
Implementation of Windows Kernel
Mode driver for Battery Management

and Camera Sensor

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Hardik Panchal
(13MECE28)

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2015

Implementation of Windows Kernel
Mode driver for Battery Management

and Camera Sensor

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Hardik Panchal
(13MECE28)

Under the guidance of

External Project Guide: Internal Project Guide:

Mr. Parag Gulhane Prof. Ami Vora
Mr. Pralhad Madhavi Professor, EC Department,
Intel India Technology pvt Ltd., Institute of Technology,
Bangalore. Nirma University, Ahmedabad.

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2015

iii

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- Hardik Panchal

13MECE28

iv

Disclaimer

”The content of this paper does not represent the technology,opinions,beliefs,

or positions of Intel Technology India Pvt. Ltd.,its employees,vendors,

customers, or associates.”

v

Certificate

This is to certify that the Major Project entitled “Implementation of Windows

Kernel Mode driver for Battery Management and Camera Sensor” sub-

mitted by Panchal Hardik S.(13MECE28), towards the partial fulfillment of the

requirements for the degree of Master of Technology in Embedded Systems, Nirma

University, Ahmedabad is the record of work carried out by him under our super-

vision and guidance. The submitted work has reached a level required for being

accepted for examination.The results embodied in this major project, to the best

of our knowledge,haven’t been submitted to any other university or institution for

award of any degree or diploma.

Date: Place: Ahmedabad

Prof. Ami Vora Dr. N.P. Gajjar

Internal Guide Program Coordinator

Dr. D.K.Kothari
Section Head, EC

Dr. P.N.Tekwani Dr. K. Kotecha

Head of EE Dept. Director, IT

Certificate

This is to certify that the Major Project entitled “Implementation of Windows

Kernel Mode driver for Battery Management and Camera Sensor” sub-

mitted by Panchal Hardik S.(13MECE28), towards the partial fulfillment of the

requirements for the degree of Master of Technology in Embedded Systems, Nirma

University, Ahmedabad is the record of work carried out by him under our supervi-

sion and guidance. In our opinion, the submitted work has reached a level required

for being accepted for examination.

Mr. Parag Gulhane

MCG-CTS Engineering Manager

Intel India Technology pvt Ltd

Bangalore

Mr. Pralhad Madhavi

Software Architect

Intel India Technology pvt Ltd

Bangalore

vii

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr. P.N.Tekwani,

Head of Electrical Engineering Department,Dr. N. P. Gajjar, Coordinator of

M.Tech Embedded Systems program and my Manager Mr. Parag Gulhane,

MCG-CTS Engineering Manager, Intel Corporation for allowing me to undertake

this thesis work and for his guidelines during the review process.

I am deeply indebted to my thesis supervisors Mr. Pralhad Madhavi, Man-

ager, Intel Corporation and Prof. Ami Vora, Professor,EC Department, Nirma

University for their constant guidance and motivation. I also wish to thank all other

team members at Intel India for their constant help and support. Without their ex-

perience and insights, it would have been very difficult to do quality work.

I wish to thank my friends of my class for their delightful company which kept

me in good humor throughout the year.

Last, but not the least, no words are enough to acknowledge constant support and

sacrifices of my family members because of whom I am able to complete the degree

program successfully.

- Hardik Panchal

13MECE28

viii

Abstract

In world of mobility one of the most important component in Tablet or mobile

devices is rechargeable battery, which is expected to have lowest possible battery

charging time, battery life should be high and provide reliable working time span.

In past there are many cases of blowing or burning of battery due to over charged or

over heating so it also required that battery charging system decreases those risks.

This thesis focuses on efficient battery charging control system for Li-ion recharge-

able battery specifically design for windows based devices. This report introduces

software solution of controlling charging over hardware. Which requires minimum

hardware like for coulomb counter, ADC, current-voltage regulators etc. This thesis

also explains working of fuel gauge, how it used to measure state of charge, remain-

ing capacity. It explains how charging source detection is done on hardware as per

Battery specification 1.2 standard.

This thesis also covers functional flow of camera sensor driver and requirement of

camera sensor driver.Camera sensor driver implements common control functionality

which expected by Image signal Processor (ISP) driver for specific sensor.

Contents

Declaration iii

Disclaimer iv

Certificate v

Certificate vi

Acknowledgements vii

Abstract viii

List of Tables xi

List of Figures xii

Acronyms xiii

1 Introduction 1
1.1 Problem statement . 1
1.2 Objective . 2
1.3 Thesis Organization . 2

2 Battery charging specification 4
2.1 Specification introduction . 4
2.2 Dead Battery provision . 5

2.2.1 DBP Un-configured Clause 5
2.2.2 DBP – Configured Clause . 6

2.3 Charging source or type detection 7
2.3.1 Charger detection hardware 8
2.3.2 Charger Detection algorithm 19

3 JEITA Compliance 22
3.1 Li-ion Battery safety . 22
3.2 JEITA guidance . 23

ix

CONTENTS x

4 Battery Fuel gauging 25
4.1 General SOC measurement methods 26

4.1.1 Current based SOC estimation 26
4.1.2 Voltage based SOC estimation 27

5 Windows Driver Frameworks (WDF) 30
5.1 Windows§Driver Model . 30

5.1.1 WDM Mini-drivers . 31
5.1.2 WDM Filter Drivers . 32
5.1.3 Monolithic WDM Function Drivers 33

5.2 Windows Driver Foundation . 33
5.2.1 Design Goals for WDF . 35
5.2.2 User mode Driver Framework (UMDF) 35
5.2.3 Kernel mode Driver Framework (KMDF) 37

6 Battery Charging Driver Flow 41
6.1 Interaction flow between windows battery class driver and BM mini-

class driver . 41
6.2 Battery management Driver Entry function 43
6.3 Windows battery management Driver Task 45

7 Camera Sensor Driver Flow 47
7.1 Elements of camera Systems . 47
7.2 Driver Software Architecture . 49
7.3 Camera driver functional requirement 51

7.3.1 Live viewfinder . 51
7.3.2 Still image capture . 52
7.3.3 Video recording mode . 55
7.3.4 Focus requirements . 56
7.3.5 Exposure requirements . 60
7.3.6 White balance requirements 64
7.3.7 Region of interest (ROI) specifications 66
7.3.8 Zoom specifications . 67
7.3.9 Camera flash requirements 67
7.3.10 Hardware calibration support 68
7.3.11 Noise and sharpness control 69
7.3.12 Scene mode specifications . 69

8 Conclusion 71

Bibliography 72

List of Tables

5.1 KMDF Component . 39

xi

List of Figures

2.1 Physical Connection overview . 8
2.2 Charging Source detection hardware 9
2.3 Data pin length offset . 10
2.4 Data contact detect, not attached . 11
2.5 Data contact Detect SDP . 13
2.6 Primary detection for DCP . 14
2.7 Primary detection CDP . 15
2.8 Primary detection SDP . 16
2.9 secondory detection DCP . 17
2.10 Secondary detection CDP . 18
2.11 Weak battery algorithm . 20
2.12 Good Battery algorithm . 21

3.1 JEITA guidelines for charging Li-ion batteries 24
3.2 JEITA guidelines for charging Li-ion batteries in single-cell handheld

applications . 24

4.1 typical lithium-ion battery voltage during discharge 26
4.2 Current based (Coulmb counting) SOC functional diagram 27
4.3 ST3105 dedicated digital coulomb counter 28
4.4 Figure illustrate chart for sample OCV profile 29

5.1 Microsoft windows Driver system . 31
5.2 Microsoft WDF Development Model 33
5.3 I/O Flow to User-Mode WDF Driver 36
5.4 I/O Flow to Kernel-Mode WDF Driver 38

6.1 Basic Driver interection diagram . 42
6.2 Entry function task . 44
6.3 Battery management Driver functional flowchart 46

7.1 Camera Sensor Driver . 49
7.2 Three Pin Camera Capture Engine 50

xii

Acronyms

ACA . Accessory Charger Adapter

BM . Battery Management

CDP . Charging Downstream Port

DBP . Dead Battery Provision

DCD . Data Contact Detect

DCP . Dedicated Charging Port

OTG .On-The-Go

PC . Personal Computer

PD . Portable Device

PHY . Physical Layer Interface for High-Speed USB

SDP . Standard Downstream Port

SRP . Session Request Protocol

TPL . Targeted Peripheral List

USB .Universal Serial Bus

USBCV . USB Command Verifier

USB-IF . USB Implementers Forum

VBUS . Voltage line of the USB interface

WDM .Windows Device Model

WDF .Windows Driver Foundation

ICDP . Charging Downstream Port Rated Current (1.5A-5A)

ICFG MAX . . . Maximum Configured Current when connected to a SDP (500mA)

ISUSP . Suspend current (2.5mA)

IUNIT . Unit load current (100mA)

xiii

Chapter 1

Introduction

In current era of portable device, Tablet and Mobile play an important role in

people’s life and lot of activities like reading books, making video calls relayed

through those devices. The Battery is one of the important part of portable devices

which determine working hours. There are different types of batter available in

market form which Lithium-Ion (Li-ion) is most commonly used battery. Battery

charging and discharging is chemical reaction but for Li-ion battery its energy flowing

in and out as part of ion movement between anode and cathode.

1.1 Problem statement

The performance and longevity of rechargeable batteries are to a large extent gov-

erned by the quality of the charging system. Incorrect charging system makes bat-

tery unusable, lowers battery life line and sometime it leads to battery explosion

due over heating.

Battery energy is instantaneously delivered to support each load/ hardware as

required.For reliable operation It is require that system should maintain and observe

charging level in continuous manner. At the same time, it is expected that charging

shell be controlled in order to improve battery performance and operational life of

battery.

1

CHAPTER 1. INTRODUCTION 2

1.2 Objective

To overcome problems with charging system it is required to have software Driver

to control and monitor all hardware related functionality, which includes

• Battery capacity monitoring

• Battery Overcharging protection

• Battery discharge control

• Battery Temperature control while charging as recommended by “JEITA (Japan

Electronics and Information Technology Industries Association)” compliance

• Charging source detection as per defined in “Battery Charging specification

1.2”

1.3 Thesis Organization

Many Tablets have on chip hardware for controlling all battery related functionality.

Hardware generally include

• Battery charging IC mainly referred as “Charger”, which used to control charg-

ing current and voltage, to read Battery pack temperature.

• Power Management IC (PMIC) which distribute power to all on-chip hardware

and has feature like Voltage scaling, power sequencing, DC-DC conversion.

For controlling all battery related functions using above hardware Battery man-

agement driver is used. This driver is developed in Windows Kernel Mode Driver

Framework (KMDF).

This thesis broadly divided into seven chapters:

CHAPTER 1. INTRODUCTION 3

• Chapter 2 describe algorithm for charging source detection done at hardware

layer, maximum current allowed from charging source under various condition

or device state as per recommended in Battery Specification 1.2 standard.

• Chapter 3 introduces to JEITA compliance, what can be charging current for

Li-ion battery at specific temperature.

• Chapter 4 describes how fuel gauging works and its different type.

• Chapter 5 introduces basic of windows driver framework, how kernel mode

device driver framework is superior to older windows device model.

• Chapter 6 shows overall working flaw and objects of battery charging driver.

• Chapter 7 shows functional flow of camera sensor Driver.

Chapter 2

Battery charging specification

The standards has been defined by Battery Charging working Group which defines

limits, detection control and mechanism wich report maximum allowed current which

can be sink from USB 2.0 specification for powering or charging device from charging

downstream port, host, deidcated charger or hubs.

2.1 Specification introduction

The Portable Device (PDs) generally use personal computing USB port for their

battery charging. which leads manufacture to create charger which having USB

standard Type-A receptacle and it allows PDs to use same charging cable for charg-

ing from Dedicated wall charger or from personal computer. this standard says that

if PD is connected to Hubs or USB host then it must meet current limit criteria

listed below:

• 2.5 mA average when bus is in suspended state

• 100 mA when bus is not in suspended state and not configured

• 500 mA when bus is not in suspended state and its configured for 500 mA

4

CHAPTER 2. BATTERY CHARGING SPECIFICATION 5

The Portable Device is allowed to draw IDEV CHG if connected to to a Charg-

ing Port, (i.e. CDP, DCP, ACA-Dock or ACA) irrespective of its configuration or

suspended state. There is need of some mechanism which allows PDs to differentiate

between SDP (Standard Downstream port) and DCP (Dedicated Charging Port),

this section describes such mechanism.

It accepted that user can attached their PDs to charger from various manufac-

turers and should get same user experience. This specification describes rules for a

compliant USB charger.

PDs having Dead Battery can draw current upto 100mA as per Dead battery

provision explain in preceding sub section.

2.2 Dead Battery provision

The Dead Battery Threshold is maximum charge level of a battery such that below

that charge level threshold PD will bot be able to power up. Battery is said to be

dead when it is below dead battery threshold.

PDs can draw ISUSP from SDP when its in suspended state or connected as USB

2.0 Specifications and up to ICFG MAX in configured state. The limit of ISUSP

is problematic when PDs having Dead Battery because some device requires more

than Iunit to charge up to level at which PDs can power up. so with ISUSP PDs

will not be able to power up if they attached to SDP.

BC 1.2 defines two clause to overcome Dead battery problem.

2.2.1 DBP Un-configured Clause

The PD having Dead or Weak Battery can draw IUNIT from a Downstream Port

using DBP while not configured as longs as It follows following clause:

a. after specific timeout Reduce current to ISUSP

CHAPTER 2. BATTERY CHARGING SPECIFICATION 6

• If PD is not ready to connect and be enumerated within TSVLD CON WKB

after attach, then it should scale down its current to ISUSP

b. Enable VDP SRC when attached but not connected

• PD have to enable VDP SRC within TDBP ATT VDPSRC of attach

• PD have to connect within TDBP VDPSRC CON of disabling VDP SRC

c. Power up and enumerate as soon as it reaches weak battery threshold

• PD can not use power to perform unrelated tasks like:

– Charging beyond the Weak Battery Threshold

– phone call

– Playing a song, video or game

– connecting to wireless connection

d. Passes inrush test

• PD having Dead or Weak Battery has to pass USB-IF compliance inrush

test

The PDs is said to be in un-configured state when it is attached and not config-

ured. It has to enter into configured state on receiving of command SET CONFIGURATION.[1]

2.2.2 DBP – Configured Clause

The PD having Weak Battery or Dead Battery can draw upto ICFG MAX from

SDP using DBP when its in configured state and not requires to pass USBCV test.

PDs shell requires to follow:

a. Responding to received tokens

CHAPTER 2. BATTERY CHARGING SPECIFICATION 7

• PD have to respond to any tokens, with either a NAK or any other valid

USB response

b. Responding to USB reset

• Upon receiving of USB reset, The PD have to lower its current to IUNIT.

PD is allowed to disconnect upon receiving a reset. While disconnected,

PD can use DBP Un-configured Clause.

c. Responding to USB suspend

• Upon receiving of USB suspend,The PD have to remain connected, or

reduce its current to ISUSP, or it have to disconnect.PD can use DBP

Un-configured Clause in disconnected state.

d. PDs has to give full functionality after disconnect or timeout

• After TDBP FUL FNCTN period from attach, a PD has to remain con-

nected or either able to pass USBCV, or it has to disconnect.PD can use

DBP Un-configured Clause in disconnected state.

e. PD shell informs user thats its charging and not able to perform other task

within TDBP INFORM of attach.

2.3 Charging source or type detection

Tablet or mobile device hardware/software has to capable to detect type of physical

connection and charging source with help of algorithm describe in this section, type

of physical connection is shown in 2.1.

CHAPTER 2. BATTERY CHARGING SPECIFICATION 8

Figure 2.1: Physical Connection overview [1]

2.3.1 Charger detection hardware

This section provides information on the hardware used for charger detection. figure

2.2 shows sequence and type of task required for proper source detection.

VBUS Detect Each PDs needs comparator that detects present VBUS is higher

then internal session threshold. Internal session threshold said to be valid within

VOTG SESS VLD

CHAPTER 2. BATTERY CHARGING SPECIFICATION 9

Figure 2.2: Charging Source detection hardware [1]

Data contact detect (DCD) having internal current source (IDP SRC) used for

detecting contact of Data Pin between PD and host (i.e. SDP, CDP). PD shell wait

for period TDCD TIMEOUT before staring primary detection in case it does not

have DCD mechanism.

Basic purpose of DCD mechanism is to start primary detection by PD as soon

as it has made data pin contact.

DCD may not work for following cases:

• DCP having higher leakage current

• ACA with charger and FS or HS B-device on Accessory Port

CHAPTER 2. BATTERY CHARGING SPECIFICATION 10

• ACA-Dock

• PS2 port which pulls up D+ high

• Some chargers that pull up D+ high

due to above limitation of DCD, PD shell start Primary Detection after attached

event within maximum TDCD TIMEOUT even if pin contact not detected.

USB port and receptacles are structured in way that power pin do contact before

data pins as shown in figure ??. and thus VBUS detected before data pin make

contact. In general PDs take 200ms of delay in between data and power pin has

made contact.

Figure 2.3: Data pin length offset

PD differentiate SDP from CDP based on primary detection, Id Data pin make

contact after Primary detection, PD will know it is attached to SDP, but If PD

incorrectly determine is connected to SDP than it sinks ISUSP while waiting for

enumeration, but since it actually connected to CDP (which does not perform enu-

meration) it will not get charge.

a. Data contact detect when no device attached

as per Data contact protocol PD shell follow those steps:

CHAPTER 2. BATTERY CHARGING SPECIFICATION 11

Figure 2.4: Data contact detect, not attached [1]

• PD identifies VBUS asserted

• PD turns on D- pull-down resistor and IDP SRC

CHAPTER 2. BATTERY CHARGING SPECIFICATION 12

• PD shell wait for D+ line to get low for period of TDCD DBNC

• PD shell turn off D- pull-down resistor and IDP SRC

D+ line is on high state when nothing is attached.

b. DCD when PD attached to SDP (Standard Downstream Port)

When the PD is attached to an Standard Downstream Port, the D+ line is pulled

low by RDP DWN in the SDP.

CHAPTER 2. BATTERY CHARGING SPECIFICATION 13

Figure 2.5: Data contact Detect SDP [1]

Primary Detection It is used to differentiate SDP and other type of charging

ports. PD shell implement this algorithm.

a. Primary detection in case of DCP

CHAPTER 2. BATTERY CHARGING SPECIFICATION 14

Figure 2.6: Primary detection for DCP [1]

During Primary Detection PD has to turn on VDP SRC and IDM SINK. As

DCP short D+ to D- through a resistance of RDCP DAT, PD will determine

a voltage on D- that is near to VDP SRC. A PD has to compare voltage on D-

with VDAT REF. If D- is higher than VDAT REF, then the PD determines

it is attached to either a DCP or CDP.

CHAPTER 2. BATTERY CHARGING SPECIFICATION 15

b. Primary detection in case of CDP

Figure 2.7: Primary detection CDP [1]

c. Primary detection when SDP is connected

CHAPTER 2. BATTERY CHARGING SPECIFICATION 16

Figure 2.8: Primary detection SDP [1]

During Primary Detection PD need to turn on IDM SINK and VDP SRC. When

a voltage of VDP SRC is applied to D+, an SDP will continue pulling D- low through

RDM DWN. A PD will have to compare the voltage on D- with VDAT REF. If D-

is lower than VDAT REF, then the PD determine that it is attached to an SDP.

CHAPTER 2. BATTERY CHARGING SPECIFICATION 17

Secondary Detection Secondary Detection used to differentiate between CDP

and DCP. PDs that are not ready to be enumerated within TSVLD CON PWD

after detecting VBUS are required to implement Secondary Detection. PDs that

are ready to be enumerated can bypass Secondary Detection.

Figure 2.9: secondory detection DCP [1]

During Secondary Detection, a PD will have to output VDM SRC on D-, turn

on IDP SINK, and compare voltage on D+ to VDAT REF. as DCP short D+ to

CHAPTER 2. BATTERY CHARGING SPECIFICATION 18

D- through a resistance of RDCP DAT, voltage on D+ will be near to VDM SRC,

which is above VDAT REF. If a PD detects that D+ is higher than VDAT REF, it

identifies that it’s attached to a DCP. It’s then suppose to enable VDP SRC or pull

D+ to VDP UP through RDP UP, as per the Good Battery Algorithm

Figure 2.10: Secondary detection CDP [1]

During Secondary Detection, PD will have to output VDM SRC on D-, turn on

IDP SINK, and compare the voltage on D+ to VDAT REF. as CDP do not short

CHAPTER 2. BATTERY CHARGING SPECIFICATION 19

D+ to D-, voltage on D+ will be near to ground, which will be below VDAT REF.

If a PD detects that D+ is lower than VDAT REF, it identifies that it is attached

to a CDP.

2.3.2 Charger Detection algorithm

This section explains all charger detection steps by help of flowchart. PD vendor

can choose different algorithm based on requirement. [1]

The Weak Battery Threshold is defined as the minimum threshold of a bat-

tery charge level such that above this threshold, a device is guaranteed to power up

successfully. A Weak Battery having charge level higher than Dead Battery Thresh-

old and lower then the Weak Battery threshold. A device with a Weak battery may

or may not be able to power up a device successfully. A Good Battery is defined

as one that is above the Weak Battery Threshold.

CHAPTER 2. BATTERY CHARGING SPECIFICATION 20

Figure 2.11: Weak battery algorithm [1]

CHAPTER 2. BATTERY CHARGING SPECIFICATION 21

Figure 2.12: Good Battery algorithm [1]

Chapter 3

JEITA Compliance

Lithium-ion (Li-ion) batteries tend to become dangerous when they are overcharged

at high temperatures. Safely charging these batteries has become one of the most

important design specifications in battery-powered portable equipment. Progress

has been made in establishing industry standards such as the Japan Electronics and

Information Technology Industries Association (JEITA) guidelines for improving

battery-charging safety.

3.1 Li-ion Battery safety

Widely used in consumer electronics from cell phones to laptops, Li-ion batteries

have the highest volumetric and gravimetric energy densities among the rechargeable

batteries.

Everyone in the industry has seen pictures of exploding laptops and heard about

the massive and unprecedented recalls of Li-ion batteries due to cell safety con-

cerns. Such battery explosions or fires originated within the manufacturing process.

Batteries contain several metal parts that can sometimes result in undesirable metal

impurities within the cell. These impurities are typically sharp metal shards from the

battery casing or from electrode materials. If these shards get between the battery’s

electrode and separator, battery cycling in the negative electrode can eventually

22

CHAPTER 3. JEITA COMPLIANCE 23

cause the shards to puncture the separator. This results in a micro-short between

the positive and negative electrodes, producing high heat that may ultimately result

in fire and/or an explosion[6].

High temperatures, fire, and explosions are all results of thermal runaway—

a condition whereby a battery enters into an uncontrollable reaction. Thermal

runaway is a process in which the internal temperature of a battery with LiCoO2

as the cathode material and graphite as the anode material reaches approximately

175◦C. This is an irreversible and highly exothermic reaction that can cause a fire,

usually when the battery is charging[6].

3.2 JEITA guidance

To improve the safety of charging Li-ion batteries, JEITA and the Battery Associ-

ation of Japan released new safety guidelines on April 20, 2007. Their guidelines

emphasized the importance of avoiding a high charge current and high charge volt-

age at certain low and high temperature ranges. According to JEITA, problems in

the Li-ion batteries occur at high charge voltages and high cell temperatures.

Figure 2 shows the JEITA guidelines for the charge current and charge voltage

over cell temperature for batteries used in notebook applications. These batteries

have LiCoO2 as the cathode active material and graphite as the anode active ma-

terial. In the standard charging temperature range from T2 to T3, a Li-ion cell can

be charged in the optimal conditions of the upper-limited charge voltage and the

upper-limited charge current recommended by the cell’s manufacturer for safety.

CHAPTER 3. JEITA COMPLIANCE 24

Figure 3.1: JEITA guidelines for charging Li-ion batteries [6]

Figure 3.2: JEITA guidelines for charging Li-ion batteries in single-cell handheld
applications [6]

Chapter 4

Battery Fuel gauging

Battery fuel gauges determine the amount of charge remaining in a battery and

how much longer, under specific operating conditions, the battery can continue to

provide power. As handheld devices become thinner and less expensive, batteries are

becoming smaller yet have increased capacity. Highly accurate battery fuel gauges

are needed to make efficient use of all available cell energy in today’s portable devices.

Battery SOC (State of Charge) is percentage of charge left in a battery ranges

from 0% to 100%. Since SOC measurement having same purpose as a gas gauge in

an automobile, ICs that measure and provide SOC are typically called ”gas gauge”

or ”fuel gauge” ICs.

Battery management driver uses this SOC to determine remaining battery life

and it also ensure safety and maximizing life of battery. A non reliable Battery SOC

management hardware/software results in lowering battery performance as well as

life time due to over-charging or over discharging of Battery.

Li-ion cells have nearly constant voltage across its discharging (Figure 4.1). and

so comparing current cell voltage is not enough for measuring remaining charge.

As a result Li-ion battery require more sophisticated fuel gauge having more

than one SOC measurement techniques.

25

CHAPTER 4. BATTERY FUEL GAUGING 26

Figure 4.1: typical lithium-ion battery voltage during discharge [6]

4.1 General SOC measurement methods

a. Current based method

b. Voltage based method

c. Model based method

d. Internal impedance measurement

4.1.1 Current based SOC estimation

This method usually has counter which incremented and decremented during charg-

ing and discharging of battery respectively. Driver running on host controller cal-

culate SOC by use of ACR (Accumulated charge Register).

CHAPTER 4. BATTERY FUEL GAUGING 27

Figure 4.2: Current based (Coulmb counting) SOC functional diagram (Courtesy of
Texas Instrument.)

4.1.2 Voltage based SOC estimation

Generally voltage based algorithm include one look up table known as OCV profile

for specific battery, at no load or minimum load battery voltage measurement done

by fuel gauge which is then compared to profile data by means of software to decide

current battery capacity.

Each method has its own advantage and disadvantage, BM Driver uses both

of above explained method for SOC estimation. It uses coulomb counting method

while system is running and voltage based method while system is on sleep state

or having minimum load. also Driver measure Voltage based method when system

boot for first time since battery chemical is on stable state.

CHAPTER 4. BATTERY FUEL GAUGING 28

Figure 4.3: ST3105 dedicated digital coulomb counter. (Courtesy of STMicroelec-
tronics.)

CHAPTER 4. BATTERY FUEL GAUGING 29

Figure 4.4: Figure illustrate chart for sample OCV profile

Chapter 5

Windows Driver Frameworks

(WDF)

Windows Driver Frameworks (WDF) is a set of libraries that you can use to develop

device drivers that are interoperable with Windows. WDF is comprised of Kernel-

Mode Driver Framework (KMDF) and User-Mode Driver Framework (UMDF). This

section mainly concentrate on explaining KMDF on which Battery management

driver is developed [2].

5.1 Windows§Driver Model

The Windows Driver Model (WDM) was defined to provide a common driver devel-

opment model and paradigm for Windows 98, Windows 2000 and later Windows XP

[3]. It aimed to reduce the complexity of implementing a Plug ’n Play compatible

device driver, and provide standard and secure way of interacting with OS Kernel.

since any Issue or crash in driver cause whole system instability even fail of system.

WDM features implemented in way allowing standard abstraction and layering

of Driver. for example battery charger driver uses Battery Class driver which is

30

CHAPTER 5. WINDOWS DRIVER FRAMEWORKS (WDF) 31

Figure 5.1: Microsoft windows Driver system [3]

implemented by Microsoft as standard layering, manufacture provide filter driver

for battery charging for proprietary feature which work on HAL layer[3].

For most devices that Microsoft doesn’t directly support, you need to write a

WDM driver. You will decide first whether to write a monolithic function driver, a

filter driver, or just a mini driver. You’ll probably never need to write a class driver

because Microsoft would like to reserve that specialty to itself in order to serve the

broadest range of hardware makers.

5.1.1 WDM Mini-drivers

The basic rule of thumb is that if Microsoft has written a class driver for the type

of device you’re trying to support, you should write a mini-driver to work with

that class driver. Your mini-driver is nominally in charge of the device, but you’ll

call subroutines in the class driver that basically take over the management of the

hardware and call back to you to do various device-dependent things. The amount

of work you need to do in a mini-driver varies tremendously from one class of device

CHAPTER 5. WINDOWS DRIVER FRAMEWORKS (WDF) 32

to another.

Here are some examples of device classes for which you should plan to write a

mini-driver:

• Non-USB human input devices (HID), including mice, keyboards, joysticks,

steering wheels, and so on. If you have a USB device for which the generic

behavior of HIDUSB.SYS (the Microsoft driver for USB HID devices) is insuf-

ficient, you would write a HIDCLASS mini-driver too. The main characteristic

of these devices is that they report user input by means of reports that can be

described by a descriptor data structure. For such devices, HIDCLASS.SYS

serves as the class driver and performs many functions that Direct-Input and

other higher layers of software depend on, so you’re pretty much stuck with us-

ing HIDCLASS.SYS. This is hard enough that I’ve devoted considerable space

to it later in this as an aside, HIDUSB.SYS is itself a HIDCLASS mini-driver.

• Streaming devices, such as audio, DVD, and video devices, and software-only

filters for multimedia data streams. You will write a stream mini-driver.

• Batteries, for which Microsoft supplies a generic class driver. You would write

a mini-driver (which the DDK calls a mini-class driver, but it’s the same thing)

to work with BATTC.SYS.

5.1.2 WDM Filter Drivers

You may have a device that operates so closely to a recognized standard that a

generic Microsoft driver is almost adequate. In some situations, you may be able to

write a filter driver that modifies the behavior of the generic driver just enough to

make your hardware work. This doesn’t happen very frequently, by the way, because

it’s often not easy to change the way a generic driver accesses the hardware.

CHAPTER 5. WINDOWS DRIVER FRAMEWORKS (WDF) 33

5.1.3 Monolithic WDM Function Drivers

WDM function driver. Such a driver essentially stands alone and handles all the

details of controlling your hardware. When this style of driver is appropriate, I

recommend the following approach so that you can end up with a single binary that

will work on Intel x86 platforms in all operating systems. First, build with the most

recent DDK.

5.2 Windows Driver Foundation

WDM is still complex model while implementing PnP and Power callback for driver

and create boiler-plate coding while developing driver. [4]

The Microsoft Windows Driver Foundation (WDF) is Microsoft’s next-generation

driver-development model. WDF includes a suite of components that support the

development, deployment, and maintenance of both kernel-mode and user-mode

drivers. As Figure 5.2 shows, WDF components work with existing driver develop-

ment tools to address the entire driver life cycle.[4]

Figure 5.2: Microsoft Windows Driver Foundation Development Model [3]

• Driver model: The WDF driver model supports the creation of object-

oriented, event-driven drivers. By using WDF, driver writers can focus on

CHAPTER 5. WINDOWS DRIVER FRAMEWORKS (WDF) 34

their device hardware, rather than on the operating system. WDF drivers can

be written for either kernel mode or user mode.

• Frameworks and the Windows Driver Kit (WDK): WDF defines a sin-

gle driver model and includes frameworks for both kernel-mode and user-mode

driver development. The frameworks provide the basic infrastructure to sup-

port the WDF model. They implement common features, provide intelligent

defaults, and manage most interactions with the operating system.

The kernel-mode driver framework (KMDF) implements basic kernel-mode driver

support features that are required by Windows and are common to all kernel-mode

drivers.

The user-mode driver framework (UMDF) provides functional support similar

to that in the KMDF, but enables drivers for some types of devices to run in user

mode instead of in kernel mode.

All WDF drivers are built by using the WDK build environment.

• Tracing and static analysis tools: Both the KMDF and the UMDF have

built-in verification code and support integrated tracing through Event Trac-

ing for Windows (ETW). The generated traces can help in debugging drivers

during development and in diagnosing problems in released drivers. WDF

drivers also work with the existing driver verifier. In addition, compile-time

driver verification tools, such as PREfast and Static Driver Verifier (SDV), are

also part of the WDF effort.

• Driver signing: WDF drivers are signed in the same way as Windows Driver

Model (WDM) drivers.

• Driver installation tools: WDF drivers are installed by using INF files

and work with existing driver installation tools, including the Driver Install

Frameworks (DIFx) tools.

CHAPTER 5. WINDOWS DRIVER FRAMEWORKS (WDF) 35

• Versioning: WDF supports versioning so that a single driver binary can

run on any version of the operating system and use the same version of the

framework with which it was built and tested.

5.2.1 Design Goals for WDF

The following are the primary design principles underlying the WDF model:

• Separate the driver model from the core operating system components.

• Provide a user-mode option for some device types.

• Implement common and default driver features so that driver developers can

focus on their hardware.

• Make drivers event driven and define the events at a detailed level so that

driver tasks are straightforward.

• Simplify Plug and Play and power management implementation for all drivers.

• Support a consistent installation process for both user-mode and kernel-mode

drivers.

• Provide integrated tools, including built-in tracing and verification support,

to help find and diagnose problems both during debugging and after release.

• Enable a single driver binary to work with several versions of the framework

and the operating system.

5.2.2 User mode Driver Framework (UMDF)

The UMDF implements a subset of the KMDF functionality, including support for

Plug and Play, power management, and asynchronous I/O. Drivers that run in user

mode have access only to the user address space and therefore pose low risk to

CHAPTER 5. WINDOWS DRIVER FRAMEWORKS (WDF) 36

system stability. User-mode drivers cannot handle interrupts, perform DMA, or use

kernel-mode resources such as non-paged pool.

Using the UMDF, developers can create drivers for any protocol- or serial-bus–

based device. Although these drivers run in user mode, they use the standard Plug

and Play installation mechanism and the same I/O model as kernel-mode WDF

drivers. To determine whether a user-mode driver is suitable for your device, see

“Introduction to the WDF User-Mode Driver Framework,” which is listed in the

Resources section.

Figure 5.3 shows the components involved in transmitting an I/O request from

an application to a user-mode WDF driver. [4]

Figure 5.3: I/O Flow to User-Mode WDF Driver [4]

• Application: The application is a user-mode process that issues I/O requests

through the Win32 API.

• Win32 API: In response to the application’s I/O request, the Win32 API

calls I/O routines in the Windows kernel.

CHAPTER 5. WINDOWS DRIVER FRAMEWORKS (WDF) 37

• Windows Kernel: The I/O manager in the Windows kernel creates IRPs to

represent the requests and presents them to the target driver by calling the

driver at a designated entry point. If the target of the request is a user-mode

WDF driver, however, the I/O manager cannot call the driver or the UMDF

directly because these components run in a user mode process and kernel-mode

components cannot call back to user mode. Therefore, the I/O manager does

not present the request directly to the user-mode driver. Instead, the I/O

manager presents the request to a kernel-mode component called the reflector.

• Reflector: The reflector is a kernel-mode WDM filter driver that represents

the user-mode driver in the kernel-mode driver stack. The reflector passes the

I/O request to the user-mode driver host process.

The reflector manages communication between the kernel-mode components

and the user-mode driver host process. It monitors the driver host process to

ensure that it responds properly to messages and completes critical operations

in a timely manner, thus helping to prevent driver and application hangs. The

reflector also sends messages to the driver manager as required.

• Driver Host Process. The driver host process is the user-mode process in

which the user-mode driver runs.

5.2.3 Kernel mode Driver Framework (KMDF)

The kernel-mode driver framework (KMDF) is an infrastructure for developing

kernel-mode drivers. It provides a C-language device driver interface (DDI) and

can be used to create drivers for Microsoft§Windows§2000 and later releases. In

essence, the framework is a skeletal device driver that can be customized for specific

devices. KMDF implements code to handle common driver requirements. Drivers

customize the framework by setting object properties, registering callbacks to be

notified of important events, and including code only for features that are unique to

CHAPTER 5. WINDOWS DRIVER FRAMEWORKS (WDF) 38

their device.

KMDF provides a well-defined object model and controls the lifetime of objects

and memory allocations. Objects are organized hierarchically in a parent/child

model, and important driver data structures are maintained by KMDF instead of

by the driver. [5]

The Windows Driver Foundation (WDF) also includes a user-mode driver frame-

work (UMDF). If your device does not handle interrupts, perform direct memory

access (DMA), or require other kernel-mode resources such as non-paged pool mem-

ory, then one should consider writing a user-mode driver instead

Figure 5.4: I/O Flow to Kernel-Mode WDF Driver [5]

KMDF Components KMDF is distributed as part of the Windows Driver Kit

(WDK) and consists of header files, libraries, sample drivers, development tools,

public debugging symbols, and tracing format files. By default, KMDF is installed

in the WDF subdirectory of the WDK root installation directory. KMDF-based

drivers are built in the WDK build environment. Table lists the KMDF components

that are installed as part of WDF. [5]

CHAPTER 5. WINDOWS DRIVER FRAMEWORKS (WDF) 39

Table 5.1: KMDF Component

Component Location Description
Header files wdf/inc Header files required to build

KMDF drivers
Libraries wdf/lib Libraries for x86, x64, and Intel

Itanium architectures
Sample
drivers

wdf/src Sample drivers for numerous de-
vice types; most are ported
from Windows Driver Develop-
ment Kit (DDK) WDM samples

Tools wdf/bin Tools for testing, debugging,
and installing drivers; includes
the redistributable KMDF co-
installer, WdfCoinstallernn.dll

Debugging
symbols

wdf/symbols Public symbol database (.pdb)
files for KMDF libraries and co-
installer for checked and free
builds

Tracing for-
mat files

wdf/tracing Trace format files for the trace
messages generated by KMDF li-
braries and co-installer

To aid in debugging, KMDF is distributed with free and checked builds of the

run-time libraries and loader, along with corresponding symbols.

Structure of a KMDF Driver A KMDF driver consists of a “DriverEntry”

function that identifies the driver as based on KMDF, a set of callback functions

that KMDF calls so that the driver can respond to events that affect its device, and

other driver-specific utility functions. Nearly every KMDF driver must have the

following:

• A DriverEntry function, which represents the driver’s primary entry point.

• An EvtDriverDeviceAdd callback, which is called when the Plug and Play

manager enumerates one of the driver’s devices (not required for drivers that

support non-Plug and Play devices).

CHAPTER 5. WINDOWS DRIVER FRAMEWORKS (WDF) 40

• One or more EvtIo* callbacks, which handle specific types of I/O requests

from a particular queue. Drivers typically create one or more queues into which

KMDF places I/O requests for the driver’s device. A driver can configure its

queues by type of request and type of dispatching.

A minimal kernel-mode driver for a simple device might have these functions

and nothing more. KMDF includes code to support default power management and

Plug and Play operations, so drivers that do not manipulate physical hardware can

omit most Plug and Play and power management code. If a driver can use the

defaults, it does not require code for many common tasks, such as passing a power

IRP down the device stack. The more device-specific features a device supports and

the more functionality the driver provides, the more code the driver requires.

Device Objects Every driver creates one or more device objects, which represent

the driver’s roles in handling I/O requests and managing its device. KMDF supports

the development of the following types of device objects.

• Filter device objects (filter DOs) represent the role of a filter driver. Filter

DOs ”filter,” or modify, one or more types of I/O requests that are targeted

at the device. Filter DOs are attached to the Plug and Play device stack.

• Functional device objects (FDOs) represent the role of a function driver,

which is the primary driver for a device. FDOs are attached to the Plug and

Play device stack.

• Physical device objects (PDOs) represent the role of the bus driver, which

enumerates child devices. PDOs are attached to the Plug and Play device

stack.

• Control device objects represent a legacy non–Plug and Play device or a

control interface. They are not part of the Plug and Play device stack.

Chapter 6

Battery Charging Driver Flow

Battery management Driver is mini-class KMDF driver and it performs following

functions:

a. Communicate with windows battery class driver Battc.sys.

b. Initialize all battery related hardware such as Battery charger, PMIC, Fuel

Gauge IC.

c. Implement call back function for response of interrupt generated like charger

insertion or removal, battery insertion and fault interrupts.

d. Battery capacity measurement at periodic interval.

e. Battery charging enabling and disabling functions.

f. Read Battery ID.

6.1 Interaction flow between windows battery

class driver and BM mini-class driver

41

CHAPTER 6. BATTERY CHARGING DRIVER FLOW 42

Figure 6.1: Basic Driver interection diagram

As shown in the preceding figure, the role of each component in battery opera-

tions is as follows:

a. Depending on system there can be Bus driver between Battery driver and mini

class driver i.e. ACPI filter driver.

b. A battery miniclass (battery management) driver is the functional driver

having manufacturer proprietary feature for Specific battery type. Which

responsible for all battery control functions.

c. The composite battery driver supplied by Microsoft. It communicate to

CHAPTER 6. BATTERY CHARGING DRIVER FLOW 43

power manager in response of IRPs sent by Power manager, It stores all battery

related information such as SOC. It also notifies system in case of any change

in battery charge.

d. The battery class supplied by Microsoft, and it support multiple battery

mini-class driver, It allocates resource for miniclass driver, handles device IRPs

and It calls BatMiniXX function for querying Battery related information.\

e. The power manager generates IRPs for PnP and Power to Driver stack,

It does not communicate to mini-class or Device driver. It sends IRPs to

composite driver which queries to mini-class.

f. The battery GUI Its interface where application layer software use it for re-

trieving any battery related information such as remaining time, current SOC

with help of power management. It also can query Device driver directly for

any specific battery information such as current battery voltage (uses Battery

GUI for referring specific battery)

6.2 Battery management Driver Entry function

The miniclass driver’s DriverEntry routine sets up the following driver-specific entry

points:

a. The Unload routine in DriverObject->DriverUnload

b. The driver’s AddDevice routine in DriverObject->DriverExtension->AddDevice

c. The DispatchPower routine in DriverObject->MajorFunction[IRP MJ POWER]

d. The DispatchPnP routine in DriverObject->MajorFunction[IRP MJ PNP]

e. The DispatchCreate routine in DriverObject->MajorFunction[IRP MJ CREATE]

f. The DispatchClose routine in DriverObject->MajorFunction[IRP MJ CLOSE]

CHAPTER 6. BATTERY CHARGING DRIVER FLOW 44

g. The DispatchDeviceControl routine in DriverObject->MajorFunction[IRP MJ DEVICE CONTROL]

h. The DispatchSystemControl routine in DriverObject->MajorFunction [IRP MJ SYSTEM CONTROL].

Figure 6.2: Entry function task

All of above is predefined standard windows structure for managing KMDF based

driver. Figure 6.2 shows some BM driver entry function tasks

CHAPTER 6. BATTERY CHARGING DRIVER FLOW 45

6.3 Windows battery management Driver Task

As listed in starting of this section battery management diver responsible to battery

charging and reading battery parameters like SOC, Battery ID. figure 6.3 shows high

layer task flow diagram of BM driver for which corresponding functions is imple-

mented in C language. Some of the function called regularly by use of time created

at time of driver entry and many of function implemented as callback function.

Battery management not responsible for controlling power drawn by hardware of

handheld device, it only take part in switching system power source between battery

and charger power.

CHAPTER 6. BATTERY CHARGING DRIVER FLOW 46

Figure 6.3: Battery management Driver functional flowchart

Chapter 7

Camera Sensor Driver Flow

Camera Driver development process include developing display and camera driver,

trough DirectShow and camera application. Camera application use middleware

layer of DirectShow video capture for control and interacting with Camera Hardware,

camera application is not intended to communicate directly to Camera hardware.

Camera could be used for multiple Application like

a. Still Image Capture

b. Video Capture

c. Processing of frames and identifying something

d. Compressing and transmitting over the network

Various steps of Image Processing done on frames captured by camera sensor before

passing those frames to application running on user level.

Controlling the flow of data from a camera device requires working with three kinds

of objects: camera adapters, pins, and streams.

7.1 Elements of camera Systems

a. Device driver

47

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 48

The layer of software that controls the physical camera hardware. A single

camera driver can control multiple cameras.

b. Device instance

A single complete physical set of camera hardware. A camera device driver

can support multiple device instances.

c. Adapter

The logical representation of a device instance in software.

d. Pin

The camera driver architecture uses the concept of a pin as defined by the

DirectShow middleware. For more information, see Pins. Pins are used to

transmit data in and out of a device and are always in one of three states:

stopped, paused, and playing. A camera driver can support up to three types

of pins: preview, capture, still. Each pin can support a number of media

formats. The DirectShow middleware manages the process matching media

formats from camera output pins with pins on downstream filters. For more

information, see Video Format Negotiation.

e. Pin driver

Software used to control a pin. A pin driver can support multiple pins.

f. Pin instance

A single pin on an adapter.

g. Pin handle

A unique identifier that provides a means of locating a single specific pin.

h. Stream

Data that flows out of an adapter’s pin and to the application.

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 49

7.2 Driver Software Architecture

The camera sensor driver is responsible for controlling the specific camera sensor

on Tablet platform. It implements a set of common control functionalities expected

by the ISP driver for the specific camera sensor like Set/Get Resolution, Set/Get

Focus Position, Set/Get Exposure etc, which are fundamental functions for camera

preview, camera take-photo, camera video record and 3A control. The sensor driver

is a KMDF driver that exports interfaces only to the ISP driver and access from

non-privileged user applications are not allowed.

Figure 7.1: Camera Sensor Driver

Driver MFT let device manufacture to apply custom effects on Camera Source

stream.

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 50

The Windows Store device app of camera runs as separate process than the

Windows Store app that invokes it from the CameraCaptureUI API. Specific

predefined sequence of events must occur for the Windows Store device app to

control a driver MFT.

Figure 7.2: Three Pin Camera Capture Engine

a. A Windows Store app wants to capture a photo, so it calls the Capture-

FileAsync method

b. Windows requests the driver MFT pointer and the camera’s device ID

c. The driver MFT pointer is passed to a settings host

d. The host queries device properties for the app ID of the Windows Store device

app associated with the camera (per device metadata)

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 51

e. If no Windows Store device app is found, the default flyout interacts with the

capture engine

f. If a Windows Store device app is found, it is activated and the settings host

passes the driver MFT pointer to it

g. The Windows Store device app controls the driver MFT using the interface

exposed through the pointer

7.3 Camera driver functional requirement

7.3.1 Live viewfinder

The Camera driver should generate continuous video stream with same orientation

and aspect ratio as selected mode of capture, which can be used as a Preview Pin

(Live viewfinder)

Latency requirements Camera driver should produce preview stream within

500ms once camera application sent command to launch camera. After launching

camera, the driver should default in still capture mode with rear camera and can be

changed to other mode or Front camera as selection by user with in 500ms or lesser.

Resolution and aspect ratio requirements The preview stream has same

orientation as selected camera capture mode. The driver should have preview reso-

lution same as aspect ratio and matches the device display resolution on at least one

dimension. Capture resolution having smaller resolution than display in both dimen-

sion, preview resolution shell be same as the resolution of capture mode. Preview

aspect ratio allowed to vary within 1% of capture aspect ratio.

Examples of various resolution are as follows:

For an 800x480 (WVGA) device, the driver must provide the following preview

resolutions:

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 52

a. 640 x 480 for 4:3 capture resolutions

b. 800 x 450 for 16:9 capture resolutions

c. 720 x 480 for 3:2 capture resolutions

d. 800 x 480 for 5:3 capture resolutions

For a 1280 x 720 (HD/ WXGA) device, the driver must provide the following

preview resolutions:

a. 960 x 720 for 4:3 capture resolutions

b. 1280 x 720 for 16:9 capture resolutions

c. 1080 x 720 for 3:2 capture resolutions

d. 1200 x 720 for 5:3 capture resolutions

Data output format Driver shell produce preview stream in NV12 format and

associated with metadata with preview stream if it has enabled in driver.

7.3.2 Still image capture

Driver shell enable still capture mode in following scenario:

Single shot On issue of capture command driver shell capture image and it shall

be produced in a standard NV12 format along with metadata associated with the

capture.

Captured image The driver should be capable of capturing still images having

pre-specified resolutions. The list of supported resolutions should be provided by

the driver and which can be used by capture applications to select an appropriate

value.

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 53

The driver have to support at least following aspect ratios for still capture for

rear camera:

a. 4:3

b. 16:9

The 4:3 aspect ratio is optional for the front camera.

Confirmation image It can be possible for an applications to select property for

the driver to return a confirmation image after still capture. The confirmation image

may be of a different resolution compared to capture resolution, and can be have

lower quality. The confirmation image will have same aspect ratio and orientation

compared to the captured image.

When this property is enabled, the driver have to provide confirmation image

within 500ms and can have low resolution of the actual capture. There may have

associated metadata with the confirmation image.

Still capture metadata The driver have to provide metadata associated with

still capture as per EXIF 2.2 specification, along with the maker notes which used

for image quality tuning. This has to be provided with the captured image stream.

Along with addition to capture metadata, driver can provide the current focus

state, ROI (Region of Interest) information, and other custom metadata with the

confirmation image. This metadata will not available if confirmation Image is turned

off by application

The driver has to provide the focus state metadata with preview stream whenever

preview stream is available.

Photo sequence capture The driver captures images in continuous sequence

at specific resolution and stores them in buffers and discarding images when mem-

ory constraints requires which allows the applications to retrieve images captured

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 54

before and after the time of capture triggered by the user. The driver shall sup-

port an ability for the application to retrieve frame captured closest to the trigger,

and specific number of frames before the trigger or past frames and another specific

number of frames after the trigger or future frames. The driver has to allow appli-

cation to query for the maximum number of past frames that can be retrieved as

per hardware constraints.

Warm start In warm start on receiving capture command driver has to re-

configure all camera sensor parameter, which causes additional latency. And it is

requires that driver shell image frames with in two frames latency.

Infinite burst capture The driver continuously produce images with specified

resolution.

Frame rate requirements The driver has to maintain frame rate of 15 fps or

higher during single shot still capture, at the camera sensor. Microsoft recommend

a 30 fps frame rate, and the camera driver can maintain this frame rate as long as

exposure algorithm will meet this requirement without degradation of the camera

image quality.

The driver shall allow the application to query and retrieve the current sensor

frame rate. The driver shall also support a query for the maximum frame rate

possible for the preview and capture streams at any supported capture resolution.

Latency requirements The driver shall support the following latency require-

ments:

a. Shutter lag for single shot capture

b. Shot to shot latency

c. Minimum burst capture rate

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 55

Time stamp The time stamp corresponding to the start of the frame scan shall

be the frame time stamp (not the time stamp corresponding to the instant the last

row of pixels is read out). This shall be represented in units of 100 nanoseconds.

Variable photo sequence The driver shall be able to capture consecutive im-

ages with varying capture parameters as instructed by the application. The driver

shall be able to preprogram the number of frames needed and set independent

capture parameters for each frame before capture is initiated. Once the capture

command is issued, the frames are captured in succession with as little latency as

possible.

7.3.3 Video recording mode

Resolution for capture The camera driver shall support the following resolu-

tions for video recording:

a. QCIF

b. CIF

c. VGA

d. WVGA

e. 720x1280

f. 1080x1920

It shall be possible to record video at 30 fps at all specified resolutions. Microsoft

recommends that the driver support the maximum frame rate supported by a given

hardware configuration for video recording so as to enable features such as slow

motion capture.

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 56

Switching between modes It shall be possible to switch from still capture

mode to video recording mode with a latency of under two frames.

7.3.4 Focus requirements

The camera driver shall provide a means to focus the scene correctly for all the driver

modes specified in the previous sections. The driver shall support the following focus

modes.

Focus modes

a. Single auto focus - In this mode, the camera is launched with the lens

set to a default focus position such as infinity or hyperfocal. When focus is

initiated, the driver selects the most optimal lens position. This lens position

is maintained till another command to initiate focus is received.

Typically, the driver shall span the entire focus range to determine the best

focus position. If a faster focus algorithm is supported by the driver, there

shall be a custom property to enable a faster focus.

b. Continuous auto focus - In this mode, the camera is launched and the focus

initiated. After the focus converges, the driver monitors the focus statistics,

and reinitiates focus if the statistics change beyond a preset threshold. This

process keeps repeating and the camera is maintained in a state of optimal

focus continuously.

c. Manual focus - In this mode, the camera is launched with the lens set to

a default focus position such as infinity or hyperfocal. An application can

instruct the driver to set the lens position to the desired focus using the ISP

controls interface.

d. Fixed focus - If the underlying camera hardware does not support a focus

mechanism, the driver shall advertise this, and ignore any auto focus related

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 57

commands.

e. Default focus mode - If continuous auto focus is supported by the hardware,

the driver shall set that as the default mode. If continuous auto focus is not

supported, the default shall be set to single auto focus. In the case where auto

focus is not supported by the hardware, the focus shall default to the fixed

focus mode.

Focus weighting

a. Center weighted - The driver shall weight the focus statistics from the

center of the frame higher than the rest of the frame so as to attain best focus

in the center of the frame.

b. Region of interest - The driver shall attempt to attain the best focus in a

region of interest (ROI) inside the frame as specified by the application. In the

AF-C mode, the driver shall ignore any specified ROI and continue to focus

on the center of the frame.

c. Object tracking – This is optional. In this mode, the driver shall focus on

a specified object in the frame and keep the object in focus, as the object or

camera moves.

Focus range To improve the efficiency of auto focus searching, the driver shall

support the setting the focus search modes. The focus range is defined as the number

of steps defined by integers.

a. Macro - In the macro mode, the driver shall start the focus sweep from the

first step in the focus range and end at a pre-defined focus step, preferably

close to the middle of the range.

b. Normal - In the normal mode, the driver shall start the focus sweep from a

predefined position between the first and the last steps to the last step in the

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 58

focus range in search for the best focus position. Microsoft recommends using

a step close to the midpoint.

c. Full range - In the full range mode, the driver shall step through the entire

focus range from minimum to maximum to search for best focus position. The

algorithm should be optimized to converge with the fewest number of steps

possible.

d. Default focus range – The driver shall set the default focus range to normal

to optimize capture latency.

Pre-defined focus positions

a. Nearest focus distance – The nearest distance that the camera can suc-

cessfully focus upon.

b. Hyperfocal – The focus position where the best focus is at the hyperfocal

position.

c. Infinity – The focus position where infinity is in the best focus.

Focus lock and default positions The driver shall support the ability to lock

focus at any given focus step. The focus shall remain locked in this position until a

command to unlock focus is received. The focus lock mechanism shall be supported

for both AF-C and AF-S.

If autofocus fails, the driver shall provide a default focus position. Microsoft

recommends that this be set to hyperfocal.

Prioritizing focus versus capture

a. Capture priority - In this mode, when a capture command is issued by the

application while the driver is seeking focus, the focus sweep is canceled. The

driver can then do the following to capture the image as fast as possible.

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 59

(1) If in the AF-C mode, capture the image immediately.

(2) If in the AF-S mode, move to the hyperfocal position and capture the

image as quickly as possible.

b. Focus priority - In the focus priority mode, when a capture command is

issued by the application while the driver is seeking focus, the driver shall

wait for focus to complete before the image is captured. In the event that the

focus fails, the driver shall move to the hyperfocal position and capture the

image.

c. Default priority – The driver shall default to the capture priority mode to

optimize capture latency.

Focus tuning

a. Still capture mode – During still capture, the continuous auto focus al-

gorithm shall converge as quickly as possible to the new focus position. The

focus range shall be set to full range unless specifically instructed by the ap-

plication. The driver shall attempt to move to the best focus position from

the current lens position in as few steps as possible.

b. Video capture mode – In the video capture mode, constant fluctuations in

focus shall be avoided. The driver shall provide a tuning parameter to limit

rapid changes in focus. Microsoft recommends that the nearest focus distance

for video be set greater than the nearest focus distance for still capture to

prevent abrupt focus changes. However, this shall be a tunable parameter.

c. Switching between modes – Whenever the camera switches from still cap-

ture mode to the video recording mode or vice versa, the focus shall be reset,

and restart in the default mode specified below:

(1) Single still capture: AF-S

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 60

(2) Photo sequence still capture: AF-C

(3) Video recording mode: AF-C

If AF-C is not supported by the underlying hardware, the focus shall default

to manual for photo sequence and video recording with the lens position set to

hyperfocal.

Focus bracketing For variable photo sequence, the camera driver shall support

focus bracketing, with a minimum requirement of macro, best focus and infinity.

Focus states The driver shall support the following focus states, and notify the

application when the focus state changes. The current focus state shall be always

made available during continuous auto focus as metadata. This may be optionally

made available during AF-S.

a. Uninitialized

b. Lost

c. Searching

d. Focused

e. Failed

7.3.5 Exposure requirements

The driver shall support the following exposure modes.

Auto exposure

a. Center weighted – The exposure statistics shall be weighted to expose the

objects in the center of the frame correctly.

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 61

b. Matrix – The exposure statistics shall be weighted uniformly across the frame.

c. Spot – This is the same as center ROI. The exposure shall be computed based

on the center of the frame only, using the smallest element of the statistics

grid at the center.

Manual exposure All the exposure parameters, including integration time,

frame rate, ISO and aperture are specified by the application. If any parameter is

not specified, the last computed value for that setting shall be used.

ROI-based exposure In this mode, the driver shall optimize the exposure for

a specific region of interest (ROI). This shall be:

a. Face detection – If the driver supports face detection, exposure can be op-

timized for a region containing the face. The ROI shall indicate that a face

has been detected with a computed confidence level. The auto exposure algo-

rithm shall use this information as input to compute the exposure for the face

correctly.

b. User-specified ROI – The driver optimizes the exposure for an ROI specified

by the application. The ROI shall vary in size from a single pixel to the entire

frame as described in the section on ROI specifications.

Auto exposure for still capture

a. Maximum exposure time – The maximum exposure time set by the auto

exposure algorithm for capture in low light shall not exceed 66 ms. Microsoft

recommends that the ISO value be increased prior to increasing the exposure

time beyond 33 ms.

b. Frame rate – During still capture, the viewfinder shall support a frame rate

of 30 fps as long as the exposure conditions allow. In low light situations, the

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 62

driver shall reduce the frame rate to increase brightness. The frame rate shall

not fall below 15 fps.

c. AE convergence latency – During still capture, the auto exposure algo-

rithm shall converge as quickly as possible to the correct setting. Microsoft

recommends using a single frame for AE convergence latency.

Auto exposure for video recording

a. AE convergence – The driver shall avoid sharp variations in exposure.

It shall be possible to specify the rate of convergence for AE as a tuning

parameter.

b. Frame rate – During video capture, the driver shall maintain the constant

frame rate as specified by the application.

Exposure API

a. Integration time - The driver shall allow the application to specify the pixel

integration time in milliseconds in the manual mode. In the auto exposure

mode, if the application specifies this parameter, the driver shall compute the

other exposure parameters such as ISO and frame rate to keep the integration

time as close to the specified value as possible.

b. Frame rate - The driver shall allow the application to specify the frame rate

for capture.

c. ISO - The driver shall allow an application to set a specific ISO value for the

capture as specified by the ISO 12232 standard – saturation based ISO value.

The driver shall advertise the minimum and maximum values of the ISO range

that is supported, and allow the application to set the ISO to any integer value

in that range.

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 63

In the auto exposure mode, the driver shall determine the appropriate ISO

value to be used if the application does not specify an ISO value. If an ISO

value is specified, the driver shall attempt to set the ISO as close to the

specified value as possible while computing the exposure parameters.

d. Aperture – This is optional. If the underlying camera hardware supports

variable aperture, the driver shall advertise the allowed values and allow ap-

plications to specify the aperture.

e. Exposure bracketing - The driver shall allow an application to enable expo-

sure compensation based on the exposure parameters computed by the auto-

exposure control. The exposure compensation shall be specified as a fraction

of the Exposure Value (EV). Microsoft recommends a step size of one sixth of

an EV.

The driver shall advertise the minimum and maximum exposure compensation

possible. Microsoft recommends the minimum and maximum values are 3EV

above and below the exposure value computed by the auto exposure control.

While compensating the exposure, the driver shall attempt to remain within

the recommended exposure time. For example, when the pixel integration

time is at 66 ms, to increase exposure value, the driver shall first attempt to

increase the ISO before increasing the integration time. Microsoft recommends

that the shortest possible exposure time is used, taking motion blur and image

quality parameters such as signal to noise ratio into consideration.

It shall be possible for an application to bracket ISO and exposure time sepa-

rately in increments of a sixth of an EV.

f. Anti-banding - The driver shall support the ability to set exposure param-

eters in a way that fluorescent light flicker will not lead to banding in the

image. It is not expected that anti-banding is supported for taking images of

electronic displays. Anti-banding shall be implemented in the following modes:

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 64

(1) Auto flicker detection – This feature is optional. The driver shall provide

an automatic flicker detection algorithm to detect powerline frequency

flicker and set the exposure appropriately.

(2) Manual anti-banding – The driver shall support manually setting the

flicker frequency control to AE.

(3) Powerline frequency detection – The driver shall support identifying the

powerline frequency detection based on location information to set the

flicker frequency correction.

7.3.6 White balance requirements

The driver shall support the following white balance modes.

Auto white balance The driver shall automatically determine the scene illu-

minant and render neutral colors (whites, grays, blacks) as accurately as possible.

The other colors shall be rendered in a pleasing manner without noticeable color

bias. The following auto modes shall be supported.

a. Scene-based white balance - The driver detects the illuminant using statis-

tics collected from the entire scene. The illuminant detection shall be correct

in the presence of solid color backgrounds. Skin tones in a color checker chart

shall be rendered with an error of less than 8 Delta E and the neutral patches

with an error of less than 5 Delta E.

b. Face-based white balance - If face detection is available and a face is de-

tected in the scene, the driver shall have the ability to use the facial information

such as the white of the eye to set the white balance. The driver shall use the

information contained in the face ROI to enable face based white balance.

c. ROI-based white balance - The white balance is computed based on the

color statistics collected from the specified ROI.

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 65

Manual white balance The driver shall allow the application to set the white

balance to a specific color temperature between 1800 K and 10000 K. In addition,

the following white balance modes as specified by the color temperature shall be

supported:

a. Horizon: 2200 K

b. Incandescent: 3050 K

c. Fluorescent: 4300 K

d. Daylight: 6500 K

e. Shade: 7500 K

White balance lock The driver shall support the ability to lock the white

balance at any given instant. To unlock the white balance, the application shall

instruct the driver to switch to either the auto or manual mode. Note that in the

manual mode, the white balance stays locked at the specified color temperature.

Capture mode requirements The viewfinder shall maintain colors as close as

possible to the captured image/video. In the still capture mode, the white balance

is expected to converge as quickly as possible. Microsoft recommends a latency of a

single frame.

During video recording, the rate of convergence of the white balance algorithm

shall be set based on a tuning parameter. Microsoft recommends avoiding sharp

fluctuations in white balance during video recording when brightly colored objects

are in the frame for brief intervals.

In variable photo sequence mode, the white balance shall be locked at the first

frame unless otherwise instructed by the application.

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 66

7.3.7 Region of interest (ROI) specifications

The driver shall support the interface to specify a region of interest (ROI) within

the scene.

ROI definition The driver shall support the ability to specify a region of interest

using the top left corner and right bottom corner of the bounding region. These

coordinates must be normalized with respect to the maximum camera resolution,

where (0,0) is the top left and (1,1) is the bottom right coordinates of the entire

frame.

In addition to specifying the coordinates of the ROI, it shall be possible to specify

if the ROI shall be used to compute each of the following:

a. Auto focus

b. Auto exposure

c. Auto white balance

The ROI shall contain a property that indicates whether a face has been detected

inside it. It shall be possible to specify a confidence level from 0-100 to set the weight

with which the ROI statistics must be used. The default value for the confidence

level shall be set to 100, indicating ROI only statistics.

Minimum ROI size It should be possible to specify a single point of interest,

and the driver can use the minimum possible ROI permitted by the underlying

hardware to specify the ROI.

Multiple ROI scenarios In the case of multiple ROIs, the last set ROI shall

override the previous ones. The driver shall not support optimization for multiple

ROIs. That shall be the responsibility of the application.

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 67

7.3.8 Zoom specifications

Optical zoom support Optical zoom is optional. If implemented, this shall

be internal to the driver. The driver shall first increment the optical zoom to the

maximum possible value before incrementing the digital zoom.

Digital zoom during still capture It shall be possible for the application to

send down zoom values in small increments so that the visual zooming looks smooth

on the viewfinder. After the final zoom value is received by the driver, the driver

shall converge to that zoom value in less than 5 frames.

Digital zoom during video capture During video recording, the zoom imple-

mentation shall be similar to the still capture mode described above. If the cropped

sensor resolution falls below the video resolution required by the application, further

zooming shall be disabled.

7.3.9 Camera flash requirements

Flash off The flash is switched off during still image capture and video recording.

Flash on The flash is switched on during still image capture and video recording.

Flash on adjustable power The flash is switched on during still image capture

and video recording at a power level specified by the application.

Flash auto The flash is switched on during still image capture only if the auto

exposure algorithm determines that additional illumination is needed in the scene.

The exposure parameters should be recomputed to account for the flash.

Flash auto adjustable power The flash is switched on during still image

capture only if the Auto Exposure algorithm determines that additional illumination

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 68

is needed in the scene. The power level of the flash is specified by the application,

and the exposure parameters should be recomputed based on this.

Focus assist illumination In low light situations where the AF algorithm has

difficulty finding the best focus, the flash is used for additional illumination. The

driver shall support a property that would enable an application to turn focus assist

on and off even in the flash off mode.

Red eye reduction A pre-flash is fired before the actual capture to provide red

eye reduction. The driver shall support a property to turn this on and off.

Flash during photo sequence In the photo sequence mode, the flash must be

fired only on a single frame as the default. The metadata should indicate whether

a flash was fired on not on each frame.

If the driver supports multi-flash capabilities, the flash can be triggered on every

sequential frame capture after the trigger is received. The metadata should indicate

whether a flash was fired or not on each frame. The default flash mode shall be

single flash, unless the application specifically requests multiple flashes.

7.3.10 Hardware calibration support

The driver shall support characterizing each camera module for the following prop-

erties and use the generated calibration data in image quality tuning.

a. Noise profile

b. Color spectral response

c. Lens shading profile

d. Defective pixel mapping

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 69

The calibration data shall be generated at the manufacturing facility, and stored

either in a non-volatile memory location in the camera module or in the camera

phone file system. On camera launch, the driver shall load the calibration data and

verify that it is valid by matching the camera module ID. If valid, the driver shall

use the calibration data to modify the various algorithms to improve image quality.

If the calibration data is not found to be valid, or if calibration data is not available,

the driver shall use a default calibration file in lieu of the device calibration file.

7.3.11 Noise and sharpness control

The driver shall provide a means for noise filtering prior to demosaic in the RAW

Bayer domain, as well as after demosaic. After demosaic, it shall be possible to apply

noise filtering and sharpness enhancement algorithms separately in the luminance

and chrominance channels. Microsoft recommends that the driver support advanced

noise reduction algorithms such as those based on wavelet theory.

It shall be possible to set the strength of each filter as a tuning parameter during

camera tuning.

7.3.12 Scene mode specifications

It shall be possible for an application to request the driver to bias various driver

settings for specific scene mode captures. Microsoft recommends supporting the

following scene modes:

a. Auto

b. Macro

c. Portrait

d. Sport

e. Snow

CHAPTER 7. CAMERA SENSOR DRIVER FLOW 70

f. Night

g. Beach

h. Sunset

i. Candlelight

j. Landscape

k. Night portrait

l. Backlit

m. Manual

Chapter 8

Conclusion

The developed battery charging control driver are efficient in term of reduction in

battery charging time and it compliance with Battery specification 1.2 which insure

that system will not overload charging source.

The battery charging driver also compliant with JEITA standard which reduces

risk of damaging battery while charging in all type of environment.

71

Bibliography

[1] ”Battery Charging specification 1.2,” USB Implementers Forum, 2010.

[2] ”Windows Driver Framework,” Microsoft, [Online]. Available:

http://msdn.microsoft.com/en-us/library/windows/hardware/ff557565(v=vs.85).aspx.

[Accessed 30 november 2014].

[3] W. Oney, ”Programming the MicrosoftrWindowsrDriver Model.,” in Mi-

crosoft Press, Redmon, Washington, 1999.

[4] Microsoft, ”Architecture of the windows driver foundation,” White Paper, may

10,2006.

[5] Microsoft, ”Architecture of Kernel-Mode Driver Framework,” White Paper,

September 12, 2006.

[6] J. Qian, ”Li-ion battery-charger solutions for,” Texas Instruments Incorporated,

2010.

72

	Declaration
	Disclaimer
	Certificate
	Certificate
	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Acronyms
	Introduction
	 Problem statement
	 Objective
	 Thesis Organization

	Battery charging specification
	 Specification introduction
	 Dead Battery provision
	 DBP Un-configured Clause
	 DBP – Configured Clause

	 Charging source or type detection
	 Charger detection hardware
	 Charger Detection algorithm

	 JEITA Compliance
	 Li-ion Battery safety
	 JEITA guidance

	 Battery Fuel gauging
	 General SOC measurement methods
	 Current based SOC estimation
	 Voltage based SOC estimation

	 Windows Driver Frameworks (WDF)
	 Windows§Driver Model
	 WDM Mini-drivers
	 WDM Filter Drivers
	 Monolithic WDM Function Drivers

	 Windows Driver Foundation
	 Design Goals for WDF
	 User mode Driver Framework (UMDF)
	 Kernel mode Driver Framework (KMDF)

	 Battery Charging Driver Flow
	 Interaction flow between windows battery class driver and BM mini-class driver
	 Battery management Driver Entry function
	 Windows battery management Driver Task

	 Camera Sensor Driver Flow
	 Elements of camera Systems
	 Driver Software Architecture
	 Camera driver functional requirement
	 Live viewfinder
	 Still image capture
	 Video recording mode
	 Focus requirements
	 Exposure requirements
	 White balance requirements
	 Region of interest (ROI) specifications
	 Zoom specifications
	 Camera flash requirements
	 Hardware calibration support
	 Noise and sharpness control
	 Scene mode specifications

	Conclusion
	Bibliography

