
Advance Aautomated Mechanism For Design,

Compilation And Validation Flows Of Complex

SoC Design

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master Of Technology

in

Electronics & Communication Engineering

(VLSI Design)

By

Ankur Sharma
(13MECV12)

Electronics and Communication Engineering Branch
Electrical Engineering Department

Institute Of Technology
Nirma University

Ahmedabad-382481
May 2015

Advance Aautomated Mechanism For Design,

Compilation And Validation Flows Of Complex

SoC Design

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master Of Technology

in

Electronics & Communication Engineering

(VLSI Design)

By

Ankur Sharma
(13MECV12)

Under the guidance of

Mr. Venkatesh K Elayavalli Prof. Vaishali Dhare
Mr. Sandip Rajput Assistant Professor (EC)
Intel India Technology Pvt. Ltd. Institute of Technology,
Bangalore. Nirma University, Ahmedabad.

Electronics and Communication Engineering Branch
Electrical Engineering Department

Institute Of Technology
Nirma University

Ahmedabad-382481
May 2015

i

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Technol-
ogy in VLSI Design at Nirma University and has not been submitted elsewhere
for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- Ankur Sharma
13MECV12

ii

Certificate

This is to certify that the Project entitled ‘Advance automated mechanism for
design, compilation and validation flows of complex SoC design’ submitted
by Ankur Sharma (13MECV12), towards the partial fulfillment of the require-
ments for the degree of Master of Technology in VLSI Design at Nirma University,
Ahmedabad is the record of work carried out by him under our supervision and guid-
ance. In our opinion, the submitted work has reached a level required for being
accepted for examination.The results embodied in this major project, to the best of
our knowledge,haven’t been submitted to any other university or institution for award
of any degree or diploma.

Prof. Vaishali Dhare Dr. N. M. Devashrayee
Internal Guide PG Coordinator (VLSI Design)

Dr. P.N.Tekwani Dr. Ketan Kotecha
Head of EE Dept. Director, IT-NU

Date: Place: Ahmedabad

iii

Certificate

This is to certify that the Project entitled ‘Advance automated mechanism for
design, compilation and validation flows of complex SoC design’ submitted
by Ankur Sharma (13MECV12), towards the submission of the Project (Phase-
II) for requirements for the degree of Master of Technology in VLSI Design, Nirma
University, Ahmedabad is the record of work carried out by him under our supervision
and guidance. In our opinion, the submitted work has reached a level required for
being accepted for examination.

Date: Place: Bangalore

Mr. Venkatesh K Elayavalli
Engineering Td Manager

Intel Technologies India Pvt. Ltd.
Bangalore

iv

Abstract

Time-to-market is the key factor in continuously evolving very large scale integration
(VLSI) market and it is forcing the participants to improve methodologies and tool
flows to gain a foothold in this highly competitive and fragmented business. The
designing must be completed in a shorter period of time so that verification and fab-
rication can be completed without missing technology window. The design steps and
software tools required on the front end part for designing modern systems-on-chip
are no longer adequate for the complex systems of today. VLSI design process which
involves writing RTL, compiling and verifying it are time consuming, verification it-
self consumes around 70% of the design time. Regardless of using a lot of CAD tools
for the VLSI design, the process looks very complex and requires a lot of efforts for
managing and verifying the design.

To handle this complexity different tools and flows are been developed to reduce
the time required for design and verification, where the inputs required for the tool
are generated by the flow. Verification gets easily done if the flow is tool friendly and
generates all the required files by tool in proper format.

This report details about advance automated mechanism used for frontend design
and verification through which time required and the complexity of frontend process
can be reduced. Advance mechanism is a converged front-end flow that is flexible
and easy to use. It supports all the modern design and verification methodology
like formal verification, functional verification, design linting, static timing analysis,
low power checks, emulation etc; it is generic and encompasses different VLSI flows.
A higher degree of design confidence and reduction in the risk of re-spin or repeated
efforts is the main aim of the advance system. It also provides a common environment
to many projects while providing project-specific customization.

This report also details about modern and efficient methodology of formal property
verification for design verification. It is observed that design data and verification and
debugging time reduces significantly by using formal methodology for verification.

v

Acknowledgements

First and foremost, sincere thanks to Mr. Venkatesh K Elayavalli, Manager, Intel
Technology India Private Limited, Bangalore for assigning me such project and guide
me through. I would like to thank my Mentor, Mr. Sandip Rajput, Intel Technology
India Private Limited, Bangalore for valuable guidance. Through-out the training, he
had given me much valuable advice on project work which I am very lucky to benefit
from. I would also like to thank my teammates, form Intel India Technology for their
valuable time in ramping me up on some basic flow of different projects.

I would also thank to my thesis supervisor Mrs. Vaishali Dhare, Assistant Pro-
fessor (EC) and Dr. N.M. Devashrayee, PG Coordinator VLSI Design, Institute of
Technology, Nirma University, Ahmedabad for giving valuable support for project
work and also teaching me some very intersecting subject in post-graduate programs.
I also owe my colleagues in the Intel, special thanks for helping me on this path and
for making project at Intel more enjoyable and more memorable.

- Ankur Sharma
13MECV12

vi

Abbreviations

RTL Register Transfer Logic
HDL Hardware Discription Language
EDA Electronic Design Automation
CAD Computer Aided Design
A2M Advance Automated Mechanism
FE Frontend
TCL Tool Command Language
PERL Practical Extraction and Report Language

Contents

Declaration i

Certificate iii

Abstract iv

Acknowledgements v

Abbreviations vi

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 1

1.3 Thesis Organization . 2

1.4 VLSI Design flow . 2

1.5 Front End VLSI Flow: . 4

1.6 Summary . 6

2 Advance Automated Mechanism 7

2.1 Different Stages of the Advance Flow 8

2.1.1 User request: . 8

2.1.2 Data extraction: . 9

2.1.3 Compilation: . 9

2.1.4 Execution: . 9

vii

CONTENTS viii

2.1.5 Summarize: . 9

2.2 Property Checking: . 9

2.2.1 Verification Statements: . 10

2.2.2 Types of assertions . 12

2.2.3 Assertion System Task . 12

2.2.4 Boolean System Function . 12

2.2.5 Property checking advantages: 14

2.3 Summary . 15

3 Enhancement And Development In System 16

3.1 Integrating a new flow . 17

3.1.1 Property Checking . 17

3.1.2 A2M steps for any flow execution 18

3.1.3 Property verification flow . 18

3.1.4 Sneak path analysis flow in property verification 19

3.1.5 Integration steps . 20

3.2 Post Process . 24

3.3 Helper Utility . 28

3.3.1 Enhanced and developed features 28

3.4 Summary . 30

4 Implementation Of Property Checking And Results 31

4.1 RTL for design and property adding 31

4.2 Results . 42

4.3 Summary . 42

5 Conclusion 43

References 44

List of Figures

1.1 VLSI Flow . 2

1.2 Front End Flow . 4

1.3 Front End Activity . 6

2.1 Simple Design . 7

2.2 Flow of Mechanism . 8

2.3 Assertion improve observability . 11

2.4 Property Example . 14

3.1 High Level Block Diagram . 16

3.2 Flow steps . 19

3.3 Flow steps . 20

3.4 Design Data file . 21

3.5 Cleanup Utility . 25

3.6 Report Generation . 26

3.7 Force Post Process . 27

3.8 Configuration Conflict . 28

3.9 Exclude Compile Feature . 29

ix

Chapter 1

Introduction

A modern VLSI chip is a remarkably complex beast: billions of transistors, millions
of logic gates deployed for computation and control, big blocks of memory, embedded
blocks of pre-designed functions designed by third parties (called Design property or
Design blocks). How do people manage to design these complicated chips? Answer:
a sequence of computer aided design (CAD) tools takes an abstract description of the
chip, and refines it step-wise to a final design.[2]

1.1 Motivation

Extent of project covers working on various front end VLSI flows and providing a
common flow solutions that reduce the design time, time to market and handle the
design complexity. This project gives a good idea of front end flow methodology and
designing techniques. It involves development and enhancement of advance features
required in the front end part of complex SoC designing that helps in facilitating the
process.

Project require working with teams involved in major projects around the world.
Implementation and debugging of flows is also a part of this project.

1.2 Problem Statement

In order to tackle rising time-to-market pressures and handle the increasing design
complexities, we need to find more efficient methodologies and flows starting from
beginning to end level of designing. Objective of this project is to provide design
related solution to various front end flows and providing interactive features that
helps designer to perform the front end activity with no need to be aware of the
different tool flows.

1

CHAPTER 1. INTRODUCTION 2

This also requires integration of new property checking flow with existing flow.
Understanding new tools by implementing the methodology on design is also carried
out as a task.

1.3 Thesis Organization

The thesis is organized in 5 chapters, the details of each chapter is as follows

Chapter 1: This chapter gives information about VLSI flow and the front end
flow used in SoC design process.

Chapter 2: Advance Automated Mechanism, It describes the Advance auto-
mated mechanism flow and give details of property verification technique.

Chapter 3: Enhancement and development in system, this describes the new
property verification flow integration and the new feature added to the systems along
with their need and how they result in design time saving.

Chapter 4: Implementation of property checking and results, this describes the
property checking flow performed on simple design analyzing the results

Chapter 5: Conclusion

1.4 VLSI Design flow

The design process at various levels is usually evolutionary in nature. The VLSI IC
circuits design flow is shown in the figure below. The flow involve a lot of complex
task, various tools at various levels of design are used comprehensively.

Figure 1.1: VLSI Flow

CHAPTER 1. INTRODUCTION 3

1) Specification : Lot of activity from gathering market requirement to deciding
the technical aspect is done first. This is the crucial step as it will affect the future
of the product. Here, vendors may want to get feedback from potential customers on
what they are looking for. Once this is done final specification sheet with all possible
technical details is made and handed over to the next team.

2) Architecture : This is where the main work starts. With the help of the
specification sheet the target ICs architecture is decided and a layout for same is
created by design engineers using EDA tools. In the next step this architecture is
implemented and tested with the help of programming language and tools.

3) RTL Coding : RTL is an acronym for register transfer level. This implies that
the VHDL or verilog code written based on the architecture describes how data is
transformed as it is passed from register to register.

4) RTL Verification : Register Transfer Level (RTL) simulation and verification
is one of the important step. This ensures that the design is logically correct and
without major timing errors. It is advantageous to perform this step, especially in
the early stages of the design. Simulation tools are used to perform RTL verification.
A test bench file may be used here for verification.

5) Synthesis: This is where the design now start to get physical. Logic synthesis is
a process by which the desired circuit behavior i.e. Register Transistor Level is turned
into a design in terms of logic gates which drives the circuit or architecture. This is
done with the help of FPGA/CPLD/ASIC hardware tools. These target boards may
be accessed using the IDEs provided by specific vendor.

6) Back end: Here the final tested design after synthesis is given to the IC manu-
facturer.

7) Hand Off : Hand off is the process under back end only where the final result of
frontend (first 5 steps) is provided to the manufacturer in form of photo mask. Then
the manufacturer performs wafer processing, packaging, testing, delivery of samples
to test the physical IC.

8) To Fabrication: Once the sample are tested and the entire requirement are
furnished the design is sent for mass production.

CHAPTER 1. INTRODUCTION 4

1.5 Front End VLSI Flow:

The frontend flow is responsible to determine a solution for a given problem or op-
portunity and transform it into a RTL circuit description. The flow starts from
specification, it involves most of the verification work that is required to achieve good
initial design confidence. Later on the process in handled over to back end flow, where
a number of process required for physical implementation of design are carried out.[1]

Figure 1.2: Front End Flow

CHAPTER 1. INTRODUCTION 5

The design complexities are raised enough so that a single tool is unable to provide
good remedy for all the design, compilation and verification related issues. Increasing
System-on-Chip (SoC) complexity and software content combined with rising time-
to-market pressures are driving the need for an advance automated mechanism for
design, compilation and verification solution that encompasses different VLSI flows
and help early device bring-up, in addition it also provide solution to some other
activity which saves time as well as efforts, during the designing period. The term
different VLSI flows means the different design, compilation verification flows of tools
by different CAD tool provider companies.

Lots of CAD tools are used during the front end cycle for different works like static
checks, linting checks, Static timing analysis (STA), Formal verification, property
checking, equivalence checking, and functional verification. All these checks give
early design confidence and decrease the risk of rework.

The Advance automated mechanism supports for different design methodology; it
is generic and encompasses different VLSI flows. A higher degree of design confidence
and bringing down the risk of re-spin or repeated efforts is the main aim of the
advance system, which ultimately contributes for less time to market. The mechanism
is central, intelligent, advance, automated and the most importantly intellectualcite
in1

Central: Used by almost all front end flows

Intelligent: It makes design compilation and validation of SoC easier and faster.

Advance: Automated and intellectual. Add-on to the older process which were
slow

My work goes around the different periphery of the advance mechanism, devel-
oping and enhancing advance features and integrating a new flow for assertion based
property checking are the major areas of my work.

CHAPTER 1. INTRODUCTION 6

Figure 1.3: Front End Activity

1.6 Summary

This Chapter provides the detail of VLSI design flow and frontend flow process. An
introduction to advance automated mechanism and its usefulness is also included in
this chapter.

Chapter 2

Advance Automated Mechanism

After user specified the design requirement, the work of gathering the specification out
of those requirements starts. If a design is simple a single user can manage the design
process by himself. But in case of complex SoC design, a single user cannot perform
all the design work instead a lot user work simultaneously on different modules and
perform all the process of checking, validation and verification over the design and in
the end all the parts are integrated.

Figure 2.1: Simple Design

7

CHAPTER 2. ADVANCE AUTOMATED MECHANISM 8

In order to manage complex designs there is an Advance automated mechanism
which has all the different VLSI flow embedded. This mechanism provides a common
platform for all the frontend activity and also provide end to end support to the users,
with no need for the users to be aware of different tools methodology and flows. [3]

The A2M consolidates different front end flows in it. The methodology of this
mechanism is very clean and all the stages of are determined. Each stage has some
specific task linked to it. The working flow for the mechanism is shown below

Figure 2.2: Flow of Mechanism

2.1 Different Stages of the Advance Flow

2.1.1 User request:

In this stage user specifies the type of action he/she want to perform over the design,
like compilation, test execution, gathering results and simulation using a set of com-
mands. Commands are grouped together to produce a meaning and corresponding
actions are performed after decoding the command. Validation of user’s commands
is also done in this step..

CHAPTER 2. ADVANCE AUTOMATED MECHANISM 9

2.1.2 Data extraction:

It is one of the most important steps of the A2M. In this step in accordance with
input configuration (set of rules) files, the design data that is the combination of
RTL source code, corresponding standard libraries and other test related files are
being extracted and stored for processing. Configurations along with the user action
dictate the task to be performed by advance flow.Design reuse in one of the feature
of the advance system which is done in this step. A large numbers of algorithms are
used in this step, which makes the data extraction easy and fast. [5]

2.1.3 Compilation:

In this step the advance flow prepares the set of actual commands that are executed
in order to perform the actual task. Various log files and tool flow specific files are
generated during this step.

2.1.4 Execution:

Executor executes the different commands specific to the flow in an orderly manner
and collects the output in log files. After the flow execution it also reports errors if
any.

2.1.5 Summarize:

Finally the advance flow does the work of summarizing the results for user. The
summary contains the errors, warnings, pass/fail status of the test.

2.2 Property Checking:

Method to prove properties for the correctness of design or show root cause of an
error by rigorous mathematical procedures is property checking. It is used to show
that a RTL model satisfies some properties, such as implementing a microarchitecture
specification or maintaining an invariant.

In recent years property checking has become more accessible to non-specialists,
through the Assertion Based Verification methodologies. These enable RTL authors
to add assertions to their code, and use powerful formal methods to prove them.[8]
What are Properties:

A property defines behaviour of the design. A property can be used for verification
as an assumption, a checker, or a coverage specification. It can be declared in a

CHAPTER 2. ADVANCE AUTOMATED MECHANISM 10

module, interface, program, clocking block, package for example

property rule6 with type(bit x, bit y);

##1 x |− > ##[2:10] y;

//antecedent |− > consequent

endproperty

2.2.1 Verification Statements:

A property on its own is never evaluated for checking an expression. It must be used
within a verification statement for this to occur. A verification statement tells what
verification function to be performed on the property. [9] The statement can be one
of the following:

a. Assert

b. Assume

c. Cover

Assertions:

Assertions are checkers on the RTL that prove certain properties about the design
module. It can pass, fail or be unproven within a specific bound and are used to
specify requirements from design module and insure design correctness. A passing
assertion assures that the property will always hold on the other hand a failing asser-
tion produces a counterexample that can be used to debug and root cause the failure.
It also improves observability and shorten time to develop.In addition, assertions can
be used to provide functional coverage and generate input stimulus for validation.

Assertions are similar for simulation, which is event-based, and formal verification,
which is cycle-based.[11]

a. Specify requirements from DUT, behaviour expected from the design.

b. Insure design correctness

c. assert property (p);

CHAPTER 2. ADVANCE AUTOMATED MECHANISM 11

Advantages of assertion

a. Assertion Improves observability

b. Reduces the debug time.

c. Bugs can be found earlier and are more isolated.

d. Controllable severity level.

e. Describe the Documentation and Specification of the design.

f. They are also used to gather information for various level of properties like
conditional, signal, sequence.

Figure 2.3: Assertion improve observability
[7]

CHAPTER 2. ADVANCE AUTOMATED MECHANISM 12

2.2.2 Types of assertions

There are basically two types of assertion

a. Immediate assertions: They are based on simulation events and used only with
dynamic simulation tool.

b. Concurrent assertions: They are based on clock cycles and can be used with
formal or dynamic simulation tool.

2.2.3 Assertion System Task

Assertion severity task

Because the assertion is a statement that says some behaviour of the design must be
true, the failure of assertion also has some severity associated with it. The severity can
be specified by by using a system task in the fail statement. $fatal, $error, $warning
and $info are the system task used to specify the severity of an assertion failure.

$fatal is used for a run time fetal, $error is used for a run time error, $warning
is used for a run time warning that can be suppressed and $info is used to produce
informational statements and signifies that assertion failure carries no specific severity.
Default severity level of an assertion failure is an error.

Assertion control system tasks

Assertion control system system task are used to enable or disable the assertion base
on some condition. There are basically three assertion control system task.

a. $assertoff to stop checking of all assertion until a subsequent $asserton is en-
countered. Already executing assertions are not affected by this system task.

b. $assertionkill system task abort all the assertion including currently executing
assertion until a subsequent $asserton is encountered.

c. $asserton system task re enables the execution of all specified assertions

2.2.4 Boolean System Function

Boolean system functions gives the facility to check the behaviour of signal. they
are used to check the values and type of transition. some common boolean system
functions are

CHAPTER 2. ADVANCE AUTOMATED MECHANISM 13

a. $countones: This function return number of 1’s in a bit vector.

b. $past: This function return the past value of the signal.

c. $stable: It return a true if a signal is stable.

d. $isunknown It returns true if unknown values are present in the signal.

e. $rose: It returns true if the LSB of the expression goes to logic 1 else it returns
false.

f. $fell: It returns true if LSB of the expression goes to logic 0 else it returns false.

g. $onehot: It returns true if only one bit of expression is high.

h. $onehot0: It returns true if at most 1 bit of the expression can be high.

Example:

Assumptions:

A statement that the design is constrained by the given property and a directive
to verification tools to consider only paths on which the given property holds.Usually
the assumptions are properties written over inputs to restrict the state space, or
properties whose proof would depend on logic external to the model. assumptions
are used in the same way as assertions.

They are used for the following

a. Model design environment

b. Specify requirements from environment

c. Restricts the set of feasible traces in the model

Cover:

Cover statements are used to specify scenario we wish to observe or to monitor
their coverage evaluation. They mathematically prove that the property holds on
some feasible trace. A cover passes as soon as a valid trace that satisfies the condi-
tion is found and fails if given the RTL and constraints, the condition can never be
matched. Covers that are unproven within the specified bounds should be examined
in more detail. They may be soft failures, where new constraints have suppressed
valid coverage cases that occur within the property checking bounds. They may re-
veal property checking modeling inadequacies, where due to max bound or complexity
considerations, interesting cases are not covered.

CHAPTER 2. ADVANCE AUTOMATED MECHANISM 14

Figure 2.4: Property Example
[7]

2.2.5 Property checking advantages:

The advantages of using property checking are as follows

a. It does not require test benches or stimuli. No concept of simulation-style tests

b. Turnaround time is very less.

c. Specify the destination, rather than journey, just specify what we want to see
or prove. Instant test bench

d. Engines drive all possible combinations of inputs which are equivalent of every
possible test and an impossible tests too plan to spend time ruling these out

e. In simulation, poking an internal RTL signal only affects that signal and any
downstream logic. In FV, constraining a signal affects the upstream logic as

CHAPTER 2. ADVANCE AUTOMATED MECHANISM 15

well. White-box constraining possible in FV. Can constrain output of decoder
to force only valid encoded inputs to arrive. Think of constraint on possible
universe of simulations, not of constraining specific stimuli.

2.3 Summary

This chapter explains the The advance automated mechanism, its need and the flow
adapted. Explanation of each flow step is also given in this chapter.

The later part of this chapter explains the formal verification technique of property
checking. Verification statements are also covered in this chapter.

Chapter 3

Enhancement And Development In
System

The High level block diagram of the advance automated mechanism is shown below.

Figure 3.1: High Level Block Diagram
[5]

The design configuration contains all the user specified information like file paths
for standard cells library, RTL file information and other project related customized

16

CHAPTER 3. ENHANCEMENT AND DEVELOPMENT IN SYSTEM 17

information. The post process part does the cleanup, design records handover and
post simulation work. The integration part contain the information of different flows
present in A2M. All the simulation, compilation, design checks, validation, formal
checks flows are there. New flows can be added through the integration part of A2M.

The helper utility is like a bridge between the design specification and core en-
gine, it contains many small features to display design configuration corresponding to
current part of design. Features of helper utility are widely used during compilation
and execution time.

The core engine is the heart of the A2M; it initiates different flows present, process
the design in a proper order and also maintains the information for the processes. It
interacts and controls all the parts of advance flow hence called the engine.

In the system I worked on enhancement, development debugging of post process,
helper and integration part that require lots of testing related work too.

3.1 Integrating a new flow

Problem Statement

Property verification is the flow which is not been automated and integrated in
any of the Intel’s flow and many of the SoC teams were requesting to automate and
integrate the this flow in the advance flows present. This task involves understanding
the property verification methodology, fine understanding all the steps involved in the
flow, understanding the the various options present in the tool, designing a prototype
for testing. Above all the thing important is to integrate in an existing flow without
out inter-fearing with the functionality of the other flows present, this requires good
understanding of the advance flows used in Intel as well.

3.1.1 Property Checking

Property checking is a method to prove the correctness of design or show root cause
of an error by rigorous mathematical procedures. In property checking properties
are evaluated over the design using verification statements like Assert, Assume and
Cover.

Benefits of property checking

a. High design confidence

b. It does not require test benches or stimuli. Instant testbench

c. Turnaround time is very less.

CHAPTER 3. ENHANCEMENT AND DEVELOPMENT IN SYSTEM 18

d. It lowers cost by reducing the debug time

3.1.2 A2M steps for any flow execution

There are basically 3 steps in A2M

1. setup the environment for all the flow present and gather the design data.

2. run the flow and generate log files for all the individual design file and step.

3. analyze the log and generate the pass fail status and point reason for failure.

In the mechanism there is a way to specify the design data in a file, and that
files serves as input to the advance mechanism. This file basically contains the design
definition that tells what are all the library included in the design along with the
mapping information for physical library with a virtual name. Similarly there is a
way to provide library definition for each library in a file.

Advance mechanism gathers all the design related information from these files
and prepares a data base for each design. The data base so prepared contains all the
information in a very arranged and hierarchical format.

After gathering all the information a corresponding tool flow called by analyzing
the the command line specified to the advance mechanism. A command mapping
API present in A2M maps the command with the corresponding tool flow. After this
action is performed the whole design data is passed to the tool flow, that generates
all the actual command line required by the tool and a shell script that actually runs
the flow over the design.

3.1.3 Property verification flow

Following steps are involved in property verification flow

The first step is to compile the design using the corresponding compile command
for all the design library and properties.

Second step is to connect all the design modules together using the design top,
this is basically the elaboration phase where the flow makes the design pyramid by
connecting all the design data.

Third step is to define the environment for property verification, in this step all
the clocks and reset are defined for the design.

Fourth step is to constrain the design environment using assume and stopat con-
dition.

Fifth step is to prove the property, property can be proved over the design in one
shot or on the basis of bind instance. After this the flow also provide the advance

CHAPTER 3. ENHANCEMENT AND DEVELOPMENT IN SYSTEM 19

debug facility where user can get the counterexample for failing case through which
user can find out bug in the design and fix the cause of bug. Covers for the passing
property are also generated that shows whether the condition specified by verification
statement is executed or not.

Figure 3.2: Flow steps

3.1.4 Sneak path analysis flow in property verification

property checking involves having a model check which can mathematically analyze
the design model against assertion and find every possible condition that violates the
assertion without using test bench, if does not find any violation it says property is
proved.

In case it finds a violation tool will give a stimulus example that serves as a counter
example used for debugging. In this case first we will review the stimulus that tool
shows in counterexample and check whether the waveform is correct or not. If wave
form is incorrect then we put that condition to an assumption and declare it as a

CHAPTER 3. ENHANCEMENT AND DEVELOPMENT IN SYSTEM 20

invalid stimulus but if the wave form is correct we have to check the whether the path
is valid or not if it is is not valid then it is added to omit condition. If the path is a
valid path then its a design bug and need to be fixed.

Figure 3.3: Flow steps

3.1.5 Integration steps

The flow is integrated and automated in two steps

a. Compile Process Automation

b. Execution process automation

Compile Process Automation

To automate the compile process first step is to define all the design library and RTL
files under a common design top then collect all the design data (library and design

CHAPTER 3. ENHANCEMENT AND DEVELOPMENT IN SYSTEM 21

files) present in it. Design data of each library include all the design files in the library
along with their compile options, compiler directives (+define+, +incdir), path to the
imported package and search paths for ‘include statement.

Figure 3.4: Design Data file

All this information is gathered for all the libraries in the design and a .f file is
generated that is given as a input for compilation of corresponding library. similarly
a .list file is also generate that contains the complete path of the design files in a
library. So if the design has n library the n number of .f files and n number of .list
files are generated.

Example of .f file

// LIBRARY: LIBRARY NAME

// DATA FILE: PATH TO DATA FILE

// DATA FILE: PATH TO DATA FILE

// -verilog opts: -sverilog -sv +define+Macro

// -verilog opts: +libext+.v +define+PROPERTY VERIFICATION

CHAPTER 3. ENHANCEMENT AND DEVELOPMENT IN SYSTEM 22

+incdir+ PATH FOR INCLUDE DIR

+incdir+PATH FOR INCLUDE DIR

PATH FOR ‘include statements in design

MORE compile Options

—————————————————

Example of .list file

// LIBRARY: LIBRARY NAME

// DATA FILE: PATH TO DATA FILE

// DATA FILE: PATH TO DATA FILE

// DESIGN FILE PATH

PATH TO DESIGN FILES

—————————————————

These two files and the common compile options provided in the command line
are given to the compile design command for the flow.

After this we generate a TCL script for the tool compilation, that compiles all the
library and elaborate the design using the design top information given by the user.
compilation log for each library is also generated and saved at a pre defined place
and a elaboration log is also generated. The compilation and elaboration commonly
generates a binary result file, that can be utilized for in property proving stage.

Example of TCL file for compilation

—————————————————-

auto-generated Property verification TCL file

For: PROPERTY VERIFICATION

Only Synthesizable verilog

—————————————————-

// Common Variables

START TIME [date]

DOT F DIR PATH TO .f file directory

project ARBITER

// Clear all previous analysis

clear

// Library

CHAPTER 3. ENHANCEMENT AND DEVELOPMENT IN SYSTEM 23

redirect -file PATH FOR GENERATING LOG FOR THIS LIBRARY -force com-
pile -lib lib1 -f PATH TO .f file -f PATH TO

.LIST file

// Library

redirect -file PATH FOR GENERATING LOG FOR THIS LIBRARY -force com-
pile -lib lib2 -f PATH TO .f file -f PATH TO

.LIST file

// Library

redirect -file PATH FOR GENERATING LOG FOR THIS LIBRARY -force com-
pile -lib lib3 -f PATH TO .f file -f PATH TO

.LIST file

// Library

redirect -file PATH FOR GENERATING LOG FOR THIS LIBRARY -force com-
pile -lib lib4 -f PATH TO .f file -f PATH TO

.LIST file

// Start capturing compilation and elaboration results

set capture design on

// Start elaboration using the top

redirect -file PATH FOR GENERATING LOG FOR THIS LIBRARY -force elab-
orate command -top DESIGN TOP

// Save the results binary file

save -force -elaborated design PATH FOR GENERATING BINARY FILE

——————————————————

A shell script is prepared after generating these files, the function of shell script
is to set the environment variable and invoke the property checking flow using the
TCL script that contains the commands to be executed over the property checking
flow and collect the corresponding results.

Execution Process Automation

The compilation process generates a binary file that contains all the compile and
elaboration result. For proving or executing property, tests are executed over the
design. For execution also there is one TCL script generated that reload the compile
results, set the proof environment and start property verification over the design and
produce the results.

CHAPTER 3. ENHANCEMENT AND DEVELOPMENT IN SYSTEM 24

Example of Tcl file for execution

// Common Variables

START TIME [date]

DOT F DIR PATH TO .f file directory

project ARBITER

// Restore elab results

restore -elaborated design PATH TO COMPILE RESULT FILE

// Clock

clock clk

// Reset expression

reset !reset n

// Max tarce length

maximum trace length 100

// Check that clocks, resets, etc. are reasonable

sanity heck command

// Prove property

prove Instance name -time limit 24h

// Prove property

prove Instance name -time limit 24h

// Save Last Used TCL Commands

save -force -script PATH TO SAVE RESULTS

// Report File

report -file PATH TO REPORT FILE -force -detailed

——————————————————–

The TCL script so generated is used to invoke the tool flow, and prove the property
specified by the user. Results of property checking are also stored in a log file, and
analysis of those log by post process gives the pass fail status of the test.

3.2 Post Process

Problem Statements

CHAPTER 3. ENHANCEMENT AND DEVELOPMENT IN SYSTEM 25

a. Cleanup utility advancement for ability to look deeper into the run area.

b. Force post process advancement for rerun with new configuration.

c. Removing and reporting configuration conflicts from post process system.

A2M provides common environment for the front end process among different
projects, customization of some process is also possible which results in requirement
oriented outcomes only.Before we start any step in VLSI design there is a need that our
design environment be clean, not even a single unwanted file present in the run space,
if so it can cause misinterpretation and results in fetal error and time wastage. So here
comes the existence of cleanup process, which refreshes the full design environment.

All the cleanup process were automated, here we advanced automated the cleanup
process for design time saving in the A2M. Cases exists where it happens that some
design files need not to be removed from the run space and its a time waste in regen-
erating those files every time at the same place where we do the design compilation
or simulation.

Figure 3.5: Cleanup Utility

For this enhanced the A2M, the enhancement also allows the designer to look
inside the run space and delete only the unwanted files; just need to specify the
useful file or the other way round. The advance system will automatically handle the
specified condition and prepares the design environment accordingly that saves time.

After every compilation simulation or test run, log files are generated which are
utilized to see the pass, fail and other important specification of compiled design.
Looking into the log for all such detail is a time consuming things, A2M facilitates
us this by post simulation process. This feature of the mechanism look into the log

CHAPTER 3. ENHANCEMENT AND DEVELOPMENT IN SYSTEM 26

for all the required detail and user specified option, and finally produce a report that
contain all details like pass fail status, error, type of error, simulation time, test details
and other useful information.

Figure 3.6: Report Generation

The simulation post process system also gives the analysis options to user. The
user can run this process on log again and again with new specification, configurations
and assumptions. Which actually decrease the need for the designer to rerun the full
test again and analyze the log files.

CHAPTER 3. ENHANCEMENT AND DEVELOPMENT IN SYSTEM 27

Figure 3.7: Force Post Process

The problem exist when there are some conflicts between two configurations, one
configuration overrides the effect of other and produce misleading information. The
A2M also handles this problem, It reports the designer with a warning message that
a conflict exist in the post process system.

CHAPTER 3. ENHANCEMENT AND DEVELOPMENT IN SYSTEM 28

Figure 3.8: Configuration Conflict

3.3 Helper Utility

This utility was already there in the system. In this area of advance system I worked
on developing few new features which are widely used and saves design time.

Problem statements for this utility are

a. Locate files on project configuration paths.

b. Exclude unwanted compile option for various flows.

c. Top scope information for data handover feature.

d. Tests to verify invariability of the flow.

3.3.1 Enhanced and developed features

Feature that locate files on project configuration paths

Every project has some configuration that contains the information of required design
files, directory and tests. While working on any flow it is needed to look for these
again and again in the project development area. As the design is complex and so the
number of such files is also huge. The newly developed feature can locate design files
and directories in the project development area and provide the information weather
the file is present or not in the current area.

Feature which removes unwanted compile option:

In the SoC design, there is always a case of design reuse, where the designer uses
some of the modules or property of standard designs as it is. There exists no need to

CHAPTER 3. ENHANCEMENT AND DEVELOPMENT IN SYSTEM 29

compile or simulate such inherited object. It is always suggested to mark such object
and not to do any compilation or simulation for them. Treat them as black box, with
no need of elaboration.[5]

Every time we do RTL compilation for any flow, we need to specify various Verilog
options which are used for elaboration of design. Sometimes it happens that all the
default Verilog options along with designer specific Verilog options for a flow are
not required for compilation of design. It is useless to spend the precious time on
compilation of such options and there comes the need of the exclude compile Verilog
option, which can remove such unwanted options and saves the compilation time

Figure 3.9: Exclude Compile Feature

Enhanced Data handover feature:

In a SoC design process a huge number of modules, models and libraries are utilized,
all of them are integrated in a hierarchical manner, relationship is maintained. Most
of the time it is a needed to look on all the design objects utilized in a hierarchical
manner, and transfer the corresponding information to some other module or flow.
The data handover feature is used for this purpose. It gives us the option to look
the relationship in both ways, top to bottom or bottom to top. A lot of design
and library related information is also handled by this feature of A2M. According to

CHAPTER 3. ENHANCEMENT AND DEVELOPMENT IN SYSTEM 30

the requirement I did an enhancement in the handover part to produce the library
information along with its top module details and report the hierarchy in better way.

Test case development for Enhanced features:

Every enhancement or development done in the system must not affect the old func-
tionality of the flow, this thing must be taken care of. For this writing test case for a
scenario that validates and assures the proper functioning is required. I had written
test cases for the enhancements done for end to end checking.

3.4 Summary

This Chapter provides the details of the work done in the current system. The work
include development and enhancement of new features in the post process and helper
part of the A2M. Details of the features, their need and the their efficiency is also
described.

Chapter 4

Implementation Of Property
Checking And Results

The major input to property verification flow is a design description with a set of
properties basically verilog RTL models with embedded system verilog properties.
property checking flow compiles and elaborates the design hierarchy, synthesizes the
net list, extracts the embedded properties, and lists them in the property pane section
according to design hierarchy. After elaboration verification environment setting is
required then only user can verify property over the design. Some of the properties
must be designated by the user as assertions, targets that need to be proven. The rest
will be assumptions, or constraints, properties that the tool should take as a given.

In order to observe and analyze property checking flow integrated in advance
mechanism the following tasks are done

a. Written RTL design

b. Added property and verification statements.

c. Run property checking flow for property checking

d. Observed the response

4.1 RTL for design and property adding

The RTL for a simple priority based arbiter that shares the bus among different
requester based on current state and request along with the verification statement is
shown below. The verification statements used are cover, assert and assume. All the
statement can also be written in a separate file and can be embedded into the RTL
while elaborating the design. In this design property are included in the RTL itself.

31

CHAPTER 4. IMPLEMENTATIONOF PROPERTY CHECKING ANDRESULTS32

module arb (clk,reset n, req0,req1,req2,req3,

gnt0,gnt1,gnt2,gnt3);

input clk,reset n,req0,req1,req2,req3;

output gnt0,gnt1,gnt2,gnt3;

reg gnt0,gnt1,gnt2,gnt3;

reg [2:0] arbiter state; // Declaration of states

always @ (posedge clk or negedge reset n)

begin

if (reset n == 0)

begin // Turning off all grant signal

gnt0 ¡= 1’b0;

gnt1 ¡= 1’b0;

gnt2 ¡= 1’b0;

gnt3 ¡= 1’b0;

arbiter state ¡= 3’b0;

end

else

case(arbiter state)

0: begin // Waiting state state 0

gnt0 ¡= 1’b0; // Turning off all grant signal

gnt1 ¡= 1’b0;

gnt2 ¡= 1’b0;

gnt3 ¡= 1’b0;

if (req0==1) // requester 1 raising request

arbiter state ¡=1;

else if (req1==1)

arbiter state ¡=2; // requester 2 raising request

else if (req2==1)

arbiter state ¡=3; // requester 3 raising request

else if (req3==1)

CHAPTER 4. IMPLEMENTATIONOF PROPERTY CHECKING ANDRESULTS33

arbiter state ¡=4; // requester 4 raising request

else

else

arbiter state ¡=0; // Waiting state

end

1: begin // Switch off all grant signal except request 1

gnt0 ¡= 1’b1;

gnt1 ¡= 1’b0;

gnt2 ¡= 1’b0;

gnt3 ¡= 1’b0;

if (req0==1)

arbiter state ¡=1;

else if (req1==1)

arbiter state ¡=2;

else if (req2==1)

arbiter state ¡=3;

else if (req3==1)

arbiter state ¡=4;

else

arbiter state ¡=1;

end

2:begin

gnt0 ¡= 1’b0;

gnt1 ¡= 1’b1;

gnt2 ¡= 1’b0;

gnt3 ¡= 1’b0;

if (req1 ==1)

arbiter state ¡=2;

else if (req2 ==1)

arbiter state ¡=3;

CHAPTER 4. IMPLEMENTATIONOF PROPERTY CHECKING ANDRESULTS34

else if (req3==1)

arbiter state ¡=4;

else

arbiter state ¡=1;

end

3:begin

gnt0 ¡= 1’b0;

gnt1 ¡= 1’b0;

gnt2 ¡= 1’b1;

gnt3 ¡= 1’b0;

if (req2==1)

arbiter state ¡=3;

else if (req0==1)

arbiter state ¡=1;

else if (req1==1)

arbiter state ¡=2;

else if (req3==1)

arbiter state ¡=4;

else

arbiter state ¡=1;

end

4:begin

gnt0 ¡= 1’b0;

gnt1 ¡= 1’b0;

gnt2 ¡= 1’b0;

gnt3 ¡= 1’b1;

if (req3==1)

arbiter state ¡=4;

else

arbiter state ¡=1;

CHAPTER 4. IMPLEMENTATIONOF PROPERTY CHECKING ANDRESULTS35

end

default : arbiter state ¡= 0;

endcase

end

endmodule

property module

module prop1 (

clk,

reset n,

arbiter state,

req0,

req1,

req2,

req3,

gnt3,

gnt2,

gnt1,

gnt0

);

input clk;

input reset n;

input [2:0] arbiter state;

input req0;

input req1;

input req2;

input req3;

output gnt3;

output gnt2;

output gnt1;

output gnt0;

CHAPTER 4. IMPLEMENTATIONOF PROPERTY CHECKING ANDRESULTS36

// Functional coverage points

//

// Request

c req0: cover property (@(posedge clk) (req0));

c req1: cover property (@(posedge clk) (req1));

c req2: cover property (@(posedge clk) (req2));

c req3: cover property (@(posedge clk) (req3));

//

// Grant

c gnt0: cover property (@(posedge clk) (gnt0));

c gnt1: cover property (@(posedge clk) (gnt1));

c gnt2: cover property (@(posedge clk) (gnt2));

c gnt3: cover property (@(posedge clk) (gnt3));

// State

c state0: cover property (@(posedge clk) (arbiter state ==0));

c state1: cover property (@(posedge clk) (arbiter state ==1));

c state2: cover property (@(posedge clk) (arbiter state ==2));

c state3: cover property (@(posedge clk) (arbiter state ==3));

c state4: cover property (@(posedge clk) (arbiter state ==4));

property reqs ;

@(posedge clk) disable iff (!reset n) (req0 ==3);

endproperty

asp : assume property (reqs);

property reqs3 ;

@(posedge clk) disable iff (!reset n) (($rose(req0) && $rose(req1) && $rose(req2)
&& $rose(req3)) | => $rose(gnt3));

endproperty

ap : assert property (reqs3);

endmodule

property module

module prop (

CHAPTER 4. IMPLEMENTATIONOF PROPERTY CHECKING ANDRESULTS37

clk,

reset n,

arbiter state,

req0,

req1,

req2,

req3,

gnt3,

gnt2,

gnt1,

gnt0

);

input clk;

input reset n;

input [2:0] arbiter state;

input req0;

input req1;

input req2;

input req3;

output gnt3;

output gnt2;

output gnt1;

output gnt0;

logic [3:0]gnt group = {gnt3,gnt2,gnt1,gnt0};

property p reset;

@(posedge clk) disable iff(reset n) (!reset n) |− > (##[0:1]arbiter state == 0) ;

endproperty

ap reset: assert property (p reset);

cp reset: cover property (p reset);

CHAPTER 4. IMPLEMENTATIONOF PROPERTY CHECKING ANDRESULTS38

property arb state 1 request0;

@(posedge clk)disable iff (!reset n) ((arbiter state ==1) && req0 && $rose(req1)

&& $rose(req2) && $rose(req3)) |− > ##[0:1] (gnt0);

endproperty

ap arb state 1 request0 : assert property (arb state 1 request0);

cp arb state 1 request0 : cover property (arb state 1 request0);

property arb state 2 request1;

@(posedge clk)disable iff (!reset n) ((arbiter state ==2) && req1 && $rose(req0)

&& $rose(req2) && $rose(req3)) |− > ##[0:1] (gnt1);

endproperty

ap arb state 2 request1 : assert property (arb state 2 request1);

cp arb state 2 request1 : cover property (arb state 2 request1);

property arb state 3 request2;

@(posedge clk)disable iff (!reset n) ((arbiter state ==3) && req2 && $rose(req0)

&& $rose(req1) && $rose(req3)) |− > ##[0:1] (gnt2);

endproperty

ap arb state 3 request2 : assert property (arb state 3 request2);

cp arb state 3 request2 : cover property (arb state 3 request2);

property arb state 4 request3;

@(posedge clk)disable iff (!reset n) ((arbiter state ==4) && req3 && $rose(req0)

&& $rose(req1) && $rose(req2)) |− > ##[0:1] (gnt3);

endproperty

ap arb state 4 request3 : assert property (arb state 4 request3);

cp arb state 4 request3 : cover property (arb state 4 request3);

property resetstate;

@(posedge clk) disable iff (!reset n) (arbiter state ==1) —=¿ (##[0:1] gnt0);

endproperty

CHAPTER 4. IMPLEMENTATIONOF PROPERTY CHECKING ANDRESULTS39

ap : assert property (resetstate);

logic [3:0]gnt group = gnt3,gnt2,gnt1,gnt0;

// one hot and reset check

property p reset1;

@(posedge clk) disable iff(!reset n) (!reset n) |− > (##[0:1]arbiter state == 0) ;

endproperty

ap reset1: assert property (p reset1);

cp reset1: cover property (p reset1);

property p onehot;

@(posedge clk) disable iff (!reset n)($onehot0(gnt group)‖($onehot(gnt group)));

endproperty

ap onehot: assert property (p onehot);

cp onehot: cover property (p onehot);

property arb stt4;

@(posedge clk) disable iff (!reset n) (arbiter state==4) |− > (($past(arbiter state)==4)
‖($past(arbiter state) == 3)‖($past(arbiter state) == 2)

‖($past(arbiter state) == 1)‖($past(arbiter state) == 0));

endproperty

ap arb stt4: assert property (arb stt4);

cp arb stt4: cover property (arb stt4);

property past arb stt4;

@(posedge clk) disable iff (!reset n) ($past(arbiter state)==4) |− >

((arbiter state==4) ‖(arbiter state == 1)‖(arbiter state == 0));

endproperty

ap past arb stt4: assert property (past arb stt4);

cp past arb stt4: cover property (past arb stt4);

CHAPTER 4. IMPLEMENTATIONOF PROPERTY CHECKING ANDRESULTS40

property past arb stt3;

@(posedge clk) disable iff (!reset n) ($past(arbiter state)==3) |− >

((arbiter state==3) ‖(arbiter state == 4)‖(arbiter state == 1));

endproperty

ap past arb stt3: assert property (past arb stt3);

cp past arb stt3: cover property (past arb stt3);

property past arb stt2;

@(posedge clk) disable iff (!reset n) ($past(arbiter state)==2)|− >((arbiter state==2)

‖(arbiter state == 3)‖(arbiter state == 4)‖(arbiter state == 1));

endproperty

ap past arb stt2: assert property (past arb stt2);

cp past arb stt2: cover property (past arb stt2);

property arc1;

@(posedge clk) disable iff (!reset n) ((arbiter state ==1) && $rose(req1) &&

$fell(req0)) —=¿(##[0:1]gnt1);

endproperty

ap arc1: assert property (arc1);

cp arc1: cover property (arc1);

endmodule

binding property with design

module bind assertion();

bind arb prop1 p2(

.clk(clk),

.reset n(reset n),

.arbiter state(arbiter state),

.req0(req0),

.req1(req1),

.req2(req2),

CHAPTER 4. IMPLEMENTATIONOF PROPERTY CHECKING ANDRESULTS41

.req3(req3),

.gnt0(gnt0),

.gnt1(gnt1),

.gnt2(gnt2),

.gnt3(gnt3)

);

bind arb prop p1(

.clk(clk),

.reset n(reset n),

.arbiter state(arbiter state),

.req0(req0),

.req1(req1),

.req2(req2),

.req3(req3),

.gnt0(gnt0),

.gnt1(gnt1),

.gnt2(gnt2),

.gnt3(gnt3)

);

endmodule

CHAPTER 4. IMPLEMENTATIONOF PROPERTY CHECKING ANDRESULTS42

4.2 Results

Results of property checking is shown below

Properties Considered : 49

assertions : 13

- proven : 13 (100%)

- cex : 0 (0%)

- error : 0 (0

covers : 12

- unreachable : 3 (8.33333%)

- covered : 33 (91.6667%)

- error : 0 (0%)

4.3 Summary

This chapter shows the property verification work, that involve writing RTL, adding
the verification statements and verifying the design using property checking flow inte-
grated in the advance mechanism. Behaviour of the design is analysed and coverage
of different scenarios is also observed.

Chapter 5

Conclusion

Time-to-market is one of the key factors for any company to release its product and
get hold on customers. The designing part should be completed in a short span of
time so that verification and fabrication can be completed without missing technology
window. Verification of the design takes about 70% of the total turnaround time.

The main aim of this project is to provide efficient methodology for front end
process through which designers and verification engineers can complete the front
end tasks using different verification flow over their design efficiently with some time
saving. Advance automated mechanism provide efficient flow methodology from start
to end level of front end design and verification process. A2M provides a common
flow for all the front end activity and using a common flow leads to huge time saving,
it has all the tool flow steps automated in it and also contains all the modern tool flow
that help in cutting down the verification time. It is capable of handling repetitive
and time consuming task for complex designs and managing all the design data .

The advance features present and developed in the system are actually the time
saving utility that helps to cut down the time required for front end process and
provide a super fast debugging help. Setting the design environment for different
verification methodology was also an issue for all the projects A2M also solves this
issue by providing a common platform. Property checking flow integration in advance
flow also helps to cut down the over all verification time. It is a proven fact that using
formal for verification reduces design data and verification time.

43

Bibliography

[1] A. Panda, ”Front-End Design Flows for Systems on Chip: An Embedded Tuto-
rial,” in IEEE, Bangalore, 2010.

[2] R. A. Rutenbar, ”VLSI CAD: Logic to Layout,” coursera, February 2015. [Online].
Available: https://www.coursera.org/course/vlsicad.

[3] ”Intelpedia,” Intel, April 2015. [Online]. Available: https://intelpedia.intel.com.

[4] ”Lint (software),” Wikipedia, 3 February 2015,. [Online]. Available:
http://en.wikipedia.org/wiki/Lint (software).

[5] Training material and foils on different FE flows

[6] Larry Wall, Tom Christiansen Jon Orwant, Programming Perl, 3rd Edition,
O’Reilly Media, July 2000.

[7] A. B. Mehta, SystemVerilog Assertions and Functional Coverage: Guide to Lan-
guage, Methodology and Applications, Springer, August 19, 2013.

[8] Erik Seligman, ”Bringing Formal Property Verification Methodology to,” in DV-
Con, 2012

[9] P. Dasgupta, A Roadmap for Formal Property Verification, 2006: Springer Nether-
lands.

[10] Rajesh Gupta, et al., Panel: Formal Verification: Prove It or Pitch It, Design
Automation Conference, June 2003.

[11] Frank Dresig, et al., Assertions Enter the Verification Arena, Chip Design Mag-
azine, December/January 2004.

[12] Property Verification tool user guide.

44

	Declaration
	Certificate
	Abstract
	Acknowledgements
	Abbreviations
	List of Figures
	Introduction
	Motivation
	Problem Statement
	Thesis Organization
	VLSI Design flow
	Front End VLSI Flow:
	Summary

	Advance Automated Mechanism
	Different Stages of the Advance Flow
	User request:
	Data extraction:
	Compilation:
	Execution:
	Summarize:

	Property Checking:
	Verification Statements:
	Types of assertions
	Assertion System Task
	Boolean System Function
	Property checking advantages:

	Summary

	Enhancement And Development In System
	Integrating a new flow
	Property Checking
	A2M steps for any flow execution
	Property verification flow
	Sneak path analysis flow in property verification
	Integration steps

	Post Process
	Helper Utility
	Enhanced and developed features

	Summary

	Implementation Of Property Checking And Results
	RTL for design and property adding
	Results
	Summary

	Conclusion
	References

