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Abstract

Extremely small chip consuming least power with maximum compute is something

market needs. Extreme Graphics compute power became one of the major require-

ment for many products. Low power optimization techniques spread across archi-

tectural, micro-architectural, design and circuit techniques. This requirement pushes

VLSI design engineers to keep innovating and finding solutions to achieve same. The

main objective of this thesis is to discuss different low power design techniques and

there application to 3D Graphics. Clocking circuitry is one of the major power con-

suming block in any design. This thesis work covers clock gating techniques like active

stall, idle stall, etc. some of the data gating techniques and data rearrangement which

will enhance clock gating are also discussed. Tradeoff for different techniques is also

covered. Shutting down unused logic is another common practice to save power.

Power gating comes with verification challenges. This thesis will cover power gat-

ing requirements and some of the industry standard techniques to verify crossing of

signals across power domain. Caching is commonly used technique to boost up per-

formance by reducing memory accesses. Graphics use caching concept and different

caching policies are applied as per requirement, this thesis covers cache basic concept

with different techniques and organization. The content addressable memory (CAM)

which is used in the RAM or searching the tag value is addressed and new method

of searching the tag value using hardware binary search has been demonstrated in

this thesis. The implementation of the Hardware binary search algorithm reduces the

overall delay in the CAM circuit by 10-20% and we reduced the active encoder size

used in the CAM from 1024: 10 to 512: 9. A hardware design for calculating log base

2 and antilog base 2 using piecewise linear approximation is proposed in the thesis

which is very fast as compared to the existing log and antilog circuits which uses look

up table and this hardware can produce output in a single clock cycle. But this is

achieved with maximum error of 0.55% for log circuit and 0.6% in case of antilog

and mean error of 0.12% for 1800 samples between 2 and 20 in log circuit and 0.2%



ix

in antilog circuit. The log and antilog circuits proposed here is used to build Phong

Illumination model which is very basic lighting model in 3D graphics, where these

errors in log and antilog circuits cannot be detected by human eyes. The future scope

of low power designs are also discussed.
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Chapter 1

Introduction

1.1 Motivation

During the desktop computing design era, VLSI design efforts have primarily fo-

cused on optimizing the speed in order to realize computationally intensive real-time

functions such as video compression, gaming, graphics etc. Because of which today

people have semiconductor circuits that successfully integrates various complex sig-

nal processing modules and graphics processing units to meet their computation and

entertainment demands. These solutions only addressed the real-time problems, but

didn’t address the increasing demand for portable operation. The handheld devices

need to pack all this without consuming much power. There is a strict limitation

on power dissipation in the portable electronics devices such as smart phones and

tablet computers which should be met by the VLSI designers without affecting the

functional requirements. The handheld devices are rapidly making their way into the

consumer electronics market. One of the key design constraints for such devices are

total power consumption of the devices. Reducing total power consumption in such

devices is an important constrain because it is desirable to maximize the run time

with least requirements on size, weight allocated to batteries and battery life. Thus

most important factor to be considered while designing a system on chip for portable

2
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devices is low power design constraints.

The scaling of technology node increases power-density much more than expected.

CMOS technology below 45nm will produce a real challenge for any sort of frequency

and voltage scaling. Each new process technology has inherently higher leakage and

dynamic current density with minimal improvement in speed. From 90nm to 65nm the

dynamic power dissipation is almost same but there is 5% higher leakage power/mm2.

The low cost always continues to drive higher levels of integration. But the low cost

technological breakthroughs to keep power under control are getting insufficient.

Recent developments in System-on-Chip demands for more power in both memory

and logic. Static power is increasing rapidly and Dynamic power is increasing very

slowly. Overall, the power is dramatically increasing. If the semiconductor integra-

tion continue to follow Moore’s Law, the power density inside the chips will reach

far higher than the rocket nozzle[1]. The figure 1.1 shows the power requirements

and power trends in SoC (system on chip). It’s clear from the figure that the power

requirement still remains almost constant, whereas the power trend is increasing ex-

ponentially.

The modern devices are compared not only based on power performance but also

on graphics performance. The consumers demand for very high quality of graphics,

which requires large amount of processing and thus will consume more power. The

main objective of this thesis report is to develop low power designs for 3D graphics.

1.2 Area of work

The work is basically focused in the area of low power design techniques in the VLSI

domain for 3D graphics. Power dissipation is one of the major constrains when it

comes to Portability. The device consumer demands more features and extended

battery life at a lower cost. More than 70% of users demand for longer talk and

stand-by time as a primary smart phone feature. The primary 3G (3rd Generation

telecommunication technology) requirement for operators is power efficiency. User
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Figure 1.1: Power consumption trend for Soc[1]

wants smaller and sleeker handheld devices. This will require a high level of Silicon

integration in advanced processes, but advanced processes tends to have inherently

leakage current on the higher side. So there is a concern more on reducing leakage

current to reduce power consumption.

The figure 1.2 shows the flow chart of ASIC (Application specific Integrated circuit)

flow and the highlighted portion is the area in which the work has been carried out.

In the RTL design, the codes are generally written in Verilog or System Verilog,

and VCS/ Cadence LDV tool is used for simulation. Design Compiler-tool (DC -

Synopsys) is used for synthesis. Formal verification is done by using a tool called

Jasper Gold.
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1.3 Problem statement

As the technology is shrinking, the reducing power consumption and over all power

management on a chip are the major challenges below 65nm due to complexity. For

many designs, optimization of power is as important as timing because of the need for

reduced packaging cost and extended battery life. This becomes even more challeng-

ing when it comes to the 3D graphics, where large amount of processing is needed.

This will consume large amount of power. For power management on a SoC, the

leakage current plays an important role as far as low power VLSI designs are con-

cerned. Leakage current is getting increased as an important part of the total power

dissipation of integrated circuits below 65nm technology.

1.4 Organization of thesis

The rest of the thesis is organized as follow:

Chapter 2 describes the detailed literature review which includes function of each

stages in the Direct3D X graphic pipeline and a brief overview of the low power

design techniques which can be used at various stages of the design.

In chapter 3 some low power design techniques in RTL like clock gating, active stall,

operation rearrangement which are used to implement low power graphics in Intel

has been discussed. It also describes the cache memory organization, different types

of cache techniques which can be used depending on the application needs. Along

with it CAM (Content Addressable Memory) is also been discussed. The Hardware

implementation for binary search algorithm is also explained in this chapter.

In chapter 4 dedicated hardware for performing logarithm of base 2 and antilog base

2 circuits are explained. The Phong Illumination model is based on log and antilog

circuit is praposed, which is explained in this chapter.

Finally, in Chapter 5 concluding remarks and scope for the future work in low power

design techniques in 3D graphics is presented.
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Figure 1.2: Area of work in ASIC flow



Chapter 2

Literature Survey

2.1 Introduction

The requirement for low power devices are increasing rapidly due to the demand of

handheld devices. The user requires all high-end applications on the handheld devices

which generally runs on the battery. In todays global market devices are compared

based on the battery efficiency along with the graphics performance. The devices like

smartphones, tablets and other handheld devices requires low power circuits, which

will increase their battery efficiency. Moreover, the graphics performance are used as

one of the key specification for comparing various devices. The graphics processing

requires large amount of computation which will consume more power. In literature

many low power design techniques are discussed. These techniques will be discussed

in the coming sections.

The on chip memory bandwidth is the real bottleneck, to render a very high quality

graphics we will need large amount of memory for processing. To render such high

quality graphics we use the pipeline architecture. In pipeline architecture more than

one operation is performed in a given time without using much of memory bandwidth

and processing at higher rate. In modern day processors integrated GPU is quite

common. Whenever we speak of integrated / soc (system on chip) many problem

7
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comes along with it. Generally speaking on chip memory are too costly to build and

they will be even more costly when build very close to the processor. No doubt the

speed of the operation gets increased, also need to take care about certain drawbacks.

These all things apply to the on chip graphics also.

Due to the above fact the 3D graphics is rendered through a pipeline called 3D

pipeline/ Rendering pipeline. Basically the 3D pipeline are mapped to Direct3D of

Microsoft/ OpenGl architecture in order to take the advantages of API like DirectX

/ OpenGl. The rendering pipeline is basically a set of stages which can be used in

order to overcome the memory bandwidth issue. The API (Application programing

Interface) are used to make the code or design machine independent.

In the next few section will focus on the basic terminology used in graphics. The

later sections will cover the basic behavior of different stages in the pipeline and also

presents the mutual difference between DirectX, OpenGl.

2.2 Basic terminologies in graphics

1. Primitives: A simple object to render. Commonly used primitives are trian-

gles, lines and points.

2. Rendering: The process of converting primitives into pixels.

3. Pixel: Short form for ’Picture element’, it’s that tiny little dot of light that

makes your screen glow much smaller than the punctuation mark at the end of

the sentence.

4. Vertex: A ”corner” of a primitive having a position in space and other at-

tributes (color, texture, coordinates) describing it.

5. Buffer: An allocation of memory that stores information to be processed (input

buffer) or result of processing (output buffer). Also called a surface.
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6. Vertex buffer: A buffer that stores vertex position and other attributes for a

list of vertices.

7. Texture map: An input buffer that stores rasterized ”texture” to apply to

primitives.

8. Render target: An output buffer that stores the result of rendering step. Can

contain color, depth information (color buffer, depth buffer) and can be reused

as a texture map in a later rendering step (render to texture).

9. Frame buffer: The particular output buffer which contains the color informa-

tion to be read by the display hardware and shown on the screen.

10. 3D: The part of the graphics hardware which takes a stream of state and

primitive commands describing a 3 - dimensional scene and renders an image to

render target. Other parts / behavior of the graphic hardware include display,

media, and GPGPU.

11. Direct X, Direct 3D (D3D): Microsoft API for programing 3D hardware.

A 3D application called the D3D layer, which calls the graphic driver, which

controls the graphic hardware. OpenGL is the other main API for programing

3D hardware.

12. Shader: A program which operates on some graphics element at some storage

stage of the 3D rendering pipeline.

(a) Vertex Shader: Transforms a vertex attributes.

(b) Geometry Shader: Creates new vertices from existing ones.

(c) Pixel Shader: Determine what color to draw a piece of triangle.
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2.3 Direct3D X rendering pipeline

The figure 2.1 shows the Direct3D X rendering pipeline. The pipeline is divided into 2

parts one is the rendering pipeline where the actual processing of the vertices or prim-

itives are carried out and the second is resources. The resources are basically, buffers

which contains the attributes to be processed. Like vertex attributes are placed in

the vertex buffer, their indices are placed in the index buffer and so on. The figure 2.2

shows the basic functionality of the Input assemble. The application developer devel-

ops an application, say for example windows application which are generally written

in some high level language like C, java etc. these are read by the system call API.

The system call API is divided into three parts 1) run time API 2) user mode drivers

and 3) gfx schedular. The application is given to run time API which converts the

codes into some binary codes which can be processed by the CPU. The shader codes

are not compiled here and the application codes are compiled here. The next stage

is user mode drivers, in this stage all the .dll file (dynamic link libraries) are linked

along with compilation of shader code and linking of shader codes. GFX shedular is

the stage which allocates GPU for the application to run. Its the schedular which take

care of the execution of multiple applications at a very high speed that user feels like

very thing is running in parallel. Once the processing is done in the system call API

stage the OS kenel will be invoked. The kenel in return will invoke the device driver

through interacting via API calls. The driver converts the in coming API calls to

some binary codes (GFx commands) which are placed in the memory and IA fetches

them from the main memory.

The GPU as only one memory and many applications fights for the memory. There

should be some entity to govern that activity. There should be some entity that can

initialize the GPU, flush the registers and may be used to program a watchdog timer

which can be used to reset the GPU if it is not responding for a predefined amount

of time. These are governed by the kernel.
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Figure 2.1: Direct3D X rendering pipeline[2, 3].

2.3.1 Input assembler

• The purpose of the input-assembler stage is to read primitive data which are

generally points, lines and/or triangles from user-filled buffers and assemble the

data into primitives that will be used by the other pipeline stages[2] . The input

assembler stage can assemble vertices into several different primitive types such

as line lists, triangle strips, or primitives with adjacency.
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• The secondary purpose of the IA is to attach system-generated values to help

make shaders more efficient. System-generated values are text strings that

are also called semantics[2]. All three shader stages are constructed from a

common shader core, and the shader core uses system-generated values such as

a primitive id, an instance id, or a vertex id so that a shader stage can reduce

processing to only those primitives, instances, or vertices that have not already

been processed[3].

Figure 2.2: Basic function of Input assembler.



CHAPTER 2. LITERATURE SURVEY 13

2.3.2 Vertex shader

• It’s a shader program which operates on vertex and a vertex has its attributes

like positions, color and normal vectors and texture coordinates etc. VS (ver-

tex shader) transforms input/pre-shaded attributes to output/post shaded at-

tributes. It does not change the number of vertices i.e. one vertex goes in other

one comes out. It operates only on one vertex at a given time, it keeps 1:1

mapping of vertex. During the operations on one vertex, at any given time the

vertex shader does not have an access to the attributes of any other vertex[3].

• The vertex-shader stage processes vertices, typically performing operations such

as transformations, skinning, and lighting. It always takes a single input vertex

and produces a single output vertex. The vertex-shader stage can consume

two system generated values from the input assembler (IA): Vertex ID and

Instance ID[3]. Since Vertex ID and Instance ID are both meaningful at a

vertex level, and IDs generated by hardware can only be fed into the first stage

that understands them, these ID values can only be fed into the vertex-shader

stage. Major functions of Vertex shader are:

1. Transformation.

2. Lightings.

a Ambient.

b Diffusion.

c Specular.

3. Skinning.

• The vertex-shader (VS) stage processes incoming vertices from the input as-

sembler, performing per-vertex operations such as transformations, skinning,

morphing, and per-vertex lighting. Vertex shaders always operate on a single

input vertex and produce a single output vertex. The vertex shader stage must
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always be active for the pipeline to execute and executed on every vertex. If no

vertex modification or transformation is required, a pass-through vertex shader

must be created and set to the pipeline[2].

• Each vertex shader input vertex can be comprised of up to 16 32-bit vectors (up

to 4 components each) and each output vertex can be comprised of as many as

16 32-bit 4-component vectors [2].

• Vertex shaders are always run on all vertices, including adjacent vertices in

input primitive topologies with adjacency.

2.3.3 Tessellation

Tessellation is a process of dividing larger primitives in to small triangles depending

on the level of detail (LOD). The figure 2.3 explains about the function of different

stages involved in the tessellation pipeline. The Tessellation pipeline is divided into

3 stages. 1. Hull Shader. 2. Tessellator and 3. Domain shader.

I. Hull shader

Hull shader is the first stage in the tessellation universe. In a tessellation uni-

verse, we don’t get input vertices and triangles but instead we get input control

points and patches. Hull shader is operated once per patch. The ICPs (Input

control points) are analogous to triangles that can be defined by between 1 and

32 control points, but usually just 3 or 4. The shader output will be between 1

and 32 control points regardless of the tessellation factor [2]. The control points

and the patch constant data can be consumed by a domain shader along with

the tessellation factors which will be consumed by tessellation stage. In general

hull shader thread takes input control points as an input and produces output

control points, tessellation factors and patch constant data as shown in the fig-

ure 2.3 and OCPs (Output Control Points) are analogous to post transformation

vertices. The tessellation factor describes how much subdividing of the patch



CHAPTER 2. LITERATURE SURVEY 15

Figure 2.3: Tessellation pipeline.

the tessellator should do. The DX allows the hull shader to be multithreaded

into 3 phases:[3]

• Compute each OCP based on all ICPs.

• Compute edge tessellation factor based on ICPs and OCPs.

• Compute interior tessellation factor based on all the above.

A hull shader,which is invoked once per patch, transforms input control points

that define a low-order surface into control points that make up a patch [3]. It

also does some per patch calculations to provide data for the tessellation stage

and the domain stage i.e in (u, v) coordinates. At the simplest black-box level,

the hull-shader stage is shown in figure 2.4.

A hull shader is implemented with an HLSL function, and has the following

properties: [2]
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Figure 2.4: Hull shader [2].

• The shader input is between 1 and 32 control points.

• The shader output is between 1 and 32 control points, regardless of the

number of tessellation factors. The control-points output from a hull shader

can be consumed by the domain-shader stage. Patch constant data can be

consumed by a domain shader; tessellation factors can be consumed by the

domain shader and the tessellation stage.

• Tessellation factors determine how much to subdivide each patch.

• The shader declares the state required by the tessellator stage. This in-

cludes information such as the number of control points, the type of patch

face and the type of partitioning to use when tessellating. This information

appears as declarations typically at the front of the shader code.

• If the hull-shader stage sets any edge tessellation factor to ≤ 0 or NaN, the

patch will be culled. As a result, the tessellator stage may or may not run,

the domain shader will not run, and no visible output will be produced for

that patch.

• At a deeper level, a hull-shader actually operates in two phases: a control-

point phase and a patch-constant phase, which are run in parallel by the

hardware. The HLSL compiler extracts the parallelism in a hull shader and

encodes it into bytecode that drives the hardware.

• The control-point phase operates once for each control-point, reading the
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control points for a patch, and generating one output control point (iden-

tified by a ControlPointID).

The patch-constant phase operates once per patch to generate edge tessellation

factors and other per-patch constants (data which remains constant throughout

a patch). Internally, many patch-constant phases may run at the same time and

has read-only access to all input and output control points.

II. Tessellator

Tessellator is a fixed function stage initialized by hull shader to the pipeline.

The major function of tessellator stage is to subdivide a domain into many

smaller objects like triangle, points or lines. The tessellator also operates once

per patch using tessellation factor i.e. it takes tessellation factor as an input.

These tessellation factors were computed for each edge and the interior of each

patch by hull shader[2].

Internally, tessellator operates in two phases :

• The first phase is about processing the tessellation factors, fixing rounding

problems, handling very small factors, reducing and combing factors and

using 32-bit floating point arithmetic [4].

• The second stage is the core task of the tessellation stage which generates

the points or topology lists based on the type of partitioning selected and

for this it uses 16 -bit fixed point arithmetic[4].

It generates domain points in (u, v) coordinates as outputs which describes the

interior of the patch. Conceptually they’re just a bunch of (x, y) offsets at

this point in the pipeline. Higher the tessellation factor means more domain

points get generated for that edge or interior. Finally these domain points will

become vertices in later stages of the pipeline. There are two types of tessellation

factor used by the tessellator they are 1) inner tessellation factor and 2) outer
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tessellation factor. The figure 2.5 shows the operation of tessellator in quad

domain and in tri domain.

Figure 2.5: Subdivision of a patch by Tessellator

The tessellator tiles a canonical domain in a normalized coordinate system. For

example, a quad domain is tessellated to a unit square.

The tessellator operates once per patch using the tessellation factors which spec-

ify how finely the domain will be tessellated and the type of partitioning which

specifies the algorithm used to slice up a patch that are passed in from the hull-

shader stage. The tessellator outputs u v (and optionally w) coordinates and

the surface topology to the domain-shader stage [3].

Internally, the tessellator operates in two phases:

• The first phase processes the tessellation factors, fixing rounding problems,

handling very small factors, reducing and combining factors, using 32-bit

floating-point arithmetic [3].

• The second phase generates point or topology lists based on the type of

partitioning selected. This is the core task of the tessellator stage and

uses 16-bit fractions with fixed-point arithmetic. Fixed-point arithmetic

allows hardware acceleration while maintaining acceptable precision. For
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example, given a 64 meter wide patch, this precision can place points at a

2 mm resolution [3].

Table I: Types of partition and their range in Tessellation [2].
Type of Partitioning Range

Fractional odd [1...63]
Fractional even TessFactor range: [2..64]

Integer TessFactor range: [1..64]
Pow2 TessFactor range: [1..64]

III. Domain shader

Domain shader transforms the domain point in (u, v) coordinates to the real

vertices[3]. The input to the domain shader includes domain points, all the

outputs of the hull shader, output control points, patch constant points, patch

constant data , tessellation factors etc. It calculates the position of the output

vertices based on domain points and the output control points. Along with this

it can perform other operations like displacement mapping, transformation etc.

The real vertices which are produced as the output of the domain shader which

are arranged into a geometry by using the indices from the tessellator and will

be passed to Geometry shader and beyond in the pipeline.

A domain shader calculates the vertex position of a subdivided point in the

output patch. A domain shader is run once per tessellator stage output point

and has read-only access to the tessellator stage output (u, v) coordinates and

the hull shader output patch, and the hull shader output patch constants, as

the figure 2.6 shows.

Properties of the domain shader include: [3]

• A domain shader is invoked once per output coordinate from the tessellator

stage.

• A domain shader consumes output control points from the hull-shader

stage.
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Figure 2.6: Domain shader[2].

• A domain shader outputs the position of a vertex.

Inputs are the hull shader outputs including control points, patch constant data

and tessellation factors. The tessellation factors can include the values used

by the fixed function tessellator as well as the raw values (before rounding by

integer tessellation, for example), which for example, facilitates geomorphing.

After the domain shader completes, tessellation function is finished and data

continues to the next pipeline stage (geometry shader, pixel shader etc).

2.3.4 Geometry shader

The geometry shader works by taking vertices as the inputs and producing vertices

as the outputs similar to vertex shader but geometry shader does not maintain 1:1

mapping between the vertex (input and output). The geometry shader inputs are

vertices for a full primitive (two vertices for lines, three vertices for triangles, or

single vertex for point) different from the vertex shader which operates on a single

vertex. Geometry shaders as a capability to bring in the vertex data for the edge-

adjacent primitives as input for example, an additional two vertices for a line or an

additional three for a triangle.

The geometry shader can produce an output which has more than one vertex from

a single selected topologies like tristrip, linestrip, pointlist etc. The geometry shader



CHAPTER 2. LITERATURE SURVEY 21

Figure 2.7: Primitives with adjacency [2].

output may be fed to the rasterizer stage and/or to a vertex buffer in memory via

a stream output stage, which will be expanded to individual point/line/triangle lists

exactly as they would be passed to the rasterizer[3].

Whenever a geometry shader is active, it is invoked once for every primitive including

adjacency information those were passed down or generated earlier in the pipeline.

At each invocation of the geometry shader takes the input data of invoking primitive,

whether that is a single point, a single line, or a single triangle. A triangle strip from

earlier stage in the pipeline would result in an invocation of the geometry shader for

each individual triangle in the strip as if the strip were expanded out into a triangle

list [2]. All the input data for each vertex in the individual primitive is available (i.e.

3 vertices for triangle), along with adjacent vertex data if applicable or available.

The geometry shader outputs data one vertex at a given time by appending vertices

to an output stream object. The topology of the streams is determined by a fixed

declaration, choosing one of: PointStream, LineStream, or TriangleStream as the

output for this shader stage. Execution of a geometry shader instance is atomic

from other invocations, except that data added to the stream output stage is serial.

The outputs of a given invocation of a geometry shader are independent of other

invocations even though ordering is respected. When a geometry shader output is

identified as a System Interpreted the hardware looks at this data and performs some
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behavior dependent on the value, in addition to being able to pass the data itself to

the next shader stage for input [2]. When such data output from the geometry shader

has meaning to the hardware on a per-primitive basis instead of a per-vertex basis,

the per-primitive data is taken from the leading vertex emitted for the primitive. If

the geometry shader ends and the primitive is incomplete, the partially completed

primitives will be generated and these incomplete primitives are silently discarded.

Various algorithms that can be implemented in the geometry shader are as follow:[3]

1. Silhouette Detection

2. Point Sprite Expansion.

3. Dynamic Particle Systems.

4. Fur/Fin Generation.

5. Shadow Volume Generation.

6. Single Pass Render-to-Cubemap.

7. Per-Primitive Material Swapping.

2.3.5 Stram output

The purpose of the stream-output stage is to continuously output or stream vertex

data from the geometry-shader stage or the vertex-shader stage, if the geometry-

shader stage is inactive to one or more buffers in memory.

The stream-output stage (SO) is located in the pipeline right after the geometry-

shader stage and just before the rasterization stage as shown in figure 2.1. Data

streamed out to memory can be read back into the pipeline in a subsequent rendering

pass, or can be copied to a staging resource, so it can be read by the CPU. The

amount of data streamed out can vary depending on the geometry shader or vertex

shader output.
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When a triangle or line strip is bound to the input-assembler stage, each strip is

converted into a list before they are streamed out. Vertices are always written out as

complete primitives for example, 3 vertices at a time for triangles; incomplete prim-

itives are never streamed out. Primitive types with adjacency discard the adjacency

data before streaming data out.

There are two ways to feed stream-output data into the pipeline: [2]

• Stream-output data can be fed back into the input-assembler stage.

• Stream-output data can be read by programmable shaders using load functions.

If you are streaming data into multiple buffers, each buffer can only capture a single

element (up to 4 components) of per-vertex data, with an implied data stride equal

to the element width in each buffer (compatible with the way single element buffers

can be bound for input into shader stages) [2]. Furthermore, if the buffers have

different sizes, writing stops as soon as any one of the buffers is full [DX].If you are

streaming data into a single buffer, the buffer can capture up to 64 scalar components

of per-vertex data (256 bytes or less) or the vertex stride can be up to 2048 bytes [2].

2.3.6 Rasterizer

Rasterization is the process of finding all the pixels (picture elements) inside the

triangle. Generally, we find all the pixels whose centers are inside the triangle and

this is done by some specific rules called rasterization rule. The rasterization stage

converts vector information composed of shapes or primitives into raster image which

is composed of pixels for the purpose of displaying real-time 3D graphics on to the

screen. During this stage each primitive is converted into pixels, while interpolating

per-vertex values across each primitive[4]. It also includes clipping vertices to the view

frustum by performing a dived by z to provide perspective, mapping primitives to a

2D viewport. It also used to determine how to invoke the pixel shader. In general

the rasterization stage always performs clipping, a perspective divide to transform
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the points into homogeneous space, and maps the vertices to the viewport[4]. The

render target into progressively smaller pieces, ultimately down to pixels (hierarchal

rasterization or depth test). Each attributes of each triangle vertex such as the x, y, z

location, texture coordinates and color needs to be interpolated at each pixel similar

to the interpolation at the vertex in the primitives.

The main functions of the rasterizer can be given as:

• Clipping

• View Transform

• Projection transform

• Conversion of vector information (primitives) to raster image(pixels) i.e. ras-

terization rules.

Clipping

The objects falling between the far clipping plane and near clipping plane are rendered

others are clipped in the rasterization stage. The viewing frustum is shown in figure

2.8.

Rasterization rule

In Direct3D normally Triangle rasterization rule which uses top-left rule for converting

vertices into pixels[4]. The rule is explained below.

Its quite common that the points specified by the vertices may not match exactly

to the pixels on the screen. At this time the Direct3D applies rasterization rule to

find which all pixels will be shaded. The figure 2.9 shows the rectangle whose upper

left corner is at (0,0) and the bottom right corner is at (5,5). In the top-left filling

convention, top refers to the vertical location of horizontal spans, and left refers to

the horizontal location of pixels within a span. The next figure shows the right egde

and top edge of a triangle in the rectangle.
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Figure 2.8: Viewing frustum.

The top-left filling convention determines the action taken by Direct3D when a trian-

gle passes through the center of a pixel. The figure 2.10 shows two triangles, one at

(0, 0), (5, 0), and (5, 5), and the other at (0, 5), (0, 0), and (5, 5). The first triangle

in this case gets 15 pixels (shown in black), whereas the second gets only 10 pixels

(shown in gray) because the shared edge is the left edge of the first triangle.

If you define a rectangle with its upper-left corner at (0.5, 0.5) and its lower-right

corner at (2.5, 4.5), the center point of this rectangle is at (1.5, 2.5). When the

Direct3D rasterizer tessellates this rectangle, the center of each pixel is unambiguously

inside each of the four triangles, and the top-left filling convention is not needed. The

following illustration shows this. The pixels in the rectangle are labeled according

to the triangle in which Direct3D includes them. If you move the rectangle in the

preceding illustration so that its upper-left corner is at (1.0, 1.0), its lower-right corner

at (3.0, 5.0), and its center point at (2.0, 3.0), Direct3D applies the top-left filling

convention. Most pixels in this rectangle straddle the border between two or more

triangles shown in the figure 2.11. For both rectangles, the same pixels are affected,

as shown in the illustration.
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Figure 2.9: Top-left rasterization rule [3].

Table II: Triangle Interpolation [2].
Shading mode Description

Flat Only the fog factor is interpolated in flat shade mode. For all
other interpolated values, the color of the first vertex in the
triangle is applied across the entire face.

Gouraud Linear interpolation is performed between all three vertices.

2.3.7 Output merger

The pixel output stage writes the pixel to the ”render target” with an optional blend

with previous value in render target. But might not write the pixel at all if it fails

the tests like, 1. Is the pixel behind another pixel? (depth testing) and 2. Is the pixel

marked not to be written? (alpha testing). Finally, writes them to frame buffer.

2.4 OGL rendering pipeline

The figure 2.12 describes the OpenGL rendering pipeline and figure 2.13 shows the

mapping of Direct3D to OGL pipeline.
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Figure 2.10: Top-left rasterization rule - lit and unlit pixels.

2.5 An overview of low power designs

The amount of power that a chip dissipates per unit area is called its power density,

and there are two types of power density digital design 1) dynamic power density and

2) static power density.

Dynamic Power Density

Each and every transistor on a chip dissipates a small amount of power when it

is switched, and transistors that are switched rapidly dissipate more power than

transistors that are switched slowly. The total amount of power dissipated per unit

area due to switching of a chip’s transistors is called dynamic power density. There

are two factors that work together to cause an increase in dynamic power density

they are 1) clockspeed and 2) transistor density.

Increasing a processor’s clockspeed involves switching its transistors more rapidly, and

as mentioned previously, transistors that are switched more rapidly dissipate more

power. Therefore, as a processor’s clockspeed rises, its dynamic power density will

also increase, because each of those rapidly switching transistors contributes more to

the device’s total power dissipation.



CHAPTER 2. LITERATURE SURVEY 28

Figure 2.11: Top-left rasterization rule - lit and unlit pixels of a ractangle.

Static power density

In addition to clockspeed-related increases in dynamic power density, chip designers

must also contend with the fact that even transistors that aren’t switching will still

leak current during idle periods, much like how a faucet that is shut off can still

leak water if the water pressure behind it is high enough [5]. This leakage current

causes an idle transistor to constantly dissipate a noticeable amount of power. The

amount of power dissipated per unit area due to leakage current is called static power

density[5].

Transistors leak more current as they get smaller, and consequently static power

densities begin to rise across the chip when more transistors are placed into the same

amount of space. Thus even with relatively low clockspeed devices with very small

transistor sizes are still subject to increases in power density if leakage current is not

controlled. If a silicon device’s overall power density gets high enough, it will begin

to overheat and will eventually fail entirely. Thus it’s critical that designers of highly

integrated devices like modern x86 processors take power efficiency into account when

designing a new microarchitecture [5].

To reduce the leakage power following techniques can be used:

1. Reduce the voltage on the transistors.
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Figure 2.12: OGL (OpenGL) rendering pipeline.

2. Reduce the number of leakage transistors.

3. Reduce the load on the transistors.

In order to reduce the switching power following techniques can be used:

1. Reduce the load on the capacitor.

2. Scale down the switching frequency.

3. Reduce the voltage on the transistors.
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Figure 2.13: Mapping of D3D X pipeline to OGL rendering pipeline stages.

The table-3 below shows different strategies available for optimizing the power con-

sumption:

Effective power management is possible by using the different strategies at various

levels in VLSI Design process. So designers need an intelligent approach for optimizing

power consumptions in designs.

The table-4 demonstrates some low-power techniques used fro power reduction.

2.6 Summary

An introduction to low power designs and the trend in low power segment was covered

in section 2.1. Basic terminologies in the computer graphics were discussed in section
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Table III: Strategies to reduce power at various levels.
Design Level Strategies
Operating System Level Portioning, Power down
Software level Regularity, locality, concurrency
Architecture level Pipelining, Redundancy, data encoding
Circuit /Logic level Logic styles, transistor sizing and energy recovery
Technology Level Threshold reduction, multi threshold devices

Table IV: Low-power techniques.
Traditional
Techniques

Dynamic
Power Re-
duction

Leakage
power re-
duction

Other
Power
reduction
Techniques

Clock Gating Clock Gating Minimize us-
age of low Vt
cells

Multi Oxide
devices

Power Gating Power Effi-
cient Tech-
niques

Power Gating Minimize
capacitance
by custom
design

Variable Fre-
quency

Variable Fre-
quency

Back Biasing Power effi-
cient circuits

Variable Volt-
age Supply

Variable Volt-
age Supply

Reduce Oxide
Thickness

Variable De-
vice Thresh-
old

Variable
Island

Use Fin FET

2.2. A detailed description of Direct3D X was covered in section 2.3. In section 2.4

OGL rendering pipeline and its mapping to Direct3D X stages were explained. An

overview of the low power designs were discussed in section 2.5.
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Low Power Design Techniques

3.1 Introduction

Power is emerging as the most critical issue in system-on-chip (SoC) design today.

Power management is becoming an increasingly urgent problem in almost every cat-

egory of design, as power densitymeasured in watts per square millimeter rises at a

very fast rate. From a chip-engineering perspective, effective energy management for

a SoC must be built into the design starting at the architecture stage; and low-power

techniques need to be employed at every stage of the design, from RTL to GDSII [6].

Fred Pollack of Intel first noted a rather alarming trend in his keynote at MICRO-32

in 1999 [1] . He made the now well-known observation that power density is increasing

at an alarming rate, approaching that of the hottest man-made objects on the planet,

and graphed power density as shown in Figure 3.1 [6].

The design efforts in managing power are rising due to the necessity to design for

low-power as well as for performance and costs. This has consequence for engineering

productivity, as it impacts schedules and risk. Power management is a must for

all designs of 90nm and below [5]. At smaller geometries, aggressive management

of leakage current can greatly impact design and implementation and also for some

designs and libraries, leakage current exceeds switching currents, thus becoming the

32
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Figure 3.1: Fred Pollack’s (Intel) observation on power density[1].

primary source of power dissipation in CMOS technology, as shown in Figure 3.2.

Recently, designers were primarily concerned with improving the performance of their

designs (throughput, latency, frequency), and reducing silicon area to lower manufac-

turing costs but now power is replacing performance as the key competitive metric

for SoC design. These power challenges affect almost all SoC designs [6].

3.2 Power saving design techniques

3.2.1 Clock gating

Clock gating is a popular technique used in many synchronous circuits for reducing

dynamic power dissipation[6]. Clock gating saves power by adding more logic to a

circuit on the top of clock tree. Pruning the clock disables portions of the circuitry

so that the flip-flops in them do not have to switch states or toggle states. Toggling

states consumes power. When not being switched, the switching power consumption
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Figure 3.2: Leakage and Dynamic power in various process technology [6].

goes to zero, and only leakage power are incurred.

Clock gating works by taking the enable conditions attached to registers, and uses

them to gate the clocks[6]. Therefore it is imperative that a design must contain these

enable conditions in order to use and benefit from clock gating [6]. This clock gating

process can also save significant die area as well as power, because it removes large

numbers of muxes and replaces them with clock gating logic. This clock gating logic

is generally in the form of ”Integrated clock gating” (ICG) cells. However, note that

the clock gating logic will change the clock tree structure, as clock gating logic will

sit in the clock tree.

Clock gating logic can be added into a design in a variety of ways: [6]

• Coded into the RTL code as enable conditions that can be automatically trans-

lated into clock gating logic by synthesis tools (fine grain clock gating).

• Inserted into the design manually by the RTL designers (typically as module

level clock gating) by instantiating library specific ICG (Integrated Clock Gat-

ing) cells to gate the clocks of specific modules or registers.
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• Semi-automatically inserted into the RTL by automated clock gating tools.

These tools either insert ICG cells into the RTL, or add enable conditions into

the RTL code. These typically also offer sequential clock gating optimizations.

The figure 3.3 shows the simple implementation of clock gating. Clock consumes

60-70 percent of total chip power and is expected to significantly increase in the next

generation of designs at 45nm and below[6]. This is because of the fact that power

is directly proportional to voltage and the frequency of the clock as shown in the

following equation:

Power = Capacitance * (Voltage) 2 * (Frequency)

Figure 3.3: A simple clock gating implementation.

Thus, reducing clock power is very important. Clock gating is a key power reduction

technique used by many designers and is typically implemented by gate-level power

synthesis tools. The figure 3.4 explain the basic advantage of the clock gating.
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Figure 3.4: Advantage of clock gating.

3.2.2 Active stall

When a module is capable of pushing data in the downstream unit, but there is a

stall from that unit, gate the clock of the instantiated clock gate FUB (Functional

unit block).

Explanation

The following example is applicable only for the logic which dont use bubble collapse

of pipeline stages. When a unit is capable of sending data out but there is a stall from

the downstream unit, the design makes sure that the data is held in register. If the

width of the register is at least 8, then the power compiler uses this as a local gated

clock. But as the main clock gate FUB is still active, there will be clock toggling

between the clock gate FUB and the local clock gate AND gate. Consider the re-

circulating flop structure of Hold signal is used to hold the data in a register as shown

in figure 3.5.
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Power compiler will implement the structure as in figure 3.6 where hold is used to

Figure 3.5: Reciculating flop structure.

gate the clock. But the NET-1 will still toggle. So its better to gate the clock of the

clock gate FUB as in figure 3.7 instead of gating a local register.

Figure 3.6: Power compiler gated clock for re-circulating flop.

Benefits

There will be no clock toggle in nets between the main clock gate FUB and the clock

gating AND gates.

Drawbacks

If the hold signal is coming from the different partition, then the delay in the hold
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Figure 3.7: Main clock gate fub gated during HOLD.

path will come in the clock enable signal.

Recommendation

Ideally the Hold signal should be removed from the local re-circulating structure and

used only in the clock gate FUB. But as the legacy has hold in the select of the

re-circulating structure, rather than removing this, we can just add this to the clock

gate FUB. If the hold is coming from different partition, then its recommended to

change it to credit based mechanism.

3.2.3 Operation rearrangement

Place the high toggling signal towards the end of the logic cone and low toggling

signals towards the beginning of the logic cone.

Explanation

In the circuit shown in 3.8 A* is very high toggling signal compared to other signals.

This is making most of the logic cone to toggle depending on the select signals.

The placement of the addition with A should be towards the end of the cone so that

toggling of A* will cause lesser toggle to the entire logic cone. The circuit is shown

below in figure 3.9.

Benefits

As the high toggling signal is placed at the end of the logic cone, the excess toggling

is not causing the remaining cone to toggle, and hence power saving.
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Figure 3.8: Logic rearrangement; power inefficient circuit.

Drawbacks

There can be timing impact due to additional MUX and adder and extra power

consumption due the extra MUX.

Recommendation

This method is to be adopted if the affected logic cone is large and the path is not

already in timing critical.

3.2.4 Operand isolation/Data gating.

Identify redundant computations of datapath components and isolate them using

specific circuitry.

Explanation

Data gating is very commonly used technique where the data/control is forced to

some stable value when the logic cone is not in use. This is applied whenever the

data cant be made stable using clock gating/flop data gating. But the Operand

isolation is a typical type of data gating where a component in a logic cone is isolated

by forcing its operands to a stable value wherein the other components of the cone

are still functional.

In Figure 3.10, when the MUX select is low, the multiplier output is unused. As the
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Figure 3.9: Logic rearrangement; logic rearrangement for power inefficiency.

reg-B cant be gated, the multiplier will continuously consume power.

Figure 3.10: Operand isolation; power inefficient circuit.

The select signal should be used to ZERO down the input to the multiplier so that

multiplier will not consume power. At the same time, the toggle rate of the MUX must

also be considered. If the MUX select is toggling at high rate, then the multiplier

input might toggle between 0 and non-0 values at higher than the previous toggle

rate.

Benefits

No power consumption in the unused computation unit.

Drawbacks

Extra gate count due to the input blocking AND gates and there can be timing impact
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Figure 3.11: Operand isolation; multiplier isolated circuit.

due to additional MUX and adder.

Recommendation

The selection of the blocking input should be such that the load in that input is lower.

This will reduce the timing impact due to additional layer of logic. Again, if the toggle

rate of the MUX must is high such that the multiplier input might toggle between

0 and non-0 values at higher than the previous toggle rate, this method shouldnt be

used.

3.2.5 Common case separation

Identify the most common application which uses a part of the shared logic and

implement that using smaller gate count. In these entire common usage mode, clock

down the bigger shared logic.

Explanation

Logic A in the figure 3.12 is a shared function. Logic B is a common case behavior

of the shared logic which is implemented separately. The input of the shared logic in

clock gated while its in common usage mode.

Benefits

In most common usage mode, the smaller logic will consume dynamic power.
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Figure 3.12: Common case separation. A: bigger shared logic and B: common usage
logic.

Drawbacks

Additional gate count due to duplicate logic. Continuous leakage power due to this.

If the operations are not isolated by registers, then isolation may need forcing input

to stable value. This adds logic level and may cause timing impact.

Recommendation

The leakage contribution of the duplicate logic must be considered. If the common

case usage is above 50% and the additional gate count is less than 50%, this technique

can be used.

3.3 Cache memory

A CPU cache is a cache used by the central processing unit (CPU) of a computer

to reduce the average time to access data from the main memory [7]. The cache

is a smaller, faster memory which stores copies of the data from frequently used

main memory locations [7]. Most CPUs have different independent caches, including

instruction and data caches, where the data cache is usually organized as a hierarchy

of more cache levels (L1, L2 etc.) [7]. L3 cache is specifically used only for GPU
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processing. Data is transferred between memory and cache are done in blocks of

fixed size, called cache lines. When a cache line is copied from memory into the

cache, a cache entry will be created. The cache entry will include the copied data as

well as the requested memory location called as a tag.

When the processor needs to read or write a location in main memory, it will first

checks for a corresponding entry in the cache. The cache checks for the contents of

the requested memory location in all the cache lines. If the processor finds that the

memory location is in the cache, a cache hit has occurred else cache miss has occurred.

In the case of: [7]

• A cache hit, the processor immediately reads or writes the data in the cache

line

• A cache miss, the cache allocates a new entry and copies in data from main

memory, then the request is fulfilled from the contents of the cache.

• Cache row entries usually have the following structure:

• The data block (cache line) contains the actual data fetched from the main

memory. The tag contains (part of) the address of the actual data fetched from

the main memory. The flag bits are discussed below.

• The ”size” of the cache is the amount of main memory data it can hold. This

size can be calculated as the number of bytes stored in each data block times

the number of blocks stored in the cache. (The number of tag and flag bits

is irrelevant to this calculation, although it does affect the physical area of a

cache.)
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There are three major types of cache memory architectures available in literature.They

are as follow:

1. Associative cache

2. Direct mapped cache

3. Set associative cache

3.3.1 Associative cache

A cache where data from any address can be stored in any cache location [7]. The

whole address must be used as the tag. All tags must be compared simultaneously

(associatively) with the requested address and if one matches then its associated data

is accessed [7]. This requires an associative memory to hold the tags which makes

this form of cache more expensive.

The figure 3.13 shows the intenal block diagram of associative cache memory.

As shown in figure 3.13 the tag value is divided into 2 parts one part containing block

number and other part contains the byte. Say, for example we consider tag value to

be of 16 bit then, 13 bit will represent the block number and remaining 3 bit will

indicate the byte number. There is an argument register which will hold this value

as shown in figure 3.13. The m-bit here indicates the match bit, it will be set if the

tag values are matching. The v-bit indicates the existence of the valid tag in the

corresponding location. The and gate is used to select the location of the tag in the

entire tag location and only one tag location will contain both m-bit and v-bit as

one. Thus the output of and gate will be high, which will be fed to the enable pin

of the tri-gate buffer, as shown in the figure 3.13. The enabled buffer will pass the

corresponding cache-line to the mux. The byte number is used as the select input of

the mux. The output of the mux is passed to the CPU.
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Figure 3.13: Fully associative cache.

3.3.2 Direct mapped cache

In this cache organization, each location in main memory can only go in one entry

in the cache [7]. Therefore, a direct-mapped cache can also be called a ”one-way

set associative” cache. It does not have a replacement policy as such, since there is

no choice of which cache entry’s contents to evict. This means that if two locations

map to the same entry, they may continually knock each other out [7]. Although

simpler, a direct-mapped cache needs to be much larger than an associative one to

give comparable performance, and it is more unpredictable.

The figure 3.14 shows the organization of the direct mapped cache. Here each main



CHAPTER 3. LOW POWER DESIGN TECHNIQUES 46

Figure 3.14: Direct mapped cache organization.

memory location can go to only one cache line based on the table shown above. The

tag value is divided into 3 parts tag ID, Group ID and byte. The tag ID and group

ID are used to select the corresponding cache line as shown in the figure 3.14. The

figure 3.15 shows the data flow in the direct mapped cache, here a decoder is used

to decode the group ID and it is used along with v-bit to select the correct tag value

from the tag locations. The selected tag is compared with the available tag and if

they match then it is said to be cache hit else cache miss. If the cache hit occurred

then the corresponding data from the cache line will be selected.
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Figure 3.15: Direct mapped cache.

3.3.3 Set associative cache

In set associative the major focus will be on 2 way set associative cache. If each loca-

tion in main memory can be cached in either of two locations in the cache, one logical

question is: which one of the two?. The simplest and most commonly used scheme,

shown in figure 3.16, is to use the least significant bits of the memory location’s index

as the index for the cache memory, and to have two entries for each index [7]. One

benefit of this scheme is that the tags stored in the cache do not have to include that

part of the main memory address which is implied by the cache memory’s index [7].

Since the cache tags have fewer bits, they require fewer transistors, take less space
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on the processor circuit board or on the microprocessor chip, and can be read and

compared faster [7].

Figure 3.16: Two way set associative cache.

The figure 3.16 shows the 2 way set associative cache memory organization. This

method is similar to that of direct mapped but has two fields for every main memory

location. Thus it is faster but consumes more hardware. There are two v-bit each one

corresponds to one cache line, the decoder output is given to two and gates whose

other inputs are two different v-bit. The output of and gate is used to select the

corresponding tag locations and compared in two different comparators. The selected

tag is compared with the available tag and if they match then it is said to be cache
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hit else cache miss. If the cache hit occurred then the corresponding data from the

cache line will be selected.

3.4 Content Addressable Memory (CAM)

A CAM is a memory that implements the lookup-table function in a single clock cycle

using dedicated comparison circuitry [8]. CAMs are especially popular in network

routers for packet forwarding and packet classification, but they are also beneficial

in a variety of other applications that require high-speed table lookup like RAM.

The main CAM-design challenge is to reduce power consumption associated with the

large amount of parallel active circuitry, without sacrificing speed or memory density

[8]. However, the speed of a CAM comes at the cost of increased silicon area and

power consumption, two design parameters that designers strive to reduce [5]. As

CAM applications grow, demanding larger CAM sizes, the power problem further

increases. Reducing power consumption, without sacrificing speed or area, is the

main thread of recent researching large-capacity CAMs [8].

Figure 3.17 shows a simplified block diagram of a CAM. The input to the system is

the search word that is broadcast on to the search lines to the table of stored data.

The number of bits in a CAM word is usually large, with existing implementations

ranging from 36to 144bits [8]. A typical CAM employs a table size ranging between a

few hundred entries to 32K entries, corresponding to an address space ranging from 7

bits to 15 bits. Each stored word has a match-line that indicates whether the search

word and stored word are identical (the match case) or not (a mismatch case, or

miss). The match-lines are fed to an encoder that generates a binary match location

corresponding to the match-line that is in the match state. An encoder is used in

systems where only a single match is expected like ram. In CAM applications where

more than one word match is possible, a priority encoder is used instead of a simple

encoder. A priority encoder selects the highest priority matching location to map to

the match result, with words in lower address locations will receive higher priority.
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Figure 3.17: Simplified block diagram of CAM.

In addition, there is often a hit signal which is not shown in the figure that flags the

case in which there is no matching location in the CAM. The overall function of a

CAM is to take a search word and return the matching memory location [8].

The operation of a CAM is like that of the tag portion of a fully associative cache.

The tag portion of a cache compares its input, which is an address, to all addresses

stored in the tag memory. In the case of match, a single match line goes high, in-

dicating the location of a match. Unlike CAMs, caches do not use priority encoders

since only a single match occurs; instead, the match- line directly activates a read of

the data portion of the cache associated with the matching tag. Many circuits are

common to both CAMs and cache.
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3.5 Hardware for binary search algorithm

The binary search or half interval search algorithm finds the position of a specified

input value within the array that has sorted values. For example, L = 1, 3, 4, 6, 8,

9, 11 and K=4.

The steps of the algorithm are as follow:

Step1=> select l = 1 and h = 11

Step2=> find i by adding l and h and dividing it by 2,

i = (l+h)/2 = (1+11)/2 = 6 (if not an integer, then round to nearest integer)

Step 3 => Now, i and K are compared

If K > i , then keep the value of h as it is i.e. h = 11 and update the value of l = i.

Now got back to step 2.

If K< i, then keep the value of l as it is i.e. l = 1 and update the value of h = i. Now

got back to step 2.

If K = i then the key is found from the array. This is shown out.

The figure 3.18 shows the hardware for binary search algorithm [9]

The multiplexers in the design are used to load the initial values in the circuit, the

sel input is used to select the value to be loaded or to update. As shown in the

algorithm, the initial values are loaded which can be done using two multiplexers one

for h and one for l. The other input of the multiplexers are used to update the new

value as mentioned in the step 3 of the algorithm. The D flip-flop is used to store the

value and then passed to the adder. The added value is divided by 2 and value of i

is obtained as mentioned in the step 2 of the algorithm. This is used in the cam part

of the RAM (random access memory) to find the tag value.

The main idea behind this hardware implementation is to optimize the number of

gates used in the CAM circuit. We assumed that the date are sorted in either increas-

ing order or decreasing order throughout the implementation. The encoder circuit

used in the cam circuit is generally very big, say for example 1024 to 10 which will

have known amount of propagation delay, by using this binary search we can reduce
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Figure 3.18: Hardware for binary search algorithm

the propagation delay because we will be needing only 512 to 9 bit encoder. Thus the

propagation delay will be less compared to the previous case. In this case we divide

the encoder circuit in 2 parts say 1024 to 10 bit encoder will be replaced by the two

512 to 9 bit encoder. This seems to be increase in the hardware but at any given time

any one of the two encoder will be active thus there will be significant reduction in

the power consumption and improvement in the delay of the circuit.
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3.6 Summary

In this chapter an explanation for different low power design techniques and their im-

plementation was presented (section 3.2).The important parts of graphics hardware,

like cache memory (section 3.3) and CAM (section 3.4) are also covered. A dedicated

hardware for binary search algorithm and its implementation was explained (section

3.5).



Chapter 4

Phong’s Illumination Model

4.1 Logarithm base2 circuit

4.1.1 Introduction

The floating point multiplication is one of the main operation performed by the CPU.

In the graphics also it is used more often, but the problem associated with it is speed of

the operation. To increase the speed the operation we propose a new hardware design

for multiplication using a logarithm of base 2. Again the log base 2 implementation is

one of the challenging task, for this we use piecewise linear approximation model. By

this we convert all the input floating point numbers to fixed point log base2 number,

and after this all the multiplication operations are carried out using addition. Since we

use addition for our multiplication operation the speed increases and the gate count

also reduces. One more advantage of this hardware is that even the floating point

exponential operations can also be calculated by using a fixed point multiplication

which is much less complex as compared to floating point exponent.

4.1.2 Floating point number

In general the floating point numbers are of 32 bit in IEEE 754 single precision format.

Single-precision floating-point format is a computer number format that occupies 4

54
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bytes (32 bits) in computer memory and represents a wide dynamic range of values

by using a floating point [10].

The IEEE 754 standard specifies a binary32 as having:

• Sign bit: 1 bit

• Exponent width: 8 bits

• Significant precision: 24 bits (23 explicitly stored)

This gives from 6 to 9 significant decimal digits precision, if a decimal string with

at most 6 significant decimal is converted to IEEE 754 single precision and then

converted back to the same number of significant decimal, then the final string should

match the original; and if an IEEE 754 single precision is converted to a decimal string

with at least 9 significant decimal and then converted back to single, then the final

number must match the original.

Sign bit determines the sign of the number, which is the sign of the significant as well.

Exponent is either an 8 bit signed integer from 128 to 127 (2’s Complement) or an

8 bit unsigned integer from 0 to 255 which is the accepted biased form in IEEE 754

binary32 definition [11]. If the unsigned integer format is used, the exponent value

used in the arithmetic is the exponent shifted by a bias for the IEEE 754 binary32

case, an exponent value of 127 represents the actual zero (i.e. for 2e 127 to be one,

e must be 127) [10].

The true significant includes 23 fraction bits to the right of the binary point and an

implicit leading bit (to the left of the binary point) with value 1 unless the exponent

is stored with all zero. Thus only 23 fraction bits of the significant appear in the

memory format but the total precision is 24 bits (equivalent to log10(224) 7.225

decimal digits). The bits are laid out as shown in the figure4.1. The logarithm base

2 hardware is implemented using piecewise linear approximation model. The base-

2 logarithm of the unbiased FP input (1+m)2e-127 is computed as e+log2(1+m),

where log2(1+m) (1 ≤ (1 + m) < 2) is approximated using 5 linear intervals with
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Figure 4.1: IEEE 754 -single precision format.

low Hamming weight coefficients and constants chosen for high accuracy and efficient

hardware implementation [11]. The coefficients are realized using 2/3/4-bit right

shifts of the mantissa based on its range. The hardware design is shown in the figure

4.2.

The piecewise linear approximation model is approximated using 5 linear intervals as

shown below: [10]

4.1.3 working

Here m is 23- bit mantissa part of 32-bit floating point representation, the above

linear equation can be implemented as follow:
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Figure 4.2: Logarithm base 2 circuit.

The sign bit is taken as it is, now the 8 bit biased exponent is converted into unbiased

exponent by subtracting 7F (hex equivalent of 127) from the biased exponent. The

range of the equation is selected by using decoder logic, which is shown in the figure

4.2. There are two multiplexers used in the design one is for selecting the constant

value and other one is used for selecting the shifted version of mantissa value. The

fraction of mantissa is implemented using shift registers (right shift). The output of

two multiplexers are added with the mantissa value m, which forms the 23 bit fraction

of fixed point representation of log2 value. This 23 bit is concatenated with sign bit

and unbiased exponent to form a complete 32-bit fixed point number.

The figure 4.2 shows the log base 2 implementation, range selection logic is imple-

mented using a decoder logic which is shown below. The mux logic is used to imple-
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ment constant terms and shifted mantissa terms in the linear equation. A 2:1 mux is

used to implement constant logic in which range[4] is used as the select line because

the range[4] doesnt have any constant term in its linear equation but instead has two

shifted version of mantissa, thus we have one of the two input of the mux as >>3

and other one is constant term.

The other mux is used to select the shift register output of mantissa in which select

lines are chosen as shown in figure 4.2. Finally, the output of two muxes are passed

to the adder/subtractor unit along with mantissa value in which or gate logic is used

to implement the negative portion in the linear equation. The output value is con-

catenation of sign bit, 8-bit unbiased exponent and the output of adder/subtractor

unit which represents the fixed point log base2 number.

4.1.4 simulation result

The figure 4.3 shows the simulation result for the log base2 circuit.

4.1.5 conclusion

This circuit can be operated in a single clock cycle and the max error due to piecewise

linear approximation in this model is about 0.55 % as compared to floating point single

precision value. This model has a very low mean error about 0.12 % as compared

to floating point single precision value. The error percentage for different values are

plotted below.
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Figure 4.3: Simulation result of Logarithm base 2 circuit.

4.2 Anti-Logarithm base2 circuit

4.2.1 Introduction

In the previous section we introduced a dedicated hardware for calculating Log base2.

Now there is a need for converting this number back to natural form. Thus we required

an antilog base 2 circuit which can do this job. Again we use the piecewise linear

approximation techniques to calculate the antilog values to the particular intervals.

This is explained in the following subsections.
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Figure 4.4: The difference between actual log2 and piecewise linear approximation of
log2.

Figure 4.5: Error percentage between fixed point and floating point in log2 multi
model for 1800 samples.

4.2.2 Implementation

The Fig. 4.6 shows the anti-log base 2 hardware implemenatation. The circuit looks

similar to that of log base 2 and the working is also same. The Fixed point number

obtained as an output of the log circuit is take as an input for this circuit. The signed

bit (s) is taken as it is and stored into the signed bit position of the final result.

Now the 8 bit unbiased exponent value is converted to biased exponent by adding

the 8 bit bias value i.e. 7F. The remaining fractional part of 23 bit is divided into 4

intervals using piecewise linear approximation and converted to the form which can

be implemented using hardware blocks. This is shown as below:

Here m is 23- bit mantissa part of 32-bit floating point representation, the above

linear equation can be implemented as follow:
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The sign bit is taken as it is, now the 8 bit biased exponent is converted into unbiased

exponent by subtracting 7F (hex equivalent of 127) from the biased exponent. The

range of the equation is selected by using decoder logic, which is similar to that in

log circuit. There are three multiplexers used in the design one is for selecting the

constant value and other two are used for selecting the shifted version of mantissa

value. The fraction of mantissa is implemented using shift registers (right shift). The

output of all multiplexers are added with the mantissa value m, which forms the 23

bit fraction of floating point representation of antilog2 value. This 23 bit is concate-

nated with sign bit and unbiased exponent to form a complete 32-bit floating point

number.

The figure 4.6 shows the log base 2 implementation, range selection logic is imple-

mented using a decoder logic which is shown below. The mux logic is used to imple-

ment constant terms and shifted mantissa terms in the linear equation. A 2:1 mux is

used to implement constant logic in which range[4] is used as the select line because

the range[4] doesnt have any constant term in its linear equation but instead has two

shifted version of mantissa, thus we have one of the two input of the mux as >>3

and other one is constant term.

The other mux is used to select the shift register output of mantissa in which select

lines are chosen as shown in figure 4.6. Finally, the output of two muxes are passed

to the adder/subtractor unit along with mantissa value in which or gate logic is used

to implement the negative portion in the linear equation. The output value is con-

catenation of sign bit, 8-bit biased exponent and the output of adder/subtractor unit

which represents the floating point antilog base2 number.
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Figure 4.6: Anti-Log base 2 circuit

The error pecentage and its comparison can be found as follow:[11] The circuit has

a maximum error of 0.6% and a mean error of 0.2%, which is very less as compared

to the log circuit. Moreover this much error is not visible to the human eyes when

implemented in lighting model of GPU. Thus these circuits are suitable for the usage

in the graphics architecture.
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Figure 4.7: Error percentage in the antilog circuit [10]

4.3 Phong Illumination Model

4.3.1 Introduction

The Phongs Illumination model is the most basic lighting model in 3D graphics. All

the lighting models used by the GPUs say from lower range segment to very high

range segment, in one way or other use Phong illumination model. Many lighting

models used today are actually adding more terms into the phong model. Thus the

proposed hardware can be used to implement all types of lighting models.

4.3.2 Implementation

The figure 4.8 shows the implementation of Phong model, using the log and antilog

circuits discussed in the above sections.
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Figure 4.8: Phong Illumination Model

Ambient: - Ambient light can refer to available light in the environment.

Diffuse: - It is the reflection of light equally in all directions.

Specular: - It is the reflection of light at a particular direction only.

All these component combined in an empirical formula which we call Phong illumi-

nation model. The equation is shown in the figure 4.8
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4.4 Summary

A dedicated hardware for producing logarithm base 2 and antilog base 2 circuit imple-

mentations were explained in this chapter in section 4.1 and 4.2 respectively. Using

these circuits we proposed a new hardware for Phong Illumination model in section

4.3.



Chapter 5

Conclusion and Future Scope

5.1 Conclusion

As the technology is shrinking, the reducing power consumption and over all power

management on a chip are the major challenges below 65nm due to complexity. For

many designs, optimization of power is as important as timing because of the need for

reduced packaging cost and extended battery life. This becomes even more challeng-

ing when it comes to the 3D graphics, where large amount of processing is needed.

This report focuses on the different low power design techniques which can be imple-

mented for 3D graphics. The low power design techniques discussed here have their

own pros and cons which should be taken care while choosing a design technique, and

proper trade-off should be made. Different types of hardware are also discussed in this

report which are proposed to reduce the power consumption in the existing designs.

These design techniques are basically used in the RTL stage of the design so it will be

more efficient and can reduce 20 to 70 % of the power dissipation in the design. All

such method are available but it is up to the designer to select one or combination of

more methods to optimize the design without affecting the functionality of the design.

66
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5.2 Future Scope

In future, more low power design techniques can be developed and discussed, which

can be used in the implementation of 3D graphics hardware. Thus, these techniques

will result in implementing low power GPUs which ultimately result in better graph-

ics performance in the handheld devices.
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