
Automation and Optimization in Memory
Cell Generators for Future Technologies

Submitted By

Apurva P. Mehta

13MCEC09

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2015

Automation and Optimization in Memory
Cell Generators for Future Technologies

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering of Institute of Technology,

Nirma University, Ahmedabad.

Submitted By

Apurva P. Mehta

(13MCEC09)

Guided By

Prof. Gaurang Raval

Nirma University

Mr.Ashu Talwar

ST Microelectronics

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2015

Certificate

This is to certify that the major project entitled ”Automation and Optimization

in Memory Cell Generators for Future Technologies” submitted by Apurva P.

Mehta (13MCEC09), towards the partial fulfillment of the requirements for the award

of degree of Master of Technology in Computer Science and Engineering of Nirma Uni-

versity, Ahmedabad, is the record of work carried out by him under my supervision

and guidance. In my opinion, the submitted work has reached a level required for be-

ing accepted for examination. The results embodied in this project, to the best of my

knowledge, haven’t been submitted to any other university or institution for award of

any degree or diploma.

Prof. K. P. Agrawal Prof. Vijay Ukani

Guide & Associate Professor, Associate Professor,

CSE Department, Coordinator M.Tech - CSE

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Dr. Sanjay Garg Dr K Kotecha

Professor and Head, Director,

CSE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, Apurva P. Mehta, Roll. No. 13MCEC09, give undertaking that the Major Project

entitled ”Automation and Optimization in Memory Cell Generators for Future

Technologies” submitted by me, towards the partial fulfillment of the requirements for

the degree of Master of Technology in Computer Science & Engineering of Insti-

tute of Technology, Nirma University, Ahmedabad, contains no material that has been

awarded for any degree or diploma in any university or school in any territory to the

best of my knowledge. It is the original work carried out by me and I give assurance

that no attempt of plagiarism has been made. It contains no material that is previously

published or written, except where reference has been made. I understand that in the

event of any similarity found subsequently with any published work or any dissertation

work elsewhere; it will result in severe disciplinary action.

———————–

Apurva P. Mehta

Date:25th MAY, 2015

Place:Ahmedabad

Endorsed by

Prof. Gaurang Raval

iv

Acknowledgements

I would also like to thank my Internel guide Mr. Gaurang Raval, Professor, Computer

Science Department, Institute of Technology, Nirma University, Ahmedabad for his valu-

able guidance and continual encouragement throughout this work.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Science and Engineering Department, Institute of Technology, Nirma University,

Ahmedabad for his kind support and providing basic infrastructure and healthy research

environment.

I would also like to thank Dr. K.R.Kotecha, Director, Institute of Technology, Nirma

University, Ahmedabad for providing me an opportunity to get an intern ship at ST Mi-

croelectronics, Greater Noida.

I would like to thank my all faculty members for exchanging knowledge during my post-

graduate program.

Sincere thanks to Mr.Ashu Talwar Manager, ST Microelectroniocs, Greater Noida. I

enjoyed his vast knowledge and greate future vision and owe his lots of gratitude for

having a profound impact on this report.

A spacial thank to, Mr. Abhinav Arora for his valuable guidance. The appreciation

and continual support he has imparted has been a great motivation to me in reaching

a higher goal. His guidance has triggered and nourished my intellectual maturity that I

will benefit from, for a long time to come.

I want to thank my Mentor, Mrs. Tanvi Ahuja, ST Microelectroniocs, More prominent

Greater Noida for her important direction. All through the preparation, she has issued

me important exhortation on undertaking work. She has issued me all sort of backing to

handle complex circumstance.

I would like to thank my Teammate, Mr. Nirav Patel for his help. Throughout the

training, he has given me valuable advice and support on project work.

- Apurva P. Mehta

13MCEC09

v

Abstract

Memory is represented by different views as an example Timing views, Model view,

Layout views. For generating memory cell different view is useful. Back end compiler

is product which is used to generate memory for various technology and various speci-

fication.This process is know as cut generation. Two of views, layout view and net list

view are mostly useful. All the technological,architectural and other data are encoded

in BE Compiler.The GDS record contains the format data. CDL document contains the

schematic data.It implies each memory generator arrangements have distinctive Back-

End compiler, however all have a ton of usually utilized code. To Provide single inter-

face for various type of file is one aspect of uniBE.It Support multiple technology like

28,14 nm etc.It also Support multiple architecture.User can insert data using single in-

terface.Multiple criteria for compiler are also supported using this product.unibe must

be faster enough and accurate.

vi

Abbreviations

CDL Circuit Description Language

GDS Graphical Data Stream

BTP Basic Text Parser

DRC Design Rule Check

DRM Design Rule Manual

DTO Data Transfer Object

REGEX REGular EXpression

XML eXetensible Markup Language

XSD Xml Schema Definition

XSLT Extensible Stylesheet Language Transformations

JAXB Java Architecture for Xml Binding

DOM Document Object Model

SAX Simple API for Xml

ANN Artificial Neural Network
——————————————————————————————————————

–

vii

Contents

Certificate iv

Statement of Originality v

Acknowledgements vi

Abstract vii

Abbreviations viii

List of Figures xi

List of Tables 1

1 Introduction 2
1.1 General . 2
1.2 Objective Of Work . 2
1.3 Scope Of Work . 3
1.4 Activities . 3

2 Literature Survey 4
2.1 Architecture of Memory . 4

2.1.1 Basic Architecture . 4
2.1.2 Split Core Architecture . 5

2.2 Process Designing Memory . 6
2.3 circuit Descriptive Language . 8

2.3.1 Basic detail . 8
2.4 Regular Expression . 9

2.4.1 Basic of regular expression . 9
2.5 Technique for Parsing . 10

2.5.1 Text Parser . 10
2.5.2 DOM Parser(Xml parser) . 11
2.5.3 SAX Parser(Xml parser) . 11
2.5.4 StAX Parser(Xml parser) . 11

3 Project Overview 12
3.1 CDL(netList) and GDS(Layout) . 12
3.2 UniBe Process Flow . 13
3.3 Object generation flow for Architectural Library 14
3.4 Template Files . 15

viii

4 Implementation and Result 17
4.1 Refine architecture . 17
4.2 Reflection API . 18
4.3 Design Factory Implementation . 18
4.4 Other Optimization . 18

5 Standard Interface 22
5.1 XML Parser . 22

5.1.1 DOM Parser . 22
5.1.2 SAX Parse . 23
5.1.3 Parser Characteristics . 23

6 Routing Problem 26
6.1 Possible approaches . 26

6.1.1 Ant olony . 26
6.1.2 Genetic Algorithm Flow . 27
6.1.3 Artificial Neural Network . 28

6.2 Selected Aprroach . 29

7 Some Challanging Problems 30
7.1 Equation Evaluation . 30
7.2 Checker . 30

7.2.1 Type of Checker . 31
7.3 Boundry Function . 31

8 Project Execution 33
8.1 Product Generation . 33
8.2 Steps to use and execute product . 33

9 Scope of the Project 34

10 Tools and Technology 35

11 Conclusion And Enhancement 36

References 37

ix

List of Figures

2.1 Architecture of Memory(256x256) . 4
2.2 Split Core Architecture of bank . 5
2.3 Page Architecture Memory of 64K . 6
2.4 Memory Layout . 7
2.5 Flow of LVS . 8
2.6 Example of netlist(cdl file) . 9
2.7 Regex aliases . 10

3.1 Schematic view of circuit . 13
3.2 Layout of circuit . 14
3.3 Process Flow . 15
3.4 Flow Diagram of Unibe . 16
3.5 Template File . 16

4.1 Refined architecture . 17
4.2 Reflection Implementation snapshot-1 . 19
4.3 Reflection Implementation snapshot-2 20
4.4 Design Factory Implementation snapshot-1 20
4.5 Design Factory Implementation snapshot-2 21

5.1 DOM parser . 23
5.2 SAX parser . 24

6.1 Genetic Algorithm . 27
6.2 Genetic Algorithm Behaviour . 28
6.3 Artificial Neural Network . 29

7.1 Boundry function . 32

x

List of Tables

5.1 XML parser characteristics . 25

11.1 Improvements . 36

1

Chapter 1

Introduction

1.1 General

Achievement in the microelectronics business is fundamentally relies on upon its unwa-

vering quality and execution. Not simply should a thing execute as looked for, it ought to

work for an extended period of time without fizzle, ordinarily 10 years or more. Depend-

ability related issue torment in the industry are of two sorts: deformity related issues

and destroy issues. Imperfection related issues are predominantly created by the assem-

bling imperfections, for example, a missing methodology step, soil, or other unavoidable

catastrophes. Indeed the most effective procedure lines experience the ill effects of an

incidental deformity related issue. Wear-out is a result of the circuit or the thing just

wearing out, without any starting distortions being accessible.

The First venture in memory outlining is the formation of the design utilizing some prod-

uct. At that point this design is checked with the assistance of DRC to verify that the

outline doesn’t abuse any tenets indicated in the DRM which is needed for the correct

working of the chip. At that point once the format is DRC clean it is contrasted and the

detail model of the configuration to guarantee that the format speaks to the same circuit

as it is in the detail model.

1.2 Objective Of Work

This project is a system for memory generation which is called memory cut.This product

is called UniBe can be used for all technologies and all specification with limited control

to user.

2

• User control

• Support multiple interfaces

• Support different technology

• Support various bank architecture

1.3 Scope Of Work

The principle goal is to give an interface between others product which generates the cuts

and lessen generation time.

Unibe item underpins all engineering. That implies Unibe will have the capacity to

create view for everything technology,no need to utilize diverse compiler to produce view

for distinctive technology.

Other important thing is control of data is given to user using Template files(may be

text,xml etc).Single interface is given to all different kind of file.

Reduce time of BTP.BTP take around 45sec to execute for single cut.

1.4 Activities

• Understanding various processes involved in the Circuit Design flow

• Understanding Technology that can be useful in project infrastructure

• Learning the Reflection API, understanding the usage of Reflection API and analyse

risk

• Learning the design factory pattern for infrastructure

• Analyse various parser for XML parsing

• Implement Text Parser

• Implement XML Parser

• Implement boundry function

• Implement checker

3

Chapter 2

Literature Survey

2.1 Architecture of Memory

2.1.1 Basic Architecture

Figure 2.1: Architecture of Memory(256x256)
[1]

All the cells joined with the word line in the column are active,when the chose lines

are high hence dispersal increases.In the essential building design, bit access time and the

4

word line access time are the two main considerations add to the read access .When the

span of the Memory expands the heap is lessened on the grounds that the quantity of

cells associated with the word line increases.Thus, the word line deferral builds in view

of the increment in the word line capacitance.By decreasing the bit line capacitance and

the word line capacitance are the two variables that can be enhanced , yet this is attained

to strictly when utilizing an alternate construction modeling. [1]

Some architecture are shown in figure 2.2 , 2.1 and 2.3.

2.1.2 Split Core Architecture

Figure 2.2: Split Core Architecture of bank
[1]

Lessening is performed by part the framework into the littler pieces. Along these

lines the ensuing structural planning is called Split-Core architecture. Because of the

part bank lessening in the RC deferral is watched, yet here excessively the initiation of a

word line actuates the whole cell in both territories. So alternate structural planning is

required in which could give some point of interest against the power dispersal. So PAGE

structural engineering is presented.[1].Memory Layout is shown in 2.4.

5

Figure 2.3: Page Architecture Memory of 64K
[1]

2.2 Process Designing Memory

The initial phase in IC planning is the making of the design utilizing some so ware.then

this design is checked using DRC to verify that the configuration does not disregard any

tenets determined in the DRM which is needed for the best possible working of the chip.

At that point once the design is DRC clean it is contrasted and the flavour model of

outline to guarantee that the format speaks to the same circuit as it is in the zest model.

following are data about the checks :

6

Figure 2.4: Memory Layout
[2]

• An outline guideline set points out certain geometric and network confinements

to guarantee sufficient edges to record for variability in semiconductor producing

star cesses, in order to guarantee that a large portion of the parts work accurately.

While outline tenet checks don’t approve that the outline will work accurately, they

are developed to check that the structure meets the methodology obligations for

a given outline sort furthermore handle engineering. DRC programming generally

takes as enter a format in the GDSII standard organization, and produces a report of

outline principle infringement that the creator might decide to adjust. Deliberately

”extending” or waiving certain configuration standards is regularly used to expand

execution and segment thickness at the cost of yields.

• Lvs identify whether the layout and the schematic diagrams are identical or not.

Connection presented in both layout and schematic must be same. Inputs for doing

LVS may be GDS file or CDL file. The GDS file represent information for circuit.

CDL file represent the schematic information required for circuit.

Flow of LVS is shown in figure 2.5.

7

Figure 2.5: Flow of LVS
[2]

2.3 circuit Descriptive Language

2.3.1 Basic detail

The CDL provide us full modularity. Permitted settling of sub circuit and sub circuit

can be utilized as a part of better places and distinctive parameters. It can not be gotten

to from outside as interior hubs and data in variable is encapsulated inside a sub circuit

.Circuit Descriptive dialect itself recording the circuits.

Figure 2.6 shows Example of netlist(cdl file). A library of standard force framework

model can undoubtedly be utilized by clients who even do not have the information of

inward circuit .CDL is cross-stage and can be utilized as standard yield organization of

distinctive GUI circuit editors.[4]

8

Figure 2.6: Example of netlist(cdl file)
[2]

2.4 Regular Expression

2.4.1 Basic of regular expression

A Regular Expression are patterns used to match character combinations in strings.

java.util.regex package is used in java to match patterns using regex. Regular Expres-

sion remain same as in shell Scripting or java or perl. Regular expression literals provide

compilation of the regular expression when the classes is loaded. When the regular ex-

pression will remain constant, use this for better performance. Regex Package in java has

a following classes:

• Pattern object is create by compiling string containing regex. It uses static

method to create pattern object.We have to pass regular expression argument in

static methods.

• Matcher is the regular expression engine object that matches the input String

pattern with the pattern object created. This class doesnt have any public con-

9

structor and we get a Matcher object using pattern object matcher method that

takes the input String as argument. We then use matches method that returns

boolean result based on input String matches the regex pattern or not.

• PatternSyntaxException it represent syntax error in a pattern.

Figure 2.7: Regex aliases
[9]

2.5 Technique for Parsing

2.5.1 Text Parser

Text parser parse the text file using the stream class provided by java. Text parser

parse the file data into various part that is to be passed to ParserUtility class.It create

object.That means is store data in object and passed to view generator to generate

appropriate view.

10

2.5.2 DOM Parser(Xml parser)

The DOM Parser loads complete XML content into a memory and use tree structure to

represent or to access it. An XML-DOM parser reads XML, and converts it into an XML

DOM object[5]

2.5.3 SAX Parser(Xml parser)

The SAX Parser does not loaded into the memory like DOM parser. Different tags are

used by SAX parses the XML . Various tags are used like opening tag to start parsing,

closing tag to finish parsing, character data to define data, comments etc.

It creates data model itself using data.[5]

2.5.4 StAX Parser(Xml parser)

Using StAX parser we can extract the data from the template file in xml format from

current position of cursor. SAX parser it was event based parser. we can say that StaX

is faster and it also create its own data model.[5]

11

Chapter 3

Project Overview

Main use of BE Compiler is generation of layout and net list as per data of specifica-

tion. For Different technology different BE compiler is come into picture. Every Web gen

Configuration have different BE Compiler, but all have a lot of commonly used piece of

code.Following are the purpose of Unibe:

• Provide single interface for user inputs data

• Memory designer only fill the template as per as their requirements

• Support multiple technology, architecture.

3.1 CDL(netList) and GDS(Layout)

A standard cell is a blend of transistor and it connect internal structures. The least diffi-

cult cells comprises of NAND, NOR, and XOR boolean capacity. The boolean rationale

capacity of a phone is called its legitimate view.Boolean polynomial maths comparison

characterize the practical conduct of cell.

Figure 3.1 shows Schematic view of circuit.

Memory Designers announces the data parameter to re-enact the electronic conduct

of the netlist and after-ward figuring the circuit’s chance area reaction. The recreations

checks whether the netlist actualizes the coveted yield and foresee others parameters, for

example, force or utilization .Since the perspectives are valuable for theoretical reproduc-

tion, and not for the gadget fabrication.layout perspective is the most reduced level of

12

Figure 3.1: Schematic view of circuit

configuration reflection . Format perspective portray the complete data of interconnection

between the terminal components.

3.2 UniBe Process Flow

UniBe Process Flow is shown in 3.3 and 3.4.

Process Flow

• To begin with Memory Designer solicitation to produce the memory cut.

• Web gen send request with data to the unibe.

• Unibe Module working flow

– Take command

– View Call

– Unibe request to create object of top structure from the parser.

13

Figure 3.2: Layout of circuit

– Parser return object of structure

– This object is converted into the specific object using jar file.

• Pass object to view generator.

• Generate views

• View is returned(cdl or gds)

3.3 Object generation flow for Architectural Library

• Request for building a Structure.

• Request for building Alias by Structure is sent.

• Request to build Block specific block Object.

• Request is sent to generation of Sub Blocks.

14

Figure 3.3: Process Flow
[3]

• Sub Block object is returned which is to be placed on top of BLOCK.

• Object of Block is Returned.

• STRUCTURE Object is Return.

3.4 Template Files

These are data file given by end user.User will define detail with specific format. Example

of sample template file is shown in figure 3.5.

15

Figure 3.4: Flow Diagram of Unibe
[3]

Figure 3.5: Template File

16

Chapter 4

Implementation and Result

4.1 Refine architecture

First goal is to make architecture global and stable for future technologies. That means

architecture should work for any kind of file type. Best way to do this is add extra layer

which handle complexity and provide abstract view.

Refined architecture is shown in figure 4.1.

Figure 4.1: Refined architecture

17

• parser

This module parse any kind of file that is supported by UniBE and convert it to

DTO. DTO is specific type of format to store data. We are using Objects to store

data. Finally DTO are transferred to object of particular class.

– File to DTO Parser

– DTO to Object Parser

• checker

This module deals with check which should be applied to user data in template

files.

• view generator

This module generate view for given template file.

4.2 Reflection API

Here problem statement is first we have to check which object is to be created from

text.It means we have to check all kind of object and we can decide which kind of object

is created.

One of the solution for this is to use reflection API.Using Reflection API we can create

run time object using fully qualified class name.

Disadvantage or this is risk,because we may get runtime error.We can not verify these

errors during compilation.rapi

Implementation is shown in figure 4.2 and 4.3

4.3 Design Factory Implementation

Pproblem statement with reflection is risk of runtime errors. Alternative solution is to

use design factory implementation.

Figure 4.4 and 4.5 shows factory design pattern implementation.

4.4 Other Optimization

Some other optimizations are also applied to reduce time,Line of code and increase ac-

curacy.

18

Figure 4.2: Reflection Implementation snapshot-1

• Replace if-else with switch case for string(provided in java-7).It save around 50

msec.

• Remove pattern compilation code out of check pattern method which is called

multiple time.It save around 15 msec.

• Used HashMap with is stead of ArrayList.It save around 100 msec.

• Patter checking for comment is done before business logic is applied.It save around

15 msec.

• Used StringBuilder instead of String to concatenate multiple string.

• Define lenght variable out side loop.

19

Figure 4.3: Reflection Implementation snapshot-2

Figure 4.4: Design Factory Implementation snapshot-1

20

Figure 4.5: Design Factory Implementation snapshot-2

21

Chapter 5

Standard Interface

For future support it is better to provide standard interface for files which can work

with any kind of application like web service,desktop software,web portal etc. XML

international standard interface to transfer data with inbuilt check facility. It provide

emphasize simple and general view. It support all kind of data to transfer. XSD and

XSLT provide support for validation.

5.1 XML Parser

5.1.1 DOM Parser

DOM parser is XML parser which is cross-platform and also language independent. It

can be used for HTML, XHTML, and XML documents.

DOM use tree structure to represent data stored in XML. It is called DOM tree.

We have to traverse tree node by node to collect data.

Architecture of DOM parser is shown in figure 5.1.

Following are points we have to consider to select XML parser:

• Methods to traverse XML trees, access, insert, and delete nodes.

• Load whole XML in memory

• Easy and simple to code

22

Figure 5.1: DOM parser

5.1.2 SAX Parse

SAX parser is event driven XML parser. It process each state independently.

This parser does not make any tree structure. It does not store opened tags.

It simply prosess xml tag based on event,so we can say tha it require less memory.

Architecture of DOM parser is shown in figure 5.2. Following are points we have to con-

sider to select XML parser:

• Event based parser

• Low level APIs

• Use it’s own data model

5.1.3 Parser Characteristics

See some characteristics of some other parsers are shown in table 5.1.

Based on the following charasterictics of parser DOM parser is prefered:

23

Figure 5.2: SAX parser

• SAX parser is complex as compare to DOM parse

• StAX parser doesn’t support Schema validation

• DOM parser is suitable for back and forth traversing

24

Feature StAX SAX DOM TrAX
API Type Pull,Streaming Pull,Streaming In Memory Tree XSLT Rule
Esa of Use High Medium High Medium
XPath Capability No No Yes Yes
Cpu and Memory Efficiency Good Good Varies Varies
Forward Only Yes Yes No No
Read XML Yes Yes Yes Yes
Write XML Yes No Yes Yes
Create,Read,Update,Delet NO No Yes No

Table 5.1: XML parser characteristics

25

Chapter 6

Routing Problem

In circuit we need to connect two entity dynamically. First we select shortest way in

manner that thay do not intersect. Here problem is selection of dynamic path with time

constraint.

6.1 Possible approaches

Following are some of the possible approaches to solve NP-complete problem.

6.1.1 Ant olony

• Select rendom population intially

• Calculate pheromones

• Evaporation of pheromones

• Path of next ants may changes according to pheromones value

Pros and Cons [6]

Pros

• Performance is better

Cons

• Required more memory

Required memory for collection of all entity.

26

• Less affected by poor initial solutions

If intial population is poor ,bad result can be achieved because less chance to select

new paths.

Figure 6.1 shows flow of genetaic algorithm.

6.1.2 Genetic Algorithm Flow

Figure 6.1: Genetic Algorithm

Figure 6.2 shows behaviour of genetic algorithm.

pros and cons[7]

Pros

• Requires less information of problem

• Not require derivatives

• Effective for noisy environments

• Implicit parallelism

27

Figure 6.2: Genetic Algorithm Behaviour
[7]

Cons

• There is no guarantee of best solution

Mostly when the populations have a multiple of subjects.

Figure 6.3 shows flow neural network algorithm.

6.1.3 Artificial Neural Network

pros and cons [8]

Pros

• Fast processing speed

• Flexibility and ease of maintenaince

• Robustness

28

Figure 6.3: Artificial Neural Network

Cons

• Flexibility

ANNs do not produce an explicit model even though new cases can be fed into it

and new results obtained.

6.2 Selected Aprroach

ANN do not produce an explicit model even though new cases can be fed into it and

new results obtained,So we can not use that algorithm.

Ant Colony required more memory and is slower as compare to Genetic algorithm.

Genetic Algorithm give us fast processing speed and good result with dynamic be-

haviour.

Genetic Algorithm is selected to solve problem.

29

Chapter 7

Some Challanging Problems

7.1 Equation Evaluation

User are allowed to write mathematical condition or ternary condition. Now challange

how to evaluate that conditions when there is lot of combinations possible and all these

values are depends on specific counter value.

Suppose counter value is 100 and total equations are 100 and two possible values of each

equation. We will get (1000.100) possible combination.

Followings are possible ways.

• Third party tools

• Use jsEvaluation of java

Based on efficency(time and functionality) we have used jsEvaluation engine with

multithreading.

Here all data are stored in jsEvaluation engnine object.

7.2 Checker

Data in files are inserted by end user. Technical data can be incorrect. Checker is

functionality to verify this kind of checks.

• Find checks and classify it.

• User must define data in given form.

• Dependency check, Ex- pair

30

• Data range

• Possible value

7.2.1 Type of Checker

• Static

– Checks that are directly applied on values of file.

• Dynamic

– Checks that are not directly applied on values of file.

– First value or equation is evaluated to get final value.

– Dynamic checks are applied on final evaluated value.

7.3 Boundry Function

For end user circuit is like black box,i.e they give simply connection from out side. How

this connections are connected inside circuit is not known to end users. All these impe-

mentation are included in Boundry function.

Here challange is to generate generic boundry,because in different technology different

size and shape of circuit are generated. In short we are dealing with different kind of

polygon and try to create its boundry.

Following figure 7.1 shows problem defination.

31

Figure 7.1: Boundry function

32

Chapter 8

Project Execution

This chapter shows steps to execute project.

8.1 Product Generation

Basically For making product only compilation is not enough. We must provide user

proper environment. Set environmnet is one of the important part. User must be able to

use all products,so we have to combine our product with other products independetly as

much as possible.

We can say in simple word it is like convert code to exe and also set path variable in

environment.

8.2 Steps to use and execute product

• Use product on which our product is dependent.

Simply user has to change path in one file.

• Also use main product

• Check Envirement variable value to verify wether product is correctly sourced or

not

• Give file paths and other required detail

For testing purpose script is used to generate number of cuts.

33

Chapter 9

Scope of the Project

• Multiple way of input with single interface

• Provides a single platform for all technology i.e 28fdsoi,14fdsoi etc

• Provides for various memory architecture

• Provides uniqe way to generate different file for different technology

• User friendly way to deal with template file

• Support for Any kind of file in future with very less support

34

Chapter 10

Tools and Technology

• Core Java for Business logic implementation

• Eclipse IDE

• Emmacode coverage plugin

• DOM parser for XML

• Reflection API

• Shell scripting

35

Chapter 11

Conclusion And Enhancement

Input for this project is Files contain data updated or created by user. These files

are parsed and all data is converted in to intermediat form. Ultimately this product

can support different type of files like text and xml. This data in intermediate form is

processed and data is given to view generator and view generator generate view(which is

specified by user). Same product is used to generate view for different technology. User

has to change data given in input files. By using all these we have tried to create best

architecture for project and reduced time and line of code. Improvement is shown in

table 11.1.

Parameter Previous Value Current Value
Time(sec) 45 20
lines 2167 1500
views 2 5
interface text text and xml

Table 11.1: Improvements

Only parsing module need to be developed to support new kind of file and provide

interface for international standard.

AS a enhancement user may given GUI to give file path of input files and also for updating

files and other extra views will be added for verification purpose.

36

References

[1] ST internal Documents.

[2] ST tools documents .

[3] ST UniBE document

[4] Taku Noda ,” Proposal of Circuit Descriptive language”,2001,”Research Insitute of

Electric Power Endustry,Japan”

[5] W. Jai Singh, S. Nithya Bala, ”An Adaptive and Efficient XML Parser Tool for

Domain Specifc Languages”,2011 International Journal of Scientifc and Engineering

Research Volume 2

[6] Bhanu Pratap Singh, Sohan Garg, ”A Characteristics Study of Ant Colony Opti-

mization Algorithms for Routing Problems”, March 2013,International Journal of

Advanced Research in Computer Science and Software Engineering Volume 3, Issue

3

[7] Richa Garg,Saurabh mittal, ”Optimization by Genetic Algorithm”, April 2014,In-

ternational Journal of Advanced Research in Computer Science and Software Engi-

neering Volume 4, Issue 4

[8] Ms. Sonali. B. Maind,Ms. Priyanka Wankar, ”Research Paper on Basic of Artificial

Neural Network”,International Journal on Recent and Innovation Trends in Com-

puting and Communication Volume: 2 Issue: 1

[9] http://www.vogella.com/tutorials/JavaRegularExpressions/article.html

[10] http://docs.oracle.com/javase/tutorial/reflect

37

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	General
	Objective Of Work
	Scope Of Work
	Activities

	Literature Survey
	Architecture of Memory
	Basic Architecture
	Split Core Architecture

	Process Designing Memory
	circuit Descriptive Language
	Basic detail

	Regular Expression
	 Basic of regular expression

	Technique for Parsing
	Text Parser
	DOM Parser(Xml parser)
	SAX Parser(Xml parser)
	StAX Parser(Xml parser)

	Project Overview
	CDL(netList) and GDS(Layout)
	UniBe Process Flow
	Object generation flow for Architectural Library
	Template Files

	Implementation and Result
	Refine architecture
	Reflection API
	Design Factory Implementation
	Other Optimization

	Standard Interface
	XML Parser
	DOM Parser
	SAX Parse
	Parser Characteristics

	Routing Problem
	Possible approaches
	Ant olony
	Genetic Algorithm Flow
	Artificial Neural Network

	Selected Aprroach

	Some Challanging Problems
	Equation Evaluation
	Checker
	Type of Checker

	Boundry Function

	Project Execution
	Product Generation
	Steps to use and execute product

	Scope of the Project
	Tools and Technology
	Conclusion And Enhancement
	References

