
Automatic BIOS Code Generation

Submitted By

Shalini Somani

13MCEC22

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2015

Automatic BIOS Code Generation

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Shalini Somani

(13MCEC22)

Guided By

Prof. Pooja Shah

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2015

Certificate

This is to certify that the major project entitled ”Automatic BIOS Code Gener-

ation” submitted by Shalini Somani (Roll No: 13MCEC22), towards the partial

fulfillment of the requirements for the award of degree of Master of Technology in Com-

puter Science and Engineering of Nirma University, Ahmedabad, is the record of work

carried out by her under my supervision and guidance. In my opinion, the submitted

work has reached a level required for being accepted for examination. The results em-

bodied in this project, to the best of my knowledge, haven’t been submitted to any other

university or institution for award of any degree or diploma.

Prof. Pooja Shah Prof. Vijay Ukani

Internal Guide & Assistant Professor, Associate Professor,

CSE Department, Coordinator M.Tech - CSE

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Dr. Sanjay Garg Dr. Ketan Kotecha

Professor and Head, Director,

CSE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Certificate

This to certify that Miss Shalini Somani (13MCEC22), a student of M.Tech CSE(Computer

Science and Engineering), Institute of Technology, Nirma University was working in this

organization since 11/06/2014 and carried out her thesis work titled ”Automatic BIOS

Code Generation”. She was working in name of BIOS Engineer intern under supervision

of Mrs. Nivedita Aggarwal (Mentor), and Mr. Bimod Narayanan (Manager). She has

successfully completed the assigned work and is allowed to submit her dissertation re-

port. The results embodied in this project, to the best of our knowledge, haven’t been

submitted to any other university or institution for award of any degree or diploma. We

wish her all the success in future.

Mrs. Nivedita Aggarwal Mr. Bimod Narayanan

External Guide & Client BIOS Architect, Engineering Manager,

Intel Technology India Pvt.Ltd, Intel Technology India Pvt.Ltd

Bengaluru. Bengaluru.

iv

Statement of Originality
———————————————————————————————————————

I, Shalini Somani, Roll. No. 13MCEC22, give undertaking that the Major Project

entitled ”Title of the Project” submitted by me, towards the partial fulfillment of the

requirements for the degree of Master of Technology in Computer Science & Engi-

neering of Institute of Technology, Nirma University, Ahmedabad, contains no material

that has been awarded for any degree or diploma in any university or school in any ter-

ritory to the best of my knowledge. It is the original work carried out by me and I give

assurance that no attempt of plagiarism has been made. It contains no material that

is previously published or written, except where reference has been made. I understand

that in the event of any similarity found subsequently with any published work or any

dissertation work elsewhere; it will result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof. Pooja Shah

(Signature of Guide)

v

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Prof.

Pooja Shah, Associate Professor, Computer Science Department, Institute of Technol-

ogy, Nirma University, Ahmedabad for his valuable guidance and continual encourage-

ment throughout this work. The appreciation and continual support he has imparted has

been a great motivation to me in reaching a higher goal. His guidance has triggered and

nourished my intellectual maturity that I will benefit from, for a long time to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Science and Engineering Department, Institute of Technology, Nirma University,

Ahmedabad for his kind support and providing basic infrastructure and healthy research

environment.

A special thank you is expressed wholeheartedly to Dr K Kotecha, Hon’ble Director,

Institute of Technology, Nirma University, Ahmedabad for the unmentionable motivation

he has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

See that you acknowledge each one who have helped you in the project directly or

indirectly.

- Shalini Somani

13MCEC22

vi

Abstract

Today, the complexity of the computer systems has grown, with processors and

chipsets incorporating millions of the transistors and compatible with dozens of oper-

ating system,hundreds of platform components and thousands of hardware devices and

software applications. Hence the complexity of BIOS source code is increased so it is

hard to develop different BIOS for each type of platform with different favors.

Also every generation of processor (RTL) is accompanied by an XML file that consists of

entire register set details for that chip. For each generation of an Silicon(IC chip), there

are many flavors of its layouts each accompanied by a specific xml file. As and when the

layout changes even slightly, there are few registers among thousands of registers that

might change.

Currently, programmers have to manually type in the details of all the registers in their

code as part of header files and source files. Therefore, whenever there is a new version

of xml file, even though only few register details would have changed, tracing them and

logging them to update the code is difficult. Doing it multiple times is time consuming

and prone to errors.

This project is aimed at generating the Silicon initialization code from Silicon RTL XML

using Silicon and feature specific configuration overrides with minimal manual interven-

tion.

vii

Abbreviations

BIOS Basic Input Output System.

POC Proof Of Concept.

EFI Extensible Firmware Interface.

UEFI Unified Extensible Firmware Interface.

RTL Register Transistor Logic .

BDF BIOS Directives Format.

POST Power On Self Test.

PEI Pre-EFI.

DXE Driver Execution Environment.

BDS Boot Device Selection.

SOC System On Chip.
——————————————————————————————————————

–

viii

Contents

Certificate iii

Certificate iv

Statement of Originality v

Acknowledgements vi

Abstract vii

Abbreviations viii

List of Figures xi

1 Introduction 2
1.1 Overview . 2
1.2 Motivation . 2
1.3 Problem Definition . 3

2 Literature Survey 5
2.1 Intel Architecture - Platform Overview 5

2.1.1 Introduction to platform . 5
2.2 Introduction to BIOS as ingredient . 5

2.2.1 Power-On Self Test (POST) . 8
2.3 UEFI Specification . 9

2.3.1 Overview . 9
2.3.2 UEFI Boot Phases . 10

3 Implementation Details 13
3.1 BDF Introduction . 13

3.1.1 BDF attributes : Details . 13
3.2 Script for generating Header files . 15

3.2.1 Explanation of Script . 22
3.2.2 Output: Sample Header File . 22

3.3 Source Code Generation . 22
3.3.1 Scrpit for Source Code generation 30
3.3.2 Output : Sample Source code file 40

4 Research Scope 42

ix

5 Requirements 44
5.1 Data Requirements . 44
5.2 Technical Requirements . 44

6 Conclusion 45

References 46

x

List of Figures

1.1 Need of project . 3
1.2 Proposed work . 4

2.1 Intel platform architecture . 6
2.2 BIOS Overview . 8
2.3 Legacy BIOS vs EFI BIOS . 9
2.4 EFI interface . 10
2.5 EFI boot phases . 11

3.1 BDF format . 13
3.2 Header file generation . 23
3.3 Sample header file . 24
3.4 Sample header file . 25
3.5 Sample header file . 26
3.6 Sample header file . 27
3.7 Sample header file . 28
3.8 Sample header file . 29
3.9 Source code generation . 30
3.10 Sample source code file . 40
3.11 Sample source code file . 41

4.1 Research scope . 43

xi

List of Tables

%

1

Chapter 1

Introduction

1.1 Overview

In this thesis report,method to automize the BIOS code generation is discussed.BIOS

stands for Basic Input Output System[?] On a very high level, it initializes the hardware

like processor, chipset, peripherals etc. and then it gives control to the OS through boot

manager. The BIOS must do its job before computer can load operating system and

applications. Currently Intel has migrated from legacy BIOS to EFI BIOS which is based

on EFI Specification. It has standard, modular environment and have many advantages

over legacy BIOS.EFI is a standard or a specification which has different phases named as

SEC (Security), PEI (Pre EFI Initialization)[1], DXE (Driver Execution Environment)[1]

and BDS (Boot Device Selection). There is a provision of legacy BIOS in EFI BIOS code

because not all the OS are EFI compatible. The focus of this project is on the portion

of BIOS that initializes the Silicon and its features.

1.2 Motivation

Here the motivation behind the work done in the thesis to generate the Silicon initial-

ization code from Silicon RTL XML using Silicon and feature specific configuration is to

minimize the manual work done and also this automization is less error prone, clearly

depicted in (Figures 1.1).

If we automate the generation of source code, it would have the following benefits.

• Organized code format for BIOS development

2

Figure 1.1: Need of project

• Avoid gaps and missing information

• Reduce development effort on Silicon specific code

• Minimize bugs and issues due to incorrect Silicon configurations and offsets

• Leverage on existing standardized XML formats for Silicon configurations

1.3 Problem Definition

Today BIOS engineers write BIOS code based on the RTL. Every generation of processor

(RTL) is accompanied by an XML file that consists of entire register set details for that

chip. For each generation of a Silicon(IC chip), there are many flavors of it each accom-

panied by a specific xml file. As and when the stepping changes even slightly,there are

some configurations that need to be changed.

Currently, programmers have to manually type in the details of all the registers in

their code as part of header files and source files. Therefore, whenever there is a new

3

Figure 1.2: Proposed work

version of xml file, even though only few register details would have changed, tracing

them and logging them to update the code is difficult. Doing it multiple times is time

consuming and prone to errors.

My project is aimed at automating the generation of source code and header files, by

taking xml file as input, parsing it based on the information and generating the required

source code and header files.

4

Chapter 2

Literature Survey

2.1 Intel Architecture - Platform Overview

2.1.1 Introduction to platform

Platform encompasses all required ingredients, features, capabilities, initiatives and tech-

nologies (Figures 2.1).

The 4 major ingredients:

• Hardware - which includes Processors, boards ,memory, chipsets, etc.[2]

• Software - which includes Operating systems (OSs), compilers and applications.[2]

• Technologies - which includes Intel Virtualization Technology,Hyper-Threading Tech-

nology (HT Technology) and Intel Active Management Technology (Intel AMT).[3]

• Standards and Initiatives - WiMAX,Wi-Fi, the Wireless Verification Program, and

so on.[2]

The platform is complex with lots of components on it. Every component must work

as designed and there shouldn’t be any conflicts between the devices on it. The Figure

below shows the typical diagram of Intel Client platform 2014. It comes up with single

chip solution which means CPU and PCH are in single die.[2]

2.2 Introduction to BIOS as ingredient

BIOS is the first code to be run when our PC is switched on. It acts as a layer between

Operating System and Hardware. BIOS initialize the various platform components like

5

Figure 2.1: Intel platform architecture

CPU initialization, core initialization, memory and chipset initialization etc. [2] Once

BIOS does its job properly then only your computer can load its operating system and

applications(Figures 2.2).

The essential capacity of the BIOS is to begin a boot loader by setting up and stacking

equipment. When the PC begins is controlled on, the first occupation for the BIOS is

to identify,enumerate and instate framework gadgets, for example, the feature showcase

card, system cards,

console and mouse, hard circle drive, optical plate drive and other hardware.[9]

At that point after the product which is hung on a fringe gadget (assigned as a ’boot

gadget, for example, a hard circle or a CD/DVD is situated by BIOS.[4] After this BIOS

is mainly responsible for loading and execution of the software, giving it control of the

PC. This process of BIOS loading and executing software to make sure that our system

is booting to OS is known as booting, which is short for bootstrapping.[4]

BIOS software is stored on a non-volatile ROM (generally flash memory) chip built into

the system on the motherboard. BIOS plays a number of different roles and most impor-

tant among them is loading the Operating System.[4] As soon as our system is turned on,

6

the microprocessor tries to execute the first instruction. Now for executing any instruc-

tion it has to be present somewhere. Also Operating System cannot have that instruction

as OS is loacated in hardisk and we have not identified any device so far. So BIOS is

responsible for providing those instructions.[4]

BIOS features are as follows:

• It acts as a layer between OS and Hardware.

• It gets your computer up and running.

• Initializes the hardware like Microprocessor, memory, chipset, devices, peripherals

etc.[2]

• Provides Power Management functionality through ACPI.

• Loads and hands control over to the OS boot loader.

• Provides a set of standardized routines for the OS to use.

• Abstracts motherboard and silicon specifics from the OS.

• Prepares system to run an OS.

• Provides runtime services to the OS e.g. disk and video.

The BIOS is responsible for providing drivers/libraries of basic input/output functions

used to operate and control the peripherals such as the keyboard, text display functions

and so forth, and these software library functions are callable by external software.[3]

BIOS performs power-on self-test (POST) for various hardware components in the sys-

tem to ensure everything is working properly. It also provides a set of low level routines

which is used by Operating System for interfacing with different hardware devices.[4]

The Advanced Configuration and Power Interface (ACPI) is a detail which

was produced to create industry regular interfaces empowering vigorous working

framework (OS)-coordinated motherboard gadget arrangement and force administration

of both

7

Figure 2.2: BIOS Overview

gadgets and whole systems.[4] ACPI is the key component in Operating System-

coordinated

design and Power Management (OSPM).

Currently, Industry has migrated from Legacy BIOS to a standard and modular EFI.

BIOS EFI BIOS offers new and improved features and edibility for code developers.[1]

The difference between Legacy BIOS and EFI BIOS is shown in (Figures 2.3)

2.2.1 Power-On Self Test (POST)

Power-On Self-Test (POST)[2] refers to routines which runs immediately as soon as the

PC is powered on, by almost all electronic devices.[2] Conceivably the most well known us-

age involves computing devices (personal computers, PDAs, networking devices, switches,

intrusion detection systems and other monitoring devices), kitchen appliances, avion-

ics, laboratory test equipments, medical equipment,etc. The routines are part of a de-

vice’s pre-boot sequence.[4] On the successfull completion of POST, bootstrapping code

is invoked.[4]

POST contains schedules as controlled by the gadget maker. These schedules are

mailny used to situated an introductory worth for information and yield signals and to

8

Figure 2.3: Legacy BIOS vs EFI BIOS
[4]

execute inner tests. These introductory conditions are additionally referred to as the

gadget’s state.[4] They might either be put away in firmware or included

as equipment, either as a major aspect of the configuration itself.[3]

2.3 UEFI Specification

2.3.1 Overview

This Unified Extensible Firmware Interface[1] (hereafter known as UEFI) Specification de-

scribes an interface between the operating system (OS) and the platform firmware.[5]Infact

its a way for the OS and platform software to communicate only information required

to support the OS boot process.UEFI comes prior to the Extensible Firmware Interface

Specification (EFI)(Figures 2.4).

The interface resembles the data tables that contain information related to platform, and

boot and runtime service calls which are already there with the OS loader and the OS.

Both these together provide a standard environment for booting an OS.[5] This spec-

ification is designed as a pure interface specification. As such, the specification gives

information about what all interfaces and structures the platform firmware must imple-

9

Figure 2.4: EFI interface
[1]

ment and the OS may use while booting.[1]

Complete range of hardware platforms from mobile systems to servers uses this spec-

ification. The specification is flexible enought to provide core set of services along with

a selection of protocol interfaces.[5] The selection of protocol interfaces can evolve over

time to be optimized for various platform market segments. At the same time, the spec-

ification allows maximum extensibility and customization abilities for OEMs to allow

differentiation.[1]

2.3.2 UEFI Boot Phases

EFI BIOS is a modular code and it boots in a manner shown in (Figures 2.5). EFI Boot

process is dived into four main phases which are:[1]

• Security Phase

10

Figure 2.5: EFI boot phases

• Pre EFI Initialization Phase

• Driver Execution Environment Phase

• Boot Device Selection Phase

Each phases with its services are shown in (Figures 2.5)

Security phase:

The Security (SEC) phase is the first phase in the PI architecture and is responsible

for taking care of all the event related to platform restart and it also serves as root of

trust in the system.[5]

Pre-EFI Initialization Phase:

The Pre-EFI Initialization (PEI) period of the PI Architecture details (henceforth

alluded to as the PI Architecture) is summoned bit ahead of schedule in the boot

stream process.Once the fundamental transforming of SEC stage is done,[4] PEI stage

will be conjured by any machine restart event.The PEI stage will at first work with the

stage in an incipient state, utilizing just on processor assets, for example, the processor

reserve

as a call stack, to dispatch Pre-EFI Initialization Modules (PEIMs).[1]

Driver execution Environment (DXE) Phase:

11

After PEI come the Driver Execution Environment (DXE) phase is wherein most of

the system initialization is performed. Pre-EFI Initialization (PEI), the phase prior to

DXE, helps in loading and execution of DXE phase by initializing perpetual memory in

the platform.[2] The condition of the framework toward the end of the PEI stage is

gone to the DXE stage through a rundown of position-free information structures

called

Hand-O Blocks (HOBs).[3]

Boot Device Selection (BDS) Phase:

The Boot Manager in DXE executes after all the DXE drivers whose conditions

have been slaked, have been dispatched by the DXE Dispatcher.[4] Its is the time

when control is transfered to the Boot Device Selection (BDS) period of execution. The

stage boot approach is actualized in this phase.This boot arrangement gives

exibility that authorizes framework sellers to tweak the utilizer experience amid this

stage

of execution.[1]

If the BDS phase cannot make any further progress, it will reinvoke the DXE Dis-

patcher to check if the dependencies of any additional DXE drivers have been satisfied

since the last time the DXE Dispatcher was invoked.[5]

12

Chapter 3

Implementation Details

3.1 BDF Introduction

The BIOS Directive Format (BDF) is an attempt to provide a (simple) machine parsable

format to define necessary BIOS configuration flows. [4] The BIOS Directive Format is an

XML schema. The hierarchy of a BDF file consists of a top-level bdf node, with flow child

nodes, followed by registerFile, register, and field nodes as shown in (Figures 3.1).

3.1.1 BDF attributes : Details

• bdf . . .

– version : which may be specified if there are future versions of the BIOS

Directive Format that introduce schema variations.

• flow . . .

– name : which specifies the name of the flow.

Figure 3.1: BDF format

13

– owner : which specifies the owner/contact of the flow.

– version : which specifies the version/release/revision of the flow. This is

especially useful when handling revision control of updated/changed flows.

– before and after : which are used to optionally specify the events that

temporally bound when the flow should be executed.

– ordered : which specifies whether the register child accesses must be per-

formed in-order.

• registerFile . . .

– name : which specifies the path of the registerFile.

– flags : which optionally specifies (as semi-colon separated ”key=value” pairs)

the parameters that control the applicability of the registerFile programming.

– else : which helps managing both if-else conditions.

– comment : which optionally specifies additional descriptive language the user

would like to provide.

– stepping : which specifies which stepping of the silicon chip we are refering

to.

• register . . .

– name : which specifies the name of the register.

– value : which specifies value to be written into that register.

– comment : which optionally specifies additional descriptive language the user

would like to provide.

• field . . .

– name : which specifies name of the field.

– value : which specifies value to be written into the field.

– pollfor : which optionally specifies that the field should be polled until the

specified value is returned. This is especially useful if there is a section of a

flow that requires hardware semaphore before continuing with programmings.

14

– timeout : which optionally specifies a timeout to use when using the pollfor

attribute

3.2 Script for generating Header files

This is the Python script which is parsing SOC-RTL.xml and my BDF.xml and generating

all the required header files.

import xml.etree.ElementTree as etree import time

StartTime = time.time() print time.ctime() FileList = [regFile1, regFile2, regFile3,....regFilen]

File1 = [0 for i in FileList]

print ’parsing xml file...’

stim=time.time()

root = etree.parse(’rtl.xml’).getroot()

etim=time.time()

print ’time elapsed: %d secs’ % (etim-stim)

print ’generating header files...’

for i in range(len(FileList)):

stim=time.time()

regfilelist = []

for keyname in FileList[i][1]:

regfile.findtext(’name’).split(’/’)[0] == keyname]

regfilelist.extend(tempList)

OffsetList = []

for registerFile in regfilelist:

for register in registerFile.findall(’register’):

string = int(register.findtext(’addressOffset’).split(’h’)[1], 16)

OffsetList.append(string)

OffsetSet = list(set(OffsetList))

15

OffsetSet.sort()

HeaderFileName = FileList[i][0]

File1[i] = open(HeaderFileName + ”.h”, ”w+”)

File1[i].write(” This file was automatically generated. Modify at your own risk.”)

File1[i].write(”@copyright”)

File1[i].write(” Copyright (c) 2010 - 2013 Intel Corporation. All rights reserved.”)

File1[i].write(” This software and associated documentation (if any) is furnished”)

File1[i].write(” under a license and may only be used or copied in accordance”)

File1[i].write(” with the terms of the license. Except as permitted by such”)

File1[i].write(” license, no part of this software or documentation may be”)

File1[i].write(” reproduced, stored in a retrieval system, or transmitted in any”)

File1[i].write(” form or by any means without the express written consent of”)

File1[i].write(” Intel Corporation.”)

File1[i].write(” This file contains an ’Intel Peripheral Driver’ and uniquely”)

File1[i].write(” identified as ’Intel Reference Module’ and is”)

File1[i].write(” licensed for Intel CPUs and chipsets under the terms of your”)

File1[i].write(” license agreement with Intel or your vendor. This file may”)

File1[i].write(” be modified by the user, subject to additional terms of the”)

File1[i].write(” license agreement.”)

File1[i].write(”ifndef ” + HeaderFileName + ”h”)

File1[i].write(”define ” + HeaderFileName + ”h”)

File1[i].write(”pragma pack(push, 1)”)

File1[i].write(”include ”MrcTypes.h”)

for offset in OffsetSet:

flag = False

for registerFile in regfilelist:

for register in registerFile.findall(’register’):

if offset == int(register.findtext(’addressOffset’).split(’h’)[1], 16):

16

flag = True

regName = register.findtext(’designName’)

regSize = int (register.findtext(’size’))

regStart = int(register.findtext(’addressOffset’).split(’h’)[1], 16)

NextBitFieldLsb = 0

if regSize == 8:

for field in register.findall(’field’):

bitfieldName = field.findtext(’name’)

Width = int(field.findtext(’bitWidth’))

bitfieldLsb = int(field.findtext(’bitOffset’))

bitfieldMsb = bitfieldLsb + Width - 1

if NextBitFieldLsb == 0:

File1[i].write(”typedef union struct ”)

if bitfieldLsb ¡¿ NextBitFieldLsb:

rsvd = bitfieldLsb - NextBitFieldLsb

bitFieldMinus = bitfieldLsb - 1

File1[i].write(” U8 :% 2u; // Bits%u:%u ”% (rsvd, bitFieldMinus, NextBitFieldLsb))

File1[i].write(” U8 % -40s:% 2u; // Bits%u:%u ”% (bitfieldName, Width, bitfieldMsb,

bitfieldLsb))

NextBitFieldLsb = bitfieldMsb + 1

rsvd = 7 - bitfieldMsb

if bitfieldMsb ¡ 7:

File1[i].write(” U8 :% 2u; // Bits 7:%u ”% (rsvd, NextBitFieldLsb))

File1[i].write(” Bits;”)

File1[i].write(” U8 Data;”)

File1[i].write(”%sSTRUCT;”% regName)

17

elif regSize == 16:

for field in register.findall(’field’):

bitfieldName = field.findtext(’name’)

Width = int(field.findtext(’bitWidth’))

bitfieldLsb = int(field.findtext(’bitOffset’))

bitfieldMsb = bitfieldLsb + Width - 1

if NextBitFieldLsb == 0:

File1[i].write(”typedef union struct ”)

if bitfieldLsb ¡¿ NextBitFieldLsb:

rsvd = bitfieldLsb - NextBitFieldLsb

bitFieldMinus = bitfieldLsb - 1

File1[i].write(” U16 :% 2u; // Bits%u:”% (rsvd, bitFieldMinus, NextBitFieldLsb))

File1[i].write(” U16% -40s:% 2u; // Bits%u:”% (bitfieldName, Width, bitfieldMsb,

bitfieldLsb))

NextBitFieldLsb = bitfieldMsb + 1

rsvd = 15 - bitfieldMsb

if bitfieldMsb ¡ 15:

File1[i].write(” U16 :% 2u; // Bits 15%u”% (rsvd, NextBitFieldLsb))

File1[i].write(” Bits;”)

File1[i].write(” U16 Data;”)

File1[i].write(” U8 Data8[2];”)

File1[i].write(”%sSTRUCT;”% regName)

elif regSize == 32:

for field in register.findall(’field’):

bitfieldName = field.findtext(’name’)

Width = int(field.findtext(’bitWidth’))

bitfieldLsb = int(field.findtext(’bitOffset’))

18

bitfieldMsb = bitfieldLsb + Width - 1

if NextBitFieldLsb == 0:

File1[i].write(”typedef union struct ”)

if bitfieldLsb ¡¿ NextBitFieldLsb:

rsvd = bitfieldLsb - NextBitFieldLsb

bitFieldMinus = bitfieldLsb - 1

File1[i].write(” U32 :% 2u; // Bits%u%u%(rsvd, bitFieldMinus, NextBitFieldLsb))

File1[i].write(” U32% -40s:% 2u; // Bits%u:%u”% (bitfieldName, Width, bitfieldMsb,

bitfieldLsb))

NextBitFieldLsb = bitfieldMsb + 1

rsvd = 31 - bitfieldMsb

if bitfieldMsb ¡ 31:

File1[i].write(” U32 :% 2u; // Bits 31:%u”% (rsvd, NextBitFieldLsb))

File1[i].write(” Bits; ”)

File1[i].write(” U32 Data; ”)

File1[i].write(” U16 Data16[2]; ”)

File1[i].write(” U8 Data8[4]; ”)

File1[i].write(”%sSTRUCT; ”% regName)

elif regSize == 64:

for field in register.findall(’field’):

bitfieldName = field.findtext(’name’)

Width = int(field.findtext(’bitWidth’))

bitfieldLsb = int(field.findtext(’bitOffset’))

bitfieldMsb = bitfieldLsb + Width - 1

if NextBitFieldLsb == 0:

19

File1[i].write(”typedef union struct ”)

if bitfieldLsb ¡¿ NextBitFieldLsb:

rsvd = bitfieldLsb - NextBitFieldLsb

bitFieldMinus = bitfieldLsb - 1

File1[i].write(” U64 :% 2u; // Bits%u:%u ”% (rsvd, bitFieldMinus, NextBitFieldLsb))

File1[i].write(” U64% -40s:% 2u; // Bits%u:%u ”% (bitfieldName, Width, bitfieldMsb,

bitfieldLsb))

NextBitFieldLsb = bitfieldMsb + 1

rsvd = 63 - bitfieldMsb

if bitfieldMsb ¡ 63:

File1[i].write(” U64 :% 2u; // Bits 31:%u ”% (rsvd, NextBitFieldLsb))

File1[i].write(” Bits; ”)

File1[i].write(” U64 Data; ”)

File1[i].write(” U32 Data32[2]; ”)

File1[i].write(” U16 Data16[4]; ”)

File1[i].write(” U8 Data8[8]; ”)

File1[i].write(”%s STRUCT; ”% regName)

else:

File1[i].write(”//WARNING: REGISTER DOES NOT HAVE A SUPPORTED BIT WIDTH,

Name:%s, Width:% 2u ”% (regName, regSize))

Name = register.findtext(’name’)

File1[i].write(”define% -40s (0x%X) ”% (Name + ”REG”, regStart))

if (regSize == 8) or (regSize == 16) or (regSize == 32) or (regSize == 64):

for field in register.findall(’field’):

bitfieldName = field.findtext(’name’)

Width = int(field.findtext(’bitWidth’))

20

bitfieldLsb = int(field.findtext(’bitOffset’))

bitfieldMsb = bitfieldLsb + Width - 1

MaxValue = (1 ¡¡ Width) - 1

Mask = MaxValue ¡¡ bitfieldLsb

fieldName = Name + ”-” + bitfieldName + ”OFF”

File1[i].write(” define% -40s(%u) ”% (fieldName, bitfieldLsb))

fieldName = Name + ”-” + bitfieldName + ” WID”

File1[i].write(” define% -40s(%u) ”% (fieldName, Width))

fieldName = Name + ”-” + bitfieldName + ” MSK”

File1[i].write(” define% -40s (0x%X) ”% (fieldName, Mask))

fieldName = Name + ”-” + bitfieldName + ” MAX”

File1[i].write(” define% -40s (0x%X)”% (fieldName, MaxValue))

defaultValueName = [reset for reset in field.findall(’reset’) if reset.get(’type’) == ’de-

fault’][0].text

defaultValueName = defaultValueName.replace(’-’, ”)

defType = defaultValueName.find(”’b”)

if (defType ¿= 0):

defaultValue = int(defaultValueName.split(’b’)[1], 2)

else:

defType = defaultValueName.find(”’h”)

if (defType ¿= 0):

defaultValue = int(defaultValueName.split(’h’)[1], 16)

if (defType ¿=0):

fieldName = Name + ”-” + bitfieldName + ” DEF”

21

File1[i].write(” define% -40s (0x%X)”% (fieldName, defaultValue))

if flag : break

breaks the regfile loop

File1[i].write(” pragma pack(pop) ”)

File1[i].write(” endif // - + HeaderFileName + ” h- ”)

File1[i].close()

etim=time.time()

print%d file done, time taken%d sec’% (i, etim-stim)

endTime=time.time()

print ’Done Time elspsed:%d seconds’% (endTime-StartTime)

3.2.1 Explanation of Script

The above script basically parse the Silicon RTL and generate all the required header files

automatically based on the information given in BDF.xml. Along with the generation of

header files this script also standarize the way all register offsets, register mask, register

width, etc. are declared throughout the BIOS code which is useful in further optimization

of code.

3.2.2 Output: Sample Header File

(Figures 3.3),(Figures 3.4),(Figures 3.5),(Figures 3.6),(Figures 3.7),(Figures 3.8)shows

view of a header file generated from the above script. The images are intentionally

blurred as they contain Intel confidential stuff.

3.3 Source Code Generation

A python script parses silicon RTL.xml, BDF.xml and takes necessary header files as

input and generate source code(.c) files automatically for various modules in a proper

format.

It was observed that the manual writing of source code (for say 10 .c files) takes

22

Figure 3.2: Header file generation

23

Figure 3.3: Sample header file

24

Figure 3.4: Sample header file

25

Figure 3.5: Sample header file

26

Figure 3.6: Sample header file

27

Figure 3.7: Sample header file

28

Figure 3.8: Sample header file

29

Figure 3.9: Source code generation

approximately a month or even more depending on the time taken for collecting all the

requirements.As we have hundreds of such .c files

But with this automation its hardly takes a minute or even less. Here is a screen-shot

(Figures 3.9) which shows time taken to generate a source code file using python script.

3.3.1 Scrpit for Source Code generation

Following is the python script which parsed silicon RTL.xml and BDF.xml and generates

source code(.c) file as output.

import xml.etree.ElementTree as etree

import re

import sys

import time

StartTime = time.time()

count-step = 1

var = count= 0

count-var = 0

var-1 = 0

root = etree.parse(’cregs-mod.xml’).getroot()

step1 =[]

headerfile =[]

30

a =[]

no-of-flags = []

check = []

check1 = []

b = []

c = []

e = 0

File = open(”Gmm-API.c”,”w+”)

Function to check all the conditions based on information provided in BDF

before updating any register value ###

From Source code point of view it takes care of all the if-else conditions

def func-flag(str1,str2):

global count-var

flag-count = str1.count(’;’)

flag = str1

if flag-count== 0:

flag1 = flag.split(’-’)[0]

flag2 = flag.split(’-’)[1]

flag3 = flag.split(’-’)[2]

flag4 = flag3.split(’=’)[0]

flag5 = flag3.split(’=’)[1]

comment = str2

for regfile in root.findall(’registerFile’):

name1 = regfile.findtext(’name’)

if regfile.findtext(’name’) != flag1:

continue

31

else:

for reg in regfile.findall(’register’):

if reg.findtext(’name’)!=flag2:

continue

else:

for field in reg.findall(’field’):

if field.findtext(’name’)!= flag4:

continue

else:

RegToRead = flag2

Width = int(field.findtext(’bitWidth’))

bitfieldLsb = int(field.findtext(’bitOffset’))

bitfieldMsb = bitfieldLsb + Width - 1

MaxValue = (1 ¡¡ Width) - 1

Mask = MaxValue ¡¡ bitfieldLsb

Bus = str(regfile.findtext(’bus’))

Device = str(regfile.findtext(’device’))

Function = str(regfile.findtext(’function’))

fieldName = flag2 + ”-” + flag4 + ”-MSK” + ”-” + Bus + Device + Function

Bus = regfile.findtext(’bus’)

Device = regfile.findtext(’device’)

Function = regfile.findtext(’function’)

BaseAddressToRead = ’McD’ + Device + ’BaseAddress’

File.write(” Data32-%s = MmioRead32 (”+ BaseAddressToRead + ” + ” + RegToRead

+ ”-REG); ” % count-var)

File.write(” if (%s & Data32-%s) ”% (fieldName,count-var))

as mask name should be used for condition checking. File.write(” ”)

File.write(” DEBUG ((EFI-D-INFO,%̈10s)̈); ”%comment)

32

count-var = count-var+1

File.write(” ”)

else:

if there are more than one condition check

for i in range(0,flag-count+1):

n=flag.split(’;’)[i]

no-of-flags.append(n)

for i in range(0,len(no-of-flags)):

flag = no-of-flags[i]

flag1 = flag.split(’-’)[0]

flag2 = flag.split(’-’)[1]

flag3 = flag.split(’-’)[2]

flag4 = flag3.split(’=’)[0]

flag5 = flag3.split(’=’)[1]

comment = str2

for regfile in root.findall(’registerFile’):

name1 = regfile.findtext(’name’)

if regfile.findtext(’name’) != flag1:

continue

else:

for reg in regfile.findall(’register’):

if reg.findtext(’name’)!=flag2:

continue

else:

33

for field in reg.findall(’field’):

if field.findtext(’name’)!= flag4:

continue

else:

RegToRead = flag2

Width = int(field.findtext(’bitWidth’))

bitfieldLsb = int(field.findtext(’bitOffset’))

bitfieldMsb = bitfieldLsb + Width - 1

MaxValue = (1 ¡¡ Width) - 1

Mask = MaxValue ¡¡ bitfieldLsb

Bus = str(regfile.findtext(’bus’))

Device = str(regfile.findtext(’device’))

Function = str(regfile.findtext(’function’))

fieldName = flag2 + ”-” + flag4 + ”-MSK” + ”-” + Bus + Device + Function

Bus = regfile.findtext(’bus’)

Device = regfile.findtext(’device’)

Function = regfile.findtext(’function’)

BaseAddressToRead = ’McD’ + Device + ’BaseAddress’

File.write(” Data32-”+str(count-var)+”= MmioRead32 (”+ BaseAddressToRead + ” +

” + RegToRead + ”-REG); ”)

File.write(” if (%s & Data32-%s) ”%(fieldName,count-var))

File.write(” ”)

count-var = count-var+1

File.write(” DEBUG ((EFI-D-INFO,%̈10s)̈); ”%comment)

for x in range(1,len(no-of-flags)):

File.write(” ”)

File.write(” } ”)

return

34

Function which writes under CPUID condition

def func-policy(str1,str2,str3,value):

for regfile1 in root.findall(’registerFile’):

name1 = regfile1.findtext(’name’)

if regfile1.findtext(’name’) != str1:

continue

else:

for reg1 in regfile1.findall(’register’):

if reg1.findtext(’name’)!=str2:

continue

else:

for field1 in reg1.findall(’field’):

if field1.findtext(’name’)!= str3:

continue

else:

size = reg1.findtext(’size’)

RegToRead = str2

Width = int(field1.findtext(’bitWidth’))

bitfieldLsb = int(field1.findtext(’bitOffset’))

bitfieldMsb = bitfieldLsb + Width - 1

MaxValue = (1 ¡¡ Width) - 1

Mask = MaxValue ¡¡ bitfieldLsb

Bus = str(regfile1.findtext(’bus’))

Device = str(regfile1.findtext(’device’))

Function = str(regfile1.findtext(’function’))

maskName = str2 + ”-” + str3 + ”-MSK” + ”-” + Bus + Device + Function

word = ’MCHBAR’

check = [e for e in word if e in str1.split(’-’)]

35

if check==[]:

BaseAddressToRead = ’McD’ + Device + ’BaseAddress’

else:

BaseAddressToRead = ’MchBarBase’

if bitfieldLsb==0:

File.write(” MmioWrite%s(%s + %s ,0x%s) ; ”%(size,BaseAddressToRead,str2,value))

else:

File.write(” MmioWrite%s(%s + %s ,MmioAnd%s((UINTN) %s ,(UINT%s)(0x%s ¡¡

%s)) ; ”%(size,BaseAddressToRead,str2,size,maskName,size,value,bitfieldLsb))

return

MAIN FUNCTION

counting the number of flow steps ### File.write(”/** @file ”)

File.write(” This file was automatically generated. Modify at your own risk. ”)

print ”Generating Source Code..............”

for regfile in root.findall(’registerFile’):

name = regfile.findtext(’name’)

for reg in regfile.findall(’register’):

for field in reg.findall(’field’):

for flow in field.findall(’flow’):

if flow!=””:

s = flow.get(’step’)

step1.append(s)

var = var+1

hname = name.split(’/’)[0]

identifying all the required header files which are also autogenerated header-

file.append(hname)

list containing all the header files to be included in C codea=list(set(headerfile))

36

for i in range(0,len(a)):

File.write((”%include ¡%s.h¿ ” % a[i]))

platform = ’Skylake’ : ’EnumSkl’

File.write(”VOID ”)

File.write(”gmminitapi (”)

File.write(”IN CPU-STEPPING CpusteppingId”)

File.write(”) ”)

for regfile in root.findall(’registerFile’):

name = regfile.findtext(’name’)

for reg in regfile.findall(’register’):

regname = reg.findtext(’name’)

for field in reg.findall(’field’):

fname = field.findtext(’name’)

for flow in field.findall(’flow’):

if flow!=””:

Bus = regfile.findtext(’bus’)

###here, BDF are strings and not integers Device = regfile.findtext(’device’)

Function = regfile.findtext(’function’)

word = ’MCHBAR’ check1 = [e for e in word if e in name.split(’-’)]

BaseAddressToRead = ’McD’ + Device + ’BaseAddress’

b.append(BaseAddressToRead)

flag = flow.findtext(’flag’)

flag-count = flag.count(’;’)

e = flag-count

if flag-count !=0:

for i in range(0,flag-count+1):

37

var-1=var-1+1

else:

var-1=var-1+1

File.write(” %-25s MchBarBase; ” % (’UINTN’))

c = list(set(b))

for i in range(0,len(c)):

File.write(” %-25s %s; ” % (’UINTN’,c[i]))

if check1 !=[]:

File.write(” %-25s MchBarBase; ” % (’UINTN’))

for i in range(0,2):

File.write(” %-25s Data32-%s; ” %(’UINT32’,i))

for address in c:

for key,value in baseadd1.iteritems():

if address==key:

File.write(” %s = %s ;” %(key,value))

for key,value in baseadd2.iteritems():

if address==key:

File.write(” %s = %s ;” %(key,value))

for i in range(1,len(step1)):

for regfile in root.findall(’registerFile’):

name = regfile.findtext(’name’)

for reg in regfile.findall(’register’):

regname = reg.findtext(’name’)

for field in reg.findall(’field’):

fname = field.findtext(’name’)

38

for flow in field.findall(’flow’):

if ((flow!=””) and (int(flow.get(’step’))==i)):

stepping = flow.findtext(’stepping’)

comment = flow.findtext(’comment’)

value = flow.findtext(’value’)

val = value.split(’b’)[1]

if stepping!=””:

File.write(”// For SKL Stepping %s ”%(stepping))

File.write(” if (CpuSteppingId == EnumSkl%s) ” %(stepping))

condition = flow.findtext(’flag’)

if condition != ””:

checking no of conditions in flag func-flag(condition,comment)

func-policy(name,regname,fname,val)

if stepping !=””:

File.write(” ”)

File.write(” return; ”)

File.write(” ”)

EndTime = time.time() - StartTime

print ”DONE”

print ’Time elapsed: %d seconds’ % EndTime

print time.ctime()

File.close()

print ” done”

39

Figure 3.10: Sample source code file

3.3.2 Output : Sample Source code file

Figures (Figures 3.10)(Figures 3.11) show view of source code file generated from the

above script. The images are intentionally blurred as they contain Intel confidential

stuff. A a part of generating POC for this research based project, one of the source

code(.c) file was integrated into the existing BIOS code base and it was observed that

BIOS code was building successfully.

40

Figure 3.11: Sample source code file

41

Chapter 4

Research Scope

Now from research point of view I would like to highlight the point that by this project I

am trying to generate a POC (Proof Of Concept). Hence research is involved in demon-

strating the feasibility if this idea which includes-

• Understanding the minutes of processor family viz. PCI Express configuration,

System Agent devices, Microcode update, ACPI, System Management Mode, etc.

• Understanding the BIOS code and analyzing what all components/devices of pro-

cessor can be automated by writing script in generalized way.

• Once done with the script for any one module of any processor, I have to be sure if

it is generalized enough to generate code for other generations of Silicon.

42

Figure 4.1: Research scope

43

Chapter 5

Requirements

5.1 Data Requirements

Two major data requirements for my project would be-:

• BIOS specs. - to decide the flow for my code generation. As all the programming

detalis are mentioned in BIOS specs. only, so its the kind of entry point for doing

my research work.

• RTL.xml - it is the file wherein all the register details are there and i would be

parsing this file only based on the information present in BIOS spec. to generate

the code.

5.2 Technical Requirements

I would be parsing all the ’.xml’ and ’.xlsx’ files using Python. Code is based on C

language and developed using Microsoft Visual Studio as an IDE along with Python.

44

Chapter 6

Conclusion

This thesis shows that the main objective of this project is-

• Dehumanize silicon initialization code.

• Develop a saclable solution that can shift left software rediness to improve efficiency.

Also this project will imporve developement efficiency with respect to-

• Reduced man hours on developing Si initialization code.

• Reduced number of issues due to incorrect or incomplete requirements.

• Accelerate SW readiness in pre-Si timeframe.

• Leverage early RDL availability for early code readiness.

45

References

[1] “Boot phases,” Unified Extensible Firmware Interface Specication, vol. 2.3.1, pp. 993–

1022, 2011.

[2] http://saba.intel.com/Saba/Web/Main//Platform Basics for CQR, “Platform ba-

sics.”

[3] Intel, “Basic architecture,” Intel64 and IA-32 Architectures Software Developer’s

Manual, vol. 1-3, 2013.

[4] http://saba.intel.com/Saba/Web/Main//Bios Basics for CQR, “Bios.”

[5] www.uefi.org, “Uefi.”

46

	Certificate
	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Overview
	Motivation
	Problem Definition

	Literature Survey
	Intel Architecture - Platform Overview
	Introduction to platform

	Introduction to BIOS as ingredient
	Power-On Self Test (POST)

	UEFI Specification
	Overview
	UEFI Boot Phases

	Implementation Details
	BDF Introduction
	BDF attributes : Details

	Script for generating Header files
	Explanation of Script
	Output: Sample Header File

	Source Code Generation
	Scrpit for Source Code generation
	Output : Sample Source code file

	Research Scope
	Requirements
	Data Requirements
	Technical Requirements

	Conclusion
	References

