital format, during testing of video playback. In satellite feed, tuner receives via

dish antenna. Here in this case of cable feed, streams are supplied via stream mod-

ulators. A particular stream has its data rate, symbol rate, FEC, etc. To perform

various tests on different channels and symbol rate stream server is required. Mod-

ulator cards are connected with stream servers. These modulators are connected to

RF tuner of target board via RF cable. Modulator card converts into RF frequency

and sends it to RF tuner card using RF cable.

⁖⁍⁓:

This intermediary medium gives ease to load kernel image into development board.

⁍⁞:

Debug information is obtained via serial communication between target board and

host machine using UART.

⁏⁴⁼₀ⁱ⁾ ⁄

 ⁻₀₃⁾ⁱ  ₅ⁿ₀ⁱ⁹ ⁕⁺₀ⁱ⁾₀⁵⁻⁺ ′

⁸⁵⁰₀⁵⁻⁺

⁄›‽  ⁻₀₃⁾ⁱ ⁕⁺₀ⁱ⁾₀⁵⁻⁺

Figure 8.1: Software Development process

Software system integration is task of binding together individual tested software

components into one integrated whole. A software is said to be integrated when

48

⁏⁔⁍⁜⁑⁞ ⁄›  ⁛⁒⁍⁞⁑   ⁑⁙ ⁕⁚⁑⁓⁞⁍⁕⁛⁚ ′ ⁍⁘⁕⁐⁍⁕⁛⁚ 49

subsystems are divided into components or product is divided into subsystems.

The component or subsystem are tested individually and then integrated together

to make whole software. Software system integration either looks like a discrete

step towards end of the development cycle of software development process. ⁕ ⁎

 ⁻₀₃⁾ⁱ ⁕⁺₀ⁱ⁾₀⁵⁻⁺ is continuous intefration which is much less risky approach

where components are integrated as and when they are developed, also called uni-

fied methodology. Figure-8.1 shows the software development process highlighting

integration process.

As seen in section-2.2, ISTB software is divided into KernelSpace and UserSpace,

each having various components, it is integrated using repo and git tool by including

various components in menifest.xml file.

⁏⁔⁍⁜⁑⁞ ⁄›  ⁛⁒⁍⁞⁑   ⁑⁙ ⁕⁚⁑⁓⁞⁍⁕⁛⁚ ′ ⁍⁘⁕⁐⁍⁕⁛⁚ 50

⁄›‾  ⁻₀₃⁾ⁱ  ₅ⁿ₀ⁱ⁹ ⁸⁵⁰₀⁵⁻⁺

Software system validation is process of determining whether the system complies

with requirements and all intended functionalities are perfectly performed and it

meets customer’s needs & goals. Validation is done at the end of development pro-

cess and is next level of testing after verification. Verification is done in starting

of the development with the question “Are we building the product right?”, while

validation is done at the end with question “Are we building the right product?”.

Various ISTB use cases are discussed in section-6.4. ⁕ ⁎ ₂⁸⁵⁰₀⁵⁻⁺ also known

as  ₅ⁿ₀ⁱ⁹ ⁱⁿ₀⁵⁺ includes:

∙ ⁍⁜, in which following use cases are performed (41 use cases in total):

₇ CODEC tests

₇ Resolution tests like 720p, 1080p

₇ QAM testing

₇ Stress testing also called overnight testing

∙ ⁙ⁱ⁰⁵⁜⁸₅ⁱ⁾, in which Locally stored Media is played with different codecs.

Along with that Forward & Backward trickmode testing is also done. In

addition to that JPEG image testing with their rotation is tested. (10 use

cases in total)

∙ ⁐⁵⁵₀⁸ ⁵⁰ⁱ⁻ ⁞ⁱ⁻⁾⁰⁵⁺, where live channel is recorded on local storage

increasing progressively from tuner 1 to 8 parallely. These use cases include

Live A/V decode along with background recording. (26 use cases in total)

∙ ⁐₀ ⁎⁾⁻₃ⁿ⁵⁺, includes browsing internet on wired and wireless connection.

This use case is performed parallely with Linear TV use case which is full

functionality of ISTB. (5 use cases in total)

∙ ⁞⁻₁ⁿ₀⁺ⁱⁿⁿ, (9 use cases in total)

⁏⁔⁍⁜⁑⁞ ⁄›  ⁛⁒⁍⁞⁑   ⁑⁙ ⁕⁚⁑⁓⁞⁍⁕⁛⁚ ′ ⁍⁘⁕⁐⁍⁕⁛⁚ 51

⁄›‿ ⁜⁾ⁱ⁾ⁱ⁽₁⁵ⁿ⁵₀ⁱ

SDK2 must be installed and nfs services must be started on linux machine. Entries

must be added for nfs-mount in /etc/exports file. Sanity can be performed manually

and in automated manner. Python is required for automated execution of sanity.

First it is explained in manual manner and then in automated environment.

⁏⁴⁺⁺ⁱ⁸ ⁏⁻⁺Π₁⁾₀⁵⁻⁺[1]:

Add channel configurations in .conf file as follows:

ChannelName : Frequency : Inversion: SymboleRate :FEC : Modulation:

VPID : APID : PCDPID : VTYPE : ATYPE : TTXPIDF : TTXTYPE

Where:

∙ Channel Name: Name of channel

∙ Frequency: freq. at which channel is broadcasting

∙ Symbole Rate: symbol rate is the number of symbol changes (waveform changes

or signalling events) made to the transmission medium per second using a digitally

modulated signal or a line code.

∙ FEC: Forward Error Correction (FEC) or channel coding[1] is a technique used

for controlling errors in data transmission over unreliable or noisy communication

channels.

∙ Modulation: Modulation technique whether QAM-64 or QAM-256

∙ VPID: Video Program ID

∙ APID: Audio Program ID

∙ VTYPE: Video type(video codec)

∙ ATYPE: Audio type(audio codec)

∙ TTXPID: Subtitle PID

Example:

Channel1 : 663000000 : INVERSION AUTO:5056941 : FEC AUTO:QAM 64 :

2318 : 2320 : 2318 : 8 : 3 : NONE : NONE

⁏⁔⁍⁜⁑⁞ ⁄›  ⁛⁒⁍⁞⁑   ⁑⁙ ⁕⁚⁑⁓⁞⁍⁕⁛⁚ ′ ⁍⁘⁕⁐⁍⁕⁛⁚ 52

⁄›⁀ ⁙⁺₁⁸ ⁑₄ⁱ₁₀⁵⁻⁺

Following are steps to be performed sequentially in order to run various use cases

on ISTB :

 ⁑⁜‹‽: repo init to current tag and repo sync.

 ⁑⁜‹‾: Apply the patch and repo sync.

 ⁑⁜‹‿: Go to build directory build the code using make command.

 ⁑⁜‹⁀: Export environmental variables.

 ⁑⁜‹⁁: Boot the board using ⁹⁷ⁱ ⁾₁⁺ command.

 ⁑⁜‹⁂: Follow steps in section 7.1.4.

 ⁑⁜‹⁃: Configuration entries of channels on .conf file.

 ⁑⁜‹⁄: Run gst-apps command on target.

⁘⁵⁺ⁱ⁾ :

Basic use case of ISTB when Live A/V decode is performed. To test various tuners,

option -N0...-N7 is given.

Figure 8.2: Linear TV use case[1]

⁏⁔⁍⁜⁑⁞ ⁄›  ⁛⁒⁍⁞⁑   ⁑⁙ ⁕⁚⁑⁓⁞⁍⁕⁛⁚ ′ ⁍⁘⁕⁐⁍⁕⁛⁚ 53

⁍⁜:

Zapping in simple words is changing channel while one channel is going on.

 ⁑⁜‹⁅: Press ”d-channel down” and ”u- channel up”.

Figure 8.3: ZAP use case[1]

⁕⁺ ⁿⁱ ⁻ ⁕ ⁎  ⁺⁵₀₅ ₀ⁱⁿ₀⁵⁺‸ ₀₃⁻ ⁘⁵⁺ⁱ⁾ ₀₂ ₁ⁿⁱ ⁿⁱⁿ ⁾ⁱ ⁾₁⁺ ⁿ⁵⁹₁⁸₀‹

⁺ⁱ⁻₁ⁿ⁸₅‸ ⁻⁺ⁱ ⁙⁵⁺ ⁺⁰ ⁻⁺ⁱ ⁜⁕⁜‴⁜⁵₀₁⁾ⁱ ⁵⁺ ⁜⁵₀₁⁾ⁱ‵› ⁼⁼⁵⁺ ⁵ⁿ ⁰⁻⁺ⁱ ⁵⁺

⁙⁵⁺ ⁍‴⁍₁⁰⁵⁻※⁵⁰ⁱ⁻‵ ⁰ⁱ⁻⁰ⁱ›

⁏⁔⁍⁜⁑⁞ ⁄›  ⁛⁒⁍⁞⁑   ⁑⁙ ⁕⁚⁑⁓⁞⁍⁕⁛⁚ ′ ⁍⁘⁕⁐⁍⁕⁛⁚ 54

⁙ⁱ⁰⁵⁜⁸₅ⁱ⁾:

Local stored media is played using gst-apps command as below:

Figure 8.4: Local Media PlayBack use case[1]

⁐⁵⁵₀⁸ ⁵⁰ⁱ⁻ ⁞ⁱ⁻⁾⁰⁵⁺ ‴⁐⁞‵:

DVR can be performed in two ways. In first, a channel is recorded while A/V de-

code is going on. While in second case, channel is recorded in background. As ISTB

supports 8-tuners, 2-A/V decode in addition with 8 channel record is maximum

utilization of DVR.

Figure 8.5: Digital Video Recording[1]

⁏⁔⁍⁜⁑⁞ ⁄›  ⁛⁒⁍⁞⁑   ⁑⁙ ⁕⁚⁑⁓⁞⁍⁕⁛⁚ ′ ⁍⁘⁕⁐⁍⁕⁛⁚ 55

⁐₀ ⁎⁾⁻₃ⁿ⁵⁺:

This use case is related to Gateway part of ISTB. This use case requires cable modem

to be operational. Once cable modem is operational, run erouter application on

gateway to enable data browsing on Ethernet port as well as on Wi-Fi.

⁄›⁁ ⁍₁₀⁻⁹₀⁵⁻⁺ ⁻  ₅ⁿ₀ⁱ⁹ ₀ⁱⁿ₀⁵⁺

As discussed above, full software system validation includes vast number of use cases

and its cumbersome process if performed manually. For automation of testing ST

has developed a TestFramework. TestFramework is implemented using several xml

and python files. Use cases are written in xml files which calls python files in which

execution code of test cases. TestFramework file system architecture and working is

explained as:

1. Stream Descriptions:

∙ This xml contains file names, containers, duration, codex for all tracks, resolutions,

rates, stream ids.

∙ First parses directory tree and calls mediainfo for deep description of multimedia

files.

2. Stream locations:

∙Aim of automation is to make an independent way of testing where target board

can access files from anywhere. Stream locations.xml fulfils this purpose by telling

board the location of file depending on mode (http, local).

3.root.xml:

∙ It contains information about the other xml data files which the framework re-

quires to run the test. It also contains the use-cases to be run, the application used

to perform the use-case.

⁏⁔⁍⁜⁑⁞ ⁄›  ⁛⁒⁍⁞⁑   ⁑⁙ ⁕⁚⁑⁓⁞⁍⁕⁛⁚ ′ ⁍⁘⁕⁐⁍⁕⁛⁚ 56

Figure 8.6: TestFramework files[1]

4. Calls.xml:

∙ This File Contains use case definition. Call to python files goes from this file along

with required parameters.

5. use case.py:

∙ It is python file which actually contains the definition of python function for par-

ticular use case.

⁑₄ⁱ₁₀⁵⁻⁺ ₂⁵ ⁱⁿ₀⁒⁾⁹ⁱ₃⁻⁾⁷

We can launch Test Framework before or after the target has booted.

COMMAND LINE OPTIONS

∙ General syntax:

main.py [session options] root.xml[root name]*[additional path]*[targetIP]

∙ The [session option] can be:

1. -initialboot

Reboots the board once before launching the tests

2. -initialbootonly

Reboots the board from the framework and exits

∙ [root name] is the optional name we can encounter within a launch description

of the root file. ⁻ ⁾₁⁺ ⁼⁾₀⁵₁⁸⁾ ₀ⁱⁿ₀⁵⁺‸ ⁼⁼⁾⁻⁼⁾⁵₀ⁱ ⁾⁻⁻₀ Π⁸ⁱ ⁵ⁿ ⁵₂ⁱ⁺ ⁿ

⁏⁔⁍⁜⁑⁞ ⁄›  ⁛⁒⁍⁞⁑   ⁑⁙ ⁕⁚⁑⁓⁞⁍⁕⁛⁚ ′ ⁍⁘⁕⁐⁍⁕⁛⁚ 57

⁵⁺⁼₁₀.

∙ [additional path] is here for extending the PATH search of the python and XML

files within the Framework.

∙ [targetIP] must be an ipv4 address.

 ⁑⁜‹‽: Boot the Board

 ⁑⁜‹‾: View the UART logs via serial-relay

∙ Wait till the log shows login message by username

 ⁑⁜‹‿: ssh the target as root

 ⁑⁜‹⁀: Load the modules like media player, HDMI Manager etc

 ⁑⁜‹⁁: Change the directory to mainline manifests test framework directory.

 ⁑⁜‹⁂: Export some of the environmental variables in run test.sh file.

Variables are:

∙ SERVERIP : IP of host machine

∙ TARGETIP : IP of the board

∙ JEI : STMC (ST Micro Connect) IP

∙ GWIP : Gateway IP

∙ NFS-SERVER : Network File System IP

 ⁑⁜‹⁃: Source the above mentioned file

 ⁑⁜‹⁄: Execute the script main.py along with required arguments to start the

tests.

 ⁑⁜‹⁅: See the Reports in RESULT folder of that particular test framework.

Figure-8.7 shows result generated for sanity using automation.

⁏⁔⁍⁜⁑⁞ ⁄›  ⁛⁒⁍⁞⁑   ⁑⁙ ⁕⁚⁑⁓⁞⁍⁕⁛⁚ ′ ⁍⁘⁕⁐⁍⁕⁛⁚ 58

Figure 8.7: Results for Sanity testing

Table 8.1: Verdict Description[1]

ABORTED User termination of the test Execution
CRASHED Execution leading to a KERNEL crash, system need to reboot
TIMEOUT The application didn’t succeed to exit, need to reboot
XFAIL The test result is fail but it is a known issue and specified in a file
FAILED Execution or verdict has failed but system is still considered as safe.
SKIPPED Test listed in the test plan but not executed
PASSED Execution and verdict (if exist) OK
MISSING The file is missing
XPASS The result was expected as False but it is passed

Table-8.1 gives description of various results of test application.

⁏⁔⁍⁜⁑⁞ ⁄›  ⁛⁒⁍⁞⁑   ⁑⁙ ⁕⁚⁑⁓⁞⁍⁕⁛⁚ ′ ⁍⁘⁕⁐⁍⁕⁛⁚ 59

Figure-8.8 shows result generated for MediaPlayer using automation.

Figure 8.8: Results for MediaPlayer testing

⁏⁻⁺⁸₁ⁿ⁵⁻⁺

Interactive Set-top Box (ISTB) gives flexibility of both STB and Gateway. Both

frontend(Gateway) and backend(STB) are independent and self-sufficient. ISTB

software is integrated by combining various software components using unified method-

ology. Sanity testing is one of the testing type which is majorly executed to fix minor

bugs/issues to make system more mature.

Validation of ISTB software system includes checking various use cases like func-

tional, parallel, stress and robustness. Validation process of ISTB software system

is performed at the end of development process where vast number of cases are per-

formed like LinearTV, ZAP, MediaPlayer, Data browsing etc. This long validation

process is automated using TestFramework developed by STMicroelectronics which

uses xml and python to accomplish the purpose. Use cases are written in xml files

which call python files which performs actual use case on target board which make

the process more efficient.

60

⁞ⁱⁱ⁾ⁱ⁺ⁱⁿ

[1] ST Internal Document

[2] ⁕⁺ⁿ⁵⁰ⁱ  ⁱ₀‹₀⁻⁼ ⁎⁻₄‸ ⁑⁒ ⁘⁵⁺₁₄,by Amit Goel

[3] White Paper on ⁙⁜⁑⁓‹‾ ⁾⁺ⁿ⁼⁻⁾₀ ₂ⁿ› ⁜⁾⁻⁾⁹  ₀⁾ⁱ⁹ by vbricks

[4] http://www.afterdawn.com/glossary/term.cfm/container

[5]  ⁻₀₃⁾ⁱ ⁑⁺⁵⁺ⁱⁱ⁾⁵⁺, by K.K. Aggrawal, Yogesh Singh

[6] http://www.softwaretestingclass.com/smoke-testing/

[7] ⁜⁾⁻ ⁓⁵₀ ⁎⁻⁻⁷, by Scott Chacon and Ben Straub

[8] ⁍⁺ ⁕⁹⁼⁸ⁱ⁹ⁱ⁺₀₀⁵⁻⁺ ⁻ ⁕⁺₀ⁱ⁾₀⁵₂ⁱ  ⁱ₀‹⁻⁼‹⁎⁻₄ ⁺⁰ ⁕₀ⁿ ⁍⁼⁼⁸⁵₀⁵⁻⁺ⁿ, Bing Hu,
GuoBin Wu, Liang Pan, Hong Ni, Ming Zhu

[9] ⁴ⁱ ⁺⁵Πⁱ⁰  ⁻₀₃⁾ⁱ ⁐ⁱ₂ⁱ⁸⁻⁼⁹ⁱ⁺₀ ⁜⁾⁻ⁱⁿⁿ, Ivar Jacobson, Grady Booch, James
Rumbaugh

[10] ⁒₁₀₁⁾ⁱ ⁼⁵⁸⁵₀₅ ⁻ ⁸ⁱ ⁺ⁱ₀₃⁻⁾⁷ⁿ ⁻⁾ ⁿ₁⁼ⁱ⁾ⁿ₀ ⁾⁻⁰⁺⁰, Rod Parker, Alex
Slinger, Malcolm Taylor, Matt Yardley

61

	Declaration
	Certificate
	Certificate
	Acknowledgements
	Abstract
	Company Profile
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Thesis Objective
	Thesis Structure

	System Architecture
	Hardware Architecture
	Gateway
	Set-top Box

	Software Architecture
	KernelSpace
	UserSpace

	Introduction to DOCSIS
	Reference Model
	Ranging & Registration

	MPEG Streams
	Introduction
	Multiplexed MPEG
	MPEG Transport Streams
	Types of the MPEG-TS
	Single and Multiple Program Transport Streams

	Version Control System
	Repo Tool
	Git

	Testing
	Software Testing Methods
	Black Box Testing
	White Box Testing
	Grey Box Testing

	Types of Testing
	Sanity testing & Smoke testing
	Test Case
	Patch

	Linux and Hardware Environment Setup
	Linux Environment Setup
	ssh Key Generation
	Build Process
	Set IP Address to download the object
	Test Execution
	SDK2 Environment

	Hardware Setup

	Software System Integration & Validation
	Software Integration
	Software System Validation
	Prerequisite
	Manual Execution
	Automation of System testing

	Conclusion
	References

