
Verification Component Development for
Interlaken Protocol

Major Project Report
Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(VLSI Design)

By

Rabadiya Vipul Mansukhlal
(13MECV22)

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2015

Verification Component Development for
Interlaken Protocol

Major Project Report

Submitted in partial fulfillment of the requirements
for the degree of

Master of Technology
in

Electronics & Communication Engineering
(VLSI Design)

By

Rabadiya Vipul Mansukhlal
(13MECV22)

Under the guidance of
External Project Guide: Internal Project Guide:
Mr. Gaurav Dave Prof. Akash Macwan
Member, Technical Staff, Assistant Professor (EC Dept.),
eInfochips Pvt. Ltd., Institute of Technology,
Ahmedabad. Nirma University, Ahmedabad.

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2015

iii

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Technol-

ogy in VLSI Design at Nirma University and has not been submitted elsewhere

for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- Rabadiya Vipul M.

iv

Certificate

This is to certify that the Major Project entitled “Verification Component Devel-

opment for Interlaken Protocol ” submitted byRabadiya Vipul Mansukhbhai

.(13MECV22), towards the partial fulfillment of the requirements for the degree of

Master of Technology in VLSI Design , Nirma University, Ahmedabad is the record

of work carried out by her under our supervision and guidance. In our opinion, the

submitted work has reached a level required for being accepted for examination.The

results embodied in this major project, to the best of our knowledge,haven’t been

submitted to any other university or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Prof. Akash Macwan Mr. Gaurav Dave

Internal Guide External Guide

Dr. N.M. Devashrayee Dr. P.N.Tekwani

PG co-ordinator Head of EE Dept.

Dr. K Kotecha

Director, IT-NU

v

Acknowledgements

I would have never succeeded in completing my Thesis without the cooperation, En-

couragement and help provided to me by various people.

Firstly, my sincere thanks to the INFIREA team during this training. Their wis-

dom, clarity of thought and support motivated me to bring this project to its present

state.

I wish to thank Mr. Gaurav Dave (Group Manager) and Mr.Chetan Shah

(Mentor) for giving me an opportunity to work with them. I wish to place on record

my gratitude to EINFOCHIPS PVT. LTD, Ahmedabad, for providing me an op-

portunity to work with them. My stay in the organization has been a great learning

experience and a curtain raiser to an interesting and rewarding career.

I wish to express my deep gratitude towards my guide Prof. Aakash Macwan

and Dr. N. M. Devasharyee, my faculty coordinator for guiding me and helping

me throughout this training period.

Finally, I would like to thank my family for their interest and never-ending sup-

port during my studies.

- Vipul M Rabadiya

13MECV22

vi

Abstract

Interlaken protocol is a networking protocol, which transmit data in Gbps speed. In-

terlaken is a high speed interconnect protocol with high bandwidth and easier packet

transfers. Interlaken also uses serial links for a logical connection between compo-

nents with backpressure capability, logical channels and data-integrity. Advantage of

interlaken protocol is high speed, we can use multiple number of logical channel, also

can used large number of lanes. Interlaken has also more secure with crc24, crc32

error checking logic.

Interlaken protocol is verify by using UVM with system verilog coding, in verification,

verify the DUT of design by designer engineer. Implement same DUT functionality

and compare both logic for verification.

vii

eInfochips At A Glance

• eInfochips is a partner of choice for Fortune 500 companies for product inno-

vation and hi-tech engineering consulting. Since 1994, eInfochips has provided

solutions to key verticals like Aerospace & Defense, Consumer Electronics, En-

ergy & Utilities, Healthcare, Home, Office, and Industrial Automation, Media

& Broadcast, Medical Devices, Retail & e-Commerce, Security & Surveillance,

Semiconductor, Software/ISV and Storage & Compute.

• Covering every aspect of the product lifecycle, eInfochips draws from an experi-

ence of building 500+ products that have over 10 Million units deployed âĂŞ to

provide solutions on Product Design and Development, QA and Certifications,

Reengineering, Sustenance and Volume Production. Being an innovation driven

company, 5% of our revenues are earmarked for building reusable IPs that will

accelerate product design cycles and reduce product risks.

• About 80% of eInfochips business comes from companies with revenues over

$1 Billion, and 60% of total business from building life and mission critical

products. eInfochips has the experience, expertise and infrastructure to deliver

complex, critical and connected products.

• Today, more than 1200 chipmates operate from over 10 Design Centers and

dozen Sales Offices spread across Asia, Europe and US.

Contents

Declaration iii

Certificate iv

Acknowledgements v

Abstract vi

eInfochips At A Glance vii

List of Tables xi

List of Figures xii

1 Introduction 1

2 Basic of System Verilog 3
2.1 Introduction of system verilog . 3
2.2 Data types . 4

2.2.1 Integer data types . 4
2.2.2 String data type . 5
2.2.3 User-defined types . 5
2.2.4 Class . 5

2.3 Array . 6
2.3.1 Packed and unpacked arrays 6
2.3.2 Dynamic arrays . 6
2.3.3 Associative arrays . 7

2.4 Tasks & Functions . 7
2.5 Classes . 8

2.5.1 Objects (class instance) . 8
2.5.2 This . 8
2.5.3 Super . 9
2.5.4 Polymorphism . 9

2.6 Interface . 9

viii

CONTENTS ix

2.6.1 Virtual interfaces . 9
2.7 Summary . 10

3 UVM Testbench 11
3.1 Introduction to UVM . 11
3.2 Transaction-Level Modeling (TLM) 12

3.2.1 TLM-1, and TLM-2 . 12
3.2.2 Transaction-Level Communication 13
3.2.3 Analysis Communication . 14

3.3 Verification Components . 14
3.3.1 UVM Testbench . 15
3.3.2 Transaction-Level Components 15
3.3.3 Creating the Environment . 17
3.3.4 Creating the Agent . 18
3.3.5 Creating the Driver . 19
3.3.6 Creating the Sequencer . 21
3.3.7 Connecting the Driver and Sequencer 22
3.3.8 Creating the Monitor . 23
3.3.9 Sequence Item Flow . 24
3.3.10 Scoreboard . 24

3.4 Summary . 25

4 Interlaken Protocol 26
4.1 Introduction . 26
4.2 Alternatives . 27
4.3 Protocol Layer . 29

4.3.1 Transmission Format . 29
4.3.2 Burst Structure . 30
4.3.3 Optional Scheduling Enhancement 31
4.3.4 Control Word Format . 32
4.3.5 Flow Control . 35

4.4 Framing Layer . 37
4.4.1 64B/67B Encoding . 37
4.4.2 Meta Frame . 39
4.4.3 Synchronous Scrambler . 40
4.4.4 Lane Alignment . 42
4.4.5 Lane Diagnostics . 43

4.5 Applications . 44
4.6 Summary . 45

5 Verified Logic Flow 46
5.1 Introduction . 46
5.2 Skew added & Lane alignment Logic 46

CONTENTS x

5.3 Word lock logic . 47
5.4 Disparity logic . 47
5.5 Multiple use bit logic . 48
5.6 CRC24 logic . 48
5.7 Error logic . 49
5.8 Functional Coverage . 50

6 Conclusion 53

References 55

List of Tables

2.1 Integer data types . 4
2.2 Tasks and Functions . 8

4.1 Idle/Burst Control Word Format . 34
4.2 Overview of Framing Layer . 37

xi

List of Figures

3.1 Simple Producer/Consumer . 13
3.2 Using a uvm-tlm-fifo . 14
3.3 Analysis Communication . 14
3.4 Transaction-Level Testbench . 16
3.5 Typical UVM Environment Architecture 17
3.6 Agent- connection between component 18
3.7 Transaction from sequencer to driver 19
3.8 Transmit sequence from sequencer . 21
3.9 Sequencer-Driver Interaction . 22
3.10 monitor receive data from DUT . 23
3.11 Sequence Item Flow . 24
3.12 Function of scoreboard . 25

4.1 XAUI Versus SPI4.2 Interfaces . 28
4.2 Lane Striping . 29
4.3 BurstShort Illustration . 31
4.4 Control Word Format . 33
4.5 Out-of-Band Logical Timing Diagram 36
4.6 64B/67B Word Boundary Lock . 38
4.7 Meta Frame Structure . 39
4.8 Synchronization and Scrambler State Words 40
4.9 Scrambler Synchronization State Diagram 41
4.10 Interlaken Lane Alignment Segmentation 42
4.11 Diagnostic Word . 43
4.12 CRC32 Calculation Illustration . 43
4.13 Framer/MAC to NPU/L2 or L3 Switch 44
4.14 Line card to switch Fabric Interface 44

5.1 Coverage Report . 52

xii

Chapter 1

Introduction

The high speed chip to chip interface protocols for networking application are xaui

and spi4.2. spi4.2 is more useful in per-channel backpressure, channelization and

programmable burst sizes. The width of the interface limit is scalability and source

synchronous nature. When xaui is a 4 lane interface, long reach, and variety of im-

plementations like backplanes, FR4 on PCB & cable. Packet based interface has a

several applications. Both protocols has a fixed configurations, limiting the ability

of the designer interface and limiting the capacity to application. So define a new

protocol- Interlaken. interlaken enables the design of a high-speed, narrow, chan-

nelized packet interface.

Interlaken is high speed, narrow chip to chip interface. There are two fundamental

structures in the Interlaken Protocol- 1-Data transmission format and 2-Meta Frame.

The data transmission format basically on the concepts of the spi4.2 protocol. If data

sent across the interface then it’s divided into number of bursts, which are subsets of

original data. Every burst is bounded by two control words, one before data burst and

one after data burst. These control words affect the data following for functions like

sop(start-of-packet), eop(end-of-packet), error detection, crc24 bits, channel no, and

other. Each burst is define with a logical channel. this logical channel can represent a

physical networking port in the system. Packet data is transmitted sequentially one

by one data bursts and the size of the bursts is a random parameter. Dividing the

1

CHAPTER 1. INTRODUCTION 2

data into data bursts, the interface also allows the interleaving of data transmissions

with different channels. The MetaFrame is defined the transmission of the data burst

over a SerDes lanes. MetaFrame has a set of four unique control words, which are

defined as a synchronization word(lane alignment), scrambler word, clock compen-

sation (skip word), and diagnostic word functions. The MetaFrame runs in-band(IB)

with the data transmissions, using the perticular formatting of the control words from

the data.

This report also presents by using UVM, how to system verilog program will be eas-

ier. Work of Interlaken protocol using system verilog and UVM. Interlaken protocol

is more useful than other networking protocol, also its high speed communication

protocol.

The content is organized as follows.

• Chapter 2 Features of System verilog .

• Chapter 3 UVM Testbench and Testcase.

• Chapter 4 Verification of Interlaken protocol.

• Chapter 5 Conclusion.

• Chapter 6 Referrence. And appendix.

Chapter 2

Basic of System Verilog

This chapter include starting from the basic of system verilog. Discuss about data

types, array, task and function. Define a class which is a heart of SYSTEM VER-

ILOG. Also include interface and clocking block.

2.1 Introduction of system verilog

Using SystemVerilog, we can improves the readability, productivity, and reusability of

Verilog codes. The SystemVerilog provide more easy hardware descriptions language

and providing an easy route. random testbench development, assertion based verifi-

cation and coverage driven verification(CDV) is very easy by using Systemverilog.

The Accellera provides a higher level of abstraction for verification with Verilog Hard-

ware Description Language (VHDL).

SystemVerilog adds extended and new constructs to Verilog likes data types, queues,

casting, Enhanced process control, Enhanced tasks and functions, Classes , random

constraints, semaphores, mailboxes, Clocking blocks, program block, interface, Func-

tional coverage, Direct Programming Interface (DPI), system task and system func-

tion.

3

CHAPTER 2. BASIC OF SYSTEM VERILOG 4

2.2 Data types

SystemVerilog supports the C language, also implementation of C compiler. However,

in verilog has a data type like int and long. so avoid these duplication of int and long

without more change, in SystemVerilog, int is 32 bits and longint is 64 bits. The

float data type is called shortreal in SystemVerilog, so it is not be confused with the

Verilog data type.

2.2.1 Integer data types

Integral is represent a single integer data type. this type can have high-impedance

(Z) values are called four state types. These are logic, integer, time and reg. all these

have 4 values. The other types do not have unknown(high impedance) values and

only have a 2 values (0,1). these are called 2 state types, for example int and bit.

Data Types Specifications

Int two state SystemVerilog data type, 32 bit signed integer
Shortint two state SystemVerilog data type, 16 bit signed integer
Longint two state SystemVerilog data type, 64 bit signed integer
Integer four state Verilog-2001 data type, 32 bit signed integer
Bit two state SystemVerilog data type, user defined vector size
Byte two state SystemVerilog data type, 8 bit signed integer or ASCII character
Time four state Verilog-2001 data type, 64 bit unsigned integer
Logic four state SystemVerilog data type, user defined vector size
Reg four state Verilog-2001 data type, user defined vector size

Table 2.1: Integer data types

The difference between integer and int is that integer is four state logic and int

is two state logic. 4-state values have additional bits that are the X(unknown value)

CHAPTER 2. BASIC OF SYSTEM VERILOG 5

and Z(high impedance value) states. 2-state data types can simulate fasterand also

take less memory.

Integer only use integer arithmetic value and can be signed or unsigned. This can

affects the certain operators. The data type int, longint, byte, shortint and integer

default to sign. The data types reg, logic and bit default to unsigned.

2.2.2 String data type

SystemVerilog has a string data type. string data type has a variable size. Basically

string is dynamically allocated array of bytes. SystemVerilog has a lots of special

methods for strings. Verilog supports string literals, but at the lexical level.

In SystemVerilog string data type is the same as in Verilog. However, SystemVerilog

supports the string data type. When using the string data type instead of integral

variable. Literal strings are converted to the string type when assigned to a string

type.

2.2.3 User-defined types

Data type User defined type identifiers have the same rules as data identifiers type,

except hierarchical reference identifiers shall not be allowed. User defined identifiers

defined within an interface through ports. they are redefined before used. We can

define data type as a random number of bits.

2.2.4 Class

A class is a set of subroutines and collection of data that operate on data. Class is a

one type of data type, it’s a heart of data types. The data in a class are referred to

class subroutines, and its properties are called methods. Class is a main data type of

the SystemVerilog. All functionality are called by using class.

CHAPTER 2. BASIC OF SYSTEM VERILOG 6

2.3 Array

An array is a set of variables, all are same type. accessed using the same name. In

C language, arrays are indexed from zero by integers but in SystemVerilog the ar-

ray can be initialized, each element must be write or read separately in statements.

SystemVerilog has a packed and unpacked arrays with multiple dimensions. Sys-

temVerilog has the ability to change the size of one of the dimensions of unpacked

array. Unpacked arrays with fixed size can be multi-dimensional and have fixed stor-

age allocated for all the elements of the array. A dynamic array allocates storage for

elements at runtime change the size of its dimensions.

2.3.1 Packed and unpacked arrays

There are two types of arrays : 1. packed array and 2. unpacked array. A packed

array is subdividing a vector into subfields which can be array elements. A packed

array is to be represented as a set of bits. A packed array different as compare to an

unpacked array. A packed array appears as a primary, it is present as a single vector.

If a packed array is declared as signed array, then the array viewed as a single vector

shall be signed.

Packed arrays allow any of length integer types, so a 64 bit longint can be made up

of 64 bits. These 64 bit longint can be used for 64 bit arithmetic. The maximum size

of a packed array is limited, it’s at least 65536 (216) bits. Packed arrays can only

be made of the single bit types like wire, bit, logic, reg and the other net types are:

byte, int, shortint, longint, and integer.

2.3.2 Dynamic arrays

A dynamic array is one dimensional unpacked array. Size of dynamic array not be

fixed earlier but can be set at runtime value. The space for a dynamic array doesn’t

exist until the array is created at runtime. Array size is defined at run time.

CHAPTER 2. BASIC OF SYSTEM VERILOG 7

The syntax to declare a dynamic array is:

data_type dynamic_array_name [];

In the syntax the data_type is the data type of the array elements. Dynamic arrays

support the same types as fixed-size arrays.

2.3.3 Associative arrays

Dynamic arrays are useful for runtime changes and dealing with collections of vari-

ables with changes size dynamically. When the data space is fixed or the size of the

collection is unknown then an associative array is a better option. this array do not

have storage allocated until it is not used. An associative array implements of the

elements of its declared type. The data type to be used as an index serves as a key

and imposes an ordering.

The syntax of an associative array is:

data_type associative_array_id [index_type];

2.4 Tasks & Functions

Verilog has static task and function and automatic task and function. Static task

and function has the equal storage space for all call of the task or function. Auto-

matic task and function allocate unique storage for all instance of task and function.

SystemVerilog has an ability to declare automatic variables within static task and

function, and also static variables within automatic task and function.

SystemVerilog also adds: More capabilities for declaring tasks and functions. Like

Function inout and output ports, Void functions.task and function has a ability of

Multiple statements without requiring any other block like a fork...join or begin...end

block, Returning from a task or function before reaching the end of the task or func-

tion.

CHAPTER 2. BASIC OF SYSTEM VERILOG 8

Tasks Functions

Tasks is time delay. Function is not depends on time.
Tasks and functions is called in tasks Only functions can call in function.
Tasks can’t return a single value. Function can return a single value.
Gives one or more arguments. Required at least one argument.

Multiple statement without begin...end Multiple statement without begin...end

Table 2.2: Tasks and Functions

2.5 Classes

SystemVerilog has an object oriented class. Class is a one type of data type. Classes

have an objects, that are dynamically created, deleted and assigned via object handle.

Classes has features inheritance and abstract type modeling. These features gives the

advantages of C function pointers with none of the type-safety problems, bringing

true polymorphism.

A class includes data and subroutines means functions and tasks that operate on

that data. A class data is follow to as class properties, and its subroutines are called

methods, properties and methods are members of the class. The class properties and

methods together define the capabilities of some kind of object.

2.5.1 Objects (class instance)

A class is a data type. An object is an instance of class. An object is used by declaring

a variable of the class and then creating an object of that class. create object by using

the new function and assigning it to the variable.

2.5.2 This

The ’this’ keyword is used to class properties or methods of the class instance. The

this keyword defines a predefined object handle that refers to the object that was

used to the subroutine. by using ’this’ keyword, we can use variable of super class

CHAPTER 2. BASIC OF SYSTEM VERILOG 9

without define in subclass. So ’this’ keyword is more useful for large programing. The

this keyword will be used in non-static class methods.

2.5.3 Super

The super keyword is used in a derived class for a members of the parent class. It is

necessary to use super.variable to access members of a parent class. by using super

keyword, call super class without defining in super class.

2.5.4 Polymorphism

Polymorphism allows the use of a variable in the super class for subclass objects,

and to referred those subclasses directly from the super class variable. without define

variable in subclass, can be used variable of superclass in subclass. Assume the base

class for the Packet objects, Base Packet define as virtual functions, all the methods

that are to be generally used by its subclasses, methods such as send, receive, print,

etc.

2.6 Interface

Interface is very useful for a communication between two components or a component

to DUT or DUT to component communications. The communication between com-

ponents of a digital system is a critical area that can affect everything of RTL coding.

Hide the communication between components, the interface construct facilitates de-

sign reuse. The inclusion of interface capabilities is one of the major advantages of

SystemVerilog.

2.6.1 Virtual interfaces

Virtual interfaces provide a mechanism for separating models and test programs from

the actual signals that make up the design. A virtual interface allows the same

CHAPTER 2. BASIC OF SYSTEM VERILOG 10

subprogram to operate on different portions of a design, and to dynamically control

the set of signals associated with the subprogram. Instead of referring to the actual

set of signals directly. Changes to the underlying design do not require the code using

virtual interfaces to be re-written. By abstracting the connectivity and functionality

of a set of blocks, virtual interfaces promote code reuse. A virtual interface is variable

that represents an interface instance.

2.7 Summary

In this chapter studied about data types of Systemverilog , more data type compare

to verilog and C++. Class is also one type of data type. In Systemverilog , also have

user define data types, chandle data type, casting , string data types all are more

useful for easier programming. Array is number of bits in single variable, different

types of array type define in this chapter.

Class is a data types, class is a heart of systemvarilog. In class, there are different

functions , this, super, inheritance, polymorphism, so many. In Task and function,

variable and logic define. Task is delay time logic.

Interface is data transfer between two component. Clocking block is use for transmit

data per clock.

Chapter 3

UVM Testbench

The Universal Verification Methodology(UVM) is used for developing a testbenches

and also create architecture of a verification component. describes the basic concepts

of uvm and uvm components like agent, driver, monitor, etc.. that make up a typical

verification environment. Combine these components using a hierarchical architecture

to create reusable verification components.

3.1 Introduction to UVM

For a coverage, UVM gives the best work for achieving coverage-driven verification

(CDV). By using CDV, it gives combine automatic test generation(atg), self-checking,

and coverage metrics to reduce the time for verifying a design.

CDV is support constrained and directed random testing method. Best approach of

CDV is constrained-random testing to do the most work with less effort to writing

time-consuming that are too difficult to reach randomly. CDV environment covered

all the corner cases. So CDV coverage is more useful for finding verification coverage.

Reusable components are more used in verification. An UVM is reusable verification

component. It is called verification components. A verification component is ready

for use, encapsulate, easy to use for an interface protocol. The verification compo-

11

CHAPTER 3. UVM TESTBENCH 12

nent is used for the device under test (DUT) to verify the logic of the protocol. Then

compare your logic for verification. UVM is a very easy for users because it is not

required any converter for design engineer to verification engineer.

Communication between UVM components are by using standard TLM interfaces,

which improve secure and reuse. Using a SystemVerilog implementation of TLM, a

components may communicate by its interface to any other component that imple-

ments interface. Every TLM interface port consists of 1 or more methods used to

transfer data. TLM interface provide an implementation. So, one component may be

connected at the transaction level to others component.

3.2 Transaction-Level Modeling (TLM)

Universal verification methodology provides a transaction level communication(TLM)

interfaces and channels. it’s connect components at the transaction level. By using

TLM interfaces isolates each component from other components in the environment.

For a coupled of phases, has a flexible build infrastructure in UVM, they have the

same interfaces. All is required to replace the TLM with a thin layer of compatible

components to transfer data between the transaction-level and the pin-level activity

at the DUT. TLM also convert transaction level to signal level.

3.2.1 TLM-1, and TLM-2

Transaction-level modeling(TLM), is a modeling for build highly abstract models of

components. In general, TLM provides an abstraction levels beginning with cycle-

accurate modeling. Common transaction-level abstractions also include: approxi-

mately timed, cycle-accurate, token-level and loosely-timed. The TLM code elements

used to create transaction-level models. Two TLM modeling systems: TLM-1 and

TLM-2 have been developed as industry standards for transaction-level models.

CHAPTER 3. UVM TESTBENCH 13

TLM-1 and TLM-2 developed by many people, and also share a common heritage.

TLM-1 and TLM-2 has a different function. 1 is a message passing system. TLM-2

enable to transfer a data and synchronization between two processes. bBth these

facilities has been implemented in SV and is also available as a small part of UVM.

3.2.2 Transaction-Level Communication

TLM provides a lots of methods for use of transaction objects as arguments. Using

TLM will communicate 2 components by using port-export. A TLM port to be used

for a particular connection, while a TLM export supplies the implementation of these

methods. Connecting a port-export allows the implementation to be executed when

the port method is called.

• Basic TLM Communication

The transaction level modeling allows one component to put a transaction to

another component. The square box symbol on the producer indicates a port

and the circle symbol on the consumer indicates the export. So interface from

port to export. Also possible vise versa.

Figure 3.1: Simple Producer/Consumer

• Communicating between Processes

In this processes, use fifo for transaction. The producer puts a transaction on

TLM port-export, transaction put the data in fifo, transaction will block if the

fifo is full, otherwise it will put the data into the fifo and return immediately.

Then the get operation will return transaction data immediately if a transac-

tion is available, otherwise it will block data on fifo until a transaction is not

CHAPTER 3. UVM TESTBENCH 14

available.

Figure 3.2: Using a uvm-tlm-fifo

3.2.3 Analysis Communication

All components are responsible for communicating using TLM interface with other

components in the system. analysis communication is deffer form transaction level

communication is that, analysis communication can be connected with more than one

components at a same time. So in any complex verification environment, analysis

communication is more usefull, particularly where randomization is applied. TLM

port is interface with one to one component, where analysis port is connected with

one to multiple.

Figure 3.3: Analysis Communication

3.3 Verification Components

The basic concept and component that make a verification environment. Also combine

these components using a hierarchical architecture to create verification components.

CHAPTER 3. UVM TESTBENCH 15

3.3.1 UVM Testbench

Uvm_env, uvm_components and uvm_test are the 3 main blocks of a testbench

for a uvm based verification. In these 3 blocks, uvm_env class is extended from

uvm_component class and does not contain any other functionality. Uvm_env is

used for create and connect uvm_component like momnitor, driver, sequencer etc.

The uvm_env class can also be used as a sub environment for other environments.

There is no any difference between uvm_component and uvm_env.

All components are developed under uvm testbench. Main basic 3 components are

driver, monitor and sequencer. In these 3 components, driver and sequencer are active

mode where monitor is in passive mode, it’s useful for find coverage.

3.3.2 Transaction-Level Components

TLM interfaces provide a set of communication methods for sending and receiving

transactions between components. transaction level components first generate se-

quence and then transmit to the driver and convert transaction level to signal level

and stimulus at the dut interface. After that, covert signal level to transaction level

and transmit to the monitor. monitor transmit this data to the scoreboard by analysis

component.

Transaction level verification environment are:

• A stimulus generate sequence to create at transaction-level to the DUT.

• A driver- driver convert these transactions level to signal-level stimulus and

transmit to the DUT interface.

• A monitor- monitor received signal-level activity on the DUT interface and

convert this signal level to transactions level stimulus.

• A coverage collector or scoreboard by using analysis components, to analyze

and check transactions data.

CHAPTER 3. UVM TESTBENCH 16

Figure 3.4: Transaction-Level Testbench

CHAPTER 3. UVM TESTBENCH 17

3.3.3 Creating the Environment

Environment class is extended from uvm_env class. Environment class is implement-

ing verification environments. It covered the all general operation of transaction-level

verification components. Environment class is used for how to arranged these com-

ponents into a reusable environment. your environment will be correct, as compare

with other verification components, and reusable.

Figure 3.5: Typical UVM Environment Architecture

Below steps for define the environment class.

• Extend uvm_env class for define environment class.

• Declare the utility Marcos. For implement create() methods.

• Define the construct method for new() methods.

• Define build method. Call super.build() method.

CHAPTER 3. UVM TESTBENCH 18

• Define connect method, called automatically after build method.

3.3.4 Creating the Agent

3 components are extended from uvm_agent. these are driver, monitor and sequencer.

An agent connects these 3 components together by using TLM connections. For bet-

ter flexibility, the agent also gives configuration information and other parameters.

The verification component developer creates an agent. The agent provides protocol-

specific stimulus checking and coverage for a device. In an environment, an agent is

either a master or a slave component. uvm_agent is extended form uvm_env class.

Figure 3.6: Agent- connection between component

An agent class has 2 basic operating modes:

• Active mode - In this mode the agent is in active mode, so all 3 components

(driver, monitor and sequence) are active and it’s worked. a device in the

system and drives DUT signals. this mode reqiured that driver and sequencer

also worked. A monitor is also worked for checking and coverage.

CHAPTER 3. UVM TESTBENCH 19

• Passive mode - In this mode the agent does not worked a driver or sequencer and

operates passively. Driver and sequencer are not worked in passive mode. The

monitor is only worked and configured. This mode is used when only checking

and coverage collection is desired.

3.3.5 Creating the Driver

The driver is to drive data items to the interface protocol from the transaction level

and sequencer. The driver takes data items from the sequencer. The UVM Class has

an inbuilt base class the uvm_driver, from uvm_driver class all other driver classes

should be extended, either directly or indirectly. The driver class has a run() phase,

all operations and all functions execute in this phase, as well as a communicates with

the sequencer by TLM ports.

Figure 3.7: Transaction from sequencer to driver

The driver may also implement more than one parallel run-time phases to refine

its operation. Data packet should be drive per clock, so it is required clocking blocks.

Derive driver class from base class the uvm_driver. Then add UVM macros from

CHAPTER 3. UVM TESTBENCH 20

connected with factory class and take The next_data_item from the sequencer. Af-

ter that, create virtual interface for connect driver to the DUT.

Driver takes transaction fron sequencer by using seq_item_port. This transaction

will be driven to DUT though interface. Driver also transmit transaction to score-

board using uvm_analysis_port.

How to create driver class:-

• Driver logic:

class sample_driver extends uvm_driver #(sample_item);

sample_item sam_item;

virtual dut_if vif;

‘uvm_component_utils(sample_driver)

// define Constructor

function new (string name = "sample_driver", uvm_component parent);

super.new(name, parent);

endfunction : new

function void build_phase(uvm_phase phase);

string ins_name;

super.build_phase(phase);

if(uvm_config_db#(virtual dut_if)::get(this,

" ","vif",vif))

endfunction : build_phase

task run_phase(uvm_phase phase);

forever begin

// Next data_item from sequencer.

CHAPTER 3. UVM TESTBENCH 21

seq_item_port.get_next_item(sam_item);

drive_item(sam_item);

seq_item_port.item_done();

end

endtask : run

task drive_item (input sample_item item);

endtask : drive_item

endclass : sample_driver

The example derives sample_driver from uvm_driver and uses methods in the seq_item_port

to communicate with the sequencer class. Then, also include the ‘uvm_component_utils

macro and a constructor to register the driver type with the common factory.

3.3.6 Creating the Sequencer

A Sequencer class is extended by uvm_sequencer class. uvm_sequencer is a in-

built class. uvm_sequencer has a one port seq_item_export which is used to con-

nect uvm_sequencer with uvm_driver for transfer transaction. The sequencer create

transaction data and passes it to a driver.

Figure 3.8: Transmit sequence from sequencer

CHAPTER 3. UVM TESTBENCH 22

The UVM Library has a uvm_sequencer base class. These class is parameterized

by the request and response types. The uvm_sequencer class has all of the function-

ality that required for a sequence to communicate with a driver. The uvm_sequencer

class gets instantiated directly, with appropriate parameterization. In this class the

response type is the same as the request type.

3.3.7 Connecting the Driver and Sequencer

The sequencer class and The driver class are connected via TLM port-export, with

the port seq_item_port of driver is connected with the export seq_item_export

of sequencer. The driver send data items through its seq_item_port and sends

responses. The component that instances of the driver and sequencer makes the

connection between them. Interaction between the sequencer and the driver is done

using the get_next_item() and item_done().

Figure 3.9: Sequencer-Driver Interaction

CHAPTER 3. UVM TESTBENCH 23

3.3.8 Creating the Monitor

The monitor is passive device, it’s responsible for extracting data and signal informa-

tion from the interface. These informations are also available to other components

via standard TLM interfaces and channels.

The monitor should be limited functionality for basic monitoring. Monitor should be

collect data from the interface and transfer that data to the scoreboard. This can

include protocol checking-which configurable may be enabled or disabled. monitor is

also used for coverage collection. Monitor has an additional high-level functionality,

such as scoreboards, should be implemented separately on top of the monitor.

Figure 3.10: monitor receive data from DUT

The monitor has the following functionality:

• The monitor component collects information from a virtual interface.

• The monitor collect data and it’s used in coverage collection and checking.

• The collected data is send on an analysis port(item_collected_port).

CHAPTER 3. UVM TESTBENCH 24

3.3.9 Sequence Item Flow

Figure 3.11: Sequence Item Flow

3.3.10 Scoreboard

Scoreboard class is extended by uvm_scorboard. The scoreboard has 2 TLM analysis

ports. One is for driver, it’s used for getting the packets from the driver and another

for the receiver, getting the packets from the monitor. Then both the packets are

compared and if they don’t match, then error is occurs. For comparison, used compare

() method of the Packet class.

CHAPTER 3. UVM TESTBENCH 25

Figure 3.12: Function of scoreboard

3.4 Summary

In this chapter studied about universal verification methodology, why more used in

companies. Direct communicate with testing and verification engineers. in uvm, also

have user define function, so programming is more easy using this.

In uvm, testbench is more important, all other components are under top level mod-

ule(testbench), environment class is under top level, all other components are in

environment class. Agent have 3 components, driver, monitor and sequencer. Data

is verify by using DUT(devise under test). Driver drives data to DUT and monitor

receive the data from DUT by using interface.

Uvm_env, uvm_agent, uvm_driver, uvm_monitor, uvm_sequencer etc. User define

classes, which are more useful for programming, also have inbuilt macros, by using

Systemverilog with uvm, programming is easy.

Chapter 4

Interlaken Protocol

4.1 Introduction

Interlaken is networking protocol with configuration of a narrow, high-speed chip-

to-chip interface. Interlaken Support up to 256 communications channels, and also

extended up to 64K by using multiple use bits. A Meta Frame of programmable fre-

quency synchronization, scrambler, clock compensation(skip word) from the number

of SerDes lanes and SerDes rates. With a simple Xon-Xoff mechanism control both

out-of-band and in-band per-channel flow control options.

In the interlaken protocol, there are main 2 structures - the data transmission

format(protocol layer) and the Meta Frame. these are 2 main layer for full interlaken

protocol. The data transmission format is similar concepts of SPI4.2. Data sent to

the interface is divided into number of bursts, which are the subsets of the original

packet burst data. Every bursts are bounded by 2 control words, 1 control word

before burst data and 1 after burst data. sub fields between these control words is

affect either the data following them for functions like end-of-packet(eop), start-of-

packet(sop), word-lock, error bit detection, crc24, crc4 and some others. Each burst

is declared with a logical channel. Channel can declare a physical networking port in

26

CHAPTER 4. INTERLAKEN PROTOCOL 27

the system or some other logically connected data and also define data rate based on

logical channel numbers.

MetaFrame is support the transmission of the data. MetaFrame is a set of four

unique control words, which are defined as a lane alignment(synchronization word),

scrambler word, skip word (clock compensation) and diagnostic word functions. The

MetaFrame runs in-band flow control with the data transmissions, using the specific

formatting of the control words to distinguish it from the data.

4.2 Alternatives

The two interface protocol with high-speed chip-to-chip for networking applications

are XAUI and SPI4.2. SPI4.2 has important advantages in channelization and pro-

grammable burst sizes. SPI4.2 has 16 lanes but bandwidth is only 700-800 Mbps. In

XAUI is a narrow 4-lane interface, but bandwidth is better than SPI4.2, its band-

width is 3.125 Gbps, and it has a varies implementations: cable, FR4 on PCB and

backplanes. Both protocols offer limited configurations, limiting the ability of the

designer the interface capacity to the application.

CHAPTER 4. INTERLAKEN PROTOCOL 28

Figure 4.1: XAUI Versus SPI4.2 Interfaces

CHAPTER 4. INTERLAKEN PROTOCOL 29

4.3 Protocol Layer

4.3.1 Transmission Format

Data burst is transmitted to the Interlaken interface via SerDes lanes. A SerDes lane

is a simple serial link between two ICs. This protocol is operate with any number

of lanes like 4,5,8,16,32.., including only one, with no any maximum limit. Actual

implementations may choose to fix any number of lanes, because there is not any

support for a variable number of lane at runtime.

Figure 4.2: Lane Striping

Data burst sent on the interface lane is an 8-byte word means word created by 64 bits.

8 byte is chosen for the 64B/67B encoding selected for the protocol, and the size of

the control word is also 67 bits used to bursts. The transfer unit is equivalent to the

control word size it becomes easy to adjust the width of the interface. Control word

CHAPTER 4. INTERLAKEN PROTOCOL 30

and data words are transmitted to the lanes sequentially, starting with lane 0, and

ending at lane M, and repeating the lane for the next block of data. Transmitting data

burst in all lanes is like a round robin manner, means after data transmit in lane M,

repeat from lane 0. but before transmiting data burst, Synch word, scrambler word,

diagnostic word is transmitted in all lanes. 64B/67B encoding occurs on each lane

individually. 2 fundamental word for transport burst: Data Words and Idle/Burst

Control Words.

4.3.2 Burst Structure

The Interlaken interface bandwidth is divided into data bursts with respect to the

number of channels. Data packets are transferred to the interface of one or more

bursts, with the bursts by means of one or more Control Words and control word is

67 bits word.

Typically the interface is operates by sending a data burst of maximum BurstMax

length, with Control Word. The interface is a end-of-packet(eop) may occur a very

small amount of remaining data on each channel and for that small amount of data,

transmit full packet. this end of packet frame, after finish small amount of data, it

pad ideal bits. Transmitter and receiver may be designed ideally with a large datap-

ath. The BurstShort is parameter which is a minimum separation between any two

successive Burst Control Words. The minimum BurstShort width is 32 bytes, also

larger values possible in multiple of 8 bytes, values like 32, 40,48,56,64...

CHAPTER 4. INTERLAKEN PROTOCOL 31

Figure 4.3: BurstShort Illustration

Figure illustrates the minimum interval required by BurstShort. If not enough bit is

there then for BurstShort, adding extra Idle Words before the next Control Word is

come, shown in fig 4.3.

4.3.3 Optional Scheduling Enhancement

Simple scheduling described was used for transmit packet, but using this Loss some

unused bandwidth at the end of the packet for certain combination of packet length

and BurstMax. When the BurstMax size is small, then small amount of data will

remain at the last packet. So add some few idle bits for completing BurstShort size.

In the worst case, maximum unused bandwidth is (BurstShort - 1) bytes per packet.

One more efficient scheduling is possible: it’s an optional scheduling enhancement.

data_packet_remainder = pkt_length

CHAPTER 4. INTERLAKEN PROTOCOL 32

for (x=1; x <= i; x++) {

if (data_packet_remainder >= BurstMax + BurstMin) then

data_transfer = BurstMax

else

if (pkt_length MOD BurstMax < BurstMin) && (data_packet_remainder > Burst-

Max) then

data_transfer = BurstMax - BurstMin

else

data_transfer = data_packet_remainder

data_packet_remainder = data_packet_remainder - data_transfer

}

This optional algorithm is implementation towards efficient mechanism of transport-

ing data burst. There is no additional burden placed on the receiving logic. In the

optional algorithm logic, there is no any requirement to add extra idle bytes. So, it’s

more efficient for data burst transfer.

4.3.4 Control Word Format

Bursts are divided in different 8-byte Control Word. The Control Word is identified

in the data by using the ’10’ control code for bits[65:64], bits[65:64] are ’01’ for data

word and other combinations are invalid. Bit[63] = ’1’ for the Burst and Idle Control

Word.

Burst Control Words means type = ’1’ identify the beginning of a data burst. Ev-

ery data burst transfer start with a Burst Control Word. The start-of-packet(sop)

and Channel Number bits indicate beginning of data burst. When the Burst Control

Word is required data bursts, the End-of-packet bits and CRC24 bits apply to the

data.

CHAPTER 4. INTERLAKEN PROTOCOL 33

Figure 4.4: Control Word Format

CHAPTER 4. INTERLAKEN PROTOCOL 34

Idle Control Words means Type =’0’ transmit only idle words. It’s always trans-

mitted when there is no any data burst available. When data finished, idle data word

will be passed. Because sent any burst to the receiver side until packet is sent. so the

flow control information must be sent to the receiving device, the flow control fields

are valid in both types of Control Words.

Field Name Position of Bits Functions

Inversion Bit 66 Bits [63:0] inversion
Framing 65:64 Check word is control word or data word
Control 63 ’1’ for idle-control word, ’0’ for framing word.
Type 62 Set to ’1’, channel no and sop field are valid.
Sop 61 Start of packet

Eop_Format 60:57 If ’1xxx’ end of packet
Reset calender 56 ’1’ indicates the in-band flow control

In band flow control 55:40 ’1’ for XON,’0’for XOFF.
bits for Channel number 39:32 Channel defined for the data burst.

Multiple use bits 31:24 This bits may used for multiple purposes
CRC24 23:0 CRC24 used for error check for data word

Table 4.1: Idle/Burst Control Word Format

Sop bit is ’1’, means start of packet, before data is started, and sop bit value is ’1’

of previous control word. After this, all times sop bit value is ’0’. Eop_format have

4 bits for indication of end of packet. Bit positions [60:57] are eop_format, 1st bit

indicate that packet is end or not, if 1st bit ’1’, then there is a last packet. Other

3 bits for how many valid bytes are there in this packet. Bytes that are invalid are

discarded by the monitor.

For a size of Channel, it reserves 8 bits, so we have used up to 256 channel size.

Advantage of Interlaken protocol is we used more channel as compare to others. Also

we have multi-use 8 bits for channel number, so we should be used 16 bits for declare

channel length. Last 8 bits is reserves for CRC24 (cyclic redundancy code). Crc24 is

check error that covers control word and previous data word.

CHAPTER 4. INTERLAKEN PROTOCOL 35

4.3.5 Flow Control

The ability to communicate per-channel backpressure is a key feature of Interlaken

protocol. for this function, two options are there- an out-of-band(OOB) flow control

interface and an in-band(IB) flow control interface channel. Flow control uses a sim-

ple on-off mechanism to signal for transmit on a particular channel number.

By using single bit of status the on-off flow control status is communicated for each

supported channel. If a status is ’1’ then identify the ’XON’ state, it’s indicate

permission for the transmitting data on that channel. A status is ’0’ then identifies

the ’XOFF’ state, it’s indicating that the transmitter stop to sending data on that

channel.

In this protocol, once a channel is indicated ’XON’ status, than the transmitter is

send as much data as it chooses on that channel until the status will change from

’XON’ to ’XOFF’.

• Out-of-Band Flow Control

For out of band systems that require only simplex operation. OOB flow control

has a 3 signals, FC_CLK, FC_DATA and FC_SYNC signal. it is specified as

follow:

– FC_CLK : The flow control data is synchronized by clock

– FC_DATA : Used for FC status information as a single bit

– FC_SYNC : A sync signal is used to for beginning of the flow control

calendar

Each of these signals are either LVDS or LVCMOS. The logical timing relation-

ship of these signals is shown in below figure-4.5:

CHAPTER 4. INTERLAKEN PROTOCOL 36

Figure 4.5: Out-of-Band Logical Timing Diagram

The OOB flow control ch is protected with a 4-bit CRC calculation that covers

up to 64 bits of flow control data. Based upon the recommendations in [3], the

CRC4 polynomial is:

x4 + x+ 1 (4.1)

When the number of channels is 64 or less, the CRC4 checksum occurs the last

calendar slot, and is followed by the flow control status of calendar slot 0.

• In-Band Flow Control

When used IB flow control interface, the receiver makes use of in-band flow

control status transmitted in the Control Words. Control words sent across the

interface as part of the data transfer.

The Flow Control field has a 16 bits of the Control Word, and it’s located in bit

positions bits[55:40] of control word format. Multiple use bits[31:24] is also be

used for more 8 bits of Flow Control, so total 24 bits for flow control. These 16

status bits represent the ON-OFF flow control status for every calendar channel,

CHAPTER 4. INTERLAKEN PROTOCOL 37

start calendar entry with X at bit [55], calendar entry X+1 at bit [54], calendar

entry X+2 at bit [53], and so on.

4.4 Framing Layer

Interlaken has a multifunction framing method for achieving simple transport, which

consists of the following components:

Function Purposes
64B/67B encoding control and data words with 8 byte word boundaries.

Synchronous scrambler used for eliminate error multiplication
Lane alignment All the lanes will align within a bundle.

Diagnostic Diagnostics word checks error in metaframe per lane.
Skip Clock Compensation for differential.

Table 4.2: Overview of Framing Layer

The framing layer uses Framing Layer Control Words. Bits [63:58] are identify

which type of control word, where bit[63] set to zero and bits [62:58] indicate the

Block Type.

4.4.1 64B/67B Encoding

An 64/67B encoding method is need for a serial interface to word boundaries, provide

randomness to generated by the electrical transitions. 64 bit word is used for word

lock, data burst will be passed after word is locked.

There is also two additional bits prepended in each 64-bit data or control word. For

a data word, these sync bits are ’01’, and if these sync bits are ’10’ they identify

a control word, and all other combinations like ’00’ and ’11’ are not allowed. The

valid patterns searching in the received data stream, word boundary is locked after

64 correct matches.

CHAPTER 4. INTERLAKEN PROTOCOL 38

Figure 4.6: 64B/67B Word Boundary Lock

CHAPTER 4. INTERLAKEN PROTOCOL 39

In the 64B/67B encoding, it’s added 3 sync bit, so total 67 bit in each data

or control word. but only 50% of the combinations are possible, it makes total 8

combination, but only 4 combinations is legal, the same as 64B/66B. Achieve word

lock with low probability of an incorrect sync pattern, 64 consecutive legal sync

patterns observed by the receiver, if it is achieved then word is locked.

4.4.2 Meta Frame

The framing method is also a concept of a MetaFrame. Structure of the MetaFrame

is the per-lane set of the Synchronization word, Scrambler State word, Skip word,

and Diagnostic words with the payload data (data burst and control word) carried

on each lane. Synchronization, scrambler and skip word are transmit in starting of

the metaframe, when diagnostic word is at last. skip word is optional, it is used if

required for clock compensation.

Figure 4.7: Meta Frame Structure

CHAPTER 4. INTERLAKEN PROTOCOL 40

The size of the Meta Frame is not define, it’s depend on the packet length, Meta

Frame Length, that applies to all lanes of the bundle. MetaFrame length represents

the sum of the control word, the data words and set of Synchronization word, Scram-

bler State word, Skip word, and Diagnostic word. It’s structure is orthogonal for the

transmissions of data burst. A Skip Word is defined to provide clock compensation.

Diagnostic word is used for security purpose of MetaFrame.

4.4.3 Synchronous Scrambler

Self-synchronous scrambler is a part of the metaframe. synchronization word is the

advantage of not requiring any other synchronization. The scrambler state word is the

received data and can be recovered after length of the scrambler words are received.

But scrambler word uses two feedback, and it has the functionality of repeat errors

twice, means if single-bit error on the line than it’s becomes three single-bit errors at

the receiver side.

Figure 4.8: Synchronization and Scrambler State Words

There is no pass same scrambler state on each lane, not any requirement for same

scrambler word and to minimize cross-talk between all lanes, the problem is that the

scrambler will never be reset to all zeroes. The scrambler word is forwarded in the

datapath, there is no need for the receive side of the interface to know to what value

the transmit scrambler was reset. In the scrambler word, first 6 bit from bit[63:58] is

reserve for identify the scrambler word and other bits are random, it’s also all 0’s.

CHAPTER 4. INTERLAKEN PROTOCOL 41

Figure 4.9: Scrambler Synchronization State Diagram

Synchronization word has a fixed pattern. bit[63:58] is for sync word identifier and

other 58 bit has a fixed pattern. synchronization is a first word of the Metaframe. all

new Metaframe will start from sync word. Once synchronization word is achieved,

the interface uses the recovered value of the Scrambler State Word to seed the de-

scrambler. All data word and control words exception of Sync and Scrambler words,

are scrambled from bits [63:0], only 64 bit is scrambled, framing bits [66:64] are never

CHAPTER 4. INTERLAKEN PROTOCOL 42

scrambled. All lanes should verifies that the each Scrambler State Word received after

synchronization word.

MetaFrameLength means The size of the Meta Frame. Interlaken provides for

the remove or addition of a Skip Word to manage clock compensation. Also use the

repeater for adjust the position of the Synchronization Word relative to how it was

originally transmitted.

4.4.4 Lane Alignment

Lane alignment is required for interlaken. Once the word-lock is identified and the

scrambler properly reset, the lane must be aligned. Synchronization words are sent

across the interface at a fixed frequency to regularly align the datapath SerDes lanes.

For achieving alignment, first the Synchronization Word is transmitted in all lanes.

So at receiver side, the monitor identifies these words. For lane alignment and security

of sync word, transmit skew word before sync word. At receiver side, remove skew

word and identify metaframe from the sync word. Also measures the skew between

them across the lanes of the bundle, and adjusts its internal skew compensation logic.

Figure 4.10: Interlaken Lane Alignment Segmentation

CHAPTER 4. INTERLAKEN PROTOCOL 43

The transmission frequency of SynchronizationWords is defined by theMetaFrame-

Length.

4.4.5 Lane Diagnostics

The Diagnostic Word is 64 bit word, identified with the 6 bit[63:58], and it’s value is

0b011001.

The Diagnostic Word has assigned two functions - per-lane error detection and a lane

Status Message. The bit position [33:32], 2-bit Status bit, which defines a place for a

per-lane status message that is sent from receiver to transmitter. other bit[57:34] is

fixed bit with value ’0’, and last 32 bit is for crc32 calculation.

Figure 4.11: Diagnostic Word

Figure 4.12: CRC32 Calculation Illustration

The CRC32 is provided calculation of Metaframe as a per-lane basis, so errors on

the interface may be detected to an individual lane. It is calculated over all the

CHAPTER 4. INTERLAKEN PROTOCOL 44

words transmitted within the Meta Frame, except 64B/67B bit., but including the

Diagnostic Word itself with bits [63:0], with the CRC32 field padded to all 0’s.

4.5 Applications

Interlaken is used in a lots of applications:

• Framer/Ethernet MAC to NPU or L2/L3 switch interface

Figure 4.13: Framer/MAC to NPU/L2 or L3 Switch

• Line Card to Switch Fabric Interface

Figure 4.14: Line card to switch Fabric Interface

Interlaken can also run on multiple devices : cable, FR4 (PCB) or backplanes. Inter-

laken is a narrow, high-speed chip-to-chip interface protocol.

CHAPTER 4. INTERLAKEN PROTOCOL 45

4.6 Summary

In this chapter we studied about Interlaken protocol and its alternatives, how Inter-

laken is more better than xaui and spi4.2. Advantage of protocol, protocol layer,

framing layer, and structure of protocol layer, framing layer, metaframe.

Studied about metaframe lane size, different word in metaframe, synchronization

word, scrambler word, diagnostic word structure. 64/67 bit encoding data . Also

studied application of Interlaken protocol.

Chapter 5

Verified Logic Flow

5.1 Introduction

In verification, Interlaken protocol is design by design engineers, we can verify features

of Interlaken protocol. In this protocol, I have verified word lock logic, skew added

logic, disparity logic, CRC24 logic, lane alignment logic, multiple use bits logic, eop

error logic, bad synch word logic, bad scrambler word logic, out of band flow control

logic(crc4 error).

5.2 Skew added & Lane alignment Logic

Skew is added at starting of metaframe, 1st word of MetaFrame is skew, but skew

size is not define, its random bit generated. In our logic, we keep skew size more than

80 bits, but it’s not same size in all lanes. So 1st synchronization word is not start in

same time in all lanes.

1st word after skew word will not start at same time in all lanes, so we checked skew

size and arranged as a same size in all lanes for starting 1st word of lanes in same

time. So at a driver size, before transmit data on lane, adjust skew size. In receiver

size, skew word will be removed before descrambled data. Use of skew word is not

loosing 1st word of MetaFrame.

46

CHAPTER 5. VERIFIED LOGIC FLOW 47

In synchronous word there are random bits before it called as skew word. It will create

problem for monitor to identify from where actually synchronous word started. To

remove this problem lane alignment is used which applied same synchronous bits i.e.

skew word before synchronous word.

5.3 Word lock logic

After passing 64 times control word or data words, word is locked. For this synchro-

nization counter is used. For this continues ’01’ or ’10’ pattern is checked if fail then

counter becomes reset. If word becomes locked i.e. required pattern is matched then

synchronous word passed. In this logic check, 50% probability for correct pattern,

check 2 bits, so it has 4 possibilities, but ’00’ and ’11’ are undefined. ’01’ is for data

word and ’10’ is for control word.

64B/66B code defines a procedure for locking to the sync bits. The receiver searches

for a transition from high to low or low to high (the only legal sync codes). In the

next framing bit position, the receiver again looks for one of the legal patterns; if a

legal pattern occurs again it repeats this procedure, and if it does not it resets its

state and searches for another legal pattern from the starting. In order to declare

lock the receiver must observe 64 consecutive legal sync patterns.

5.4 Disparity logic

In disparity logic, it checks that in continues metaframe if first bit of word is same as

previous word’s first bit then second word is inverted. If first bit of word in metaframe

is not same as previous word’s first bit then it will pass as it is. Also inverted logic is

implementing in this. If inverted bit [66] is same, only [63:0] bits inverted, not [65:54].

Next word is inverting because of saving power. If previous word have a more ’1’ as

compare to ’0’, then it’s 1st bit is ’1’, so now if next word’s 1st bit is ’1’, it means

in this word also more number of ’1’ as compare to ’0’, invert 1st bit and inverting

CHAPTER 5. VERIFIED LOGIC FLOW 48

bits[63:0]. In the receiving side, check the 1st bit of all the words and rearrange words.

In receiving size, 2 consecutive word’s 1st bit is same then gives error.

5.5 Multiple use bit logic

This multiple use bit may serve multiple purposes, depending on the application.

These 8 bits may be used as a Channel Number Extension, the 8 least significant bits

of the Channel Number. If additional in-band flow control bits are required, these bits

may be used to represent the flow control status for the 8 calendar entries following

the 16 calendar entries represented in bits[55:40]. These bits may be reserved for

application specific purposes beyond the scope of this specification.

There are 8 bits used for logical channel which create 256 combinations for logical

channel. There is a 8 bits for multiple uses like channel number, By using multiple use

bit logic, it will add 8 another bits which make 64k combinations for logical channel.

In this logic, I added these 8 multiple use bits to the channel number bits, so we have

16 bits for representing channel numbers. So we should make 64k combination for

channel numbers.

5.6 CRC24 logic

The CRC4 used in the out-of-band flow control, the CRC24 used in the Burst/Idle

Control Word, and the CRC32 used on each lane. CRC32 calculated on full MetaFrame,

its covered sync word, scrambler word, control word, data burst and diagnostic word.

Last 32 bits of diagnostic word is reserved for CRC32 calculation.

A CRC24 error check that covers the previous data burst and this control word. Last

24 bits of control word is reserve for CRC24 check. Data and control integrity is

secured by means of the 24-bit CRC. The CRC24 is calculated against all data in the

CHAPTER 5. VERIFIED LOGIC FLOW 49

burst and all the fields in the Control Word. The CRC24 polynomial is selected from

x24 + x21 + x20 + x17 + x15 + x11 + x9 + x8 + x6 + x5 + x+ 1 (5.1)

in this logic, driver is already drive data with calculating CRC24 bits, I implement

logic in receiver side for recheck CRC24 on received data from the interface, and com-

pare CRC24 bits of driver’s data and CRC24 bits of receiver’s data. If it’s matched,

then received data burst is correct, otherwise some problem with transmission.

5.7 Error logic

Implement some logic for checking correct data burst; I implemented some logic for

error scenarios, like EOP error, sync word error, scrambler word error, word lock

error, CRC4 error.

• EOP Error Logic

EOP means End Of Packet. Eop has 4 bits of control word for last packet

information. Bit[60:57] are for EOP bits. 1st bit of EOP is for end of packet, if

it’s ’1’, then its last packet otherwise not. Other 3 bits is for how many bytes

are valid in this packet.

’1xxx’ - End-of-Packet, with bits[59:57] defining the number of valid bytes in

the last 8-byte word in the burst. Bits[59:57] are encoded such that ’000’ means

8 bytes valid, ’001’ means 1 byte valid, ’010’ means 2 bytes valid, etc., with

’111’ meaning 7 bytes valid.

’0000’ means no End-of-Packet, no ERR, ’0001’ means Error and End-of-Packet,

and all other combinations are left undefined.

I changed some bits value for some particular time for generating error, and

then recover this error. So also implement checker for eop error. Logic is im-

plemented for checking eop bits properly worked or not.

CHAPTER 5. VERIFIED LOGIC FLOW 50

• Sync & Scrambler Word Error Logic

1st word of the MetaFrame is sync word, and then scrambler word. Sync word

and scrambler word has some particular pattern of 67 bits. So it transmits with

same word format. As shown in EOP error logic, same logic has implemented

in these words. I changed some bits of both word for generating error for some

time and then recover this error after some particular time.

• Word Lock Error Logic

In the word lock logic, word is locked after consecutive 64 patterns passed. So

I transmit any one wrong pattern before 64 consecutive patterns passed, and

error will be generated. After some time, recover error.

• CRC4 Error Logic

CRC4 is for out-of-band flow control. The out-of-band flow control is protected

with a 4 bit CRC calculation that covers up to 64 bits of flow control data. The

CRC4 polynomial is:

x4 + x+ 1 (5.2)

In the crc4 error, for some time change the crc4 bit for create error scenario,

and after some time, recover error.

5.8 Functional Coverage

Functional verification has a large portion of the resources required to design and

validate a complex system. To minimize wasted effort, coverage is used as a guide for

directing verification code by identifying tested and untested portions of the design.

Coverage is defined as the percentage of verification objectives that have been done.

There are two types of coverage metrics: code coverage and functional coverage. Code

coverage is automatically extracted from the design code. Functional coverage is user

specified in order to tie the verification environment to the design functionality.

Functional coverage is a user-defined metric that measures how much of the design

CHAPTER 5. VERIFIED LOGIC FLOW 51

specification, as enumerated by features in the test plan, has been exercised. It can be

used to measure whether interesting scenarios, corner cases, specification invariants,

or other applicable design conditions captured as features of the test plan have been

observed, validated and tested.

For functional coverage, create covergroup for finding coverage, first create functional

coverage class, and create 4 different cover groups for coverpoints. Also create cross

between coverage points. A covergroup can contain one or more coverage points. A

coverage point can be a variable or an expression. Each coverage point includes a set

of bins associated with its sampled values.

If coverage will get more than 90% then its good verification, verified other corner

cases separately, and verify 100% functional coverage. In this project, regression is

still running and it is required more time for run, because it has more number of

testcases and more coverpoints. So required more time for cover all scenarios and get

more verified result.

In the figure, snapshot of coverage report of only one test. So it’s gives only 37%

coverage. Regression is still running for full coverage.

CHAPTER 5. VERIFIED LOGIC FLOW 52

Figure 5.1: Coverage Report

Chapter 6

Conclusion

In this project we can transfer data in high speed using Interlaken protocol, by using

this networking protocol; we can transmit data up to 100 Gbps data rate. Multi lane

transmission is available. Interlaken protocol is verified by using universal verification

methodology with system verilog programming.

When compared to available interconnect protocols, Interlaken offers many advan-

tages in scalability, reduced pin count, and data integrity. Its channelization, flow

control, and burst interleaving features make it appropriate for a wide variety of

applications. Finally, the availability of a third party IP core minimizes the cost

of adopting the new technology and makes Interlaken the obvious choice for next-

generation communications equipment.

Interlaken protocol is verified by using system verilog logic and uvm methodology,

uvm has a inbuilt class of all components, so verification make easy by using uvm

methods. Simply in verification, when driver drive data to the interface, this data

also caught by input monitor, and receiver side, received data also caught by output

monitor, then both data compare in scoreboard. If matched, passed data is correct,

otherwise failed.

53

CHAPTER 6. CONCLUSION 54

I has done phase -1 programming in 3rd semester, in that, I has studied test plan and

programming logic and then debug the word lock logic, disparity logic, crc24 logic.

Solve the errors which were shouting in programming logic which done by design

engineers. And also implement lane alignment logic, disparity logic.

After completing this, in 4th semester, complete the phase-2 and phase-3. In phase

-2, implemented in-band flow control logic, skew injection, out-of-band logic and in

phase-3, implemented error injection in sync word logic, crc24 logic, lane logic, word

lock logic, disparity logic, synch word error, scrambler word error logic.

References

[1] www.testbench.in

[2] www.asic− world.com

[3] www.accellera.org

[4] SystemV erilog3.1a : LanguageReferenceManual

[5] UniversalV erificationMethodology(UVM)1.1UsersGuide

[6] uvm_users_guide_1.1

[7] www.verificationacademy.com

[8] interlakenalliance.com

[9] Interlaken_Protocol_Definition_v1.2

55

	Declaration
	Certificate
	Acknowledgements
	Abstract
	eInfochips At A Glance
	List of Tables
	List of Figures
	Introduction
	Basic of System Verilog
	Introduction of system verilog
	Data types
	Integer data types
	String data type
	User-defined types
	Class

	Array
	Packed and unpacked arrays
	Dynamic arrays
	Associative arrays

	Tasks & Functions
	Classes
	Objects (class instance)
	This
	Super
	Polymorphism

	Interface
	Virtual interfaces

	Summary

	UVM Testbench
	Introduction to UVM
	Transaction-Level Modeling (TLM)
	TLM-1, and TLM-2
	Transaction-Level Communication
	Analysis Communication

	Verification Components
	UVM Testbench
	Transaction-Level Components
	Creating the Environment
	Creating the Agent
	Creating the Driver
	Creating the Sequencer
	Connecting the Driver and Sequencer
	Creating the Monitor
	Sequence Item Flow
	Scoreboard

	Summary

	Interlaken Protocol
	Introduction
	Alternatives
	Protocol Layer
	Transmission Format
	Burst Structure
	Optional Scheduling Enhancement
	Control Word Format
	Flow Control

	Framing Layer
	64B/67B Encoding
	Meta Frame
	Synchronous Scrambler
	Lane Alignment
	Lane Diagnostics

	Applications
	Summary

	Verified Logic Flow
	Introduction
	Skew added & Lane alignment Logic
	Word lock logic
	Disparity logic
	Multiple use bit logic
	CRC24 logic
	Error logic
	Functional Coverage

	Conclusion
	References

