Oriental Pharmacy and Experimental Medicine 2007 7(1), 11-25 ## Review ## Pharmacological classification of herbal anti-asthmatics Bhoomika R Goyal^{1,2}, Babita B Agrawal², Ramesh K Goyal² and Anita A Mehta^{2,*} ¹Institute of Pharmacy, Nirma University of Science and Technology, Ahmedabad - 382 481, Gujarat, India; ²Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad - 380 009, Gujarat, India ## **SUMMARY** Bronchial asthma is a major public health problem worldwide and the morbidity and mortality of asthma have increased in last few decades. There is high prevalence of usage of alternative traditional system of medicines for the treatment of asthma. Large numbers of medicinal plant preparations have been reported to possess anti-asthmatic effects. Plant cells are now considered to be the chemical factories synthesizing a large variety of chemical compounds. Further, Ayurvedic system of medicine has an elaborate description of asthma from the earliest times describing it as 'Shwasa' meaning disease pertaining to breathing. This review classifies the anti-asthmatics herbs based on the possible mechanism of action reported. Thus, these plants can be used to obtain a polyherbal formulation which contains various herbs acting at particular sites of the pathophysiological cascade of asthma for prophylaxis as well as for the treatment of asthma. Key words: Anti-asthmatics herbs; Asthma ## INTRODUCTION Primary respiratory diseases are responsible for a major burden of morbidity and ultimately deaths and lungs are often affected in multi-system diseases. Bronchial asthma is a major public health problem worldwide and the morbidity and mortality of asthma have increased in last few decades. The past decade has witnessed phenomenal increases in the incidences of asthma, asthma-related deaths and hospitalization. An estimated 12 million persons in United States have asthma. India has an estimated 40 million asthmatics (WHO Fact Sheet, 2000). The activation of cells bearing allergen- specific IgE initiates the early phase reaction. It is characterized primarily by the rapid activation of airway mast cells and macrophages. The activated cells rapidly release pro-inflammatory mediators such as histamine, eicosanoids and reactive oxygen species that induce contraction of airway smooth muscle, mucus secretion and vasodilatation. Inflammatory mediators induce microvascular leakage with exudation of plasma in the airways. Together these effects contribute to airflow obstruction. The second, late-phase response, i.e. the delayed response, occurs 6 to 9 h after allergen provocation and involves the recruitment and activation of eosinophils, CD4⁺ T cells, basophils, neutrophils and macrophages. The activated T-lymphocytes also direct the release of inflammatory mediators from eosinophils, mast cells and lymphocytes. In addition, the subclass 2 helper T-lymphocytes ^{*}Correspondence: Anita A Mehta, Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad - 380 009, Gujarat, India. Tel: +91-79-2630-2746; Fax: +91-79-2630-4865; E-mail: dranitalmcp@rediffmail.com subset of activated T-lymphocytes produces interleukin (IL)-4, IL-5 and IL-13. IL-4 in conjunction with IL-13 signals the switch from IgM to IgE antibodies. IL-5 activates the recruitment and activation of eosinophils. This phase is in essence a progressing inflammatory reaction. Regardless of the triggers of asthma, the repeated cycles of inflammation in the lungs with injury to the pulmonary tissues followed by repair may produce long-term structural changes ("remodeling") of the airways (Fireman, 2003). Current pharmacotherapy of asthma comprises the use of bronchodilators (selective β₂ agonists, xanthines and anti-cholinergics), anti-inflammatory agents (mast cell stabilizers and corticosteroids), leukotriene antagonists and lipoxygenase inhibitors. Increase in bronchial hyperresponsiveness (Schayck et al., 1990), diminish the duration of bronchoprotective effects is seen with β₂ agonists. Xanthines have narrow therapeutic index. Anti-cholinergics like ipatropium incompletely protects against bronchoconstriction induced by histamine, cold air, allergen, exercise, prostaglandins, bradykinin, serotonin and other mediators. Mast cell stabilizers are not indicated for the relief of acute symptoms of asthma as they don't have bronchodilator effects. Long term complications are seen with corticosteroids. Further, none of these agents is able to act at all the stages of asthma and thus do not give complete cure of the disease. As a result, there is high prevalence of usage of alternative traditional system of medicines for the treatment of asthma. Ayurveda offers a unique insight into comprehensive approach to asthma management through proper care of the respiratory tract. Large numbers of medicinal plant preparations have been reported to possess antiasthmatic effects. Plant cells are now considered to be the chemical factories synthesizing a large variety of chemical compounds. The wide range of structures of the plant constituents, which appear to be the active anti-asthmatic principles, suggests different sites of action within the body. This article is intended to classify anti-asthmatic herbs based on the possible mechanism of action reported. # INDIAN AYURVEDIC CONCEPT OF ASTHMA Ayurveda is one of the major traditional medicinal systems from India. The ancient Ayurvedic system of medicine has an elaborate description of this disease from the earliest times. *Shwasa* word in normal terminology means respiration. In the present context, *Shwasa* means disease pertaining to breathing. According to Ayurveda, different types of *Shwasa* (asthma) are *Kshudra Shwasa*, *Maha Shwasa*, *Urdhwa Shwasa*, *Chhinna Shwasa*, *Tamak Shwasa*. #### Kshudra Shwasa Because of vititation of *vayu* (air) in the alimentary tract, minor dyspnoea is caused. This condition does not give much pain; it does not interfere in the course of food and breathing. It does not disturb the sensory organs. This condition is mainly because of excessive intake of ruksha eatable and excessive exercise. It is, however, not much harmful to the body as compared to the other types of *Shwasa*. In allopathic system of medicine, such types of conditions are grouped under the exertional dyspnoea. Both the systems of medicine consider this condition to be easily curable. ## Maha Shwasa This condition is caused because of disturbance in respiratory movement of *Vayu*. The patient feels great obstruction in respiration, breaths without break with a very loud and long stertore making a sound like intoxicated bull. The patient looses all senses of understanding and knowledge, having restless look in eyes, distorted voice, going into semi-comatose condition now and then. In such a condition, the patient is not able to pass urine and faces both. In this condition, usually the voluntary control disappears and the wheezing sounds are audible from a distance. The allopathic system of medicine indicates such conditions in Biot's breathing which is generally found in heart, kidney and brain disorders as a complication. Ayurveda describes it as a dyspnoea major where the patient generally succumbs to it. #### Urdhva Shwasa Under this condition the expiratory phase is prolonged and the inspiratory process is just insignificant. Mouth and the respiratory tract get obstructed with Kaplı. The patient's eyes are turned upwards and are restless. The patient is almost obvious to his surroundings. Affected with severe pain, the patient enters into stupor. Having provoked expiratory process and obstruction in inspiration, the patient suffers from delusions and senselessness. Such condition is described by Ayurvedic physicians as harmful for the life. Such conditions are described by the allopathic system of medicine under stertorous breathing and falling of inspiration. Such a condition can be found in pneumonia, abscesses of the lungs, gangrene or acute inflammation in the lungs and also in different types of epilepsy. ## Chhinna Shwasa Under this condition, the whole of the breathing system is depressed. The patient has to breathe with full force and with great difficulty. The patient breaths with interruption. The patient suffers from constipation, excessive sweating, repeated fainting, burning and retention of urine, having eyes full of tears and entering unconsciousness every now and then having dry mouth. The patient normally breaks down with such a difficult breath ultimately losing his life. The allopathic system of medicine groups such condition under interrupted respiratory dyspnoea (Cheyne-stoke's respiration). #### Tamaka Shwasa Acharya classified *Tamak Shwasa* in two conditions viz. *Pratamaka Shwasa* and *Santamak Shwasa*. Febrile dyspnoea appears in a patient with fever and fainting in *Pratamaka Shwasa*. It is excited by misperistalsis, inhalation of dust, indigestion, old age or debilitated condition or the suppression of natural urges. Santamak Slawasa or cardiac asthma is greatly aggravated during night and alleviated by cold medicines and in which the patient feels as if he is submerged in a sea of darkness. #### ANTI-ASTHMATIC HERBS Many Ayurvedic plants have been described to be useful in the treatment of various bronchial disorders including bronchial asthma. The use of medicinal plants and natural products increased dramatically in the last two decades in all over the world. More than 400 medicinal plant species have been used ethnopharmacologically and traditionally to treat the symptoms of asthmatic and allergic disorders worldwide. ## CLASSIFICATION OF ANTI-ASTHMATIC HERBS BASED ON MECHANISM OF ACTION Some herbal alternatives employed in asthma are proven to provide symptomatic relief and assist in the inhibition of disease development as well. These herbs therefore have multifaceted roles to play in the management of asthma suggesting different sites of action within the body. Based on
the possible mechanism of action reported, plant anti-asthmatics may be classified as follow. #### **Bronchodilators** Adhatoda vasica, Albizzia lebbeck, Artemisia caerulescens, Belanıcanda chinensis, Benincasa hispida, Cissampelos sympodialis, Clerodendron serratum, Coleus forskohlii, Elaeocarpus spharicus, Galphimia glauca, Gardenia latifolia, Ginko biloba, Ocimum sanctum, Passiflora incarnate, Pawetta crassipes, Picrorrhiza kurroa, Sarcostemma brevistigma, Tephrosia purpurea, Tylophom indica, Vitex negundo (Table 1). ## Mast cell stabilizers Achyranthes aspera, Albizzia lebbeck, Allium cepa, Aquillaria agallocha, Azadirachta indica, Bacopa monniera, Bidens parviflora, Calotropis procera, Cassia Table 1. Bronchodilators | Name of plant | Part used/Extract/Fraction | Major chemical constituent (s) | References | |-------------------------|---|---|---| | Adhatoda vasica | Leaves, roots | Alkaloids | Paliwa et al, 2000 | | Albizzia lebbeck | Stem bark/Aqueous | Saponins | Tripathi and Das, 1977 | | Artemisia caerulescens | Aerial parts/Butanolic | Quercetin, isorhamnetin | Moran <i>et al.,</i> 1989 | | Belamcanda chinensis | Leaves/Ethanolic | Tectorigenin | Singh and Agrawal, 1990 | | Benincasa hispida | Fruits/Methanolic | Triterpenes, glycosides, sterols | Kumar and Ramu, 2002 | | Cissampelos sympodialis | Leaves and root bark/ | Warifteine, α -bisbenzyliso- | Thomas et al., 1995; | | | Aqueous | quinoline alkaloid | Thomas <i>et al.,</i> 1997;
Cortes <i>et al.,</i> 1995 | | Clerodendron serratum | Stem bark/Aqueous | Phenolic glycoside | Gupta, 1968; Gupta and
Tripathi, 1973 | | Coleus forskohlii | Roots | Forskolin (diterpenoid) | Marone et al., 1987 | | Elaeocarpus spharicus | Fruits/aqueous, pet-ether, benzene, acetone and ethanol | Glycoside, steroids, alkaloid, flavanoids | Singh <i>et al.</i> , 2000 | | Galphimia glauca | Aerial/alcoholic extract/
ethyl-acetate | Tetragalloylquinic acid,
quercetin | Campos et al., 2001 | | Gardenia latifolia | Bark | Saponins | Gupta, 1974 | | Ginko biloba | Leaves | Ginkgolides | Puglisi <i>et al.,</i> 1988 | | Ocimum sanctum | Leaves/Ethanolic | Myrcenol, nerol, eugenol | Singh and Agrawal, 1991 | | Passiflora incarnata | Leaves/Methanolic | | Dhawan et al.,, 2003 | | Pavetta crassipes | Leaves/Aqueous | Flavanoids, tannins, anthraquinones | Amos et al., 1998 | | Picrorrhiza kurroa | Roots | Androsin | Stuppner et al., 1991, 1993 | | Sarcostemma brevistigma | Twigs/Alkaloidal fraction | Bregenin | Saraf and Patwardhan,
1988b | | Tephrosia purpurea | Aerial parts/Ethanolic extract | Flavanoids, tephrosin | Gokhale et al., 2000 | | Tylophora indica | Leaves/Alkaloidal fraction | Tylophorine | Nayampalli and Sheth,
1979 | | Vitex negundo | Leaves/Ethanolic | Casticin, isoorientin, chrysophenol D, luteolin | Nair and Saraf, 1995 | alata, Cassia obtusifolia, Cassia torosa, Cedrus deodara, Citrus unsliiu, Clerodendron serratum, Cnidium monnieri, Coleus forskohlii, Crinum glaucum, Elaeocarpus sphaericus, Gleditsia sinensis, Impatiens textori, Inula racemosa, Magnolia officinalis, Mentha piperita, Ocimum sanctum, Picrorrhiza kurroa, Siegesbeckia glabrescence, Solanum xanthocarpum, Striga orobanchioids, Tephrosia purpurea, Terminalia chebula, Tinospora cordifolia, Tylophom asthmatica, Vitex negundo (Table 2). ## Anti-allergic agents Adhatoda vasica, Albizzia lebbeck, Alisma orientale, Aquillaria agallocha, Asiasarum sieboldi, Camellia sinensis, Centipeda minima, Citrus unsliu, Cnidium monnieri, Crinum glaucum, Curcuma longa, Dalbergia odorifera, Desmodium adscendins, Galphimia glauca, Ginko biloba, Gleditsia sinensis, Hydrangea macrophylla, Inula mcemosa, Magnolia officinalis, Sarcostemma brevistigma, Siegesbeckia glabrescence, Solanum xanthocarpum, Terminalia chebula, Vitex negundo (Table 3). ## Anti-inflammatory agents Asystasia gangetica, Calotropis procera, Curcuma longa, Dalbergia odorifera, Elaecarpus spharicus, Eucalyptus globules, Ocimum sanctum, Pavetta crassipes, Tylophora asthmatica (Table 4). Table 2. Mast cell stabilizers | Name of plant | Part used/Extract/Fraction | | | |---------------------------|--|--|----------------------------| | Achyranthes aspera | Aerial parts/Aqeous | Oleanolic acid | Agrawal et al., 2003 | | Albizzia lebbeck | Stem bark/Aqueous | Saponins | Tripathi et al., 1979 | | Allium cepa | Bulbs/Juice | α and β unsaturated thiosulphinates | Johri <i>et al.,</i> 1985 | | Aquillaria agallocha | Stem/Aqueous extract | Triterpenoids | Kim et al., 1997 | | Azadirachta indica | Leaves/Juice | Nimbin, nimbinine,
nimbandiol, quercetin | Acharya et al., 2003 | | Bacopa monniera | Leaves/Ethanolic | Bacosides, alkaloids, glycosides | Samiulla et al., 2001 | | Bidens parviflora | Aerial parts | Glycosides | Wang et al., 2001 | | Calotropis procera | Latex | α-amyrin, β-amyrin calotropin
(triterpenoid) | Kumar and Basu, 1994 | | Cassia alata | Leaves/Ethanolic | Anthraquinones, flavanoids | Palanichamy et al., 1991 | | Cassia obtusifolia | Seeds/Glycosidal fraction | Anthraquinones, betulinic acid | Kitanaka et al., 1998 | | Cassia torosa | Seeds | Gentiobiosides | Kanno et al., 1999 | | Cedrus deodara | Wood oil | Himacholol | Shinde et al., 1999 | | Citrus unshiu | Peels | Flavanoids | Kim et al., 1999 | | Clerodendron serratum | Bark/Aqueous | Phenolic glycoside | Gupta, 1968 | | Cnidium monnieri | Fruits/Ethanolic | Osthol | Chen et al., 1988 | | Coleus forskohlii | Roots | Forskolin (diterpenoid) | Marone et al., 1987 | | Crinum glaucum | Leaves/Aqueous | Alkaloids, lycorine, crinamine | Okpo and Adeyemi, 2002 | | Curcuma longa | Rhizome | Tumerones, curcuminoids | Ammon and Wahl, 1991 | | Elaeocarpus spharicus | Fruits/Aqueous, pet-ether,
benzene, acetone and ethanol | Glycoside, steroids, alkaloid, flavanoids | Singh et al., 2000 | | Gleditsia sinensis | Fruits/Ethanolic | Saponins | Dai et al., 2002 | | Impatiens textori | Flowers/Ethanolic | Apigenin, luteolin, chrysoeriol | Ishiguro et al., 2000 | | Inula racemosa | Roots/Alcoholic . | Inulolide-a new sesquiterpene, lactone | Srivastava et al., 1999 | | Magnolia officinalis | Bark/Aqueous | Honokiol, magnolol | Shin <i>et al.</i> , 2001b | | Mentha piperita | Leaves | Flavanoidal glycosides | Inoue et al., 2002 | | Ocimum sanctum | Leaves/Aqueous | Myrcenol, nerol, eugenol | Sen, 1993 | | Picrorrhiza kurroa | Roots | Androsin | Stuppner et al., 1991 | | Siegesbeckia glabrescence | Aerial parts/Aqueous | | Kang et al., 1997 | | Solanum xanthocarpum | Roots/Alkaloidal fraction | Solasodine | Chitravanshi et al., 1990 | | Striga orobanchioids | Aerial parts/ Ethanolic | | Harish et al., 2001 | | Teplirosia purpurea | Aerial parts/Ethanolic extract | Flavanoids, tephrosin | Gokhale et al., 2000 | | Terminalia chebula | Fruits/Aqueous | Ellagic acid, tannins, chebulagic acid | Shin <i>et al.</i> , 2001a | | Tinospora cordifolia | Stem/Aqueous | Tinosporin | Nayampalli et al., 1986 | | Tylophora astlmatica | Leaves/Alkaloidal | Tylophorine | Geetha et al., 1981 | | Vitex negundo | Leaves/Ethanolic | Casticin, isoorientin, chrysophenol D, luteolin | Nair <i>et al.,</i> 1994 | ## Anti-spasmodics Aegle marmelos, Asiasarum sieboldi, Asystasia gangetica, Bacopa monniera, Belamcanda chinensis, Cissampelos glaberrina, Clerodendron serratum, Cnidium monnieri, Table 3. Anti-allergics | Name of plant | Part used/Extract/Fraction | | References | |---------------------------|--|--|-----------------------------| | Adhatoda vasica | Leaves/Methanolic | Vasicinol, vasicine | Muller et al., 1993 | | Albizzia lebbeck | Stem bark/Aqueous | Saponins | Baruah et al., 1997 | | Alisma orientale | Rhizomes/Aqueous, methanolic | : Alisol B monoacetate,
alismaketones-B 23-acetate and -C
23-acetate | Kubo <i>et al.,</i> 1997 | | Aquillaria agallocha | Stem/Aqueous extract | Triterpenoids | Kim <i>et al.</i> , 1997 | | Asiasarum sieboldi | Roots/Methanolic | Methyleugenol, γ-asarone , elemicin, asarinin | Hashimoto et al., 1994 | | Camellia sinensis | Leaves | flavanoids | Suzuki et al., 2000 | | Centipeda minima | Aerial parts | flavanoids, pseuodoguainolide, sesquiterpene lactones | Wu et al., 1985 | | Citrus unshiu | Peels | flavanoids | Kim <i>et al.</i> , 1999 | | Cnidium monnieri | Fruits/Ethanolic | osthol | Matsuda et al., 2002 | | Crinum glaucum | Leaves/Aqueous | Alkaloids, lycorine, crinamine | Okpo and Adeyemi, 2002 | | Dalbergia odorifera | Heart Wood | Flavanoids, tannins | Chan <i>et al.</i> , 1998 | | Desmodium adscendins | Aqueous | Triterpenoid saponin | Addy, 1989 | | Galphimia glauca | Aerial/Alcoholic extract/Ethyl-acetate | Tetragalloylquinic acid, quercetin | Neszmelyi et al., 1993 | | Ginko biloba | Leaves | Ginkgolides | Touvay et al., 1985 | | Gleditsia sinensis | Fruits/Ethanolic | Saponins | Dai et al., 2002 | | Hydrangea macrophylla | Leaves | Glycosides | Matsuda et al., 1999 | | Inula racemosa | Roots/Alcoholic | Inulolide-a new Sesquiterpene lactone | Srivastava et al., 1999 | | Magnolia officinalis | Bark/Aqueous | Honokiol, magnolol | Shin <i>et al.</i> , 2001b | | Sarcostemma brevistigm | Twigs/Alkaloidal fraction | Bregenin | Saraf and Patwardhan, 1988a | | Siegesbeckia glabrescence | Aerial parts/Aqueous | | Kang et al., 1997 | | Solanum xanthocarpum | Roots/Alkaloidal fraction | Solasodine | Chitravanshi et al., 1990 | | Terminalia chebula | Fruits/Aqueous | Ellagic acid, Tannins chebulagic acid | lShin <i>et al.,</i> 2001a | | Vitex negundo | Leaves/Ethanolic | Casticin, isoorientin chrysophenol D, luteolin | Nair and Saraf, 1995 | Coleus forskolılii, Crinum glaucum,
Drymis winteri, Ferula ovina, Ferula sinica, Pavetta crassipes, Saussurea leppa, Striga orobanchioids, Thymus vulgaris, Tylophora asthmatica (Table 5). ## Lipoxygenase inhibitors Allium cepa, Boswellia serrata, Coleus forskohlii, Lonicera japonica (Table 6). ## Platelt activating factor (PAF) inhibitors Allium cepa, Galphimia glauca, Impatiens textori, Picrorrhiza kurroa (Table 6). ## Cyclooxygenase inhibitor Allium cepa (Table 6). ## SOME COMMONLY USED ANTI-ASTHMATIC HERBS ## Adhatoda vasica The medicinal properties of *Adlutoda vasica* Nees (natural order: Acanthaceae), called *Vasa* or *Vasaka* has been recommended by Ayurvedic physicians for the management of various types of respiratory disorders. The leaves of the plant were found to Table 4. Anti-inflammatory agents | Name of plant | Part used/Extract/Fraction | Major chemical constituent (s) | References | |-----------------------|---|---|----------------------------| | Asystasia gangetica | Leaves/Methanolic, ethyl acetate | Isoflavone glycoside, dalhorinin | Akah et al., 2003 | | Calotropis procera | Latex | α-amyrin, β-amyrin calotropin
(triterpenoid) | Kumar and Basu, 1994 | | Curcuma longa | Rhizomes | Tumerones, curcuminoids | Ammon and Wahl, 1991 | | Dalbergia odorifera | Heart Wood | Flavanoids, tannins | Chan et al., 1998 | | Elaeocarpus spharicus | Fruits/Aqueous, pet-ether, benzene, acetone and ethanol | Glycoside, steroids, alkaloid, flavanoids | Singh <i>et al.</i> , 2000 | | Ocimum sanctum | Leaves/Aqueous | Myrcenol, nerol, eugenol | Singh and Agrawal, 1991 | | Pavetta crassipes | Leaves/Aqueous | Flavanoids, tannins, anthraquinones | Amos et al., 1998 | | Tylophora asthmatica | Leaves/Alkaloidal | Tylophorine | Manez, 1990 | Table 5. Anti-spasmodic agents | Name of plant | Part used/Extract/Fraction | Major chemical constituent (s) | References | |------------------------|---------------------------------|--|---| | Aegle marmelos | Leaves/Ethanolic | Aegelin, aegelemine, aegeline | Arul et al., 2004 | | Asiasarum sieboldi | Roots/Methanolic | Methyleugenol, γ-asarone,
elemicin, asarinin | Hashimoto et al., 1994 | | Asystasia gangetica | Leaves/Methanolic, ehyl acetate | Isoflavone glycoside, dalhorinin | Akah et al., 2003 | | Bacopa monniera | Leaves/Ethanolic | Bacosides, alkaloids, glycosides | Dar and Channa, 1997;
Channa <i>et al.</i> , 2003 | | Belamcanda chinensis | Leaves/Ethanolic | Tectorigenin | Singh and Agrawal, 1990 | | Cissampelos glaberrina | Leaves, root bark/
Aqueous | Warifteine, α-bisbenzylisoquino-
line alkaloid | Thomas <i>et al.</i> , 1995;
Cortes <i>et al.</i> , 1995 | | Clerodendron serratum | Stem bark/Aqueous | Phenolic glycoside | Gupta, 1968 | | Cnidium monnieri | Fruits/Ethanolic | Osthol | Chen et al., 1988 | | Coleus forskohlii | Roots | Forskolin (diterpenoid) | Marone et al., 1987 | | Crinum glaucum | Leaves/Aqueous | Alkaloids, lycorine, crinamine | Okpo and Adeyemi, 2002 | | Drymis winteri | Bark | Terpene | El-Sayah et al., 1998 | | Ferula ovina | Aerial parts/Ethanolic | Carvacrol, α-pinene, geranyl isovaler ate and geranyl propionate | - Khalil <i>et al.,</i> 1990 | | Ferula sinica | Roots/Ethanolic | | Aqel et al., 1991a | | Pavetta crassipes | Leaves/Aqueous | Flavanoids, tannins, anthraquinones | Amos et al., 1998 | | Saussurea leppa | Alkaloidal fraction | Sesquiterpene lactone, terpenoids | Dutta et al., 1968 | | Striga orobanchioids | Aerial parts/Ethanolic | - | Harish et al., 2001 | | Thymus vulgaris | Ethanolic | Flavanones | Meister et al., 1999 | | Tylophora asthmatica | Leaves/Alkaloidal | Tylophorine | Haranath <i>et al.,</i> 1975;
Udapa <i>et al.,</i> 1991 | contain an essential oil and the quinazoline alkaloids vasicine, vasicinone and deoxyvasicine, which found to possess respiratory stimulant activity (Amin and Mehta, 1959). Of the two alkaloids, vasicinone was found to be more potent than vasicine, with potential anti-asthmatic activity comparable to that of disodium cromoglycate (Atal and Kapur, 1982). Subacute toxicity of the alcoholic extract of leaves revealed that LD_{50} of the extract by i.p. route was 581 mg/kg. The acute toxicity studies showed that extract was Table 6. Miscellaneous agents | Name of plant | Part used/Extract/Fraction | Major chemical constituent (s) | References | |---|--|---|-------------------------------| | Lipoxygenase inhibitors | | | | | Allium cepa | Bulbs/Juice | α and β unsaturated thiosulphinates Bayer <i>et al.</i> , 1989 | | | Boswellia serrata | Gum resin/Ethanolic extract | Bosewellic acid | Ammon et al., 1991 | | Coleus forskohlii | Roots | Forskolin (diterpenoid) | Marone et al., 1987 | | Platelet Activating Factor (PAF) inhibitors | | | | | Allium cepa | Bulbs/Juice | α and β unsaturated thiosulphinates | Dorsch et al., 1987 | | Galphimia glauca | Aerial/Alcoholic extract/
Ethyl-acetate | Tetragalloylquinic acid, quercetin | Neszmelyi <i>et al.,</i> 1993 | | Impatiens textori | Flowers/Ethanolic | Apigenin, luteolin, chrysoeriol | Ueda et al., 2003 | | Picrorrhiza kurroa | Roots | Androsin | Stuppner et al., 1991 | | Cyclooxygenase inhibitor | | | | | Allium cepa | Bulbs/Juice | α and β unsaturated thiosulphinates | Bayer <i>et al.,</i> 1989 | not lethal up to the dose of 100 mg/kg, i.p. and up to 4 g/kg (Rao and Krishnaiah, 1981). The LD_{50} of alcoholic extract of the aerial parts of the plant is reported to be more than 1,000 mg/kg, i.p. in mice (Bhakuni *et al.*, 1990). ## Albizzia lebbeck Albizzia lebbeck has been used by Ayurvedic physicians for centuries in the management of asthma. The effect of decoction of the bark and flower were studied for its anti-asthmatic and antianaphylactic activity. The decoction protected the guinea pig against histamine and acetylcholineinduced bronchospasm (Tripathi and Das, 1977). The decoction of the bark of Albizzia lebbeck was also studied on degranulation rate of sensitized peritoneal mast cells of albino rats when challenged with antigen (horse serum) and triple vaccine was used as adjuvant. Disodium cromoglycate (DCG) and prednisolone were used for comparison. Studies revealed the significant cromoglycate like action on the mast cells, which has been attributed to the heat-sable and water-soluble saponins present in the plant (Tripathi et al., 1979). Crude extract of seeds and a pure saponin fraction of Albizzzia have also been studied on the mast cells in the mesentery and peritoneal fluid of rats subject to anaphylaxis (Johri et al., 1985). The Maximum Tolerated Dose (MTD) of 50% ethanolic extracts of the root, the pods and stem bark was 25,50 and 100 mg/kg i.p. in mice (Dhar *et al.*, 1968). ## Ammi visnaga Anuni visnaga, conventional anti-asthmatic compounds, such as sodium cromolyn and sodium cromoglycate, were developed from analogs of the naturally occurring furanochromone khellin (visammin), found in this Asian plant. Other furanochromones, such as visnagin, khellol and khellinol have also been identified in the extracts of Ammi visnaga. Khellin has been found to be an effective smooth muscle relaxant with an oral LD₅₀ of 80 mg/kg in rats. Controlled clinical studies have verified the anti-allergic action of sodium cromolyn, which is currently used in the treatment of allergic rhinitis, asthma and allergic gastrointestinal reactions (Johri et al., 1985). The LD₅₀ of aqueous extract of Ammi visnaga of intraperitoneal (i.p.) and oral administration was 3.6 and 10.1 g/kg, respectively (Juoad et al., 2002). ## Boswellia serrata The gum resin of *Boswellia serrata*, known in Indian Ayurvedic system of medicine as Salai guggal, contains boswellic acid. It specifically inhibits leukotriene biosynthesis by inhibiting the activity of the enzymes, which leads to their formation. It also proved to be the most potent inhibitors of the classical component pathway of the inflammatory response. Boswellic acids also decrease the activity of human leukocyte elastase (HLE), which may be involved in the pathogenesis of emphysema. Boswellic acids are therefore effective in the prevention and or control of inflammatory processes, which are typically characterized by increased leukotriene formation (Safayhi et al., 1997). Boswellia specifically blocks the synthesis of pro-inflammatory 5lipoxygenase products, including leukotrieneB₄ (Ammon et al., 1991), which cause bronchoconstriction, chemotaxis, and increased vascular permeability. Therefore Boswellic acid might be used for their anti-allergic/anti-asthmatic activity (Ammon et al., 1991). LD₅₀ of alcoholic extract of gum resin was more than 2 g/kg, p.o. and i.p. in mice (Atal et al., 1981; Singh and Atal, 1986). The Maximum Tolerated Dose (MTD) values of the root, fruit and stem extracts were 50, 500 and 250 mg/kg i.p. respectively in mice (Dhar et al., 1968). ## Clerodendron serratum Clerodendron serratum is widely used to alleviate the symptoms of respiratory conditions, including asthma. The root bark yields a phenolic glycoside (Vasavada et al., 1967) and about 10% D-mannitol (Kirtikar and Basu, 1993). A sterol glycoside mixture was isolated. Hydrolysis of the crude sapogenin mixture of the bark yielded three major triterpenoid constituents-oleonolic acid, queretoroic acid and serratagenic acid. Gamma-sitosterol has also been isolated (Gupta and Gupta, 1967). It blocked the histamine-induced contractions of tracheal preparations from guinea pig without affecting the response to acetylcholine (Vasavada et al., 1967). It is reported that the continuous daily administration of the plant extract to sensitized
guinea pig, gradually developed protection against anaphylaxis. The saponin also disrupted rat peritoneal mast cells and blocked the effect of horse serum antigen. Saponins from the root caused disruption of cells of rat mesentery in a dose related manner (up to a dose of $40 \mu g$), and the maximum disruption effect was exerted in 30 min (Gupta *et al.*, 1971). ## Curcuma longa Curcuma longa, by virtue of its antioxidant properties is an effective anti-asthmatic agent. It has been employed by Ayurvedic practitioners since ancient times in the treatment of respiratory disorders. The active ingredients, the curcuminoids, are potent inhibitors of inflammatory prostaglandins. The overall anti-inflammatory action of curcuminoids is also related to their well-known antioxidant properties. For example, curcumin inhibited lipid peroxidation, a phenomenon associated with antioxidant as well as anti-inflammatory activities. Toxicity studies of Curcuma longa revealed that acute doses of 0.5, 1.0, and 3 g/kg body weight and the chronic doses of 100 mg/kg/day of ethanolic extract were found to be non-toxic (Quereshi et al., 1998). ## Ephedra sinica (Ma Huang) Ephedra sinica, a native plant species of China is the original source of the alkaloid ephedrine. Ephedrine stimulates the sympathetic nervous system, and thereby helps in the management of allergic conditions. The compound also helps to relieve the bronchial spasm that underlies conditions such as asthma and emphysema through this effect. As ephedrine use is now restricted in several countries, alternatives such as Citrus aurantium (containing synephrine) are now being explored in the management of respiratory conditions. Other ancillary alternative phytonutrients useful in asthma include licorice which has been used as an expectorant. Phytonutrients are often included in anti-asthmatic formulations, with antioxidants such as N-acetylcysteine which prevent mucus build-up and inhibit free radical mediated disease processes. Oral LD50 of d-pseudoephedrine and 1-ephedrine was 1,550 (1,360 - 1,767) mg/kg and 1,400 (1,102 - 1,778) mg/kg, respectively. LD₅₀ of d-pseudoephedrine and 1-ephedrine given intraperitoneally was 245 (229 - 262) mg/kg and 300 (259 - 348) mg/kg, respectively (Akiba *et al.*, 1979). #### Picrorhiza kurroa Picrorhiza kurroa Royle is a perennial herb that grows in the Himalayas in Asia, at altitudes of 9,000 - 15,000 feet above sea level. It belongs to the Natural Order Scrophulariaceae. The underground parts of this plant have been used in the traditional Indian systems of medicine since ancient times to treat liver troubles and bronchial problems (Kirtikar and Basu, 1993). Several biologically active principles, particularly glycosides have been identified in extracts obtained from Picrorhiza kurroa. Of these a mixture of the iridoid glycosides picroside I and kutkoside has been found to be an efficient liver protectant. "Androsin", a phenolic glycoside isolated from Picrorhiza kurroa, has been attributed with antiasthmatic properties (Dorsch et al., 1991). The authors suggest that androsin may act by depressing the activity of PAF which plays a major role in the pathogenesis of bronchial asthma. PAF has been shown to provoke long-lasting inflammatory responses in the lungs. This leads to bronchial hypereactivity and subsequent bronchial obstruction (Dorsch *et al.*, 1991). Another study suggests that *Picrorhiza kurroa* extracts possess anti-allergic activity, probably mediated through mast cell stabilizing activity (Mahajani and Kulkarni, 1977). ## Tylophora asthmatica (syn. Tylophora indica) The medicinal properties of the plant *Tylophora* asthmatica have been known since ancient times. Powder from the dried leaves, root powder, and decoction of the leaves or infusion of the root bark have been used traditionally in the treatment of respiratory affactions such as chronic bronchitis and asthma (Nadkarni, 1976). Preparations containing dried, powdered plant material are available for the treatment of bronchial asthma and tropical eosinophilia. The anti-asthmatic activity of the plant is attributed to the presence of Fig. 1. Chemical structure of khellin. Fig. 2. Chemical structure of androsin. phenanhroindolizidine alkaloids, which has been isolated from the aerial parts of the plant (Ali and Bhutani, 1989). A water extract of the plant showed anti-anaphylactic effect, leucopenia and inhibition of Schulz-Dale's reaction in experimental animals. The extract also showed brief nonspecific antispasmodic action in isolated tissues of g. pig ileum, rabbit duodenum, frog's rectus and rat stomach. The mode of action of the plant may be cell-mediated immunity (Haranath and Shyamalakumari, 1975). The plant extracts were found to produce significant anti-inflammatory effects in rats (Manez 1990). Immunosuppressive and anti-inflammatory effects of Tylophora asthmatica are due to increased secretion of corticosteroids by adrenal cortex (Udupa, 1991). Tylophora asthmatica also produced significant improvement in lung functions, when the effect of the plant was studied on the patients of bronchial asthma (Gore, 1980). Preliminary studies on animals have found tylophora extracts to be toxic only in extremely high doses; these extracts were apparently safe in the far smaller doses needed to produce a therapeutic effect (Dikshith et al., 1990). ## **CONCLUSIONS** Herbal approaches have regained their popularity, with their efficacy and safety aspects being supported by controlled clinical studies. The herbal approach have offered effective mast cell stabilizers like sodium cromolyn and sodium cromoglycate developed from khellin and anti-leukotriene product boswellic acids. Ongoing research worldwide has provided valuable clues regarding the precise mechanism of action of these herbal alternatives and these herbs, therefore, have multi-faceted roles to play in the management of asthma. Some herbal alternatives employed in these traditions are proven to provide symptomatic relief and assist in the inhibition of disease development as well. Thus, these plants can be used to obtain a polyherbal formulation which contains various herbs acting at particular sites of the pathophysiological cascade of asthma for prophylaxis as well as for the treatment of asthma. Further, different formulations can be prepared which can be used in different types of respiratory disorders including different types of asthma. #### **REFERENCES** - Acharya SB, Yanpallewar SU, Singh RK. (2003) A preliminary study on the effect of Azadiracchta indica on bronchial smooth muscles and mast cells. *J. Nat. Remed.* **3**, 78-82. - Addy ME. (1989) Several chromatographically distinctive fractions of Desmodium adscendens inhibit smooth muscle contractions. *Int. J. Crude Drug Res.* 27, 81-91. - Agrawal BB, Mehta AA. (2005) Phyto-pharmacological investigation of *Moringa oleifera* and *Achyranthus aspera* for their anti-asthmatic activity. Ph.D. thesis, Gujarat University. - Akah PA, Ezike AC, Nwafor SV, Okoli CO, Enwerem NM. (2003) Evaluation of the anti-asthmatic property of *Asystasia gangetica* leaf extracts. *J. Ethnopharmacol.* **89**, 25-36. - Akiba K, Onodera K, Kisara K, Fujikura H. (1979) - Interaction of d-pseudoephedrine with water soluble extracts of Platycodi Radix on acute toxicity. *Nippon Yakurigaku Zasshi* 75, 201-206. - Ali M, Bhutani KK. (1989) Alkaloids from *Tylophora* indica. Phytochemistry **28**, 3513-3517. - Amin AH, Mehta DR. (1959) Bronchodilator alkaloid from *Adliatoda vasica*. *Nature* **184**, 1317. - Ammon HP, Mack T, Singh GB, Safayhi H. (1991) Inhibition of leukotriene B₄ formation in rat peritoneal neutrophils by an ethanolic extract of the gum resin exudates of *Boswellia serrata*. *Planta med.* **57**, 203-207. - Ammon HP, Wahl MA. (1991) Pharmacology of *Curcuma longa. Planta Med.* **57**, 1-7. - Amos S, Gamaniel K, Akah P, Wambebe C. (1998) Anti-inflammatory and muscle relaxant effect of aqueous extract of *Pavetta crassipes* leaves. *Fitoterapia* 69, 425-29. - Aqel MB. (1991) Relexant effect of the volatile oil of *Romarinus officinalis* on tracheal smooth muscle. *J. Ethnopharmacol.* **33**, 57-62. - Arul V, Miyazaki S, Dhananjayan R. (2004) Mechanisms of the contractile effect of the alcoholic extract of *Aegle marmelos Corr*. on isolated guinea pig ileum and tracheal chain. *Phytomedicine* **11**, 679-683. - Atal CK, Gupta OP, Singh GB. (1981). Salai guggal: A promising anti-arthritic and anti-hyperlipidaemic agent. *Br. J. Pharmcol.* **74**, 113-119. - Atal CK, Kapur BM. (1982) *Cultivation and Utilization* of Aromatic Plants, pp. 155, Regional Research Laboratory, Council of Scientific and Industrial Research, Jammu-Tawi, India. - Baruah CC, Gupta PP, Patnaik GK, Nath A, Kulshreshtha DK, Dhawan BN. (1997) Anti-allergic and mast cell stabilizing activity of Albizzia lebbeck. *Indian Veterin. Med. J.* **21**, 127-132. - Bayer T, Breu W, Seligmann O, Wray V, Wagner H. (1989) Biologically active thiosulphinates and á sulphinyl disulphides from *Allium cepa*. *Phytochemistry* **28**, 2373-2377. - Bhakuni DS, Goel AK, Jain S, Mehrotra BN, Srimal RC. (1990) Screening of Indian plants for biological activity. Part XIV. *Indian J. Exp. Biol.* **28**, 619-637. - Campos MG, Toxqui E, Tortoriello J, Oropeza MV, Ponce H, Vargas MH, Montano LM. (2001) *Galphimia glauca* organic fraction antagonized LTD (4)-induced contraction in guinea pig airways. *J. Ethnopharmacol.* **74**, 7-15. - Chan SC, Chang YS, Wang JP, Chen SC, Kuo SC. (1998) Three new flavonoids and anti-allergic, anti-inflammatory constituents from the heartwood of *Dalbergia odorifera*. *Planta Med.* **64**, 153-158. - Channa S, Dar A, Yaqoob M, Anjum S, Sultani Z, Atta-ur-Rahman. (2003) Broncho-vasodilatory activity of fractions and pure constituents isolated from *Bacopa monniera*. *J. Ethnopharmacol.* **86**, 27-35. - Charak Samhita. (1949) Shri Gulab Kunverba Ayruvedic Society, Jamnagar, Ayurvedic
Mudranalaya, Jamnagar, Vol. IV, 1952-2032. - Chen ZC, Duan XB, Liu KR. (1988) The anti-allergic activity of osthol extracted from the fruits of *Cnidium monnieri* (L.) *Cusson. Yao Xue Xue Bao* **23**, 96-99. - Chitravanshi VC, Gupta PP, Kulshrestha DK, Kar K, Dhawan BN. (1990). Anti-allergic activity of *Solanum xanthocarpum*. *Indian J. Pharmacol.* **22**, 23-24. - Cortes SF, Alencar JI, Thomas G, Filho JMB. (1995) Spasmolytic action of warifteine, a bisbenzylisoquinoline alkaloid isolated from the root bark of *Cissampelos sympodialis Eichl. Phytother. Res.* **9**, 579-583. - Dai Y, Chan YP, Chu LM, Bu PP. (2002) Antiallergic and anti-inflammatory properties of the ethanolic extract from *Gleditsia sinensis*. *Biol. Pharm. Bull.* **25**, 1179-1182. - Dar A, Channa S. (1997) Relaxant effect of ethanol extract of *Bacopa monniera* on trachea, pulmonary and aorta from rabbit and guinea pig. *Phytother. Res.* 11, 323-325. - Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN, Ray C. (1968) Screening of Indian plants for biological activity. Part I. *Indian J. Exp. Biol.* 6, 232-247. - Dhawan K, Kumar S, Sharma A. (2003) Anti-asthmatic activity of the methanol extract of leaves of *Passiflora incarnata*. *Phytother*. *Res.* **17**, 821-822. - Dikshith TS, Raizada RB, Mulchandani NB. (1990) Toxicity of pure alkaloid of *Tylophora asthamatica* in male rat. *Indian J. Exp. Biol.* **28**, 208-212. - Dorsch W, Ettl M, Hein G, Scheftner P, Weber J, Bayer T, Wagner H. (1987) Anti-asthmatic effects of onions. Inhibition of platelet activating factor induced bronchial obstruction by onion oils. *Int. Arch. Allergy Appl. Immunol.* 82, 535-536. - Dorsch W, Stuppner H, Wagner H, Gropp M, Demoulin S, Ring J. (1991) Anti-asthmatic effect of *Picrorluza kurroa*: androsin prevents allergen and PAF induced bronchial obstruction in guinea pigs. *Int. Arch.* - Allergy Appl. Immunol. 95, 128-133. - Dutta NK, Sastry M, and Tamhane RG. (1968) Pharmacological actions of an alkaloidal fraction isolated from *Saussurea leppa* (Clarke). *Curr. Sci.* 37, 550-551. - Fireman P. (2003) Understanding asthma pathophysiology. *Allergy Asthma Proc.* **24**, 79-83. - Geetha VS, Viswanathan S, Kameswaran L. (1981) Comparision of total alkaloids of *Tylophora indica* and disodium cromoglycate on mast cell stabilization. *Indian J. Pharmacol.* **13**, 199-201. - Gokhale AB, Dikshit VJ, Damre AS, Kulkarni KR, Saraf MN. (2000) Influence of ethanolic extract of *Tephrosia purpurea* Linn. on mast cells and erythrocytes membrane integrity. *Indian J. Exp. Biol.* **38**, 837-840. - Gore KV, Rao K, Guruswamy MN. (1980) Physiological studies with *Tylophora asthmatica* in bronchial asthma. *Indian J. Med. Res.* **71**, 144-148. - Gupta SS, and Gupta MK. (1967) Effect of *Solanum xanthocarpum* and *Clerodendron serratum* on histamine release from tissues. *Indian J. Med. Sci.* **21**, 795-799. - Gupta SS. (1968) Development of anti-histaminic and anti-allergic activity after prolonged administration of a plant saponin from *Clerodendron serraum*. *J. Pharm. Phramacol.* **20**, 801-802. - Gupta SS. (1971) Effect of Clerodendron serratum on mast cells of rat mesentery. *Indian J. Med. Sci.* **25**, 29. - Gupta SS, Tripathi RM. (1973) Effect of chronic treatment of the saponin of *Clerodendron serratum* on disruption of mesenteric mast cells of rats. *Aspects Allergy Appl. Immunol.* **6**, 177-188. - Gupta SS. (1974) Some observations on the antiasthmatic effect of the saponins of *Gardenia latifolia*. *Aspects Allergy Appl. Immunol.* 7, 198-204. - Haranath PSRK, Shyamalakumari S. (1975) Experimental study on the mode of action of *Tylophora asthmatica* in bronchial asthma. *Indian J. Med. Res.* **63**, 661-670. - Hashimoto K, Yanagisawa T, Okui Y, Ikeya Y, Maruno M, Fujita T. (1994) Studies on anti-allergic components in the roots of *Asiasarum sieboldi*. *Planta Med.* **60**, 124-127. - Inoue T, Sugimoto Y, Masuda H, Kamei C. (2002) Anti-allergic effect of flavonoids obtained from Mentha piperita L. Biol. Pharm. Bull. 25, 256-259. - Ishiguro K, Ueda Y, Iwaoka E, Oku H. (2000). Antiallergic and antipruritic effect of *Impatiens textori*. *Phytomedicine* 7, 94-97. - Johri RK, Zutshi U, Kameshwaran L, Atal CK. (1985) Effect of quercetin and *Albizzia saponins* on rat mast cell. *Indian J. Physiol. Pharmacol.* **29**, 43-46. - Jouad H, Maghrani M, Eddouks M. (2002) Hypoglycemic effect of aqueous extract of Ammi visnaga in normal and streptozotocin-induced diabetic rats. *J. Herb Pharmacother.* **2**, 19-29. - Kanno M, Shibano T, Takido M, Kitanaka S. (1999) Anti-allergic agent from natural sources.2. structures and leukotriene release-inhibitory effect of torososide B and torosachrysone 8-O-6-malonyl beta gentiobioside from *Cassia torosa Cav. Chem. Pharm. Bull.* 47, 915-918. - Khalil SA, Aqel M, Afifi F, Eisawi DA. (1990) Effect of an aqueous extract of *Ferula ovina* on rabbit and guinea pig smooth muscle. *J. Ethnopharmacol.* **30**, 35-42. - Kim YC, Lee EH, Lee YM, Kim HK, Song BK, Lee EJ, Kim HM. (1997) Effect of the aqueous extract of *Aquillaria agallocha* stem on the immediate hypersensitivity reactions. *J. Ethnopharmacol.* **58**, 31-38. - Kim DK, Lee KT, Eun JS, Zee OP, Lim JP, Eum SS, Kim SH, Shin TY. (1999) Anti-allergic components from peels of *Citrus unshiu*. *Arch. Pharm Res.* **22**(6), 642-645. - Kirtikar KR, Basu BD. (1993) *Indian Medicinal Plants*, Vol. III, pp. 194, Periodical Experts Book Agency, Delhi, India. - Kitanaka S, Nakayama T, Shibano T, Ohkoshi E, Takido M. (1998) Anti-allergic agent from natural sources, structures and inhibitory effect of histamine release of naphthopyrone glycosides from seeds of *Cassia obtusifolia* L. *Chem. Pharm. Bull.* **46**, 1650-1652. - Kubo M, Matsuda H, Tomohiro N, Yoshikawa M. (1997) Studies on Alismatis rhizome; Anti-allergic effects of methanol extract and six terpene components from Alismatis rhizoma (dried rhizome of Alisma orientale). Biol. Pharm. Bull. 20, 511-516. - Kumar VL, Basu N. (1994) Anti-inflammatory activity of the latex of *Calotropis procera*. *J. Ethnopharmacol*. **44**, 123-125. - Kumar DA, Ramu P. (2002) Effect of methanolic extract of *Benincasa hispida* against histamine and acetylcholine induced bronchospasm in guinea pigs. *Indian J. Pharmacol.* **34**, 365-366. - Mahajani SS, Kulkarni RD. (1977) Effect of DSCG and *P. kurroa* root powder on sensitivity of guinea pigs to histamine and sympathomimetic amines. *Int. Arch.* - Allergy Appl. Immunol. 53, 137-144. - Manez S, Alcaraz MJ, Paya M, Rios JL, Hancke JL. (1990) Selected extracts from medicinal plants as anti-inflammatory agents. *Planta Med.* **56**, 656. - Marone G, Columbo M, Triggiani M, Cirillo R, Genovese A, Formisano S. (1987) Inhibition of IgE mediated release of histamine and peptide leukotriene from human basophils and mast cells by forskolin. *Biochem. Pharmacol.* **36**, 13-20. - Matsuda H, Shimoda H, Yamahara J, Yoshikawa M. (1999) Effect of phyllodulcin, hydrangenol, and their 8-O-glucosides, and thunberginols A and F from *Hydrangea macrophylla* var. thunbergii on passive cutaneous anaphylaxis reaction in rats. *Biol. Pharm. Bull.* 22, 870-872. - Matsuda H, Tomohiro N, Ido Y, Kubo M. (2002) Antiallergic effects of *Cnidii monnieri* (dried fruits of *Cnidium monnieri*) and its major component, osthol. *Biol. Pharm. Bull.* **25**, 809-812. - Meister A, Bernhard G, Chrisoffel V, Buschauer A. (1999) Antispasmodic activity of *Thymus vulgaris* extract on isolated g.pig trachea: discrimination between drug and ethanol effects. *Planta Med.* **65**, 512-516. - Moran A, Carron R, Martin ML, San Roman L. (1989) Anti-asthmatic activity of *Artemisia caerulescens* subsp. gallica. *Planta Med.* 55, 351-353. - Muller A, Antus S, Bittinger M, Dorsch W, Kaas A, Kreher B et al. (1993) Chemistry and pharmacology of the antiasthmatic plants *Galphimia glauca, Adhatoda vasica* and *Picorrhiza kurroa*. *Planta Med.* **59**, A586. - Nadkarni AK. (1976) *Indian Materia Medica*, pp. 810, Popular Prakashan; Bombay. - Nair AM, Tamhankar CP, Saraf MN. (1994) Studies on the mast cell stabilizing activity of *Vitex negundo Linn. Indian Drugs* **32**, 277-282. - Nair AM, Saraf MN. (1995) Inhibition of antigen and compound 48/80 induced contractions of g.pig trachea by the ethanolic extract of the leaves of *Vitex negundo Linn. Indian J. Pharmacol.* **27**, 230-233. - Nayampalli S, Desai NK, Ainapure SS. (1986) Antiallergic properties of *Tinospora cordifolia* in animal models. *Indian J. Pharmacol.* **18**, 250-252. - Neszmelyi A, Kreher B, Muller A, Dorsch W, Wagner H. (1993) Tetragalloylquinic acid, the major Antiasthmatic principle of *Galphimia glauca*. *Planta Med.* **59**, 164-167. - Okpo SO, Adeyemi OO. (2002) The anti-allergic effects of *Crinum glaucum* aqueous extract. *Phytomedicine* **9**, 438-441. - Palanichamy S, Amala Bhaskar E, Nagarajan S. (1991) Effect of *Cassia alata* leaf extract on mast cell stabilization. *Indian J. Pharmacol.* **23**, 189-191. - Paliwa JK, Dwiwedi AK, Singh S. (2000) Pharmacokinetics and in-situ absorption tudies of a new anti-allergic compound 73/602 in rats. *Int. J. Pharm.* **197**, 213-220. - Puglisi L, Salvadori S, Gabrielli G, Pasargiklian R. (1988) Pharmacology of natural compounds. Smooth muscle relaxant activity induced by a *Ginkgo biloba* L. extract on guinea-pig trachea. *Pharmacol. Res. Comm.* **20**, 573-589. - Qureshi S, Shah AH, Ageel AM. (1998) Toxicity studies on Alpinia galanga and Curcuma longa. *Indian J. Exp. Biol.* **36**, 675-679. - Rao VSN, Krishnaiah KS. (1981) Pharmacological investigations on *Adhatoda vasica* Nees (vasaka). *Indian Vet. J.* 58, 107-111. - Safayhi H, Rall B, Sailer ER, Ammon HPT. (1997) Inhibiion by Boswellic acids of human leukocyte elastase. *J. Pharmacol. Exp. Ther.* **281**, 460-463. - Samiulla DS, Prashanth D, Amit A. (2001) Mast-cell stabilizing activity of *Bacopa monnieri*. *Fitoterapia* **72**, 284-285. - Saraf MN, Patwardhan BK. (1988a)
Pharmacological studies on *Sarcostemma brevistigma*. Part I Antiallergic activity, *Indian Drugs* **26**, 49-53. - Saraf MN, Patwardhan BK. (1988b) Pharmacological studies on *Sarcostemma brevistigma*. Part II Bronchodilator activity. *Indian Drugs*. 26, 54-57. - Schayck CP, Graafsma SJ, Visch MB, Dompeling E, Weel C, van Herwaarden CLA. (1990) Increase bronchial hyperresponsiveness after inhaling salbutamol during 1 year is not caused by subsensitization to salbutamol. *J. Allergy Clin. Immunol.* **86**, 793-800. - Sen P. (1993) Therapeutic potential of Tulsi (*Ocimum sanctum*) from experience to fact. *Drug Views* 1, 15-18. - Shin TY, Jeong HJ, Kim DK, Kim SH, Lee JK, Chae BS, Kim JH, Kang HW, Lee CM. (2001a) Inhibitory action of water-soluble fraction of *Terminalia chebula* on systemic and local anaphylaxis. *J. Ethnopharmacol.* **74**, 133-140. - Shin TY, Kim DK, Chae BS, Lee EJ. (2001b) Antiallergic action of *Magnolia officinalis* on immediate hypersensitivity reaction. *Arch. Pharm. Res.* **24**, 249-255. - Shinde UA, Phadke AS, Kulkarni KR, Nair AM, Mungantiwar AA, Dikshit VJ, Saraf MN. (1999) Mast cell stabilizing and lipoxygenase inhibiting activity of *Cedrus deodara* (Roxb.) wood oil. *Indian J. Exp. Biol.* **37**, 258-261. - Singh GB, Atal CK. (1986). Pharmacology of an extract of Salai guggal ex *Boswellia serrata*, a new non-steroidal anti-inflammatory agent. *Agents Actions* 18, 407-412. - Singh RK, Acharya SB, Bhattcharya SK. (2000) Pharmacological activity of *Elaeocarpus spharicus*. *Phytother. Res.* **14**, 36-39. - Singh S, Agrawal SS. (1990) Broncho-relaxant activity of Belamcanda chinensis. Indian J. Pharmacol. 22, 107-109. - Singh S, Agrawal SS. (1991) Anti-asthmatic and anti-inflammatory activity of *Ocimum sanctum*. *Int. J. Pharm.* **29**, 306-310. - Srivastava S, Gupta PP, Prasad R, Dixit KS, Palit G, Ali B, Mishra G, Saxena RC. (1999) Evaluation of anti-allergic activity (Type I hypersensitivity) of *Inula racemosa* in rats. *Indian J. Physiol. Pharmacol.* **43**, 235-241. - Stuppner H, Dorsch W, Wagner H, Gropp M, Kepler P. (1991) Antiasthmatic effects of *Picorrhiza kurroa*: Inhibition of allergen and PAF induced bronchial obstruction in g.pigs by Androsin, Apocynine and structurally related compounds. *Planta Med.* 57, A62. - Suzuki M, Yoshino K, Yamamoto MM, Miyase T, Sano M. (2000) Inhibitory effect of Tea catechins and o-methylated derivatives of (-) -epigallocatechin-3-O-gallate on mouse type IV allergy. *J. Agric. Food Chem.* **48**, 5649-5653. - Thomas G, Araujo CC, Agra MF, Diniz M. (1995) Preliminary studies on the hydroalcoholic extract of the root of *Cissampelos sympodialis Eichl* in guinea pig tracheal strips and bronchoalveolar leucocytes. *Phytother. Res.* **9**, 473-477. - Thomas G, Araujo CC, Duarte JC, De souza DP. (1997) Bronchodilator activity of an aqueous fraction of an ethanol extract of the leaves of *Cissampelos sympodialis Eichl*. in the guinea pig. *Phytomedicine* **4**, 233-238. - Touvay C, Eienne A, Braquet P. (1986) Inhibition of antigen induced lung anaphylaxis in the guinea pig by BN 52021 a new specific PAF-acether receptor antagonist isolated from *Ginkgo biloba*. *Agents Actions* 17, 371-372. - Tripathi RM, Das PK. (1977) Studies on anti-asthmatic and anti-anaphylactic activity of *Albizzia lebbeck*. *Indian J. Pharmacol.* **9**, 189-194. - Tripathi RM, Sen PC, Das PK. (1979) Studies on the mechanism of action of *Albizzia lebbeck*, an Indian indigenous drug used in the treatment of atopic allergy. *J. Ethnopharmacol.* **1**, 385-386. - Udapa AL, Udapa SL, Guruswamy MN. (1991) The possible site of anti-asthmatic action of *Tylophora asthmatica* on pituitary-adrenal axis in albino rats. *Planta Med.* **57**, 409-413. - Ueda Y, Oku H, Iinuma M, Ishiguro K. (2003) Effect on blood pressure decrease in response to PAF of - Impatiens textori. Biol. Pharm. Bull. 26, 1505-1507. - Vasavada SA. (1967) Gamma sitosterol from Clerodendron serratum. Bull. Calc. Sch. Trop. Med. 15, 61. - Wang N, Yao X, Ishii R, Kitanaka S. (2001) Antiallergic agents from natural sources. structures and inhibitory effects on nitric oxide production and histamine release of five novel polyacetylene glucosides from *Bidens parviflora willd. Chem. Pharm. Bull.* 49, 938-942. - Wu JB, Chun YT, Ebizuka Y, Sankawa V. (1985) Biologically active constituents of *Centipeda minima*: Isolation of a new sesquiterpene lactones. *Chem. Pharm. Bull.* **33**, 4091-4094.