METHOD DEVELOPMENT AND VALIDATION OF CEFPODOXIME PROXETIL AND OFLOXACIN IN INDIVIDUAL AND COMBINED DOSAGE FOEM "

A Thesis Submitted to

NIRMA UNIVERSITY

in Partial Fulfillment for the Award of the Degree of

MASTER OF PHARMACY

IN

PHARMACEUTICAL ANALYSIS

BY

ARPITA PATEL (13MPH301), B. PHARM.

Under the guidance of

Mr.NRUPESH.R.PATEL – GUIDE

Assistant Professor, Department of Pharmaceutical Analysis

Department of Pharmaceutical Analysis Institute of Pharmacy Nirma University Ahmedabad-382481 Gujarat, India.

May 2015

CERTIFICATE

This is to certify that the dissertation work entitled "Method Development and Validation of Cefpodoxime proxetil and Ofloxacin in individual and combined dosage form" submitted by Ms. ARPITA PATEL with Regn. No. (13MPH301) in partial fulfillment for the award of Master of Pharmacy in "Pharmaceutical Analysis" is a bonafide research work carried out by the candidate at the Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University under our guidance. This work is original and has not been submitted in part or full for any other degree or diploma to this or any other university or institution.

Guide

Mr.Nrupesh.R.Patel M. Pharm. Assistant Professor, Department of Pharmaceutical Analysis Institute of Pharmacy, Nirma University

Prof. Priti.J. Mehta M. Pharm., Ph.D., Professor & Head, Department of Pharmaceutical Analsis, Institute of Pharmacy, Nirma University

Prof. Manjunath Ghate M. Pharm., Ph.D. Director Institute of Pharmacy, Nirma University

Date : 23 5 15

DECLARATION

I hereby declare that the dissertation entitled "Method Development and Validation of Cefpodoxime proxetil and Ofloxacin in individual and combined dosage form", is based on the original work carried out by me under the guidance of Mr.Nrupesh R. Patel, Assistant professor, Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University. I also affirm that this work is original and has not been submitted in part or full for any other degree or diploma to this or any other university or institution.

A& Patel

Ms. ARPITA PATEL (13MPH301) Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Highway, Ahmedabad-382481, Gujarat, India

Date: 23/5/15

Acknowledgements

Though only my name appears on the cover of this dissertation, a great many people have contributed to its production. I owe my gratitude to all those people who have made this dissertation possible and because of whom my Post graduate experience has been one that I will cherish forever.

First I thank Almighty God, for it is He who began this work in me andcarried it to completion. It is He who has blest me with the people whose names I feel privileged to mention here.

It gives me immense pleasure today when I take an opportunity to acknowledge all those personalities who contributed directly or indirectly to myproject. This research would not have been possible without the whole hearted encouragement, guidance, support, and cooperation of my beloved family, teachers, friends, well wishers and relatives. Probably I would have never achieved this without their support and blessings. With profound appreciation, I acknowledge toone and all.

I am indebted infinitely to love, care and trust being showered on me by **my Family** without their consistent prayers, affectionate blessings, selfless care and endless confidence in me, I would have never come to the stage of writing this acknowledge.

I wish to express my sincere thanks, with a deep sense of gratitude, to my respected guide **Mr. Nrupesh R.Patel**, Assistant Professor, Dept. of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University for initiating and suggesting the theme of work, for his valuable guidance, supervision, creative suggestions and meticulous attention, sustained interest, immense guidance, dedicated support he has bestowed upon me for the timely completion of this work. I am extremely indebted to him for his motivational inspiration, kind expertise during the writing up of my thesis and the scientific attitude he has nurtured in me which will definitely stand in all my future endeavours.

I am extremely grateful to **Dr. Priti Mehta** and **Dr Charmy Kothari**, Dept., of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University for their continous encouragement and everlasting support throughout the course of this dissertation work.

I am grateful to **Dr. Manjunath Ghate**, I/C Director, Head of Dept. of Pharmaceutics, Institute of Pharmacy, Nirma University for providing all necessary help and facility for my work and also for his constant support and encouragement.

I am also thankful to **Tejas sir** and other **Ph.d students** helping out in my work and solving my queries. Special thanks to Bhargav providing Internet resources at home

I acknowledge my colleagues **Khevana, Vaibhavi, Krina** and **other Classmates** for their amicable support and help.

I owe special thanks to Mayurbhai for helping me in maximum utilization of computer lab. I also wish to acknowledge Satejbhai, **Shreyasbhai, Bipinbhai, Jigneshbhai**, for providing me all the materials required in my work.

"Don't tell people your dreams, SHOW THEM!"

Date:

ARPITA PATEL

LIST OF ABBREVIATION

ABBREVIATION	FULL FORM	
I.P	Indian Pharmacopoeia	
U.S.P	British Pharmacopoeia	
B.P	United States Pharmacopoeia	
СР	Cefpodoxime Proxetil	
OFLO	Ofloxacin	
рКа	Partition Coeffcient	
min	Minutes	
MS	Mass spectrometry	
Conc.	Concentration	
HPLC	High Performance liquid Chromatography	
HPTLC	High Performance thin layer Chromatography	
SFC	Super critical Fluid Chromatography	
SD	Standard Deviation	
RSD	Relative Standard Deviation	
°C	Degree Centigrade	
cm	centimeter	
μm	micrometer	
nm	nanometer	
mg	miligram	
ml	Milliliter	
no.	Number	
Ref	Reference	
Rt	Retention time	
Rf	Retention factor	
%	Percentage	
LOD	Limit of detection	
LOQ	Limit of quantification	
Sec.	Seconds	
CAS	Chemical abstract service	
D	Delta	
MPa	Megha pascal	
UV	Ultra violet spectroscopy	
RP	Reverse Phase	
λmax	Wavelength	
MeOH	Methanol	
S.P	Stationary Phase	
±	Plus or Minus	

INDEX

CHAPTER NO	TITLE						
1			INTRODUCTION	1			
	1.1	Intr	oduction to drugs	1			
	1.2	Intr	oduction to drugs profille	2			
		1.2.	1 Drug profile of Cefpodoxime proxetil	2			
		1.2.	2 Drug profile of Ofloxacin	4			
	1.3	Intr	oduction to Multi component analysis	5			
	1.4	Rat	ional for combination of drugs	7			
	1.5	Intr	oduction to Methods	8			
2			LITERATURE REVIEW	14			
	2.1	2.1 Cefpodoxime proxetil					
	2.2	18					
	2.3		Ofloxacin	22			
	2.4		Ofloxacin with other drugs	27			
	2.5	2.5 Cefpodoxime proxetil and Ofloxacin in combination					
3		AIM AND OBJECTIVE OF PROJECT WORK					
4	IDENTIFICATION OF DRUGS						
	4.1		Melting point determination	39			
	4.2		UV spectra Measurement	39			
	4.3		Raman specta Measurement	40			
	4.4		FT-IR spectra Measurement	42			
5	U	VV	SIBLE SPECTROPHOTOMETERIC METHOD	45			
	5.1		Instrumentation				
	5.2		Method Development	47			
	5.3		Method Validation	50			
	5.4		Results and Conclusion	58			
6			SPECTROFLUORIMETRIC METHOD	59			
	6.1		Instrumentation	59			
	6.2		Method Development	61			
	6.3		Method Validation	65			
	6.4		Results and Conclusion	70			
7		HP	TLC(HIGH PERFORMANCE THIN LAYER CHROMATOGRAPHY) METHOD	71			
	7.1		Instrumentation	71			
	7.2		Method Development	72			
	7.3		Results and Conclusion	81			

8	SFC(SUPER CRITICAL FLUID CHROMATOGRAPHY) METHOD					
	8.1	.1 Instrumentation				
	8.2	8.2 Method Development				
	8.3	8.3 Results and Conclusion				
9	SUMMARY AND FUTURE SCOPE					
10		REFERENCE	92			

LIST OF FIGURES

FIGURE	TITI E			
NO	IIILE	IAGE		
1.1	Structure of Cefpodoxime proxtil	2		
1.2	Structure of Ofloxacin	4		
1.3	Schematic diagram of spectrophotometer	8		
1.4	Schematic diagram of fluorescences spectrophotometer	9		
1.5	Schematic diagram of super critical fluid chromatography	11		
4.1	UV spectra of CP (10 μ g/ml) and OFLO (10 μ g/ml) in MeOH	40		
4.2	Observed Raman spectra of Cefpodoxime Proxetil	40		
4.3	Observed Raman Spectra of Ofloxacin	41		
4.4	Reported Raman Spectra of Ofloxacin	41		
4.5	Observed FT-IR Spectra of Cefpodoxime Proxetil	42		
4.6	Reported FT-IR Spectra of Cefpodoxime Proxetil	42		
4.7	Observed FT-IR Spectrum of Ofloxacin	43		
4.8	Reported FT-IR Spectrum of Ofloxacin	43		
5.1	UV spectrum of CP and OFLO in 1 M urea	47		
5.2	UV spectrum CP and OFLO in 6 M Urea	48		
5.3	Iso-bestic point of Cefpodoxime Proxetil and Ofloxacin	48		
5.4	Linearity Overlay spectra of CP and OFLO(3-30 µg/ml) in 6 M Urea	51		
5.5	Linearity Graph of CP and OFLO	52		
5.6	UV spectra of standard and sample solution	56		
6.1	Uv spectrum of oflo in 5% Acetic acid solution	61		
6.2	OFLO 1 µg/ml solution synchronous mode spectra	64		
6.3	Emission spectra at 295 nm excitation wavelenth	64		
6.4	Excitation spectra at 480 nm emission wavelength	64		
6.5	Linearity overlay spectrum of Ofloxacin	65		
6.6	Linearity graph of Ofloxacin	66		
6.7	Spectra of standard and sample solution	68		
7.1	Trials on TLC (Thin layer chromatography) Visulization in UV	72		
	Chamber			
7.2	Trials on HPTLC Visulization in UV Chamber	73		
7.3	Peak purity spectra of Cefpodoxime proxetil & Ofloxacin	77		
7.4	LinearityHPTLC graph scanning at 290 nm wavelength	78		

7.5	Linearity graph of Cefpodoxime proxetil and Ofloxacin	79
7.6	Peak purity HPTLC chromatogram of CP and OFLO	79

LIST OF TABLES

TABLE	TITLE	PAGE				
NO						
4.1	Melting Point of Cefpodoxime proxetil and Ofloxacin	39				
4.2	UV observed wavelength of Cefpodoxime proxetil and Ofloxacin in	39				
	10 µg/ml solution	11				
4.3	Reported and Observed Raman peak of Cetpodoxime Proxetil	41				
4.4	Reported and Observed Raman Peak of Ofloxacin	42				
4.5	Observed and Reported FT-IR Peaks of Cetpodoxime Proxetil Observed and Reported FT-IR Peaks of Ofloxacin					
4.6	Observed and Reported FT-IR Peaks of Ofloxacin	44				
5.1	Absorptivity Data for cefpodoxime proxetil and Ofloxacin	49				
5.2	Linearity data of cefpodoxime proxetil					
5.3	Linearity data of Ofloxacin					
5.4	Accuracy data for Cefpodoxime proxetil					
5.5	Accuracy data for Ofloxacin	53				
5.6	Interday precision data of Cefpodoxime Proxetil	53				
5.7	Interday precision data of Ofloxacin	54				
5.8	Intraday precision data of Cefpodoxime Proxetil	54				
5.9	Intraday precision data of Ofloxacin	54				
5.10	Repetability data of Cefpodoxime proxetil & Ofloxacin					
5.11	Ruggednes data of Cefpodoxime proxetil	55				
5.12	Ruggednes data of Ofloxacin					
5.13	LOD & LOQ data of Cefpodoxime proxetil and Ofloxacin	57				
5.14	Assay results of Markted formulation	57				
6.1	Trials for optimization of delta value in spectrofluorometer	63				
6.2	Linearity data of Ofloxacin	65				
6.3	Accuracy data of Ofloxacin	66				
6.4	Intraday precision data of Ofloxacin	67				
6.5	Interday precision data of Ofloxacin	67				
6.6	Repetability data of Ofloxacin	67				
6.7	Ruggedness data of Ofloxacin	68				
6.8	LOD & LOQ data of Ofloxacin	69				
6.9	Assay results of Markted formulation	69				
7.1	Trials of mobile phase optimization on TLC	73				
7.2	Trials of mobile phase optimization on HPTLC	75				
7.3	Linearity data of Cefpodoxime proxetil	78				
7.4	Linearity data of Ofloxacin	78				
7.5	Specificity data of Cefpodoxime proxetil and Ofloxacin	79				
7.6	LOD & LOQ data of Cefpodoxime proxetil and Ofloxacin	80				
8.1	Trials Of SFC Chromatogram on C ₁₈ column for method	84				
	optimization					
8.2	Trials of SFC Chromatogram on phenyl column for method	85				
	optimization					

<u>Abstract</u>

Four simple, accurate, sensitive and reproducible methods are described for the quantitative determination of Cefpodoxime Proxetil(CP) and Ofloxain(OFLO) in their individual and combined dosage form. The first method involves UV Spectrophotometric method for the simultaneous estimation of CP and OFLO in bulk and tablet dosage form. The solvent used was 6 M urea and the absorption maxima for CP and OFLO were found to be 234nm and 286nm respectively. The two drugs follows the Beer- Lambert's law over the concentration range of 3-30 µg/ml. The second method involves the Spectrofluorimetric method includes synchronous mode estimation of ofloxacin in bulk and tablet dosage form using delta value 140 (medium sensitivity mode) that involves measurement of fluorescence intensity at 480 nm synchronous spectra of OFLO drug. Linearity range was observed in the concentration range 0.05-1 µg/ml. The third method is based on separation of drugs by HPTLC followed by densitometric measurements of their spots at 290 nm. The separation was carried out on HPTLC aluminium sheets of silica gel 60 F254 using Chloroform: Ethyl acetate:MeOH:TEA (5.0:0.75:0.5:0.3 v/v/v/v) as mobile phase. The linear regression analysis was used for the regression line in the range of 500 -2000 ng/spot for CP and OFLO. This system was found to give compact spots for CP and OFLO, after development. The fourth method is based on SFC separation of CP on the C18 column (150 mm length, 4.6 mm i.d, 5 µm particle size) & Agilent ZORBEX SB Phenyl column (150 mm length, 4.6 mm i.d, 5 µm particle size) at ambient temperature using a mobile phase consisting of CO₂ and methanol use as modifier.Condition was optimize by changing flow rate and backpressure. The oven temperature was kept at 35°C. The detection wavelength was 237 nm. The develop method validated for various parameter and all were found within acceptance criteria.

Key Words:

Cefpodoxime Proxetil, Ofloxacin, UV spectroscopy, Spectrofluorimetry, HPTLC, SFC.

CHAPTER NO 1 INTRODUCTION

1.INTRODUCTION

<u>1.1 Introduction to drugs</u>

Infectious ailment are disorders that are created by life forms, normally infinitesimal in size, for example, microscopic organisms, infections, growths, or parasites that are passed, specifically or in a roundabout way, starting with one individual then onto the next.

These diseases are a leading reason around world, especially in low pay nations, particularly in youthful children.^[1]Cefpodoxime is an oral, third-generation cephalosporin antimicrobial. It is dynamic against most gram-positive and gram-negative living beings. Most exceptions incorporate pseudomonas aeruginosa, enterococcus, and bacteroides fragilis.^[2]

Gram-positive microscopic organisms:

• Staphylococcus aureus (methicillin-helpless strains, including those creating

penicillinases)

- Staphylococcus saprophyticus
- Streptococcus pneumoniae (barring penicillin-safe secludes)
- Streptococcus pyogenes

Gram-negative microscopic organisms:

- Escherichia coli
- Klebsiella pneumoniae
- Proteus mirabilis
- Haemophilus influenzae (counting beta-lactamase creating detaches)
- Moraxella catarrhalis
- Neisseria gonorrhoeae (including penicillinase-producing isolates)^[3]

Ofloxacin is a synthetic antimicrobial of the fluoroquinolone medication class thought to be a second-generation fluoroquinolone^{[4][5]}Ofloxacin is additionally accessible for topical utilization,, as eye drops and ear dropsOfloxacin is a racemic mixture, which comprises of 50% levofloxacin(the organically dynamic segment) and 50% of its "reflect picture" or enantiomer dextrofloxacin^[6]

Ofloxacin is affirmed for the treatment of bacterial diseases, for example,

- Intense bacterial intensifications of endless bronchitis
- Group gained pneumonia
- Uncomplicated skin and skin structure contaminations
- Nongonococcal urethritis and cervicitis
- Blended Infections of the urethra and cervix
- Intense pelvic incendiary ailment
- Uncomplicated cystitis
- Confounded urinary tract diseases
- Prostatitis
- Intense, uncomplicated urethral and cervical gonorrhea

1.2 INTRODUCTION TO DRUG PROFILE

1.2.1 Drug profile of Cefpodoxime proxetil:^[7-11]

Drug class: Lactams

Superclass:- Heterocyclic Compounds

Sub class:- Beta Lactams

Category: Anti-Bacterial Agents

• Cephalosporins

CAS number^[7]:- 82619-04-3

Official status^{[8][9]}:-It is official in IP 2014 & USP 2012

Chemical name:- (RS)-1(isopropoxycarbonyloxy})ethyl (+)-(6R,7R)-7-[2-(2-amino-4-thiazolyl)-2-{(Z)methoxyimino}acetamido]-3-methoxymethyl-8-oxo-5-thia-1-azabicyclo [4.2.0]oct-2-ene- 2-carboxylate. Molecular formula^[8]: $C_{21}H_{27}N_5O_9S_2$

Molecular weight^[8] :557.61

Physicochemical properties^[9]:

Description: Cefpodoxime proxetil is an orally administered, extended spectrum, semisynthetic antibiotic of the cephalosporin class.

Solubility:Freely soluble in dehydrated ethanol, solution in acetonitrile, methanol, slightly soluble in ether, very slightly soluble in water

Melting point^[10]: 111-113°C

Optical rotation: 35.0° and 48.0°

Dissociation constant(**pKa**):3.20± 0.13

Partition coefficient(log p):((chloroform/water))1.60 at pH1.2

FDA approval: 2/10/2000

Pharmacological action^[11]: The bactericidal activity of cefpodoxime results from its inhibition of cell wall synthesis. Cefpodoxime proxetil is a prodrug that is absorbed from the gastrointestinal tract and de-esterified to its active metabolite, cefpodoxime.

Mode of action:-

Ofloxacin is a broad-spectrum antibiotic that is active against both Gram-positive and Gram-negative bacteria. It acts by inhibiting DNA gyrase, a type II topoisomerase, and topoisomerase IV.

Contraindications:-

Caution in patients with liver disease.

Ofloxacin is also considered to be contraindicated within the pediatric population, pregnan, nursing mothers, patients with psychiatric illnesses and epilepsy or other seizure disorders.

<u>1.2.2 Drug profile of Ofloxacin:-^[2-14]</u>

Figure 1.2:- Structure of Ofloxacin

Drug class: Quinolines and Derivatives

Superclass:- Heterocyclic Compounds

Sub class:- Quinoline Carboxylic Acids

Category: Anti-Bacterial Agents

- Nucleic Acid Synthesis Inhibitors
- Anti-Infective Agents
- Quinolones

CAS number^[13]: 82419-36-1

Official status^[8]:-It is official in IP 2014,E USP 2012,EP 2005 & BP 2010

Chemical name:-7-fluoro-2-methyl-6-(4-methylpiperazin-1-yl)-10-oxo-4-oxa-1-

azatricyclo[7.3.1.0^{5,13}]trideca-5(13),6,8,11-tetraene-11-carboxylic acid

Molecular formula ^[13]: C₁₈H₂₀FN₃O₄

Molecular weigh ^[13]: 361.367

Physicochemical properties:^[8]

Description: A synthetic fluoroquinolone (fluoroquinolones) antibacterial agent that inhibits the supercoiling activity of bacterial DNA gyrase, halting DNA replication Solubility: 28.3 mg/ml in water 254 C°, Soluble in Chloroform and DMSO(Dimethyl sulphoxide)

Dissociation constant(pKa):.4.45,6.2

Partition coefficient(log p): -0.39

Melting point^[10]:-270-275°C

Metabolism^[1]: Hepatic

Pharmacokinetics^[12]: After multiple-dose administration of 200 mg and 300 mg doses, peak serum levels of 2.2 μ g/mL and 3.6 μ g/mL, respectively, are predicted at steady-state. Less than 5% is eliminated by the kidneys as desmethyl or N-oxide metabolites; 4% to 8% by feces.

Absorption & Excreation:- Elimination is mainly by renal excretion Four to eight percent of an ofloxacin dose is excreted in the feces. This indicates a small degree of biliary excretion of ofloxacin.

Bioavability^[1]: 85% - 95%

Half life^[11]: 9 hours

Volume of distribution^[12]: 1.5 l/kg

Indication^[14]: For the treatment of infections (respiratory tract, kidney, skin, soft tissue, UTI), urethral and cervical gonorrhoea.

Drug interaction^[12]:-

- Acenocoumarol
- Aluminium
- Anisindione
- Calcium
- Calcium Acetate
- Dicoumarol

1.3 INTRODUCTION TO MULTI COMPONENT ANALYSIS

In present days,market is overflowed with various blends in dosage form and the number is expanding day by day.These multi-component formulations due to high patient acceptability, increased potency,mullti action,fewer reactions and giving easy recovery.Therefore it require this product of standard quality, safety & efficacy.

The aim for quantitative estimation is to ensure that whether a particular drug contains the same strength of medications as specified.

Sometime in addition to main drugs it contain other substance which gives interference in estimation of drug.So it gets to be important to grow new logical strategy for such products for analysis.^[15]

The reason for the development of newer methods of drug analysis are:

- > The drug or drug combination may not be official in any pharmacopoeia
- A proper analytical methadology for the drug may not be available in the literature due to patent regulations.
- Analytical methods for the assay in combination with other drugs may not be available.
- > The existing analytical procedure may have high cost.^[15]

Modern instruments use for multi component formulations are UV Visible spetrophotometry,HPTLC,HPLC,Spectrofluorimetry,GC,SFC and Hyphenated technique like LC-MS,LC-NMR,LC-MS/MS,GC-MS,CE-ICP-MS etc.^{[16][17]}

The various UV Visible spetrophotometry techniques used for multi-component analysis are listed below:-

Simultaneous equation method (Vierodt's method)

Concentration of several components present in the same mixture can be determined by solving a set of simultaneous equation even their overlay spectra available.

Two wavelength method

The method is to calculate the concentration of component of interest found in a mixture containing it along some unwanted interfering substance..

The absorption ratio method

The absorbance ratio method is a modification of the simultaneous equation procedure. It depends on the property that for a substance, which obeys Beer's law at all wavelength, the ratio of absorbance at any two wavelengths is constant value independent of concentration or path length.

Geometric correction method

The easiest of this methodology is the three-point geometric technique, which may be connected if the unessential assimilation is linear at the three wavelengths chosen. This strategy is just rithmetical estimations of what the standard method in infrared spectrophotometry measurements graphically.

Absorption factor method (Absorption correction method)

It is modification of simultaneous equation method. Quantitative estimation of one drug is carried out by E(1%, 1 cm) value and quantitation of another drug is carried out by subtraction absorption due to interfering drug using absorption factors.

Orthogonal polynomial method In this method absorption spectrum may be represented in terms of orthogonal functions

Difference spectrophotometry

It provides a sensitive method for detection o small changes in the environment of a chromophore or it is use to show ionization of a chromophore leading to identification and quantitation of various substance

Derivative spectrophotometry

Derivative spectrophotometry is for resolving two overlapping spectra and eliminating matrix effect due to an indistinct shoulder on side of an absorption bands.

Area under curve method

In this method, the absorptivity values (ε_1 and ε_2) of each of the two drugs were determined at the selected wavelength range. Total area under curve of a mixture at wavelength range is equal to the sum of area under the individual component at wavelength range.

1.4 RATIONAL FOR COMBINATION OF DRUGS:-

Unique Dual Mode Of Action Ofloxacin-Prevents nucleic acid synthesis Cefpodoxime-Inhibits cell wall synthesis Acts synergetically Gives better patient compliance^{.[18]}

1.5 INTRODUCTION TO METHOD

1.5.1 INTRODUCTION TO UV VISIBLE SPECTROPHOTOMETRY

Principles^[19]

Radiation in the wavelength range 200-700 nm is passed through a solution of a substance. The electrons in the bonds within the molecule become excited so that they occupy a higher quantum state and in the process absorb some of the energy passing through the solution. The more loosely held the electrons are within the bonds of the molecule the longer the wavelength (lower the energy) of the radiation absorbed.

Beer-Lambert law^[20]

When a beam of light is passed through a transparent cell containing a solution of an absorbing substance, reduction of the intensity of light may occur.

A = abc

Where a = absorptivity, b = Pathlength (1 cm)

c = concentration (gm/100 ml),

A = Absorbance

INSTRUMENTATION^[19]

Figure 1.3:- Schematic diagram of spectrophotometer

Limitations:-^[20] Only moderately selective. The selectivity of the technique relies on upon the chromophore of the individual drugs,e.g medication with a developed chromophore is more particular than a medication with a straightforward benzene ring chromophore.

1.5.2 INTRODUCTION TO SPECTROFLUORIMETRY

Principles^[19]

Certain molecules, particularly those with a chromophore and a rigid structure, can be excited by UV/visible radiation, and will emit the radiation absorbed at a longer wavelength. The radiation emitted is measured.

INSTRUMENTATION^[19]

Figure 1.4:- Schematic diagram of fluorescences spectrophotometer

Factors affecting fluorescence^[21]

- > Molecular unbending nature
- > Polarity of the solvent
- Presence of broke up oxygen
- Changes in pH:-Neither anion nor cation is fluorescent. Fluorescence is more commonly associated with π-π* states than with n-π* states because π-π* states possess shorter average lifetime and because deactivation process that compete with fluorescence are much less likely to take place.
- > Quenching

Advantage of spectrofluorimetry over spectrophotometer^[20]:-Selective,High sensitivity

1.5.3 INTRODUCTION TO HIGH PERFORMANCE THIN LAYER <u>CHROMATOGRAPHY (HPTLC)</u>

<u>Principle</u>

Adsorption:-Solute and solvent molecule compete for 'sites' on the adsorbent, to adsorbed, the solute molecule must first uproot a solvent molecule.

Partition:-The capacity of a solute to distribute itself between two stages according to the partition coefficient

Ion-exchange:- If the process involves trading of adversely charged particles, it is known as anion-trade. The correlative methodology is known as cation-trade.

Size-exclusion:- Retention of solutes on the premise of size or shape.^[22]

Steps Involved in TLC/HPTLC Analysis

The expository method for follow natural substances in characteristic lattices includes

- Sampling and sample storage
- Sample preparation and cleaninng
- Selection of TLC/HPTLC plates
- Application of samples
- Selection of solvent
- Separation of the compounds of choice
- Detection and measurement
- Data lessening, record keeping and quality control^[22]

Method of Quantification

Scraping and elution: Scraping the isolate analyte, recovery of the compound by elution and analyzed by various instrument.

Visual comparison: Samples and standards are chromatographed one next to the other on the same plate and look at the spot size and power.

Densitometry: It can be completed specifically on the plate in distinctive modes viz., assimilation, transmission and fluorescence. An adjustment bend comprising zones of the norms versus sum analyte spotted is developed and the measure of analyte in the specimen is added from the bend.

Focal points of TLC

TLC has many advantages over other chromatographic methods for separation of simple mixtures-

• Simple, Rapid

- Less costly, Multiple sample application
- Volume of dissolvable utilized every sample is less^[22]

1.5.3 INTRODCTION TO SUPER CRITICAL FLUID CHROMATOGRAPHY(SFC)

Principle:-

In supercritical fluid chromatography (SCF) the versatile stage is a supercritical gas or a near critical liquid. Contrasted to gas chromatography, where gas is under ambient pressure, and liquid chromatography, where liquid is used as portable stage, the solvent power of the mobile phase in SFC can be varied by density, e.g., by pressure changes at constant temperature

INSTRUMENTATION

Figure 1.5:- Schematic diagram of Super critical fluid chromatography

Advantages

Dissolving power of SCF is controlled by pressure and/or temperature.

SCF is effortlessly recoverable from the concentrate because of its unpredictability

Non-poisonous solvents have no harmful effect

High boiling components are isolated at low temperature

Separation not possible by other processes can sometimes be effected

1.9 INTRODCTION TO METHOD VALIDATION

Linearity/Range

The linearity of an analytical procedure as its ability to obtain test results that are directly proportional to the amount of analyte in the sample.

The range of an analytical procedure between the upper to the lower amounts of analyte in the sample

Linearity is determined by a series of five to six injections of five or more tandards whose concentrations 80–120 percent of specified range.

Acceptance criteria:-Line of best fit, correlation coefficient, Y intercept near to zero^[26]

Precision

The precision of an analytical procedure as the degree of scatter between a series of measurements obtained from multiple sampling of the same homogeneous sample under the specified environment.

Repeatability involve the precision under the same operating conditions over a short interval of time. It is also called intra-assay precision.

Intermediate precision expresses variations within laboratories, different days, different analysts, different Instrument.

Reproducibility (**Ruggednnes**)expresses expresses the accuracy between research facilities (This parameter use for standardization of methodology).

Acceptance criteria:- RSD < 2%^[26]

Accuracy

The accuracy of an analytical method as the closeness of agreement between the ordinary genuine worth or an acknowledged reference quality and the worth found.

Can be evaluated by many approaches:

- By known purity material
- Placebo spiking
- Sample spiking
- Acceptance criteria:-Mean Recovery within 90-110%,Individual recoveries within 70-130%^[26]

Specificity

Specificity is the ability to assess unequivocally the analyte in the presence of components which may be expected to be present.

Acceptance criteria:-The excipient use for formulation of product should not interfere with main drug amount. ^[26]

Limit of detection & Limit of Quantification

The detection limit of analytical procedure is lowest amount of drug in a sample can be detected but not necessarily quantitated.

The limit of quantitation (LOQ) of analytical procedure is the lowest amount of analyte in a sample which can be quantitatively with given precision and accuracy.

Can be determine by number of way,

- Visual Evaluation
- Signal to noise
- Based on the Standard Deviation of the Response and the Slope
- Based on the Standard Deviation of the blank
- Based on the linearity Curve

Acceptance criteria:-In general Quantitation limit is three times the detection limit^[26]

CHAPTER NO 2 Literature Review

2.LITERATURE REVIEW

2.1 Literateure reviews of Cefpodoxime proxetil

Sr.no	Matrix	Method	Method description	Validation parameters	Ref
		UV Visible	spectrophotometric Meth	ods	
1	Tablet & suspensio n	UV Visible spectrophoto metry	Solvent:-Formation of colored compound of cefpodoxime with 2- hydroxynaphthaldehyde λmax 436nm	Linearity:-02-10 μg/ ml,.	[27]
2	Tablet	UV Visible spectrophoto metry	Solvent:-Urea as hydrotropic agent λmax:-231 nm	Linearity:-10-120 μg/ml,Recovery:- 99.82 ± 0.106	[28]
3	Bulk and pharmace utical dosage forms	UV Visible spectrophoto metry	Solvent:-Potassium dichromate in acidic condition or medium λmax-570nm	Linearity:- 1-5 μg/ml,	[29]
4	Bulk and pharmace utical dosage forms	UV-Visible Spectrophoto metry	Solvent:-methanol λmax-235nm	Linearity:-5-25 µg/ml	[30]
	Bulk and pharmace utical dosage forms	UV-Visible Spectrophoto metry	Solvent:-ion-pair complex between cefpodoxime Proxetil and bromocresol green in acidic medium and the subsequent extraction of the ion pair in chloroform. λmax-425nm	Linearity:-5-25 µg/ml	[30]
5	Tablet	UV-Visible Spectrophoto metry	Solvent:-haematoxylin- chtoramine-T (CAT) and -S:-portion in cefpodoxime proxetil. λmax-555nm	Linearity:- 8-48 µg/ml,LOD- 0.0797µg/ml	[31]
6	Bulk powder and in pharmace utical preparatio n	Second derivative spectrophoto metry Third derivative	Solvent:-1M NaOH,1M HCl λmax-261nm for acid degradation product 1M NaOH,1M HCl λmax-282nm for alkaline degradation	Linearity:- 4.0- 40.0 µg/ml Linearity:- 4.0- 40.0 µg/ml	[32]

	ns	spectrophoto	product		
		metry	Product		
	1	First	Solvent:-1M NaOH 1M	Linearity:-4 0-40 0	[32]
		derivative of	HCl	ug/ml	[0-]
		ratio	λ max-215 & 255nm for	Pr8/	
		spectrophoto	acid degradation roduct.		
		metry	λ max-243nm for lkaline		
			degradation product		
	1	Ratio	Solvent:-1M NaOH,1M	Linearity:-4.0-40.0	
		subtraction	HCl	ug/ml	
		spectrophoto	λ max-555nm for acid or	10	
		metry	alkaline degradation		
			product		
	1	RP-HPLC	Solvent:-acetonitrile:		
		(or separtaion	water: triethylamine		
		of egradation	(60:40:1, v/v/v)	-	
		product)	Column:-Zorbax		
			C8,λmax-232nm		
	Bulk	UV Visible	Solvent:-Ninhydrin1	Linearity 10-60	[33]
	&pharma	spectrophoto	indane-1,2,3- trione	µg/ml	
7	ceutical	metry	hydrate and Ascorbic		
	formulati		acid		
	ons		λmax-232nm		
			Fluorimetry		
	CFP in	Fluorimetry	Derivatizing reagent in	Linearity:-50–	[34]
	CFP in pure form	Fluorimetry	Derivatizing reagent in alkaline medium:-1,2-	Linearity:-50– 2000 ng/ml, 4,	[34]
	CFP in pure form and	Fluorimetry	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4-	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17	[34]
	CFP in pure form and pharmace	Fluorimetry	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS)	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48	[34]
0	CFP in pure form and pharmace utical	Fluorimetry	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λmax:-	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml	[34]
8	CFP in pure form and pharmace utical dosage	Fluorimetry	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λmax:- Emission:440 nm,	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml	[34]
8	CFP in pure form and pharmace utical dosage form,	Fluorimetry	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λmax:- Emission:440 nm, Excitation:- 330nm	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml	[34]
8	CFP in pure form and pharmace utical dosage form, CFA in	Fluorimetry	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λmax:- Emission:440 nm, Excitation:- 330nm	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml	[34]
8	CFP in pure form and pharmace utical dosage form, CFA in human	Fluorimetry	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λmax:- Emission:440 nm, Excitation:- 330nm	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml	[34]
8	CFP in pure form and pharmace utical dosage form, CFA in human urine	Fluorimetry	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λmax:- Emission:440 nm, Excitation:- 330nm	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml	[34]
8	CFP in pure form and pharmace utical dosage form, CFA in human urine	Fluorimetry	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λmax:- Emission:440 nm, Excitation:- 330nm	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml	[34]
8	CFP in pure form and pharmace utical dosage form, CFA in human urine	Fluorimetry TLC	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λmax:- Emission:440 nm, Excitation:- 330nm C & HPTLC Methods Solvent:-Water:	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml	[34]
8	CFP in pure form and pharmace utical dosage form, CFA in human urine Tablet & capsule	Fluorimetry TL	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λmax:- Emission:440 nm, Excitation:- 330nm C & HPTLC Methods Solvent:-Water: Ethanol(50:50)	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml	[34]
8	CFP in pure form and pharmace utical dosage form, CFA in human urine Tablet & capsule	Fluorimetry TLC	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λ max:- Emission:440 nm, Excitation:- 330nm C & HPTLC Methods Solvent:-Water: Ethanol(50:50) λ max:-254 nm	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml Rf value-0.64	[34]
8	CFP in pure form and pharmace utical dosage form, CFA in human urine Tablet & capsule	Fluorimetry TLC	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λmax:- Emission:440 nm, Excitation:- 330nm C & HPTLC Methods Solvent:-Water: Ethanol(50:50) λmax:-254 nm Solvent:-	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml Rf value-0.64 Rf value-0.69	[34]
8	CFP in pure form and pharmace utical dosage form, CFA in human urine Tablet & capsule	Fluorimetry TLC	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λmax:- Emission:440 nm, Excitation:- 330nm C & HPTLC Methods Solvent:-Water: Ethanol(50:50) λmax:-254 nm Solvent:- Butanol: Ethanol:Water	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml Rf value-0.64 Rf value-0.69	[34]
8	CFP in pure form and pharmace utical dosage form, CFA in human urine Tablet & capsule	Fluorimetry TLC	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λ max:- Emission:440 nm, Excitation:- 330nm C & HPTLC Methods Solvent:-Water: Ethanol(50:50) λ max:-254 nm Solvent:- Butanol: Ethanol:Water (35:35:30)	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml Rf value-0.64 Rf value-0.69	[34]
8	CFP in pure form and pharmace utical dosage form, CFA in human urine Tablet & capsule	Fluorimetry TLC	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λ max:- Emission:440 nm, Excitation:- 330nm C & HPTLC Methods Solvent:-Water: Ethanol(50:50) λ max:-254 nm Solvent:- Butanol: Ethanol:Water (35:35:30) λ max:-254 nm	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml Rf value-0.64 Rf value-0.69	[34]
8	CFP in pure form and pharmace utical dosage form, CFA in human urine Tablet & capsule	Fluorimetry TLC HPTLC	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λ max:- Emission:440 nm, Excitation:- 330nm C & HPTLC Methods Solvent:-Water: Ethanol(50:50) λ max:-254 nm Solvent:- Butanol: Ethanol:Water (35:35:30) λ max:-254 nm Solvent:-	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml Rf value-0.64 Rf value-0.69 Linearity:-100-	[34]
8	CFP in pure form and pharmace utical dosage form, CFA in human urine Tablet & capsule	Fluorimetry TLC HPTLC	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λ max:- Emission:440 nm, Excitation:- 330nm C & HPTLC Methods Solvent:-Water: Ethanol(50:50) λ max:-254 nm Solvent:- Butanol: Ethanol:Water (35:35:30) λ max:-254 nm Solvent:- Chloroform:methanol:to	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml Rf value-0.64 Rf value-0.69 Linearity:-100- 700ng/spot,LOD-	[34]
8 9 10	CFP in pure form and pharmace utical dosage form, CFA in human urine Tablet & capsule Marketed formulati on	Fluorimetry TLC HPTLC	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λ max:- Emission:440 nm, Excitation:- 330nm C & HPTLC Methods Solvent:-Water: Ethanol(50:50) λ max:-254 nm Solvent:- Butanol: Ethanol:Water (35:35:30) λ max:-254 nm Solvent:- Chloroform:methanol:to luene(4:2:4 v/v/v)	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml Rf value-0.64 Rf value-0.69 Linearity:-100- 700ng/spot,LOD- 30ng/ml,LOQ-	[34]
8 9 10	CFP in pure form and pharmace utical dosage form, CFA in human urine Tablet & capsule Marketed formulati on	Fluorimetry TLC HPTLC	Derivatizing reagent in alkaline medium:-1,2- naphthoquinone-4- sulfonate (NQS) λ max:- Emission:440 nm, Excitation:- 330nm C & HPTLC Methods Solvent:-Water: Ethanol(50:50) λ max:-254 nm Solvent:- Butanol: Ethanol:Water (35:35:30) λ max:-254 nm Solvent:- Chloroform:methanol:to luene(4:2:4 v/v/v) λ max-289nm,S.P	Linearity:-50– 2000 ng/ml, 4, LOD:-CFA:-9.17 ng/ml,CFP:-9.48 ng/ml Rf value-0.64 Rf value-0.69 Linearity:-100- 700ng/spot,LOD- 30ng/ml,LOQ- 90ng/spot	[34]

			60F254				
HPLC Methods							
11	Plasma	HPLC (ForCefpodox ime proxetil & cefpodoxime acid	Solvent:-Acetonitrile: ammonium acetate buffer (36:64) (pH 5.0) λmax 235 nm,Flow rate:-1 ml/min,Temperature:-30 ⁰ C		[37]		
12	Dry syrup (CP & related substanc)	HPLC	Solvent:- Acetonitrile:0.02mol/L ammonium acetate (40:60, V /V) Column:-Kromasil C ,Flow rate:- 1.0ml/min, λmax:- 235nm		[38]		
13	Chinchill a plasma and middle ear fluid (MEF)	HPLC	Solvent:-25 m <i>M</i> acetate buffer (pH 4.3)/15 m <i>M</i> triethylamine:acetonitril e (92.5:7.5, v/v) Rt:-cefpodxime:-3.5 min,cefuroxime:9 min	Recovery in MEF- CP:-90.3 \pm 2.9%, cefuroxime:- 88.6 %.Recovery in plasma:-CP:- 72.1%, cefuroxime: -81.1%	[39]		
14	Rabbit plasma	HPLC fluorescence labeling of its active metabolite	Solvent:-10 mM phosphate buffer $(pH = 3.5)/CH_3CN$ (70:30, v/v) Column:-C 8, Excitation λ max:- 430 nm	Linearity:-10– 1000 ng/ml,correlation coefficient:- 0.999,LOD:-3 ng/ml,LOQ:-10 ng/ml	[40]		
15	in rat in situ intestinal perfusate samples	RP-HPLC	Solvent:-20 mM ammonium acetate buffer (pH 5.0) and acetonitrile (62:38) C-18 colume,Flow rate- 1ml/min,Column temperature - 30 °C,λmax-235nm	-	[41]		
16	Related substance	RP-HPLC	Solvent:- water and methanol, Rt:-40 min	-	[42]		

	Bulk and	Stability-	Solvent:-	Linearity of 1-80	[43]
	pharmace	Indicating	Acetonitrile and 50 mM	ug ml–1.The LOD	
	utical	HPLC	ammonium acetate	and LOO are	
	dosage	Method	pH 6 (pH was adjusted	0.17 and 0.5 µg	
17	forms	inite initia	with o-phosphoric acid)	ml_1	
17	TOTILIS		Column:-Phenomenex	···· · · · · · · · · · · · · · · · · ·	
			Luna C18 (250 mm \times		
			46 mm id 5 um		
			particle size)		
	Formulati	UDI C(Cofpo	Solvent: acatonitrila :	Lincority of 5	[44]
	one	dovime	ammonium acetate	150 ug m 1100	[44]
	OIIS	uoxime provoti)	(28,62)pH 5	$130\mu g \text{ m} = 1, LOQ = 000 \text{ m} g/\text{m} 1$	
17		proxett)	(38:02)pH 3	900ng/nn	
17			Elow rote		
			Flow rate-		
			30°C		
	Bioavabil	HPLC(Cefpo	Solvent:-Solvent:-	Linearity of 100-	
	ity in rat	doxime acid)	Acetonitrile : phosphate	5000µg ml–	
	-		buffer	1,LOQ-50ng/ml	
			(10:90)pH 3		
			λmax-269nm,Flow rate-		
			1ml/min		
	Human	Dirct	Solvent:-10% methanol	Linearity 1-20	[45]
10	urine	injection	in 0.2% phosphoric acid	µg/ml	
18		HPLC	Column:-C18 RP		
			preColumn 3cm		
	Bulk	Stability	Solvent:-Methanol and	Linearity :- 5–100	[46]
	&pharma	indicating	phosphate buffer of	gm/L,The LOD &	
	ceutical	RP-HPLC	pH4.0 (65:35)	LOQ are 53 and	
10	formulati		λmax-252nm,Column:-	160 ngml-1,	
19	ons		Phenomenex (250×4.6)		
			mm, 5 μ m particle size)		
			ODS,Flow rate of 1ml		
			min-1		
		Μ	iscellanous Methods		
	Impurities	Formicacid-	Column:-C18		[47]
	in	methanol-			
	cefpodoxi	water			
20	me			-	
	proxetil				
	using				
	LC-MS				
	Solid	LC-MS,LC-	LC-MS:-Moleculer		[48]
	state,drug	NMR,LC-IR	weigh t& fragment		
21	formulati	(for	information,LC-NMR:-	-	
	on &	degradation	structural		
	solution	product)	information,LC-IR:-For		

			carboxyl functional		
			group		
22	Bulk powder	Head space Gas chromatograp hy with FID detector	Internal standard:- butanol,Solvent media:- N,N- dimethylformamide Column:-DB- 624,carrier gas:- nitrogen,	Linearity:-0.9945- 0.9996	[49]
23	Drug- polymer	Differential scanning calorimetry	-	Endothermic fusion peak at 126.8°C	[50]
23	Drug- polymer	X-Ray Diffraction Studies	Ni filtered,CuKα radiation, a voltage of 45 kV, and a current of 40 mA with a scintillation counter. The instrument was operated in the continuous scanning speed of 40/min over a	Linearity of 5°C to 40°C	[50]
24	Urine	Stripping differential pulse voltammetry	-	Linearity:- 1 × 10-8 to 1 × 10-7M	[51]

2.2 Literature reviews of Cefpodoxime proxetil with other drugs

Sr .n 0	Drug in combinati on	Matrix	Method	Method Description	Validation parameters	Ref	
	UV Visble spectrophotmetric Methods						
25 26	Cavulanate potassium(CLA) Ambroxol HCl(AMB)	Tablet Tablet	UV Visble spectrophot metry UV Visible spectrophot ometry	Solvent:-Methanol λmax:-CLA- 270nm,CP-235nm Solvent:-Methanol λmax:-AMB- 248nm,CP-235nm	Linearity:-CLA-15- 150µg/ml,CP-5- 50µg/ml Linearity:-AMB-8- 32µg/ml,CP-9- 27µg/ml	[52]	
27	Ambroxol HCl(AMB)	Tablet	First Order Derivative Spectropho tometry	Solvent:-0.1 N HCl zero crossing point:- AMB-263nm,CP- 307nm	Linearity:-AMB-6- 72 µg/ml,CP-10-90 µg/ml	[54]	

	Dicloxacilli	Tablet	First Order	Solvent:-Methanol	Linearity:-	[55]
20	n		Derivative	zero crossing point:-	Dicloxacillin-10-80	[]
28			Spectropho	Dicloxacillin-	µg/ml,CP-40-32	
			tometry	233.8nm,CP-321nm	µg/ml	
	Ambroxol	Tablet	UVSpectro	Solvent:-Methanol	Linearity of CEF	[56]
20	HCl(AMB)		scopy,simu	λ max of CEF and	and AMB are 5-	
29			ltaneous	AMB are 235nm &	30µg/ml and 3-	
			equation	308nm	18µg/ml	
			Derivative	Solvent:-Methanol	Linearity of CEF	
20			Spectropho	λ max of CEF and	and AMB is 5-	
30			tometry	AMB are 279nm &	30µg/ml	
				235 nm		
	Ambroxol	Tablet	Dual λ max	Absorbance difference	Linearity of AMB	[57]
21	HCl(AMB)		UV Visible	of AMB & CP are	& CP are 6-42 &	
51			Spectromet	250.7-279nm & 230-	10-70 μg/ml	
			ry	251.8		
	Levofloxac	pharma	Q-	Solvent:-Methanol	Linearity of	[58]
	in	ceutical	absorbance	λ max of LOFLO 300	LOFLO & CP are	
32	Hemihydra	formula	ratio	nm, iso absorptive point	2.5-10.5 & 2-	
	te(LOFLO)	tions	spectroscop	273nm	10µg/ml	
			ic method			
			HP	TLC Methods		
	Ambroxol	Human	HPTLC	Extraction Solvent:-	Linearity of AMB	[59]
	HCl(AMB)	plasma	extraction	methanol and	& CP are 1000 to	
	× ,	1	by liquid–	acetonitrile, mobile	7000 ng/spot & 500	
			liquid	phase:- chloroform:	to 3500 ng/spot &	
33			extraction	methanol (9:1v/v)	Recovery are 94.50	
				λ max:-240nm,Rf	& 7440	
				values of AMB & CP		
				are 0.49 ± 0.0057 &		
				0.69 ± 0.005		
	Levo	syntheti	HPTLC	Solvent:-Butanol:	Linearity of	[60]
	floxacin	с		Ethyl Acetate: hexane:	LOFLO & CP are	
	Hemihydra	mixture		triethylamine(2:6:4:0.	125-750	
	te(LOFLO)	and		1)	ng/spot and 100-	
34		pharma		λ max:-237nm, Rf	600 ng/spot	
		ceutical		values of LOFLO &	,Recovery:-	
		dosage		CP are 0.66 and 0.33	LOFLO & CP are	
		form			99.89-101.59% &	
					98.96-102.01%	
	Ambroxol	Tablet	HPTLC	Solvent:-Chloroform:	Linearity of CP &	[61]
	HCI(AMB)			Methanol: Hexane:	AMB are 200-1200	
_				Glacial acetic acid (6:	ng/spot & 120-720	
35				2: 4: 0.2v/v/v/v)	ng/spot,LOD &	
				Kt values 0.22 and	LOQ 21.16 and	
				0.64 for	64.11 ng/spot per	

				max:245nm	41.16 and 124.72 ng/spot per spot for CP	
			H	PLC Methods		
36	clavulanate potassium(CLA)	Tablet	RP-HPLC	Solvent:- methanol:actonitrile:w ater:tetrahydrofuran(4 0:20:30:10) λmax:-220nm	Linearity:-CLA-15- 200µg/ml,CP-5- 50µg/ml	[52]
37	Ambroxol HCl (AMB)	Tablet	RP-HPLC	Solvent:-acetonitrile: methanol: water (30:50:20 v/v/v) pH adjusted to 5.0 with ortho-phosphoric acid Column:-INERTSIL ODS-3V (150 mm x 4.6 mm, 5μm),λmax:- 47nm,Rt:-AMB- 4.308,CP-3.457,Flow rate-1ml//min	Linearity:-AMB- 42-78 mg/ml,CP- 70-130 mg/ml	[62]
38	Clavulanat e potassium (CLA)	Tablet	RP-HPLC	Solvent:- Phosphate buffer (5.5 pH): acetonitrile (51:49 v/v) Column:-Hypersil- BDS (C-18) (5 μ m, 250 mm 4.60 mm), λ max:-233nm,Flow - 1ml/min,Rt for CP and CLA are 5.63 min. and 2.49 min	Linearity of CP & CLA are 1-60 µg/ml& 0.5-60 µg/ml ,Recovery:- CP & CLA are 99.71% and 99.51%	[63]
39	Clavulanic acid (CLA-A)	Combin ed dosage form	HPLC	Solvent: Methanol: water [60:40 (v/v)] Column:-Hypersil- BDS (C-18) (5 μ m, 250 mm 4.60 mm), λ max:-225nm,Flow - 1.5 ml/min,Rt for CP (S & R Epimer)and CLA-A are 7 & 8.2 min. and 1.93 min	Linearity of CP & CLA-A are 50-250 µg/ml &30-150 µg/ml,Recovery:- CP & CLA-A are are 98.14-99.94% & 98.60-99.30%	[64]

40	Dicloxacilli n	Extend ed release tablet dosage form	RP-HPLC	Solvent:-Acetonitrile: Water (70:30 v/v) Column:-Kromasil ODS C18 (5 μm) 250×4.6 mm,λ max:- 235nm,Flow rate- 1ml/min	Linearity of Dicloxacillin & CP are 12.5-62.5 µg/ml, 5–25 µg/ml	[65]
41	Ambroxol HCl(AMB)	Bulk & tablet	RP-HPLC Stable	Solvent:-acetontrile: 0.025 M potassium dihydrogen phosphate buffer (70:30 v/v) pH adjusted to 4.0 with orthophosphoric acid Column:-Qualisil RP C-8 (250 mm x 4.6 mm, 5 μ m),Flow rate of 1.0 ml/min, λ max- 248 nm,Rt of CP & AMB are 3.89, 2.69 min,	AMB are 3 - 21 µg/ml & 2 - 12 µg/ml ,LOD and LOQ are 0.18 and 0.55 µg for CP and 0.09 and 0.30 µg for AMB	[66]
42	HCI(AMB)	and Pharma ceutical dosage form	HPLC	buffer: Acetonitrile (30:70) pH-3.5 was adjusted by using dilute Ortho phosphoric acid	AMB are 20- 100 µg/ml & 12-60 µg/ml	[07]
			Miscel	llaneous Methods		
43	Diclofenac sodium	Tablet	Simultaneo us Estimation by Ultra fast liquid chromatogr aphic method (UFLC)	Solvent:-1% formic acid in methanol and acetonitrile (80: 20 v/v) Column:Kromasil C18, (250 × 4.6mm, 5µm), λ max:- 270nm,Rt:-Diclofenac sodium-3.,CP- 2.30min,Flow rate- 1ml//min	Linearity:-15 to 50µg/ml	[68]

44	Cefmetazol e(CMZ)	Contam inants in pharma ceutical manufa cturing environ ments	LC/MS/MS	A glass plate and a silica fiber filter	LOD:-CMZ & CP are 10 pg/ml & 5 pg/ml,Linearity- 0.20 to 3.20 ng/ml	[69]
45	Cefmetazol e(CMZ)	Olmesa rtan medoxo mil (OLM) tablets	LC/MS/MS	Solvent:-Water and acetonitrile (11 : 9, v/v)	LOD:-CMZ & CP is 0.002 ppm,Recovery:- CMZ & CP are 96.7 to 102.2% and 88.9 to 94.2%	[70]
46	Clavulanic acid (CLA-A)	Human plasma	LC-MS by solid phase extraction	Solvent:- Methanol:acetonitrilr: 2mM ammonium acetate(25:25:50% v/v/ v) Column:-SPHER RP C-18 (150 mm x 4.0 mm, 5 μ m),Flow rate of 0.8 ml/min, λ max- 248 nm,Rt of CP & AMB are 3.89, 2.69 min,	Linearity of CLA-A & CP are 0.1-10 & 0.04-4.4 µg/ml	[71]
47	Cefixime (CEF)	Pharma ceutical formula tions and urine	Voltammet ry	Solvent:-Britton- Robinson buffer system	Linearity of peak current:-CF and CP are 6.0×10^{-8} to 1.2×10^{-5} mol 1 ⁻¹ and 8.8×10^{-8} to 1.1×10^{-5} mol 1 ⁻¹	[72]

2.3 Literateure reviews of Ofloxacin

Sr. no	Matrix	Method	Metod Description	Validation parameters	Ref.				
	UV Visible spectrophotometric Methods								
48	Tablet	UV Visible spectrophotometry	Solvent:-0.1 N HCL λmax 291.6	Linearity:-1-10 µg/ml% Recovery :- 99.08	[73]				
49	Injection	UV Visible spectrophotometry	Solvent:-Acetic acid(5%) Linearity:-2-10 µg/ml,	Linearity:-2-10 µg/ml	[74]				
			λmax:-294 nm						
----	----------------------------------	---	--	--	------				
50	Bulk & dosage form	Extractive spectrophotometry	Solvent:-phthalate buffer 3.0 & 3.1	Linearity:-0.87- 17.35 & 0.58- 14.46µg/ml for ofloxacin- bromophenolblue & ofloxacin- bromocresol purple	[75]				
51	Pharmace uticals and urine	Flow-injection UV Visible spectrophotometry	Solvent:-Formation of a yellow complex between ofloxacin and Fe (III), in sulphuric medium λmax-420 nm	Linearity:1.8–289 mg/L,LOD-0.72 mg/L	[76]				
52	Tablet	UV-Visible Spectrophotometry method	Solvent:-3 ml of 5% w/v ammonium vanadate and 2 ml of concentrated sulphuric acid λmax:-420 nm	Linearity :- 1.8 – 289 mg/l	[77]				
53	Tablet	Colorimetry method	Solvent:-iron (III) nitrate nonahydrate λmax:-370 nm,Stock solution:- 500 mg ml-1	-	[77]				
54	Human urine & serum	Solid-phase spectrofluorimetry	λmax-Excitation:-294 nm,Emission:-494 nm	Linearity:-0.5 -16.0 ng ml-1,LOD:-0.14 ng ml ⁻¹ Recovery:- 100 %	[78]				
		Flu	orimetry Methods						
55	Suspensio n	Spectrofluorimetry	Solvent:-0.1 N H2SO4 λexc:-290 nm	Linearity:-0.3 – 1.4 g/ml	[77]				
			HPLC Methods						
56	Injection	HPLC	Solvent:-0.5% sodium acetate pH 2.5/acetonitrile,(87:13, v/v) Column:- NovaPak C18 150×3.9 mm id., 4µm particles (Waters Assoc.),Flow rate:- 1ml/min,Ambient temperature (20 1 °C)	Linearity:-20-100 µg/mlRecovery:- coefficient of variation0.72%	[74]				
57	Human aqueous humour	RP-HPLC with fluorescence	Solvent:-methanol- acetonitrile-0.4 M citric acid (3:1:10, v/v/v) Column:- NovaPak	Mean Recovery:- $103.24 \pm 4.45^{1}/_{4}$,	[79]				

			C18_100×8 mm id		
			5um particles Flow		
			rate: - 1ml/min Rt:-7 32		
			min		
58	Rat	HPLC(For	Solvent:-6mM	LOD:-0.6uM for	[80]
	microsom	enantiomer with	phenylalamine mixed	both	[]
	e	fluorescence	with 3mM CuSO4	enantiomer.LOO:-	
	-	detection)	λ max-Excitation:-330	5.70+0.45 for S-	
			nm.Emission:-505	ofloxacin.5.66+0.45	
			nm.Column:-C18.Flow	for R-ofloxacin	
			rate-1ml/min		
59	Human	HPLC	Solvent:-plasma protein	LOO:-	[81]
	plasma		precipitated with	20ng/ml.Linearity-	
	I		acetonitrile	20ng/ml-6900ng/ml	
			Column:-C18. λmax-		
			Excitation:-		
			282nm,Emission:-450		
			nm		
60	Pharmace	RP-HPLC	Retention time:-not	LOD:-0.03µg/ml	[82]
	utical		more than 15 min		
	formulatio				
	n				
61	Plasma &	HPLC assay with	Solvent:-Acetonitrile &	Linearity	[83]
	lung tissue	fluorometry	dichloromethane	plasma:0.1-5	
		detection	λmax:-Excitation-280	µg/ml,lung:-0.025-	
			nm,Emission-500 nm	2.5 μg/g,LOQ:-5	
				ng/ml or 5 ng/g	
62	Biological	HPLC with	Solvent:-Aqueous	Linearity:8-2000	[84]
	fluid	fluorescence	phosphate	ng/ml,LOD-8	
			solution:acetonitrile(80	ng/ml,LOQ-15	
			:20) λmax:-Excitation-	ng/ml,Recovery-	
			338 nm,Emission-425	92.9%	
			nm,Rt:-Ofloxacin-2.66		
			min,sarafoxacin-4.24		
<u> </u>	11		min D. C. L. J. J.	T: : : : : : : : : : : : : : : : : : :	1073
63	Human	HPLC-UV with	Pre Column:-phenyl	Linearity:50-2000	[85]
	serum	Column switching	S.P,Analytical	ng/mi,LOD-20	
			Column:-ODS	ng/iiii, Kecovery-	
64	Chickon	DD HDI C with UV	S.r,Alliax-300 IIII	00.0-101./%	[86]
04	kidney liv	detection	Water:acetonitrilotrim	100 ug/kg liver 1.0	[00]
	er musee		ethylamine(83.14.0.45)	mg/kg I OO muscle	
	and fat		nH 2 3	and fat plus ekin	
	nlue tiesue		$\lambda max_2 295 \text{ nm Flow}$	tissue-50ug/kg liver	
	Plus lissue		rate-1ml/min Rt-5 1	and kidney tissues_	
			min for tissue sample-	$100 \mu \sigma/k\sigma I \Omega D_{-}$	
			12 min	muscle and fat nlus	
				skin tissue-25	

				µg/kg,liver and kidney tissues- 100µg/kg	
65	Plasma	RP-HPLC with UV detection	Solvent:- KH ₂ PO ₄ (0.03M):metha nol(30:70)pH-3.1 adjusted wih formic acid Column:C18,Flow rate-1ml/minLinearity- 0.025-2.5 µg/ml	LOD:-10 ng/ml,LOQ:-25 ng/ml	[87]
66	Tablet	Isocratic reversed- phase HPLC	Solvent:-35% (v/v) aqueous acetonitrile together with tetrabutylammonium acetate, sodium dodecyl sulphate and citric acid (pH* 3.4) Column:-ODS C18, λmax-235, 254, 275 and 300 nm.	Linearity:-1.20- 4.8mg/100ml,LOD- 18µg/100ml,LOQ- 36µg/100ml	[88]
	Tablet	RP-HPLC	Solvent:-0.04 M phosphoric acid, tetrabutylammonium as ion-pairingreagent and methanol (pH 2.2) Column with Nucleosil C18 (5 microns)	-	[77]
67	Human serum	HPLC with direct electrogenerated Chemiluminescenc e detection	Solvent:-NaNO ₃ solution with dual electrode system	Linearity:-1.0×10-8- 4.0×10-6,LOD- 4.0×10-9	[89]
68	Human aqueous and vitreous humor	HPLC with fluorescence	Rt:-22 min	Linearity:-10ng/ml- 100µg/ml,Recovery- 95-104%,LOD:- 10ng/ml	[90]
69	Plasma and urine	HPLC with fluorescence	Column:-Reversed phase with C18,λmax for excitation-290 nm,emission-460 nm	Recovery- 93%,Linearity:-0.5- 10µg/ml	[91]
70	Human urine	Solid phase extraction coupled with ligand exchange	Column:C18,Rt-less than 20 min	Linearity:-0.07-60 µg/ml,correlation coefficient:- 0.9996,LOD:-For	[92]

		chrromatography		S(-)& R(+) ofloxacin are 0.03 & 0.044 µg/ml	
		Mise	cellaneous Methods		
71	Bulk	ELISA & immunochromatogr aphic assay CGIA(Colloidal gold based immunochromatogr aphic assaay		Linearity:-0.5- 128ng/ml,LOD- 0.35ng/ml LOD-0.10ng/ml	[93]
72	Urine	Chemiluminescenc esystem for capillary electrophoresis	Solvent:-chiral additive:-Sulfonated β- cyclodextrin (β- CD),runningbuffer:- luminol- diperiodatocuprate (III)(K5[Cu(HIO6)2], DPC)	Linearity:-0.010– 100 µM,Recovery:- 89.5– 110.8%,LOD(S/N= 3) :-8.0nM and 7.0nM for levofloxacin anddextrofloxacin	[94]
73	Human urine	capillary electrophoresis with laser induce fluorescence detection	Running buffer:- sulphobutyl β- cyclodextrin λexc:-325 nm	LOQ:-for enantiomer 250 ng/ml,metabolite- 100 ng/ml	[95]
74	-	Capillary electrophoresis	Solvent:-methyl-β- cyclodextrin optimization by central composite design	LOQ:-for S- ofloxacin- 11.4ng/ml,R- ofloxacin-10.8ng/ml	[96]
75	Tablets & biological fluid	Differential pulse polarography	Solvent:-Britton Robinson buffers pH:-4.1-10.3	current-oncentration relationship:- Rectiliner over Linearity 5×10-5_ 5×10-4, 1×10-5- 5×10-4,Minimun detectibility:- 3×10- 7	[97]
76	Pharmace utical	Polarographic and voltametry	Solvent:-Britton Robinson buffers pH 4	Linearity:-8 ×10-4 - 2×10-5 mol/l	[98]

2.4	Literateure	reviews of	Ofloxacin	with	other	drugs

Sr. no	Drug in combinatio n	Matrix	Method	Method Description	Validation parameters	Ref.
		l	UV Visible Spe	ectrometric Methods		
77	Ornidazole	Tablet & capsule(for dissoluti on in different media	UV Visible spectrophot ometry	Solvent:-0.1 N HCl,phosphate buffer pH 6.8,phosphate buffer pH 7.4 ofloxacin:-\lambdamax- 294nm in 0.1 N HCl & 87nmphosphate buffer pH 6.8 & 7.4ornidazole:-\lambdamax- 277nm in 0.1 N HCl & 319nmphosphate buffer pH 6.8 & 7.4	Linearity:- ofloxacin-1- 8µg/ml,ornidaz ole-4-26µg/ml	[99]
78	Cefixime	Tablet	First order derivative spectroscop	λmax:-Cefixime- 358.2nm,ofloxacin- 312nm	Linearity:- Cefixime&oflo xacin-5- 40µg/ml	[100]
79	Ciprofloxaci n(CIPRO),n orfloxacin (NOR),enro floxacin (ERF)	Bulk & dosage form	Extractive spectrophot ometry	Solvent:-supracene violet 3B9(Method A) & tropaeolin 000(Method B) λmax:-supracene violet 3B-575nm,tropaeolin 000-485,ERF-	LOD:-CIPRO- 2.5µg/ml , NOR-5µg/ml & OFLO &ERF- 2.5µg/ml	[101]
80	Cefixime	Tablet	Absorbance ratio equation, UV Visible Spectrometr y Simultaneou s equations	Solvent:-Methanol λmax:-Cefixime- 234nm,ofloxacin- 296nm Solvent:-Methanol λmax:-Cefixime- 275nm,ofloxacin- 296nm	Linearity:- Cefixime-4- 20µg/ml,ofloxa cin-2-10µg/ml Linearity:- Cefixime-4- 20µg/ml,ofloxa cin-2-10µg/ml	[102]
81	Cefixime (CEF)	Oral dosage form	Simulatneou s estimation by UV spectrophot ometry	Solvent:-0.1N NaOH λmax:-Cefixime- 237nm,ofloxacin- 288nm	Recovery:- 99.15 - 99.52% and 99.43 - 99.85% for CEF and OFL	[103]

82	Ornidazole	Tablet	UV Visibe Spectrophot ometry	Solvent:-0.1 N HCl ,phosphate buffer pH 6.8 and phosphate buffer pH 7.4 λmax:-of ofloxacin 294 nm in 0.1 N HCl and at 287 nm in phosphate buffer pH 6.8 and phosphate buffer pH 7.4,ornidazole 277 nm in 0.1 N HCl and at 319 nm in two buffers	Linearity :- 1–8 µg/ ml for ofloxacin and 4–26 µg/ml for ornidazole.	[104]
83	Ornidazole	Bulk & dosage form	Difference absorbance UV Visible spectrophot ometry	Solvent:-0.1N NaOH vs 0.1N HCl λ max:-OFLO at 293.4 nm,OZ-277.9 nm	Linearity of 4- 24 ug/ml and 5- 30 µg/ml for OFLO and,OZ,LOD:- OF and OZ are 0.31 and 0.35 µg/ml,LOQ:- OF and OZ are 0.92 and 1.04 µg/ ml	[105]
84	Cefixime (CEF)	Tablet	Simultaneou s equation method	λmax for ofloxacin and Cefixime is 284 nm and 224 nm	-	[106]
85	Cefixime (CEF)	Tablet	Ratio Derivative	Solvent:-methanol 319.11 nm and 347.40 nm λmax of CEF and OFL	Linearity:-5-25 µg/ml,,Recover y:-98.60 – 101.80 % for CEF & 98.75 – 100.2% for OFL	[107]
			Area Under Curve Method	Solvent:-0.1 N HCl λmax Linearitys of 277-279 & 296-298 nm of CEF and OFL	Linearity:-4-20 µg/ml,Recovery :-98.16 – 100.4% for CEF & 98.89- 100.21% for OFL	
86	Ornidazole (ORN)	liquid oral dosage form	Simulatneou s estimation by UV Visible spectrophot ometry	Solvent:-methanol λmax of OFLO & ORN are 295.6 nm and 310.8 nm	Linearity of OFLO & ORN are 2-10 µg/ml & 5-25 µg/ml,Recovery :- OFLO & ORN are 99.58	[108]

					-100.69 % and	
					99.86 - 101 %.	
07	Dialafanaa	Dulle le	T IV	Solvent: Asidia	Linconitry 1	[100]
0/	Diciolenac	DUIK &		SolventActuic	Linearity:-1-	[109]
	sodium	opthalmi	VISIBLE	methanol	20µg/ml,Recov	
		с	spectrometr	λ max of Diclofenac	ery:- Diclofenac	
		solution	у	sodium & OFLO are	sodium &	
				273 &	OFLO are	
				291nm.isoabsorptive	99.67%.100.35	
				point-263nm	%	
				Solvent: Acidic	Pecoveru:	
			Q-value mothod	mothenal	Dialafanaa	
			method		Diciolenac	
				Amax of Diclofenac	sodium &	
				sodium & OFLO are	OFLO are	
				273 &	99.99%,100.07	
				291nm, iso absorptive	%	
				point-263nm		
88	Dexamethas	Dexaflo	Zero order	λmax-293.4 nm	Linearity-1.5–	[110]
	one	x eve	spectrophot		12 µg/ml.mean	
		drons	ometry		% Recovery-	
		urops	methods		$100.07 \pm 0.66\%$	
			First) may 266.5 nm	$\frac{100.07 \pm 0.0070}{1000000}$	
			THSt demissatives of	Amax-200.5 mm	27.5 mg/ml	
			derivative of		27.5 μg/ mi	
			ratio spectra		,mean %	
			spectrophot		Recovery-	
			ometry		$100.09 \pm 0.70\%$,	
			methods		$100.00 \pm 0.72\%$	
					and 99.92 ±	
					0.62	
89	Nitazoxanid	Bulk	UV-	221.8 nm (kmax of		[111]
	e	and	spectrophot	Nitazoxanide)		
	C C	commer	ometry simu	and 244.3 nm (kmax of		
		cial	Itaneous	Oflovacin)	-	
		formulat	aquation	Olloxaelli)		
		iormutat	equation			
		ions	method			
			First order	263.6 nm for		
			derivative	Nitazoxanide and 269.2	_	
			spectroscop	nm for		
			У	Ofloxacin		
90	Cefixime	Pharmac	Colorimetry	Solvent:-oLinearity	Linearity :-	[112]
	(CEF)	eutical	methd.oflox	colored product in the	15-75 µg/ml	
		formulat	acin	presence of ferric		
		ions		chloride solution in		
		10110		acidic medium		
				acture meanum		
1	1		1	MIIIax-433IIIII		1

						-
			Cefixime(C	Solvent:-greenish	Linearity :- 5-40	
			EF)	colored product with	ug/ml	
			,	Fehling solution	P-8/	
				$\lambda max - 490 nm$		
			Fluorin	netry Method		
01	Enovacin	Urine &	Photoinduce	Solvent:-Ethanolic-	I OD: ENO	[113]
91	(ENO) sinro		A	SolventEthanone-		[115]
	(ENO),cipio	serum	u flu oning of my	Emission Amore ENO	1.5,0120-	
	noxacin		nuorimetry	Emission Amax:-ENO-	14.5, CIPKO-0.5	
	(CIPRO),		detection &	407,0FLO-490,CIPRO	, NOR-6.0ng/ml	
	Norfloxacin		multiemissi	& NOR-444nm		
	(NOR)		on scanning			1
			HPTL	LC Methods		
92	Nitazoxa	Bulk	HPTLC	Solvent:-	Linearity-5–25	[114]
	nide	and		Toluene:chloroform:car	µg∕ ml	
		commer		bon tetra		
		cial		chloride:toluene:glacial		
		formulat		acetic acid(10:5:3:0.5		
		ions		v/v/v/v) s.p-aluminum		
				plates pre-coated with		
				silica gel 60 F254,RF		
				values 0.36, 0.57 and		
				0.63 for Rosiglitazone		
				maleate Nitazoxanide		
				and Ofloxacin λ max-		
				241 nm		
93	Ketorolac	Ophthal	HPTLC	Solvent:-	Linearity of	[115]
	Tromethami	mic	_	Dichloromethane:	KET & OFLO	r - 1
	ne(KETT)	formulat		Methanol: Ammonia	are 25-	
		ion		25% (6:3:1)	75ng/band 15-	
		1011		s p-aluminum plates	45ng/band Reco	
				pre-coated with silica	verv'- KFT &	
				gel 60 E254 PE values	OFFL O are	
				of KET & OEL O are	01710 are	
				0.70 ± 0.02 and $0.41\pm$	99./4-99.93% ₽ 00.79	
				0.79 ± 0.03 and 0.41 ± 0.02 $3 \text{ max} 241 \text{ nm}$	& 99.78-	
					99.87% W/W	
0.4	<u> </u>	DI			1 0.00	[11]
94	Ciprofloxaci	Plasma	HPLC	Solvent:-	Linearity:-0.02-	[116]
	n(CIPRO),			CH3CN:MeOH:0.025	/.5µg/ml,LOQ:-	
	moxifloxacin			M TBA·Cl/TFA(eluent	0.02µg/ml	
	(MOXI)			A at 75:25:899:1,elent		
				B at 150:50:799:1)at		
				pH 3.5		
				Emission/Excitaton		
				λmax:,OFLO &		
				MOXI-		
				500/290,CIPRO-		

				442/279nm		
95	Enoxacin	Pharma	HPLC	Solvent:-	LOD:-	[117]
	(ENO),ciprof	ceutical		CH3CN:CH3OH:citric	0.02ng/20µl for	
	loxacin	&		acid(7:15:78%,v/v)	ENO &	
	(CIPRO),nor	blood		Column:-Kromasil 100	0.01ng/20µl for	
	floxacin	serum		C8 250×4mm,λmax:-	OFLO,CIPRO,	
	(NOR)			275nm	NOR	
96	Levofloxacin	Bulk &	HPLC -UV	Solvent:-Phosphate	Linearity of 2-	[118]
		dosage	detection	buffer (pH-3.1) and	10 μg/ml and	
		form		acetonitrile ($70:30 \text{ v/v}$)	LOD and LOQ	
				Column:-	are 0.1234 and	
				WELCHROM C18	0.3740 µg/ml	
				(4.6 X 250mm,		
				5μm),λmax:-		
				293nm,Flow rate-		
				1ml/min,Rt:-3.607min		
97	Cefixime	Plasma	HPLC-MS	Solvent:-Acetonitrile,	Linearity of 4-	[119]
	(CEF)			methanol and 0.5%	500 ng/ml	
				formic acid in a ratio of	for OFL and	
				23:10:67% v/v Zorbax	40-6000 ng/ml	
				eclipse XBD C18	for CEF,LOQ 4	
				Column (150 mm \times 4.6	ng/ml	
				mm i.d., 5 μm),⊡low	and 40 ng/ml	
				rate:- 0.6 ml/min	for OFL and	
					CEF	
98	Prednisolone	Bulk &	HPLC-UV	Solvent:-0.01M	Linearity of	[120]
	acetate	dosage		phosphate buffer (pH	ofloxacin and	
		form		3.0) and	prednisolone	
				acetonitrile(40:60, v/v)	acetate was in	
				C18 Column (150	the Linearity of	
				mmx4.6 mm i.d, 3µ	1.5-9 μ g/ml and	
				particle ize),Flow rate	5-30 µg/ml	
				of 1ml/min. Rts		
				ofloxacin and		
				prednisolone acetate		
				are 2.7 and 4.6 min, λ		
				max:-240 nm		
99	Ornidazole(liquid	RP-HPLC	Solvent:-0.01M	Linearity of	[121]
	ORN)	oral		phosphate buffer (pH	OFLO & ORN	
		dosage		4.2 adjusted with ortho	are 100 µg/ml&	
		form		phosphoric acid) and	25-250 µg/ml	
				acetonitrile(87:13, v/v)	,Recovery:-	
				Column:-	OFLO & ORN	

				thermohypersil phenyl (250 mmx4.6 mm i.d, 5μ particle size),Flow rate of 1ml/min,λmax- 294nm	are 00.48% and 99.84%	
100	Tinidazole	Tablet	RP-HPLC	Solvent:-0.5% v/v Triethylamine buffer of pH 3.0 and Acetonitrile(73: 27) Column:-Kromasil C8, 5 μ , 15 cm × 4.6 mm id,Flow rate of 1.2ml/min, λ max- 303nm,Rts of Ofloxacin & Tinidazole are 2.3, 4.1 min	LOQ of Ofloxacin & Tinidazole are 10 and 30 µg/ml	[122]
101	Tetrahydrozo line Hydrochlorid e(THC), and Prednisolone Acetate (PAC)	ophthal mic suspens ion	HPLC	Solvent:-0.05M phosphate buffer acetonitrile (65:35, v/v), and the pH is adjusted to 2.7 with orthophosphoric acid Column:-Waters Spherisorb, 5 μ m ODS 1, 4.6 × 150 mm, λ max- 210 nm for OFLO and THC and 254 nm for PAC,Flow rate of 1.2 ml/min,Retention times for OFLO, THC, and PAC are 2.5, 4.5,9.5.	Linearity Linearity and percent recoveries for OFLO, THC, and PAC are 24–120, 4–16, and 16–80 µg/ml and 100.48%, 100.34%, and 100.21%	[123]
102	Malondialde hyde(MDA)	Plasma	HPLC/fluor escence detection system	Solvent:-50mM phosphate buffer (pH- 5.8 with KOH) and methanol (45:55 v/v) Column:-RP C18, 4.6 × 250 mm,λmax- excitation & emission are 532 & 553nm,Flow rate of 1.2 ml/min,Retention times OFLO & MDA are 5.9,3.6min	Linearity for OFLO & MDA are 0.06-1.0 mM,0.15- 2.43µM	[124]

103	Ornidazole (ORN) Cefixime (CEF)	Tablet Bulk & tablet	RP-HPLC RP-HPLC	Solvent:-2mM phosphate buffer and Acetonitrile with pH 3.5 adjusted with orthophosphoric acid (70: 30% v/v)olumn:- Phenomenex C18, (250 mm x 4.6 mm i.d, 5mm, Flow rate of 1 ml / min ,λmax-293 nm,Rt of OFLO & ORN are 2.1,2.5 min Solvent:-Ammonium acetate buffer:acetonitrile(40:6 0v/v%)Column:- Kromasil C18, (250 mm x 4.6 mm i.d, 5µm, Flow rate of 1 ml / min ,λmax-294nm,Rt of OFLO & CEE are	Linearity of OFLO & ORN are 5-50 µg/ml and 12.5-125 µg/ml, Linearity of CEF & OFLO are 60- 140µg/ml,	[125]
				3.24,2.26 min		
105	Cefixime (CEF)	Tablet	RP-HPLC	Solvent:-Methanol: 0.025 mM potassium dihydrogen phosphate buffer in ratio of (70:30, v/v)λmax- 290nm	Linearity :- 1-10 µg/ml	[127]
			Miscella	neous Methods		
106	Ciprofloxaci n(CIPRO), moxifloxaci n(MOXI),ga tifloxacin(G OXI)	Pharmac eutical Formula tions	Capillary Zone Electrophor esis	Electrolyte:-25 mM-1 of TRIS/ hydrochloride and 15 mmol L-1 of sodium tetraborate buffer mixture (pH 8.87)UV detection at 282 nm	LOD (mg/ml): 2.72 for CIPRO, 1.92 for GOXI, 0.795 for MOXI and 1.05 for OFLX), LOQ (mg L-1: 9.06 for CIPRO, 6.40 for GOXI, 2.65 for MOXI and 3.50 for OFLO	[128]
107	Capreomyci n(cp), ,pasiniazide (ipa)	Urine	High- performance capillary electrophore sis method	λmax-280 nm,detection limits (S:N 3) are 0.15, 0.20 and 0.10 mg/ml1 for Cp, oflo and Ipa,	Linearity-0.5 50 mg/ml,Recover y-93.5%	[129]

2.5 Literateure reviews of Cefpodoxime proxetil and Ofloxacin in combination

Sr.	Matri	Method	Method Descripption	Validation	Ref		
no	X			parameters			
	UV Visible Spectrometric Methods						
108	Tablet	Absorption ratio method	Solvent:-MeOH isoabsorptive point at 272 nm in methanol,λ-max OF Cefpodoxime proxetil is 236	Linearity 5-17 µg/ml	[130]		
109	Tablet	Simultaneous spectrophotom etry	λmax :-CP:-260 nm,OFLO:-297 nm	Linearity:- cefpodoxime proxetil:- 4-40 µg/ml,ofloxacin:- 2-12 µg/ml,ofloxacin:- 2-12 µg/ml	[131]		
		Area under curve method	Linearity:-CP:-240-230 nm,OFLO:-303-293 nm	Linearity:-ofloxacin:- 2-24 µg/ml,cefpodoxime proxetil:-4-24 µg/ml			
110	Tablet	Dual λmax Spectrophotom etry Method	Solvent:-Methanol Absorbance difference:- CP:-278.2 nm and 320 nm,OFLO:-224 nm and 247.4 nm	Linearity:-CP:-4- 24µg/ml ,OFLO-2-12 µg/ml	[132]		
111	Tablet	First order derivative Spectrophotom etry Method	Solvent:-Methanol λmax :-CP:-236.4 nm(ZCP),OFLO:-208.8 NM(ZCP)	Linearity:-CP:-2- 12µg/ml,OFLO-4-24 µg/ml,Mean Recovery:-CP:- 99.80±1.50,OFLO- 99.90±0.36	[133]		
112	Tablet	Simultaneous spectrophotom etry	Solvent:-Methanol λmax :-CP:-236 nm,OFLO:-299 nm	Linearity:-CP:-5- 29µg/ml ,OFFLO-1-13 µg/ml	[134]		
113	Tablet	Simultaneous equation method	Solvent:-Methanol:Water (70:30) λmax :-CP:-235 nm,OFLO-298 nm	Linearity:-CP:-4- 24µg/ml ,OFLO-4-20 µg/ml	[135]		
114	Tablet & bulk	Simultaneous equation method	λ _{max} of CP:-234.9 nm,λmax Of OFLO:-298 nmλmax Of OFLO:-298 nm	Linearity:-2– 10µg/ml,Recovery:- CP:- 100.9±0.16%,OFLO- 4-20 µg/ml:- 98.22±0.44%	[136]		

		Q-absorbance equation	λ _{max} of CP:-271.6 nm,λmax of OFLO:-298 nm	Linearity:-2– 10µg/ml,Recovery:- CP:- 99.5±0.133%,OFLO- 98.90±0.65%	
117	HPILC Methods				
115	Tablet	HPILC	Mobile phase:- Ethanol- Ethyl Acetate-Water- Triethylamine (5:3.2:1.8:0.15 v/v/v/v) Densitometry quantification at 290 nm,Rf of cefpodoxime proxetil:-0.61,Rf of ofloxacin:-0.24	Linearity :- cefpodoxime proxeil:- 200-1000 ng/band,ofloxacin:- 200-1000 ng/band,correlation co-efficient:- cefpodoxime proxetil:- 0.9990,ofloxacin:- 0.9997	
			HPLC Methods		
116	Tablet	RP-HPLC	Solvent:- 20mM phosphate buffer, Acetonitrile and methanol with pH 3.0 adjusted with ortho,phosphoric acid in the ratio of 60:10% v/v/v.phosphoric acid in the ratio of 30: 60: 10 % v/v/v.ofloxacin Rt 2.65 and 4.17 min	cefpodoxime proxetil- 0.17 µg/ml,ofloxacin- 0.19 µg/ml,LOQ:- cefpodoxime proxetil- 0.51 µg/ml,ofloxacin- 0.58 µg/ml	[138]
117	Tablet	RP-HPLC Simultaneous estimation method	Mobile phase:-0.25% v/v triethyl amine buffer of pH 3.5 and acetonitrile (30:70 v/v) Column:-X-terra C8 (4.6 x 250mm, 5μm, Make: ACE),pre packed Column,Flow rate:- 1.2ml/min,UV and PDA detection at 227 nm.Rt:- CP:-2.747 min,OFLO:- 2.076 min,λmax :CP:-260 nm,OFLO:-297 nm,	Linearity:-CP:-240- 230 nm,OFLO:-303- 293 nm correlation coefficient:-CP:- 0.998,OFLO:-0.999	[139]
118	Tablet	Simultaneous estimation by RP-HPLC	Solvent:- Acetonitrile:phosphate buffer pH 3 (75:25)(pH adjusted with orthophosphoric acid)Column:-Hiber	Linearity:-CP:-5-25 µg/ml,OFFLO:-5-25 µg/ml	[140]

			C18(250 mm×4.6mm, i.d.5 µmFlow rate:- 1.0ml/min), w,avelength:- 271 nm,Rt:-CP:-3.24 min,OFLO:-2.16 min		
119	Bulk & tablet	Simultaneous estimation by RP-HPLC	Solvent:-0.1M ipotassium Hydrogen Phosphate Buffer: ethanol(90:10% v/v pH: 6.0 Column:- Thermo hypersil C18, 5 μ ,Column,Flow rate:-1,λmax :-265nm,Rt:- CP:-6.9 min,OFLO:-9 min	Linearity:-CP:-200- 600µg/ml ,OFLO-0.19 µg/ml:-200–600µg/ml ,Recovery in formulation:-CP:-98% -102% ,OFLO-98% - 102%	[141]

CHAPTER NO 3 AIM AND OBJECTIVE OF PROJECT WORK

3.AIM AND OBJECTIVE OF PROJECT WORK

3.1 AIM OF PROJECT WORK

UV visible spectroscopy,Colorimetry,Spectrofluorimetry,HPTLC,HPLC,Hyphenated and miscellaneous methods were reported for estimation of cefpodoxime proxetil and ofloxacin in individual and in combined bulk and pharmaceutical dosage form.Reported methods are also available for cefpodoxime proxxetil and ofloxacin with other drugs combination.

Our main aim is to develop sophisticated method for estimation of cefpodoxime proxetil and ofloxacin in individual and for combined bulk and Pharmaceutical dosage form.

For the cefpodoxime proxetil and ofloxacin in combined dosage form many UV Visible spectrophotometry method are available but it require solvent like methanol which is not eco-friendly to our environment and reagent use for derivatization is having some what high cost.By using urea as hydrotropic agent it is possible to develop organic solvent free method for combined dosage form.

For ofloxacin in literature many UV Visible spectrophotometry,Spectrofluorimetry methods are available.For estimation of ofloxacin in 5% acetic acid solution using UV Visible spectrophotometry for injection dosage form is available.No any spectrofluorimetry method is reported for estimation of ofloxacin in 5% acetic acid solution for bulk and Tablet dosage form.

As such ofloxacin give fluorescence but by using acetic acid solution it gives a pH control and give ofloxacin in unionize form which having more fluorescence and since ofloxacin is soluble in acetic acid solution.

For the cefpodoxime proxetil and ofloxacin combination only one HPTLC method available and that require water as solvent which require high chamber saturation time so it become time consuming method.

Super critical fluid chromatography is the newer concept in area of chromatography which is having green technology concept .Literature review revels that no any SFC method is reported for cefpodoxime proxetil and ofloxacin in individual and combined dosage form.

3.2 OBJECTIVE OF PROJECT WORK

UV SPECTROPHOTOMETRY:-

A simple, sensitive, accurate, presicise and organic solvent free eco friendly, cost effective Uv spectrophotommetry method development and validation for simultaneous estimation of cefpodoxime proxetil and of loxacin in combined dosage form in which urea is use as hydrotropic agent for slightly water soluble drug to get solubillize in water.

SPECTROFLUORIMETRY:

A more sensitive than UV Visible spectrophotoetry,accurate,precisie and organic solvent free Synchronous mode spectrofluorimetry method for estimation of ofloxacin in bulk and tablet dosage form using 5 % Acetic acid.

As such ofloxacin give fluorescence but by using acetic acid solution it gives a pH control and give ofloxacin in unionize form which having more fluorescence and since ofloxacin is soluble in acetic acid solution.

HPTLC:-

A simple, sensitive and less time consuming HPTLC method development for estimation of cefpodoxime proxetil and of loxacin in combined bulk form.

SFC:-

A simple, sensitive, specific and eco-friendly SFC method development using different column in which methanol use as modifier.

CHAPTER NO 4 IDENTIFICATION OF DRUGS

4.IDENTIFICATION OF DRUGS

Identification of drugs

Identification of drugs were carried out by Melting point,UV Visible Spectroscopy,Raman spectroscopy and FT-IR spectroscopy study.

Instrumentation

- 1. Melting point apparatus(Model T0603160; manufactured by EIE Instruments Pvt Ltd)
- 2. UV Visible Spectrophotometer(Model UV—2450 PC Series; manufactured by Shimadzu Inc;Japan)
- 3. Raman Spectrophotometer(Model R-3000 Series; manufactured by Raman systems Inc;USA)
- 4. FT-IR Spectrophotometer(Model FT-IR 6100; manufactured by Jasco, Inc;Japan)

4.1 MELTING POINT DETERMINATION

Melting point of Cefpodoxime proxetil (CEFPODOXIME PROXETIL) and Ofloxacin(OFLOXACIN) has been determined using melting point apparatus. The melting point of pure drugs was taken by capillary method.

Drug	Reported Melting Point(⁰ C) ^[10]	Observed Melting Point(⁰ C)
Cefpodoxime proxetil	111-113	100-115
Ofloxacin	270-275	272-277

Table 4.1:- Melting Point of Cefpodoxime proxetil and Ofloxacin

4.2 UV SPECTROMETRIC MEASUREMENT

 $10 \ \mu g/ml$ solution of standard Cefpodoxime proxetil and Ofloxacin each was prepared in methanol and scanned in UV Visible spectrophotometer in range of 200-400 nm to determine the absorption maxima of both the drugs.

Drug	Reported wavelength(nm) ^[130]	Observed wavelength(nm)
Cefpodoxime proxetil	237 nm	236 nm
Ofloxacin	299 nm	296 nm

Table 4.2:-UV observed wavelength of Cefpodoxime proxetil and Ofloxacin in $10\ \mu\text{g/ml}$ solution

Figure 4.1:- UV spectra of Cefpodoxime proxetil (10 $\mu g/ml$) and Ofloxacin (10 $\mu g/ml)\,$ in MeOH

4.3 RAMAN SPECTRA MEASUREMENT

Raman spectra of pure drugs of Cefpodoxime proxetil and Ofloxacin was taken by Raman spectrophotometer.

Figure 4.2:- Observed Raman spectra of Cefpodoxime Proxetil

Functional group	Reported wavenumber (cm-1) [142]	Observed wavenumber (cm-1)
-C=N-	1681.98	1578.5
C=O STRETCHING	1053.17	1045
-C-N-(aromatic		
primary amine)	1377.22	1294

Table 4.3:- Reported and Observed Raman	peak of Cef	podoxime Proxetil

Raman spectra of Ofloxacin

Functional group	Reported wavenumber (cm-1) ^[143]	Observed wavenumber (cm-1)
Vibration of aliphatic carbon,C-N stretching,O-H vibration of carboxylic group	518.4	554
Stretching of C-F group	797.5	770.1
Stretching of O-C-O group	1419.8	1389.7
Symmetric stretching of C=F	1649.6	1615.4

Table 4.4:-Reported and Observed Raman Peak of Ofloxacin

4.4 FT-IR SPECTRA MEASUREMENT

IR spectra of Cefpodoxime proxetil and Ofloxacin drugs was taken using FT-IR spectrophotometer.IR spectra obtained was verified with the reported IR spectra.

Figure 4.5:-Observed FT-IR Spectra of Cefpodoxime Proxetil

Figure 4.6:-Reported FT-IR Spectra of Cefpodoxime Proxetil^[142]

Functional group	Reported wavenumber (cm-1) ^[142]	Observed wavenumber (cm-1)
-NH2	3317.67	3327.57
S-CH2	2985.91	2939.95
-C=O(lactam)	1763.46	1760.69
-C=N-	1681.98	1616.06
C=O STRETCHING	1053.17	1074.16
-C-N-(aromatic primary amine)	1377.22	1373.07

Table 4.5:-Observed and Reported FT-IR Peaks of Cefpodoxime Proxetil

Figure 4.7:-Observed FT-IR Spectrum of Ofloxacin

Figure 4.8:-Reported FT-IR Spectrum of Ofloxacin^[143]

Functional Group	Reported wavenumber (cm-1) ^[143]	Observed wavenumber (cm-1)
Streatching of OH group and intramolecular H- bond	30,503,000	3164.61,3041.19
C=O streatching	1750-1700	1713.44
N-H bending vibration	1650-1600	1619.91
Alkyl group	1550-1500	1523.62
C-F group	1050	1075.12

Table 4.6:-Observed and ReportedFT-IR Peaks of Ofloxacin

5.UV VISIBLE SPECTROPHOTOMETERIC METHOD

UV SPECTROPHOTOMETRY METHOD DEVELOPMENT FOR SIMULTANEOUS ESTIMATION OF CEFPODOXIME PROXETIL AND OFLOXACIN IN COMBINED DOSAGE FORM USING UREA AS HYDROTOPIC AGENT.

5.1.1 INSTRUMENTATION AND APPARATUS

> UV Visible spectrophotometer

Model 2450 UV Visible spectrophotometer (Shimadzu Inc,Japan) having UV probe software was used.

Analytical balance

Model CX 220 analytical balance (CITIZEN,India) having capacity of 10 mg t0 220 mg was used.

> Sonicator

Model Trans-O-sonic.D compact having capacity of 2 liter as used

5.1.2 Reagents and material

- > API Cefpodoxime proxetil
- > API Ofloxacin
- ➢ Urea
- Double distilled water

Market Formulation:-Manufactured by:Relax pharmaceutical Pvt.Ltd.

Brand Name:-GUDCEF®PLUS

Label claim:- Cefpodoximm & Ofloxacin each 200 mg

5.1.3 Preparation of solutions

Preparation of 1 M/6 M Urea solution

1 M UREA:-For 50 ml solution take 3 gm urea in 50 ml volumetric flask and dilute upto 50 ml with distilled water.

6 M UREA:-For 50 ml solution take 18 gm urea in 50 ml volumetric flask and dilute upto 50 ml with distilled water.

Blank solution

From 6M urea take 1 ml and dilue upto 10 ml.From that take 1 ml dilute with distilled water upto 10 ml.

Preparation of Standard Stock solution of Cefpodoxime proxetil (1000µg/ml) and Ofloxacin(1000µg/ml)

Cefpodoxime proxetil (10 mg) and Ofloxacin (10 mg) was weighed accuretly and transferred to individual 10 ml ambert colored volumetric flasks and dissolved in 6 M Urea solution and sonicate for 30 min(1000 μ g/ml).The flasks were shaken and volume was made up to mark with 6 M Urea solution. The above solution was filtered through Whatmann filter paper(No.41).

Preparation of Standard working solution of Cefpodoxime proxetil (100µg/ml) and Ofloxacin(100µg/ml)

From the above solution $(1000\mu g/ml)$ take 1 ml of each and transferred into 10 ml volumetric flask and volume was made upto 10 ml using distilled water to produce $100\mu g/ml$ solution of each drug.

Preparation of stock solution of Marketed formulation

A total of twenty tablets were weighed accurately and powdered. An amount of tablet powder equivalent to 10 mg of Cefpodoxime proxetil and Ofloxain was transferred to 10 ml amber colored volumetric flask, volume made upto 10 ml with 6 M Urea solution and sonicated for 30 min to give 1000 μ g/ml solution. The above solution was filtered through Whatmann filter paper(No.41). Aliquot 1 ml was pipetted out and transferred to 10 ml amber colored volumetric flask and volume was made up to mark with distilled water to produce 100 μ g/ml.

2 METHOD DEVELOPMENT

5.2.1 INSTRUMENTAL PARAMETERS

INSTRUMENT :-UV-Visible Double-Beam spectrophotometer

Matched quartz cell (1cm) Model: UV-2450

Manufacturer: Shimadzu Inc. Japan, Wavelength range: 200.00 to 400.00 nm

Scanning speed: Fast, Slit width: 2 nm

Software:- Uv probe, Measurement Mode:-Spectrum mode, Photometric mode

5.2.2 OPTIMIZATION OF METHOD CONDITION

Step 1:- Selection of urea concentration

 $10 \ \mu g/ml$ solution of Cefpodoxime proxetil and Ofloxacin individually in 1 M & 6 M Urea solution taken and scan between 200-400 nm range.

Figure 5.1 UV spectrum of CP ($10\mu g/ml)\,$ and $\,OFLO(10\mu g/ml)\,$ in 1 M urea

Figure 5.2 UV spectrum of CP ($10\mu g/ml)\,$ and $\,OFLO(10\mu g/ml)\,$ in 1 M urea

Figure 5.3 Iso-bestic point of CEFPODOXIME PROXETIL and OFLOXACIN

Inference:-From the above UV spectra it was conclude that 6M urea it increase absorbance which indicate increase water soliubilty of drug

Step 2:-Selection of wavelength

From the above UV spectra (Figure 5.2) it was confirm that wavelength for Cefpodoxime proxetil and Ofloxacinn were 234 nm & 286 nm respectively and isosebastic point was at 267 nm.

Step 3:-Determination of absorptivity

Working standard stock solution:

The stock solution($100\mu g/ml$) of volumes 0.3,0.5,0.7,1,1.2,1.5,2.0 & 3.0 ml was further diluted in separate 10 mL volumetric flasks ith distilled water to get the concentrations of 3,5,7,10,12,15,20,30 $\mu g/mL$ for cefpodoxime proxetil and Ofloxacin respectively.

Procedure:

The absorbances of both the drugs were recorded at 234 and 286 nm and absorptivity (ε) for both the drugs was calculated from the formula:

A = abc

Where **a** = absorptivity, **b** = Pathlength (1 cm),

 \mathbf{c} = concentration (gm/100 ml), \mathbf{A} = Absorbance

Table 5.1 Absorptivity Data for cefpodoxime proxetil and Ofloxacin

<u>Step 4:- Development of simultaneous equation :</u>

If sample contains two absorbing substance (X and Y) and each of which absorbs at the Wavelength maxima of the other. Then it is possible to determine both the drugs by the technique of simultaneous Equation.

 $Cx = (A_2ay_1 - A_1ay_2) / (ax_2ay_1 - ax_1ay_2)$

 $Cy = (A_1ax_2 - A_2ax_1) / (ax_2ay_1 - ax1ay_2)$

- λ 1: Wavelength maxima for Ofloxacin
- λ 2: Wavelength maxima for cefpodoxim eproxetil

ax1 and ax2: Absorptivity of Ofloxacin at 286 nm and 234 nm

ay1 and ay2: Absorptivity of cefpodoxim proxetil at 286 nm and 234 nm

A1: Absorbance of Ofloxacin at 286 nm

A2: Absorbance of cefpodoxime proxetil at 234 nm

Developed simultaneous Equation using absorptivity value

At 286 nm, A1=468.055Cx + 134.223Cy

At 234 nm, A1=251.491Cx + 229.490Cy

5.3 METHOD VALIDATION

(1) Linearity:-Linearity was evaluated through a linear regression analysis.

Table 5.2 Linearity data of cefpodoxime proxetil(n*=6)

Figure 5.4 Linearity Overlay spectra of CP and OFLO(3-30 $\mu g/ml)$ in 6 M Urea

Table 5.3 Linearity data of Ofloxacin(n*=6)

Figure 5.5 Linearity Graph of CP

Figure 5.5 Linearity Graph of OFLO

(2) Accuracy:-

By standard addition method

Sample concentration was taken 6 μ g/ml for Cefpodoxime proxetil and Ofloxacin. After that accuracy of the method was determined by standard addition method at three different levels (80%, 100% and 120%).

Table 5.4 Accuracy data for Cefpodoxime proxetil

Table 5.5 Accuracy data for Ofloxacin

(3) Precision

For Precision concentration selected for both drugs Cefpodoxime proxetil and Ofloxacin was 5,10,15 μ g/ml.For both drugs intraday precision was carried out by taking 3 different concentration (5,10,15 μ g/ml) for 3 times in a day & for interday precision it was carried out on three different days.

(4) Repetability

For repetability stydy of both drugs Cefpodoxime proxetil and Ofloxacin,10 μ g/ml solution absorbance was measured six times at fixed wavelength.

Table 5.10 Repetability data of Cefpodoxime proxetil(n*=6)

Table 5.10 Repetability data of Ofloxacin(n*=6)

(5) Ruggedness

For ruggedness study of both drugs Cefpodoxime proxetil and Ofloxacin $3,5,7,10,12,15,20,30 \mu g/ml$ solution was made by different analyst and their absorbance was measured.

Table 5.11 Ruggednes data of Cefpodoxime proxetil

Table 5.12 Ruggednes data of Ofloxacin

(6) Specificity

For specificity of both drug Cefpodoxime proxetil and Ofloxacin same concentration of sample(tablet) and standard solution taken and scan between 200-400 nm.

Figure 5.6 Uv spectra of standard and sample solution

From the spectra of standard and sample solution it shows no interference of excipient.

(7)Limit of detection & Limit of Quantification

The calibration curve was repeated six times and the standard deviation of response(absorbance) was calculated.LOD was calculate using following equation

LOD= $\sigma/s*3.3$

Where, σ = standard deviation of response

s=slope

Here standard deviation of response is Absorbance

Limit of Quantification

The calibration curve was repeated six times and the standard deviation of response(absorbance) was calculated.LOQ was calculate using following equation

LOQ=s/s*10

Where, σ = standard deviation of response

s=slope

Analysis of Marketed formulation

From the marketed formulation solution (100 μ g/ml) pippet out 1.2 ml and diluted upto 10 ml with 6 M Urea solution in 10 ml ambert colored volumetric flask.

5.4 RESULTS AND CONCLUSION

Parameters	Cefpodoxime	Ofloxacin
	proxetil	
λmax (nm)	234 nm	286 nm
Beer lambert's law limits (µg/ml)	3-30	3-30
Absorptivity	229.49	468.05
Regression equation	y = 0.026x - 0.029	y = 0.055x - 0.079
Slope (m)	0.026	0.055
Intercept (c)	0.029	0.079
Correlation coefficient (r)	0.998	0.998
Accuracy(% Recovery)	98.4-100.9	98-100.7
Interday Precision % RSD	< 2%	< 2%
Intraday Precision % RSD	< 2%	< 2%
Repetabilty % RSD	< 2%	< 2%
Specificity	No inteference	No inteference
Ruggedness % RSD	< 2%	< 2%
LOD (µg/ml)	0.1	0.32
LOQ (µg/ml)	0.32	0.99
% Assay	102.6	101.13

CONCLUSION:-

From the results it conclude that using Urea increase solubility of drugs in water .The validation parameters are under the specified range.The developed method is accurate,precisie,rugged and specific.The developed method is useful for routine analysis of Pharmaceutical formulation.

6.SPECTROFLUORIMETRIC METHOD

SYNCHRONOUS MODE SPECTROFLUORIMETRY METHOD DEVELOPMENT AND VALIDATION FOR ESTIMATION OF OFLOXACIN IN BULK AND TABLET DOSAGE FORM.

6.1.1 INSTRUMENTATION AND APPARATUS

- Spectrofluorimeter Model :
 FP- 6500 PC series, Matched quartz cell (1cm), Manufacturer JASCO Japan, Wavelength range: 220.00 to 750.00 nm
- Analytical Balance Model : CX -220, Citizen, Bombay, India
- Sonicator Model : TRANS-O-SONIC; D-compect., Capacity: 2 Lit., Ahmedabad,India
- ➢ Hot air oven Model :

Hot air oven with digital temperature controller, EIE Instrument Pvt. Ltd., Ahmedabad, India

6.1.2 Reagents and material

- > API Ofloxacin
- > Glacial acetic acid, (AR Grade), S.D.Fine Chemicals Ltd., Bombay, India..
- Doubled Distilled water
- Formulation:-Ofloxacin Tablet,
- Manufactured by:- Cipla LTD, Label claim:-200 mg

6.1.3 Preparation of solutions

5 % Acetic acid solution:-For preparation of 100 ml 5% acetic acid solution take 5 ml conncentrated actic acid in 100 ml volumetric flask dilute upto 100 ml with distilled water.

Blank solution :- 5 % Acetic acid solution

Preparation of standard stock solution of Ofloxacin

Ofloxacin 10mg accurately weighed and transferred to 10 mL amber colored volumetric flasks. Dissolved in 5 % acetic acid, sonicated for 20 min and volumes were made up to mark with aceticacid to obtain standard stock solutions having concentration 1000 μ g/mL.

Preparation of woring stock solution of Ofloxacin

From the above solution pipette out 1 ml solution in 10 ml volumetric flask and volume made upto 10 ml with acetic acid solution to produce $100 \ \mu g/mL$.

Preparation of stock solution of Marketed formulation

Quantity of tablet powder equivalent to 10 mg of Ofloxacin was weighed and transferred to a 100 mL amber colored volumetric flask volume made upto mark with acetic acid solution sonicated for 20 min. The solution was shaken and filtered through Whatmann filter paper.

Preparation of working solution of Marketed formulation

From the filtered solution($1000\mu g/ml$) pipette out 1 ml solution in 10 ml volumetric flask and volume made upto 10 ml with acetic acid solution to produce 100 $\mu g/mL$.
6.2 METHOD DEVELOPMENT

6.2.1 INSTRUMENTAL PARAMETER:-

INSTRUMENT MODE:-Spectrum measurment

MEASUREMENT MODE:-Synchronous

BAND WIDTH:-5 nm, DELTA VALUE:-10-160

DATA PITCH:--5 nm,SCANNING SPEED:- 500 nm/min

SENSITIVITY:-Medium

6.2.2 Optimization of condition for method

Step 1:-Scanning of solution in Uv spectrophotometer to confirm excitation wavelength.

100 μ g/ml Ofloxacin solution in 5% acetic acid solution taken and scan between 200-400 nm in UV Visible spectrometer.

Step 2:-Selection of Delta (D) value:- For better sensitivity and resolution

 Table 6.1 Trials for optimization of delta value in spectrofluorometer

Optimized Delta value:-From the number of trial it indicate that at **140 D** value it give sharp peak at 480 nm with high sensitivity

Figure 6.2 Ofloxacin 1 µg/ml solution synchronous mode spectra

Step 3:-Scanning of Ofloxacin 1 µg/ml solution in emission and excitation mode

Figure 6.3 Emission spectra at 295 nm excitation wavelength

Figure 6.4 Excitation spectra at 480 nm emission wavelength

6.3 METHOD VALIDATION

(1) Linearity:- Linearity was evaluated through a linear regression analysis.

From the Standard working solution take 1,0.1 ml & dilute with 10 ml with 5% Acetic acid to produce 10 μ g/ml & 1 μ g/ml solution in 10 ml volumetric flask. From 1 μ g/ml solution take 0.5,1,3,5,8 ml dilute with 10 ml 5% Acetic acid to produce 0.05,0.1,0.3,0.5,0.8 μ g/ml solution .Solutions were scanned in spectrofluorometer.

Figure 6.5 Linearity overlay spectrum of OFLOXACIN(0.05-1µg/ml)

 Table 6.2 Linearity data of Ofloxacin (n*=6)

Figure 6.6 Linearity graph of Ofloxacin

(2) Accuracy

By standard addition method

Sample concentration was taken 0.3 µg/ml for Ofloxacin. After that accuracy of the method was determined by standard addition method at three different levels (80%, 100% and 120%) by spiking 0.24,0.3,0.36µg/ml in 0.3µg/ml.

Table 6.3 Accuracy data of Ofloxacin(n=3)

(3) Precision

For Precision concentration selected for Ofloxacin was $0.05, 0.5, 1 \mu g/ml$.For Ofloxacin intraday precision was carried out by taking 3 different concentration ($0.05, 0.5, 1 \mu g/ml$) for 3 times in a day & for interday precision it was carried out on three different days.

Intraday precision

Table 6.4 Intraday precision data of Ofloxacin(n*=3)

Interday precision

Table 6.5 Interday precision data of Ofloxacin(n*=3)

Repetability

For repetabilty stydy of Ofloxacin,0.05,0.5,1 µg/ml solution intensity was measured.

Table 6.6 Repetability data of Ofloxacin(n*=6)

(4) Ruggedness

For ruggedness study of Ofloxacin 0.05,0.1,0.3,0.5,0.8 μ g/ml solution was made by different analyst and their intensity was measured.

Table 6.7 Ruggedness data of Ofloxacin(n=2)

Specificity

For specificity of Ofloxacin same concentration of sample(tablet) and standard solution scan in synchronous mode.

Figure 6.7 Spectra of standard and sample solution

Limit of detection and Limit of Quantification

The calibration curve was repeated six times and the standard deviation of response(absorbance) was calculated.LOD was calculate using following equation

LOD= $\sigma/s*3.3$

Where, σ = standard deviation of response

s=slope

Limit of Quantification

The calibration curve was repeated six times and the standard deviation of response(absorbance) was calculated.LOQ was calculate using following equation

 $LOQ = \sigma/s*10$

Where, σ = standard deviation of response

s=slope

Table 6.8 LOD & LOQ data of Ofloxacin(n*=6)

Analysis of Marketed Formulation

 Table 6.9 Assay results of Markted formulation (n=3)

6.4 RESULTS AND CONCLUSION

Parameters	Observation
Synchronous mode λ max (nm)	480 nm
Linearity rang (µg/ml)	0.05-1
Excitation λmax (nm)	295 nm
Emission λmax (nm)	480 nm
Delta value	140 D
Regression equation	y = 385.3x - 28.44
Slope (m)	385.3
Intercept (c)	28.44
Correlation coefficient (r)	0.995
Accuracy(% Recovery)	99.3-100.7
Interday Precision % RSD	< 2%
Intraday Precision % RSD	< 2%
Repetabilty % RSD	< 2%
Specificity	No inteference
Ruggedness % RSD	< 2%
LOD (µg/ml)	0.01
LOQ (µg/ml)	0.03
% Assay	105.43

CONCLUSION

From the results it conclude that determination of ofloxacin using 5% acetic acid solution enhance the sensitivity in terms of results. The develop method is accurate, precisie, rugged and specific. The method validation parameters are as per specified range. The developed method is useful for routine analysis of Pharmaceutical formulation

7. HPTLC(HIGH PERFORMANCE THIN LAYER CHROMATOGRAPHY) METHOD

A SIMPLE, SENSITIVE AND LESS TIME CONSUMING HPTLC METHOD DEVELOPMENT FOR ESTIMATION OF CEFPODOXIME PROXETIL AND OFLOXACIN IN COMBINED BULK FORM.

7.1 INSTRUMENTATION AND APPARATUS

- Pre-coated silica gel aluminum Plate 60F–254 (20×20 cm with 250 μ m thickness) (E. Merck)
- Camag 100 µl Applicator syringe (Hamilton, Bonaduz, Schweiz)
- Camag Applicator-Linomat V
- Camag Twin trough chamber (10×20) with stainless steel Lid
- Camag TLC scanner3
- UV cabinet with dual wavelength UV lamp (254 nm and 366 nm)
- Balances Model:Citizen Cx-220, Citizen Pvt. Ltd.
- Ultra Sonicator, Trans-o-sonic, India
- Hot air oven, EIE Instruments Pvt. LTD.
- WinCATS software

7.1.1 REAGENTS AND MATERIAL

- API Cefpodoxime proxetil & Ofloxacin
- Methanol (AR grade, S.D. Fine chemicals Ltd., Mumbai, India)
- Chloroform (AR grade, S.D. Fine Chemicals, Mumbai)
- Ethyl Acetate (AR Grade, CDH Pvt LTD, New Delhi)
- Toluene (AR grade, S.D. Fine Chemicals, Mumbai)
- Triethylamine(AR grade, S.D. fine chemicals, Mumbai)

7.1.2 Preparation of solution

Preparation of Standard stock solutions of Cefpodoxime proxetil and Ofloxacin

Cefpodoxime proxetil (10 mg) and Ofloxacin (10 mg) was weighed accuretly and transferred to individual 10 ml ambert colored volumetric flasks and dissolved in metanol and sonicate for 5 min. The flasks were shaken and volume was made up to mark with methanol. (1000μ g/ml)

Preparation of working standard stock solution

From the above solutions of Cefpodoxime proxetil and Ofloxacin 1 ml aliquot was taken and transferred to 10 ml ambert colored volumetric flask. The flasks were shaken and volume was made up to mark with methanol. (100µg/ml)

7.2 METHOD DEVELOPMENT AND VALIDATION

7.2.1 Optimization of method condition

Step 1:- Optimization of mobile phase on TLC(Thin layer chromatography)

Figure 7.1 Trials on TLC (Thin layer chromatography) Visulization in UV Chamber

 Table 7.1 Trials of mobile phase optimization on TLC(Thin layer chromatography)

 Step 2 Optimization of mobile phase on HPTLC system

Figure 7.2 Trials on HPTLC Visulization in UV Chamber

Trial No 1

Trial No 3

Trial no 4

able 7.2 Trials of mobile phase optimization on HPTLC

Step 3:-Selection of(optimize) wavelength for scanning on HPTLC-UV system

1) By observing area at different wavelength

Selection of wavelength from scanning of tracks 200-450 nm wavelength

(2) By peak purity

Figure 7.3 Peak purity spectra of Cefpodoxime proxetil & Ofloxacin

From the above observation it can be conclude that 290 nm wavelength is optimum for scanning of Cefpodoxime proxetil and Ofloxacin

OPTIMIZED HPTLC METHOD PARAMETERS

- > **Mobile Phase** :- Chloroform: Ethyl acetate:MeOH:TEA (5.0:0.75:0.5:0.3 v/v/v/v)
- > Scanning Wavelength :- 290 nm
- > Chamber Saturation Time: 15min.
- > Band Width :- 5mm
- > **Distance Run** :- 80mm**Slit Dimension** :- 5mm x 0.33mm
- > Scanning Speed :- 20mm/s

METHOD VALIDATION

(1) Linearity:- Linearity was evaluated through a linear regression analysis.

From the working standard mixture(100 µg/ml), aliquots were spotted on the TLC plate under nitrogen stream using Linomat V to obtain final concentration 500,700,1200,1500,2000 ng/spot.

Figure 7.4 Linearity HPTLC graph scanning at 290 nm wavelength

 Table 7.3 Linearity data of Cefpodoxime proxetil (n*=6)

 Table 7.4 Linearity data of Ofloxacin (n*=6)

Figure 7.5 Linearity graph of Cefpodoxime proxetil and Ofloxacin

(2) Specificity(Peak Purity)

Figure 7.6: Peak purity HPTLC chromatogram of Cefpodoxime proxetil and Ofloxacin

Table 7.5 Specificity data of Cefpodoxime proxetil and Ofloxacin

From the HPTLC-UV Peak purity chromatogram it shows that each bands separated was pure drug Cefpodoxime proxetil and Ofloxacin.

(3) Limit of detection & Limit of Quantification

The calibration curve was repeated six times and the standard deviation of response(Area) was calculated.LOD & LOQ was calculate using equations given in section (5.3)

Table 7.6 LOD & LOQ data of Cefpodoxime proxetil and Ofloxacin(n*=6)

7.3 RESULTS AND CONCLUSION

Parameters	Cefpodoxime	Ofloxacin	
	proxetil		
Scanning wavelength	290 nm	290 nm	
Linearity rang (ng/spot)	500-2000	500-2000	
R _f	0.68	0.28	
Regression equation	y = 4.321x + 3716	y = 6.652x + 4996	
Slope (m)	4.321	6.652	
Intercept (c)	3716	4996	
Correlation coefficient	0.999 0.999		
(\mathbf{r}^2)			
Specificity(Peak purity)	PASS		
LOD (µg/ml)	0.73	2.21	
LOQ (µg/ml)	5.8	17.7	
Saturation time	15 min		

CONCLUSION

From the results it conclude that method optimize for the method validation parameters are as acceptance criteria.Chamber saturation time is 15 min.Rf value for both drugs are within limit.It is having less time consuming than reported method in which water use in composition of mobile phase.

8.SFC(SUPER CRITICAL FLUID CHROMATOGRAPHY) METHOD

A SIMPLE, SENSITIVE, SPECIFIC AND ECO-FRIENDLY SFC METHOD DEVELOPMENT FOR ESTIMATION OF CEFPODOXIME PROXETIL USING DIFFERENT COLUMN IN WHICH METHANOL USE AS MODIFIER.

8.1 INSTRUMENTATION AND APPARATUS

Super critical fluid chromatography with model no.JASCO 900 series,manufactured by Jasco Inc.JAPAN with pump (Jasco PU-950),Column oven (JASCO-CO-965),Injector (Rheodyne model 7125 with 20 μL,fixed loop),Back pressure (JASCO-880-81),Detector(JASCO UV-975),Software (BORWIN Jasco) and column

> Analytical balance

Model CX 220 analytical balance (CITIZEN,India) having capacity of 10 mg t0 220 mg was used.

> Sonicator

Model Trans-O-sonic.D compact having capacity of 2 liter as used

5.1.2 Reagents and material

API Cefpodoxime proxetil

Carbon dioxide used was 99.9 % pure, obtained from BOC Pvt.Ltd.India

Methanol HPLC grade was obtained from S D Fine Chemicals, Mumbai

5.1.3 Prepartation of solutions

Preparation of (1000 µg/ml)standard stock solution

Standard Cefpodoxime proxetil was accurately weighed and transferred to 10 ml ambert colored volumetric flask. It was dissolved properly and diluted up to mark with methanol to obtain final concentration. (1000 μ g/ml).

Preparation of (100 μ g/ml) standard working solution

From the standard stock solution take 1ml and transferred to 10 ml ambert colored volumetric flask. Volume was made upto mark with methanol to get final concentration. (100 μ g/ml).

Preparation of solution for acid or base degradation:-

For degradation take 10 mg Cefpodoxime proXetil in 10 ml volumetric flask add 5 ml methanolic HCl/NaOH(1 M) and kept it overnight in dark place. Then neutralize with 1M NaOH/HCl.

Preparation of solution for oxidative degradation:-

For degradation study take 10 mg Cefpodoxime proxetil in 10 ml volumetric flask add 2 ml 30% Hyderogen Peroxide.Add 2 ml methanol and kept it overnight in dark place.Then dilute upto mark with methanol.

Preparation of solution for Thermal and Photo degradation:-

For thermal 10 mg Cefpodoxime proxetil taken in petri plate and kept it at 80^oC for 48 hrs.

For thermal 10 mg Cefpodoxime proxetil taken in petri plate and kept it in sun light for 48 hrs.

5.2 METHOD DEVELOPMENT

Optimization of Method condition

[1] Method optimization using C₁₈ column:-

Constant parameter

Column:- C18, 150*4.6 mm, 5µm particle size

Wavelength:-237 nm

Temperature:-35⁰C

Back pressure:-150 MPa

Table no:8.1 Trials of Cefpodoxime proxetil on SFC using C18 column for method optimization

[2] Method optimization using Phenyl column:-

Constant parameter

Column:- ZORBEX SB phenyl, 150*4.6 mm, 5µm particle size

Wavelength:-237 nm

Temperature:-35⁰C

Table no:8.2 Trials of Cefpodoxime Proxetil on SFC using phenyl column for method optimization

8.3 RESULTS

Trial no	Conc(µg/ml)	Flow rate(ml/min)		Back pressure	Retention time	Assymetry			
		CO2	MeOH	Мра	(min)				
C ₁₈ column									
1	25	1.7	0.3	150	1.067	2.078			
2	25	1.8	0.2	150	1.158	1.794			
3	1000	0.9	0.1	150	2.342	1.909			
Phenyl Column									
4	1000	0.9	0.1	150	11.76	1.797			
5	1000	1	0.25	150	3.217	2.308			
6	1000	1	0.15	170	5.042	2.51			
7	1000	1	0.15	100	5.975	1.978			
8	1000	1.8	0.15	150	6.958	1.483			
9	1000	1.8	0.15	200	5.158	3.111			
10	25	1.8	0.2	150	4.917	1.728			
11	1000	1.8	0.2	150	4.625	2.855			
	DEGRADTION STUDY								
12	1000	1.8	0.2	150	3.717	3.435			
13	1000	1.8	0.2	150	2.992	1.931			
					12.792	0.96			
14	1000	1.8	0.2	150	4.242	2.708			
15	1000	1.8	0.2	150	4.125	2.432			
16	1000	1.8	0.2	150	4.117	2.557			

[Trial no 1-3 using C18 column, Trial no 4-11 using Phenyl column,

Trial no 12-16 for degradation study]

CONCLUSION

From the results it conclude that it is possible to develop method for determination of Cefpodoxime proxetil using phenyl column on Super critical fluid chromatography.

As the composition of methanol increase the retention time of drug is decrease.By changing back pressure at constant flow rate it affect the retention time .As back pressure increase retention time get decrease.

9.SUMMARY & FUTURE SCOPE

9.1 SUMMARY

UV Spectrophotometric method includes simultaneous equation method that involves measurement of absorbances at two wavelengths i.e. at 234 nm (λmax of CEFPODOXIME PROXETIL) and 286 nm (\lambda max of OFLOXACIN) in methanol. Linearity range was observed in the concentration range 3-30 µg/mL with recovery range 98.4-100.9 for CEFPODOXIME PROXETILand 3-30 µg/mL with recovery range of 98-100.7 for OFLOXACIN respectively. The correlation coefficients for CEFPODOXIME PROXETILand OFLOXACIN was found to be 0.998 and 0.998, respectively. LOD and LOQ were found to be 0.1 and 0.32 µg/mL for CEFPODOXIME PROXETIL0.32 and 0.99 µg/mL for OFLOXACIN, respectively. The R.S.D. values for precision studies were found to be less than 2 for both the drugs.

Spectrofluorimetric method includes synchronous mode estimation of OFLOXACIN using delta value 140 (medium sensitivity mode) that involves measurement of fluorescence intensity at 480 nm wavelengths in synchronous spectra of drug in 5 % acetic acid solution.Linearity range was observed in the concentration range 0.05-1 μ g/mL with recovery range of 99.3-100.7. The correlation coefficients for Ofloxacinxacin was found to be 0.995.LOD and LOQ was found to be 0.01 and 0.03 μ g/ml. The RSD values for precision studies were found to be less than 2 for both the drugs.

In HPTLC method quantification of CEFPODOXIME PROXETILand OFLOXACIN was done by peak area. The separation of drugs was carried out using Chloroform: Ethyl acetate:MeOH:TEA (5.0:0.75:0.5:0.3 v/v/v/v) as mobile phase on TLC silica gel G60 F254. The distance run was 80 mm. The densitometric detection was done at 290 nm wavelength. Linearity range was observed in the concentration range 500-2000 ng/spot The correlation coefficients for CEFPODOXIME PROXETIL and OFLOXACIN were found to be 0.9989 and 0.9984, respectively. LOD and LOQ were found to be 0.9999 ng/spot for both drugs The Rf value for CEFPODOXIME PROXETIL and OFloxacin were found to be 0.68 & 0.28. Peak purity spectra shows that the method is specific for both drugs determination.

Super critical fluid chromatography includes optimization of various parameter to improve selectivity, sensitivity of method. The parameters optimize are flow rate of carbon dioxide & methanol, temperature of oven, back pressure, The wavelength selected for the estimation CEFPODOXIME PROXETIL 237 nm. Different flow rate was tried for sensitivity of drug. Degradation profile of CEFPODOXIME PROXETIL was done in 1 M HCl, 1 M NaOH, 30 % Hydrogen peroxide, Thermal, Photo. CEFPODOXIME PROXETIL shows degradation in 1 M NaOH. From the result table it shows that by changing back pressure fluid property change which affect retention time of compound.

9.2 FUTURE SCOPE

A Literature survey revels that no single super critical chromatography method is reported for estimation of CEFPODOXIME PROXETILand OFLOXACIN in individual or in combined dosage form.So by using develop method of CEFPODOXIME PROXETILit is possible to do validation of the method for various parameter.

It is also possible to develop method for determination of degradation study.Develop method for determination of drugs in combined dosage form.

Literature surve revels that no any raman spetcrophotometric method for quantification of both drug in individual or combined dosage form.

For spectrofluorimetry only one method for determination of CEFPODOXIME PROXETIL is available through derivatization using reagent, so it is possible to develop spectrofluorimetry method for determination of CEFPODOXIME PROXETIL and OFLOXACIN in combined dosage form.

By using develop HPTLC method of CEFPODOXIME PROXETILand OFLOXACIN in combined bulk form it is possible to use for determination of CEFPODOXIME PROXETILand OFLOXACIN in combined dosage form.

By using urea as hydrotropic agent it is possible to develop method for dissolution profile of drugs in combination.

10.REFERENCES

[1]https://www.bcm.edu/departments/molecular-virology-and-microbiology/emerging-

infections-and-biodefense/introduction-to-infectious-diseases 27th sep 2014

[2] http://en.wikipedia.org/wiki/Cefpodoxime 27th sep 2014

[3]http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=63777889-d306-4fc3-88dab24859040ef4 27th sep 2014

[4] Nelson, J. M.; Chiller, T. M.; Powers, J. H.; Angulo, F. J. Fluoroquinolone-Resistant Campylobacter Species and the Withdrawal of Fluoroquinolones from Use in Poultry: A Public Health Success Story. *Clin. Infect. Dis.* 2007, *44* (7), 977–980.

[5] Kawahara, S. (December 1998). "[Chemotherapeutic agents under study]". Nippon Rinsho 56 (12): 3096–9. PMID9883617.

[6] http://www.jfda.jo 27th sep 2014

[7] http://www.drugbank.ca/drugs/DB01416 27th sep 2014

[8] Indian Pharmacopoeia 2010; Govt of India; Ministry of Health and Family Welfare; The Indian Pharmacopoeia Commission.

[9] Martindale the complete drug reference; Pharmaceutical press USA; 36th edition; Vol. 1; 2009.

[10] http://www.chemicalbook.com/ChemicalProductProperty_US_CB5150483.aspx

[11] http://www.drugs.com/monograph/cefpodoxime-proxetil.html#r20 27th sep 2014

[12] http://en.wikipedia.org/wiki/Ofloxacin 27th sep 2014

[13] http://www.drugbank.ca/drugs/DB01165 27th sep 2014

[14] USP NF, 2005

[15] Pharmacy, M. M. C. ISSN 2230 – 8407 Review Article SIMULTANEOUS ESTIMATION OF MULTICOMPONENT FORMULATIONS BY UV-VISIBLE SPECTROSCOPY: AN OVERVIEW Jasmine Chaudhary *, Akash Jain , Vipin Saini. 2011, 2 (12), 81–83.

[16] B. Madhavi*, Dr. P.Venkateswara Rao, P.Rama Bharathi, T.Swathi, B. R. R. No Title. PHARMATUTOR.

[17] Siddiqui, M. R.; AlOthman, Z. A.; Rahman, N. Analytical Techniques in Pharmaceutical Analysis: A Review. *Arabian Journal of Chemistry*. 2013,.

[18] http://www.dmpharma.co.in/Cefpodoxime%20+%20Ofloxacin.html 27th sep 2014

[19] David G Watson.pdf. Pharmaceutical ANALYSIS A Text book for pharmacy student and pharmaceutical chemist, 1999, 74–94.

[20]Stenlake J.B., Backett A.H. (1997) Practical pharmaceutical Chemistry, C.B.S. Publishers and Distributors, New Delhi, 4th Ed., Part II, 275-325.

- [21] Nahata, A. Spectrofluorimetry as an Analytical Tool. *Pharmaceutica Analytica Acta*, 2011, 02.
- [22]http://www.biotecharticles.com/Biology-Article/High-Pressure-Thin-Layer Chromatography-Principles-and-Practice-480.html 27th sep 2014
- [23] http://www.southampton.ac.uk/~gjl/Research/sfc.htm 27th sep 2014
- [24] King, J. W.; Lee, L.; Hill, H. ANALYTICAL SUPERCRITICAL FLUID CHROMATOGRAPHY AND EXTRACTION; 1993; Vol. X.
- [25] Rouessac, F. R. and A. No Title. In .), Chemical Analysis Modern Instrumentation Methods and Techniques; France, 1994; pp 127–133.
- [26] Conference, I.; Harmonisation, O. N.; Technical, O. F.; For, R.; Of, R.; For, P.; Of, A. ICH HARMONISED T RIPARTITE G UIDELINE V ALIDATION OF A NALYTICAL P ROCEDURES : 2005, 1994 (November 1996).

[27] Maheshwari, M. L.; Mughal, U. R.; Ghoto, M. A.; Dayo, A.; Memon, N.; Arain, M. I.; Ali, A. International Journal of Pharmacy. 2014, *4* (1), 63–68.

[28] Asnani, G.; Jadhav, K.; Dhamecha, D.; Sankh, A.; Patil, M. Development and Validation of Spectrophotometric Method of Cefpodoxime Proxetil Using Hydrotropic Solubilizing Agents. *Pharm. Methods* 2012, *3* (2), 117–120.

[29] Journal, A.; Analysis, P. Visible Spectroscopic Estimation and Validation of Cefpodoxime Proxetil in Bulk and. 2008, *20* (5), 3373–3376.

[30] S, S. S. M.; Shetty, A. S. K.; Anil, S. M. UV-Visible Spectrophotometric Methods For The Estimation Of Cefpodoxime Proxetil In Bulk Drug And Pharmaceutical Dosage Form . 2012, *4* (2), 750–756.

[31] Cefpodoxime, I. Spectrophotmetric Determination of Cefpodoxime Proxetil in Tablets. 2010, *22* (5), 3345–3348.

[32] Weshahy, S. A.; Hassan, N. Y.; Mostafa, N. M.; Shereen, A. Stability Indicating Methods for the Determination of Cefpodoxime Proxetil in the Presence of Its Acid and Alkaline Degradation Products. 2013, *3* (6), 223–239.

[33] Subbayamma, V.; Rambabu, C. Application of Ninhydrin and Ascorbic Acid for the Determination of Cefpodoxime Proxetil in Pharmaceutical Formulations. 2008, *24* (2), 651–654.

[34] Mohamed, N. A.; Abdel-Wadood, H. M.; Ahmed, S. An Efficient One-Pot Reaction for Selective Fluorimetric Determination of Cefpodoxime and Its Prodrug. *Talanta* 2011, *85* (4), 2121–2127.

[35] Sharma, S.; Singh, S.; Baghel, S.; Girl, S. N. G.; College, P. G. THIN LAYER CHROMATOGRAQPHIC ANALYSIS OFCEFPODOXIME PROXETIL IN TABLET AND CAPSULAR FORMULATIONS. 2006, *1* (1), 46–48.

[36] Shah, N.; Patel, A.; Patel, N.; Darji, B. Development and Validation of a HPTLC Method for the Estimation of Cefpodoxime Proxetil. *Indian Journal of Pharmaceutical Sciences*, 2007, *69*, 331.

[37] Kumar, V.; Arora, V.; Bansal, A. K. Investigation on Physicochemical and Biological Differences of Cefpodoxime Proxetil Enantiomers. 2006, *64*, 255–259.

[38] Li, J.; Zhang, D.; Hu, C. Characterization of Impurities in Cefpodoxime Proxetil Using LC – MS N. *Acta Pharm. Sin. B* 2014, *4* (4), 322–332.

[39] Lovdahl, M. J.; Reher, K. E.; Russlie, H. Q.; Canafax, D. M. Determination of Cefpodoxime Levels in Chinchilla Middle Ear Fluid and Plasma by High-Performance Liquid Chromatography. *J. Chromatogr. B Biomed. Appl.* 1994, 653 (2), 227–232.

[40] Ahmed, S.; Abdel-Wadood, H. M.; Mohamed, N. A. Highly Sensitive and Selective High-Performance Liquid Chromatography Method for Bioequivalence Study of Cefpodoxime Proxetil in Rabbit Plasma via Fluorescence Labeling of Its Active Metabolite. *J. Chromatogr. B* 2013, *934*, 34–40.

[41] Kakumanu, V. K.; Arora, V. K.; Bansal, A. K. Development and Validation of Isomer Specific RP-HPLC Method for Quantification of Cefpodoxime Proxetil. *J. Chromatogr. B Anal. Technol. Biomed. Life Sci.* 2006, *835* (1-2), 16–20.v

[42]Wang, M.-J.; Zou, W.-B.; Xue, J.; Hu, C.-Q. Comparison of Three RP-HPLC Methods for Analysis of Cefpodoxime Proxetil and Related Substances. *Chromatographia*, 2006, *65*, 69–75.

[43] Building, G. H. P. P. Stress Degradation Studies on Cefpodoxime Proxetil and Development of a Validated Stability-Indicating HPLC Method. 2011, *23*, 215–234.

[44] Vihar, U.; Area, I. Gastro-Retentive Dosage Form for Improving Bioavailability of Cefpodoxime Proxetil in Rats. 2008, *128* (3), 439–445.

[45] Bombardt, P. A.; Cathcart, K. S.; Bothwell, B. E.; Closson, S. K. Determination of Cefpodoxime Levels and Cefpodoxime Stability In Human Urine By Direct Injection HPLC with Column-Switching. *Journal of Liquid Chromatography*, 1991, *14*, 1729–1746.

[46] Mathew, C.; Ajitha, M.; Babu, P. R. S. Cefpodoxime Proxetil: A New Stability Indicating RP-HPLC Method. 2013, 2013.

[47] Li, J.; Zhang, D.; Hu, C. Characterization of Impurities in Cefpodoxime Proxetil Using LC – MS N. *Acta Pharm. Sin. B* 2014, 1–11.

[48] Fukutsu, N.; Kawasaki, T.; Saito, K.; Nakazawa, H. Application of High-Performance Liquid Chromatography Hyphenated Techniques for Identification of Degradation Products of Cefpodoxime Proxetil. *J. Chromatogr. A* 2006, *1129* (2), 153–159.

[49] QIN, Li2; HU, Chang-qin1; LIU, W. Headspace GC Determination of Residual Solvents in Cefpodoxime Proxetil. *Chinese J. Pharm. Anal.* 2003, *23* (6), 452–454(3).

[50] Arora, S. C.; Sharma, P. K.; Irchhaiya, R.; Khatkar, A.; Singh, N.; Gagoria, J. Development, Characterization and Solubility Study of Solid Dispersion of Cefpodoxime Proxetil by Solvent Evaporation Method. 2010, *2* (2), 1156–1162.

[51] Aleksi, M.; Kapetanovi, V. Adsorptive Properties of Cefpodoxime Proxetil as a Tool for a New Method of Its Determination in Urine. 2004, *36*, 899–903.

[52] Singh, U.; Nitin, D.; Jain, D. K.; Tyagi, L. K.; Singh, M. Spectrophotometric and RP-HPLC Methods for Simultaneous Determination of Cefpodoxime Proxetil and Clavulanate Potassium in Combined Tablet Dosage Form. *Am. Eurasian J. Sci. Res.* 2010, *5* (2), 88–93.

[53] Patel, S. M.; Mehta, M. R.; Dave, J. B.; Patel, C. N. RESEARCH ARTICLE INTERNATIONAL JOURNAL OF PHARMACE PHARMACEUTICAL UTICAL RESEARCH AND BIO-SCIENCE SPECTROPHOTOMETRIC METHODS FOR SIMULTANEOUS ESTIMATION OF CEFPODOXIME PROXETIL AND AMBROXOL HYDROCHLORIDE IN TABLET DOSAGE FORM. 2012, *1* (3), 195–203.

[54] Goswami, J.; Kakadiya, J.; Shah, N. Development and Validation of First Order Derivative Spectrophotometric Method for Simultaneous Estimation of Ambroxol And Cefpodoxime in Combined

[55] Delivery, D.; Of, D.; Order, F.; Spectrophotometric, D.; For, M.; Estimation, S.; Proxetiltablet, D.; Form, D.; Drupad, A.; Dipti, P.; et al. DEVELOPMENT AND VALIDATION OF FIRST ORDER DERIVATIVE SPECTROPHOTOMETRIC. 2012, 2 (1).

[56] Abirami, G.; Vetrichelvan, T.; Bhavyasri, M. Development and Validation of UV-Spectroscopy Method for the Determination of Cefpodoxime Proxetil and Ambroxol Hydrochloride in Pharmaceutical Formulation. 2012, *4* (2), 623–629.

[57] Jigar, G.; Jagdish, K.; Nehal, S. DEVELOPMENT AND VALIDATION OF DUAL WAVELENGTH UV SPECTROPHOTOMETRIC METHOD FOR SIMULTANEOUS ESTIMATION OF AMBROXOL HYDROCHLORIDE AND CEFPODOXIME PROXETILE IN THEIR. 2012, *3* (4), 330–333.

[58] Kavar, R. C.; Savaliya, B. M.; Lakkad, A. J.; Soriya, S. V; Kapuriya, K. G.; Faldu, S. D. Q-ABSORBANCE RATIO SPECTROPHOTOMETRIC METHOD FOR THE SIMULTANEOUS ESTIMATION OF CEFPODOXIME PROXETIL AND LEVOFLOXACIN HEMIHYDRATE IN THEIR COMBINED DOSAGE FORM. 2 (3), 22–30.

[59] Kande, S. K. Development of HPTLC Method for Determination of Cefpodoxime Proxetil and Ambroxol Hydrochloride in Human Plasma by Liquid – Liquid Extraction Abstract. *Pharm. Methods* 2011, 2 (4), 242–246.

[60] Monitor, P. S. DEVELOPMENT OF VALIDATED HPTLC METHOD FOR SIMULTANEOUS. 2014, 5 (3), 29–34.

[61] RESEARCH ARTICLE INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE DEVELOPMENT AND VALIDATION OF HIGH PERFORMANCE THIN LAYER CHROMATOGRAPHY METHOD FOR SIMULTANEOUS ESTIMATION OF AMBROXOL HYDROCHLORIDE AND CEFPODOXIME PROXETILE IN. 2012, *1* (2), 143–154.

[62] Of, V.; For, R. M.; Of, D.; Proxetil, C.; In, H.; Formulation, P. Available Online through DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE DETERMINATION OF CEFPODOXIME PROXETIL AND AMBROXOL HYDROCHLORIDE IN PHARMACEUTICAL FORMULATION. 2013, *4* (4), 5028–5037.

[63] Dighe, S. B. Shweta B. Dighe, Int. J. Pharm. Sci. 2014, 5 (4), 1566–1571.

[64] Shah, D. A.; Chaudhary, P. A.; Chhalotiya, U. K.; Baldania, S. L. Research and Reviews : Journal of Pharmaceutical Analysis Liquid Chromatographic Method Development for the Estimation of Cefpodoxime Proxetil and Clavulanic Acid in Combined Dosage Form . 2013, 2 (4).

[65] Patel, H. A.; Vaghela, J. P.; Shah, J. S.; Patel, P. B. DEVELOPMENT AND VALIDATION OF THE RP-HPLC METHOD FOR THE ESTIMATION OF CEFPODOXIME AND. 2012, *15* (2), 50–56.

[66] P, R. K.; A, A. S.; J, S. S. Development and Validation of RP-HPLC Method for Simultaneous Estimation of Cefpodoxime Proxetil and Ambroxol Hydrochloride in Bulk and in Tablets. 2012, *3* (1), 156–163.

[67] Ganesh, T.; Naveen, B.; Dhanalaxmi, K.; Reddy, G. N. Development of a Stable HPLC Method to Detect Cefpodoxime Proxetil and Ambroxol HCl in Bulk and Pharmaceutical Dosage Form. 2013, *1* (1), 37–40.

[68] Indicating, S.; Method, U.; The, F. O. R.; Determination, S.; Cefpodoxime, O. F.; Sodium, D.; Bulk, I. N.; Formulation, P.; Thejaswini, J. C.; Chandan, R. S.; et al. ARTICLE INFO Article History. 2014, *4* (2).

[69] Fukutsu, N.; Sakamaki, Y.; Kawasaki, T.; Saito, K.; Nakazawa, H. LC / MS / MS Method for the Determination of Trace Amounts of Cefmetazole and Cefpodoxime Proxetil Contaminants in Pharmaceutical Manufacturing Environments. 2006, *41*, 1243–1250.

[70] Evaluation, Q.; Section, Q. C.; Plant, H. Verification of Cefmetazole and Cefpodoxime Proxetil Contamination to Other Pharmaceuticals by Liquid Chromatography-Tandem Mass Spectrometry. 2006, *54* (October), 1469–1472.

[71] Dubala, A.; Nagarajan, J. S. K.; Vimal, C. S.; George, R. Simultaneous Quantification of Cefpodoxime Proxetil and Clavulanic Acid in Human Plasma by LC-MS Using Solid Phase Extraction with Application to Pharmacokinetic Studies. *J. Chromatogr. B Anal. Technol. Biomed. Life Sci.* 2013, *921-922*, 49–55.

[72] Reddy, T. M.; Sreedhar, M.; Reddy, S. J. Voltammetric Beha v Ior of Cefixime and Cefpodoxime Proxetil and Determination in Pharmaceutical Formulations and Urine. 2003, *31*, 811–818.

[73] Journal, A.; Vol, C.; Education, P. Spectrophotometric Estimation of Ofloxacin in Pure and Pharmaceutical Dosage Forms. 2009, *21* (3), 2473–2475.

[74] Ev, S.; Schapoval, E. E. S. Microbiological Assay for Determination of Ofloxacin Injection. 2002, *27*, 91–96.

[75] Süslü, İ.; Tamer, A. Application of Bromophenol Blue and Bromocresol Purple for the Extractive-Spectrophotometric Determination of Ofloxacin. *Anal. Lett.* 2003, *36* (6), 1163–1181.

[76] Albero, M. I.; Abuherba, M. S.; Garcı, M. S. Flow Injection Spectrophotometric Determination of Ofloxacin in Pharmaceuticals and Urine. 2005, *61*, 87–93.

[77] Ofloxacin, I.; Okeri, H. A.; Arhewoh, I. M. Analytical Profile of the Fluoroquinolone Antibacterials . 2008, 7 (6), 670–680.

[78] Ballesteros, O.; V1, L.; Na, A. Determination of the Antibacterial Ofloxacin in Human Urine and Serum Samples by Solid-Phase Spectrofluorimetry. 2002, *30*, 1103–1110.

[79] Hospital, T. Determination of Ofloxacin in Human Aqueous Humour by High-Performance Liquid Chromatography with Fluorescence Detection. 1997, *15*, 663–666.

[80] Zeng, S.; Zhong, J.; Pan, L.; Li, Y. High-Performance Liquid Chromatography Separation and Quantitation of Ofloxacin Enantiomers in Rat Microsomes. *J. Chromatogr. B Biomed. Sci. Appl.* 1999, 728 (1), 151–155.

[81] Macek, J.; Ptáček, P. Determination of Ofloxacin in Human Plasma Using High-Performance Liquid Chromatography and Fluorescence Detection. *Journal of Chromatography B: Biomedical Sciences and Applications*, 1995, 673, 316–319.

[82] Zivanovic, L.; Zigic, G.; Zecevic, M. Investigation of Chromatographic Conditions for the Separation of Ofloxacin and Its Degradation Products. *J. Chromatogr. A* 2006, *1119* (1-2), 224–230.

[83] Fabre, D.; Bressolle, F.; Kinowski, J. M.; Bouvet, O.; Paganin, F.; Galtier, M. A Reproducible, Simple and Sensitive HPLC Assay for Determination of Ofloxacin in Plasma and Lung Tissue. Application in Pharmacokinetic Studies. *J. Pharm. Biomed. Anal.* 1994, *12* (11), 1463–1469.

[84] Garcia, M. A.; Solans, C.; Calvo, A.; Royo, M.; Hernandez, E.; Rey, R.; Bregante, M. A. Analysis of Ofloxacin in Plasma Samples by High-Performance Liquid Chromatography. *Chromatographia*, 2002, *55*, 431–434.

[85] Ohkubo, T.; Kudo, M.; Sugawara, K. Determination of Ofloxacin in Human Serum by High-Performance Liquid Chromatography with Column Switching. *J. Chromatogr. - Biomed. Appl.* 1992, *573* (2), 289–293.

[86] Naeem, M.; Khan, K.; Rafiq, S. Determination of Residues of Quinolones in Poultry Products by High Pressure Liquid Chromatography. *J. Appl. Sci.* 2006, *6* (2), 373–379.

[87] M. A.; K. A.; M. D.; A. S. Determination of Ofloxacin in Plasma by HPLC with UV Detection. *Journal of Applied Sciences*, 2005, *5*, 1655–1657. (1)
M. A.; K. A.; M. D.; A. S. Determination of Ofloxacin in Plasma by HPLC with UV Detection. *Journal of Applied Sciences*, 2005, *5*, 1655–1657.

[88] Shervington, L. A.; Abba, M.; Hussain, B.; Donnelly, J. The Simultaneous Separation and Determination of Five Quinolone Antibotics Using Isocratic Reversed-Phase HPLC : Application to Stability Studies on an Ofloxacin Tablet Formulation. 2005, *39*, 769–775.

[89] Sun, Y.; Zhang, Z.; Xi, Z. Direct Electrogenerated Chemiluminescence Detection in High-Performance Liquid Chromatography for Determination of Ofloxacin. *Anal. Chim. Acta* 2008, *623* (1), 96–100.

[90] Chan, K. P.; Chu, K. O.; Lai, W. W.-K.; Choy, K. W.; Wang, C. C.; Lam, D. S.-C.; Pang, C. P. Determination of Ofloxacin and Moxifloxacin and Their Penetration in Human

Aqueous and Vitreous Humor by Using High-Performance Liquid Chromatography Fluorescence Detection. *Anal. Biochem.* 2006, *353* (1), 30–36.

[91] Immanuel, C.; Hemanth Kumar, A. . Simple and Rapid High-Performance Liquid Chromatography Method for the Determination of Ofloxacin Concentrations in Plasma and Urine. *Journal of Chromatography B: Biomedical Sciences and Applications*, 2001, 760, 91–95.

[92] Yan, H.; Qiao, F. RAPID SCREENING OF OFLOXACIN ENANTIOMERS IN HUMAN URINE BY MOLECULARLY IMPRINTED SOLID-PHASE EXTRACTION COUPLED WITH LIGAND EXCHANGE CHROMATOGRAPHY. J. Liq. Chromatogr. Relat. Technol. 2014, 37 (9), 1237–1248.

[93] Sun, W. Y.; Liu, W. Y.; Qu, L. B. Development of ELISA and Immunochromatographic Assay for Ofloxacin. *Chinese Chem. Lett.* 2007, *18* (9), 1107–1110.

[94] Xie, H.; Wang, Z.; Fu, Z. Highly Sensitive Trivalent Copper Chelate – Luminol Chemiluminescence System for Capillary Electrophoresis Chiral Separation and Determination of O Fl Oxacin Enantiomers in Urine Samples. *J. Pharm. Anal.* 2014, 1–5.

[95] Horstkötter, C.; Blaschke, G. Stereoselective Determination of Ofloxacin and Its Metabolites in Human Urine by Capillary Electrophoresis Using Laser-Induced Fluorescence Detection. *J. Chromatogr. B Biomed. Sci. Appl.* 2001, 754 (1), 169–178.

[96] Awadallah, B.; Schmidt, P. C.; Wahl, M. A. Quantitation of the Enantiomers of Ofloxacin by Capillary Electrophoresis in the Parts per Billion Concentration Range for in Vitro Drug Absorption Studies. *J. Chromatogr. A* 2003, *988* (1), 141–149.

[97] Rizk, M.; Belal, F.; Aly, F. A.; El-Enany, N. M. Differential Pulse Polarographic Determination of Ofloxacin in Pharmaceuticals and Biological Fluids. *Talanta* 1998, *46* (1), 83–89.

[98] Zhou, G.; Pan, J. Polarographic and Voltammetric Behaviour of Ofloxacin and Its Analytical Application. *Anal. Chim. Acta* 1995, *307* (1), 49–53.

[99] Patel, P. B. Development and Validation of a Method for Simultaneous Estimation of Ofloxacin and Ornidazole in Different Dissolution Media. *Pharm. Methods* 2012, *3* (2), 102–105.

[100] Shah, S. A.; Vaghela, M. P.; Marolia, B. P.; Daxina, K. L. Simultaneous Estimation of Cefixime and Ofloxacin by Derivative Spectroscopy Method. *Asian J. Res. Chem.* 2011, *4* (3), 415.

[101] Sastry, C. S.; Rao, K. R.; Prasad, D. S. Extractive Spectrophotometric Determination of Some Fluoroquinolone Derivatives in Pure and Dosage Forms. *Talanta* 1995, *42* (3), 311–316.

[102] Dube, A.; Pillai, S.; Sahu, S.; Keskar, N. I NTERNATIONAL J OURNAL OF P HARMACY & L IFE S CIENCES Spectrophotometric Estimation of Cefixime and Ofloxacin from Tablet Dosage Form. 2011, *2* (3), 629–632.

[103] Uv, V. O. F.; Methods, S.; Simultaneous, F. O. R.; Ofloxacin, E. O. F.; Combined, C. F.; Form, O. D. DEVELOPMENT AND VALIDATION OF UV. 2013, *4* (5), 316–320.

[104] Patel, D. M.; Sardhara, B. M.; Thumbadiya, D. H.; Patel, C. N. Development and Validation of Spectrophotometric Method for Simultaneous Estimation of Paracetamol and Lornoxicam in Different Dissolution Media. *Pharm. Methods* 2012, *3* (2), 98–101.

[105] Spectrophotometric, D. A.; Ofloxacin, D. O. F.; In, O.; Form, D. DETERMINATION OF OFLOXACIN AND ORNIDAZOLE IN DOSAGE FORM. 2013, *3* (2), 71–76.

[106] Wadekar, J. B.; Jain, M. D.; College, P. D. V. V. P. F.; Gupta, V.; Midc, P.; Ghat, V. SIMULTANEOUS ESTIMATION OF CEFIXIME AND OFLOXACIN IN TABLET DOSAGE FORM Abdul Wahid Ambekar *, Harshada P Bhosale , Ramesh L Sawant ,. 2014, *4* (2), 396–400.

[107] Chemica, D. P. Scholars Research Library. 2011, *3* (3), 397–403.

[108] Gandhi, V. M.; Nair, S. B.; Menezes, C.; Narayan, R. DEVELOPMENT OF UV-SPECTROPHOTOMETRIC METHOD FOR THE QUANTITATIVE ESTIMATION OF OFLOXACIN AND ORNIDAZOLE IN COMBINED LIQUID ORAL DOSAGE FORM BY SIMULTANEOUS EQUATION METHOD. 2013, *3* (1), 6–11.

[109] Kumar, S.; Sahni, V.; Chawla, P.; Mamman, K.; Saraf, S. A. Development and Validation of Analytical Method for Simultaneous Estimation of Diclofenac Sodium and Ofloxacin in Bulk and Ophthalmic Formulations Using UV – Visible Spectrometry. 2011, *3*, 1399–1402.

[110] Nebsen, M.; Elsayed, G. M. Determination of Ofloxacin and Dexamethasone in Dexaflox Eye Drops through Different Ratio Spectra Manipulating Methods. *Bull. Fac. Pharmacy, Cairo Univ.* 2013, *51* (2), 175–184.

[111] Sharma, S. Simultaneous Determination of Nitazoxanide and Ofloxacin in Pharmaceutical Preparations Using UV-Spectrophotometric and High Performance Thin Layer Chromatography Methods. *Arab. J. Chem.* 2012.

[112] Kumar, R.; Singh, P.; Singh, H. DEVELOPMENT OF COLORIMETRIC METHOD FOR THE ANALYSIS OF PHARMACEUTICAL FORMULATION CONTAINING BOTH OFLOXACIN AND CEFIXIME. 2011, *3*, 2–3.

[113] Espinosa-Mansilla, A.; Muñoz De La Peña, A.; González Gómez, D.; Salinas, F. HPLC Determination of Enoxacin, Ciprofloxacin, Norfloxacin and Ofloxacin with Photoinduced Fluorimetric (PIF) Detection and Multiemission Scanning: Application to Urine and Serum. *J. Chromatogr. B Anal. Technol. Biomed. Life Sci.* 2005, 822 (1-2), 185–193.

[114] Patel, S. S. K.; Education, P. ISSN 2230 – 8407 SIMULTANEOUS SPECTROPHOTOMETRIC DETERMINATION OF CEFIXIME TRIHYDRATE AND OFLOXACIN IN TABLETS Patel Satish A *, Patel Paresh U , Patel Natavarlal J . 2011, 2 (August), 105–108.

[115] Tambe, V.; Patil, M.; Kandekar, U. Research and Reviews: Journal of Pharmaceutical Analysis ICH Guidelines in Practice: Development and Validation of HPTLC Method for Simultaneous Estimation of Ketorolac Tromethamine and Ofloxacin in Ophthalmic. 2014, *3* (1), 34–41.

[116] De Smet, J.; Boussery, K.; Colpaert, K.; De Sutter, P.; De Paepe, P.; Decruyenaere, J.; Van Bocxlaer, J. Pharmacokinetics of Fluoroquinolones in Critical Care Patients: A Bio-Analytical HPLC Method for the Simultaneous Quantification of Ofloxacin, Ciprofloxacin and Moxifloxacin in Human Plasma. *J. Chromatogr. B Anal. Technol. Biomed. Life Sci.* 2009, 877 (10), 961–967.

[117] Samanidou, V. F.; Demetriou, C. E.; Papadoyannis, I. N. Direct Determination of Four Fluoroquinolones, Enoxacin, Norfloxacin, Ofloxacin, and Ciprofloxacin, in Pharmaceuticals and Blood Serum by HPLC. *Anal. Bioanal. Chem.* 2003, *375* (5), 623–629.

[118] SYSTEM WITH UV DETECTION : APPLICATION TO ANALYSIS OF LEVOFLOXACIN IN. 2013, *I* (April), 264–274.

[119] Article, O. A Conventional HPLC-MS Method for the Simultaneous Determination of O Fl Oxacin and Ce Fi Xime in Plasma : Development and Validation. 2013, *4* (2), 36–41.

[120] Available Online through. 2012, 4 (2), 4560–4568. 10.1.1.259.5506

[121] Varun, G.; Shyamkumar, B.; Cylma, M.; Reema, N.; Devi, S. Development of RP-HPLC Method for the Quantitative Estimation of Ofloxacin and Ornidazole in Combined Liquid Oral Dosage Forms. 2013, *6* (1), 1972–1976.

[122] Analysis, P.; Pharmacy, K. M. C. H. C.; Estate, K. RP-HPLC Method Development and Validation for the Simultaneous Estimation of Ofloxacin and Tinidazole in Tablets. 2009, *1* (2), 121–124.

[123] Ali, M. S.; Ghori, M.; Saeed, A. Simultaneous Determination of Ofloxacin , Tetrahydrozoline Hydrochloride , and Prednisolone Acetate by High-Performance Liquid Chromatography. 2002, *40* (September), 429–433.

[124] Cheng, G. W.; Wu, H. L.; Huang, Y. L. Simultaneous Determination of Malondialdehyde and Ofloxacin in Plasma Using an Isocratic High-Performance Liquid Chromatography/fluorescence Detection System. *Anal. Chim. Acta* 2008, *616* (2), 230–234.

[125] Dhandapani, B.; Thirumoorthy, N.; Rasheed, S. H.; Rama, M.; Anjaneyalu, N. METHOD DEVELOPMENT AND VALIDATION FOR THE SIMULTANEOUS ESTIMATION OF OFLOXACIN AND ORNIDAZOLE IN TABLET DOSAGE FORM BY RP-HPLC. 2010, *1* (1), 78–83.

[126] Deekonda, P.; Reddy, M. S. Method Development and Validation for the Quantitative Estimation of Cefixime and Ofloxacin in Pharmaceutical Preparation by RP- HPLC. 2014, *6* (2), 31–37.

[127] Khandagle, K. S.; Gandhi, S. V; Deshpande, P. B.; Gaikwad, N. V. A SIMPLE AND SENSITIVE RP HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF CEFIXIME AND OFLOXACIN IN COMBINED TABLET DOSAGE FORM. 2011, *3* (1), 3–5.

[128] Faria, A. F.; Souza, M. V. N. De; Oliveira, M. A. L. De. Validation of a Capillary Zone Electrophoresis Method for the Determination of Ciprofloxacin, Gatifloxacin, Moxifloxacin and Ofloxacin in Pharmaceutical Formulations. 2008, *19* (3), 389–396.

[129] Zhang, S. S.; Liu, H. X.; Yuan, Z. B.; Yu, C. L. A Reproducible, Simple and Sensitive High-Performance Capillary Electrophoresis Method for Simultaneous Determination of Capreomycin, Ofloxacin and Pasiniazide in Urine. 1998, *17*, 617–622.

[130] Shah, M.; Patel, H.; Patel, C. Development and Validation of Absorbance Ratio Method for Simultaneous Determination of Cefpodoxime Proxetil and Ofloxacin in Combined Tablet Dosage Form . 2012, 2 (March).

[131] Jagatap, C. A.; Patil, P. B.; Kane, S. R.; Mohite, S. K.; Magdum, C. S. Development and Validation of Simultaneous Spectrophotometric Estimation of Cefpodoxime Proxetil and Ofloxacin in Tablet Dosage Form. *J. Pharm. Res.* 2012, *5* (6), 3181.

[132] A, P. S.; A, P. S. Dual Wavelength Spectrophotometric Method for Simultaneous Estimation of Ofloxacin and Cefpodoxime Proxetil in Tablet Dosage Form. 2011, *1* (3), 261–268.

[133] Sanket, P.; Satish, A. P. Development and Validation of First Order Derivative Spectrophotometric Method for Simultaneous Estimation of Ofloxacin and Cefpodoxime Proxetil in Tablet Dosage Form. 2011, *1* (2), 108–112.

[134] DEVELOPMENT AND VALIDATION OF SPECTROPHOTOMETRIC METHOD FOR SIMULTANEOUS DETERMINATION. 2012, *3* (02), 551–555.

[135] Patil, V. D.; Chaudari, R. Y. I NTERNATIONAL J OURNAL OF P HARMACY & L IFE S CIENCES Spectrophotometric Method for Estimation of Cefpodoxime Proxetil and Ofloxacin in Tablet Dosage Form by Simultaneous Equation Method. 2012, *3* (9), 1982

[136] Kalsariya Naresh M.*, Chodavadia R.M., Patel P.B., Mevada Z.N., Marolia B.P., S. S. . Simultaneous Estimation of Cefpodoxime Proxetil and Ofloxacin in Combined Dosage Form by UV-Spectrophotometric Method. *Asian J. Res. Chem.* 2011, *4* (12), 1836–1839.

[137] Mrudang N Shah*, Harsha U Patel, C. N. P. Inventi:ppaqa/440/12 DEVELOPMENT AND VALIDATION OF HPTLC METHOD FOR SIMULTANEOUS ESTIMATION OF OFLOXACIN AND CEFPODOXIME PROXETIL IN THEIR COMBINED TABLET DOSAGE FORM. *Inven. spreading Knowl.* 2012.

[138] Sciences, P.; Of, D.; For, R. M.; Estimation, S.; Cefpodoxime, O. F.; Dosage, P. I N T E R N a T I O N a L J O U R N a L O F I N S T I T U T I O N a L P H a R M a c Y a N D L I F E S c I E N c E S. 2012, 2 (April), 535

[139] Chiranjeevi, A.; Srinivas, M. Simultaneous Estimation of Cefpodoxime Proxetil and Ofloxacin In Tablet Dosage Form Using RP-HPLC. 2014, *4* (05), 46–50.

[140] Shah, D.; Talaviya, S.; Patel, M. SIMULTANEOUS ESTIMATION OF CEFPODOXIME PROXETIL AND OFLOXACIN IN PHARMACEUTICAL DOSAGE FORM BY RP-HPLC. 2012, *4*, 4–7.

[141] Kumar, K. Sandeep; Srinivas, R.; Rao, V. Jayathirtha; Rani, S. Shobha; Kumar, D. Kiran; Babu, K. B. R. Development and Validation of a RP-HPLC Method for Simultaneous Estimation of Cefpodoxime Proxetil and Ofloxacin in Bulk Drugs and in Pharmaceutical Dosage formsDevelopment and Validation of a RP-HPLC Method for Simultaneous Estimation of Cefpodoxime Prox. *J. Pharm. Res.* 2012, *5* (7), 3904.

[142] Kamalakkannan, V.; Kannan, C.; Jaganathan, K.; Kumaran, K. S. G. A.; Sambath, R.; June, A. Research Journal of Pharmaceutical , Biological and Chemical Sciences Gastro Retentive Drug Delivery System for Cefpodoxime Proxetil - Development and Optimization. *Res. J. Pharm. Biol. Chem. Sci.* **2013**, *4* (2), 1150–1167.

[143] Sahoo, S.; Chakraborti, C. K.; Behera, P. K. FTIR and Raman Spectroscopic Investigations of Ofloxacin / Carbopol940 Mucoadhesive Suspension. **2012**, *4* (1), 382–391.

The	sis_1				
ORIGIN	ALITY REPORT				
2 SIMILA	5% RITY INDEX	20%	17% PUBLICATIONS	14% STUDENT F	PAPERS
PRIMAR	Y SOURCES				
1	Submitt Science	ed to October U s and Arts (MSA ^{er}	niversity for M	lodern	2%
2	en.wikip Internet Sour	edia.org			1%
3	www.ph	armainfo.net			1%
4	fr.slides	hare.net			1%
5	Patel, H Patel, P VALIDA FOR TH AND DIG DOSAG THE DIS Journal & Resea Publication	A.; Vaghela, J. B. "DEVELOPI TION OF THE R E ESTIMATION CLOXACILLIN IN E FORM AND IT SSOLUTION STU of Pharmaceuti arch, 2012.	P.; Shah, J. S MENT AND P-HPLC MET OF CEFPOD I THEIR COM IS APPLICATI UDY", Internat cal Sciences F	A and HOD OXIME BINED ON TO ional Review	1%
6	Submitt Universi	ed to Jawaharla ity	l Nehru Techr	nological	1%

Student Paper

. .