
Development of an automation tool for
internet of things

Submitted By

Vikas Shah

13MCEN15

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2015

ii

Development of an automation tool for
internet of things

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering (Networking Technologies)

Submitted By

Vikas Shah

(13MCEN15)

Guided By

Prof. Rupal Kapdi

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2015

iv

Certificate

This is to certify that the major project entitled ”Development of an automation

tool for internet of things” submitted by Vikas Shah (Roll No: 13MCEN15),

towards the partial fulfillment of the requirements for the award of degree of Master of

Technology in Computer Science and Engineering (Networking Technologies) of Institute

of Technology,Nirma University, Ahmedabad, is the record of work carried out by him

under my supervision and guidance. In my opinion, the submitted work has reached a

level required for being accepted for examination. The results embodied in this project,

to the best of my knowledge, haven’t been submitted to any other university or institu-

tion for award of any degree or diploma.

Prof. Rupal Kapdi Prof. Gaurang Raval

Guide & Associate Professor, Associate Professor,

CSE Department, Coordinator M.Tech - CSE

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Dr. Sanjay Garg Dr K Kotecha

Professor and Head, Director,

CSE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

v

Statement of Originality
———————————————————————————————————————

I, Vikas Shah, Roll. No. 13MCEN15, give undertaking that the Major Project en-

titled ”Development of an automation tool for internet of things” submitted

by me, towards the partial fulfillment of the requirements for the degree of Master of

Technology in Computer Science & Engineering (Networking Technologies) of

Institute of Technology, Nirma University, Ahmedabad, contains no material that has

been awarded for any degree or diploma in any university or school in any territory to

the best of my knowledge. It is the original work carried out by me and I give assurance

that no attempt of plagiarism has been made. It contains no material that is previously

published or written, except where reference has been made. I understand that in the

event of any similarity found subsequently with any published work or any dissertation

work elsewhere; it will result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Guide Name

(Signature of Guide)

vi

Acknowledgments

It gives me immense pleasure in expressing thanks and profound gratitude to Prof. Ru-

pal Kapdi, Associate Professor, Computer Science Department, Institute of Technology,

Nirma University, Ahmedabad for his valuable guidance and continual encouragement

throughout this work. The appreciation and continual support he has imparted has been

a great motivation to me in reaching a higher goal. His guidance has triggered and nour-

ished my intellectual maturity that I will benefit from, for a long time to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Science and Engineering Department, Institute of Technology, Nirma University,

Ahmedabad for his kind support and providing basic infrastructure and healthy research

environment.

A special thank you is expressed wholeheartedly to Dr K Kotecha, Hon’ble Director,

Institute of Technology, Nirma University, Ahmedabad for the unmentionable motivation

he has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

See that you acknowledge each one who have helped you in the project directly or

indirectly.

- Vikas Shah

13MCEN15

vii

Abstract

Internet of things allows devices to communicate without human intervention and

to connect devices or machine to internet so we can remotely monitor the status of

devices and useful information and can control devices remotely also. internet of things

provides protocols that allows devices to communicate remotely and also we can access

information from devices and can control remotely too. COAP and MQTT protocols

that helps constrained devices to live longer life and device to device communication also.

Internet of things allows devices to connect to internet so security plays major role here.

and DTLS (Datagram transport layer security) over UDP provides security to this tiny

devices and can easily connect to internet. for this tiny devices power management is also

a major thing because this needs minimal processing in constrained nodes so this COAP

protocols allows this tiny devices to save power by processing minimal header format

instead of big HTTP header that saves lot of cost in memory and power in constrained

devices.

viii

Abbreviations

IOT Internet Of Things.

COAP Constraint application protocol.

MQTT Message queue telemetry transport.

DTLS Datagram transport layer security
——————————————————————————————————————

–

ix

Contents

Certificate v

Statement of Originality vi

Acknowledgments vii

Abstract viii

Abbreviations ix

List of Figures 1

1 Introduction 2
1.1 Internet Of Things . 2

1.1.1 Architecture . 3
1.1.2 IOT challenges . 4

2 Literature Survey 5
2.1 COAP (Constrained application protocol) 5
2.2 DTLS (datagram transport layer security) 7

3 Implementation 10
3.1 Console Tool . 10
3.2 Heartbeat Monitor Application . 11

3.2.1 Learning . 11
3.3 COAP (Constrained application protocol) 12

3.3.1 HTTP v/s COAP . 12
3.3.2 COAP server features . 13
3.3.3 Modules . 17

3.4 MQTT (Message Queue telemetry transport) 18

4 Conclusion and Future Scope 21
4.1 Conclusion . 21
4.2 Future Scope . 21

References 23

x

List of Figures

1.1 Internet of things architecture . 3

2.1 COAP Architecture . 5
2.2 COAP Communication . 6
2.3 Packet loss in DTLS . 8
2.4 Prevent denial of service attack . 8
2.5 DTLS handshake . 9

3.1 Heartrate monitor application . 12
3.2 Observe for resource . 15
3.3 Design diagram . 17
3.4 MQTT Protocol . 18
3.5 MQTT Fixed header . 19
3.6 QOS Support . 20

1

Chapter 1

Introduction

1.1 Internet Of Things
Internet of things describes a vision where object becomes part of internet. Where ev-
ery objects are uniquely identified and accessible to the network its position and status
known. Internet of things is aimed to provide communication between object-object and
human-object. As day by day number of devices is increasing and has capability to sense
and actuate or perform some action All the devices are connected to internet and has
capability to sense and send data over network. We can get this data and make use of the
data to predict or take some action based on the collected data. The definition of thing
could be object such as mobile phones, tablets and home appliances also. These devices
or things are connected to through network each providing data and information and
some, even services. The Internet of things vision enhances connectivity from any-time,
any-place for any one. Once these devices are connected to network then more and more
data and services will be available which helps for different types of applications. Inter-
net of things creates applications in variety of field such as agriculture, logistics, home
automation etc.

As internet growing rapidly and many devices are connecting day by day. So we
can use this connectivity and can make those individual objects to communicate that
will share some data and can process otherwise can give to user or can store somewhere
where user can use that data to make decision. Internet of things connecting many devices
so we need strong connectivity and security. Internet of things has small embedded device
that must consume less power and with low cost also. To provide and to overcome those
problems we need to research so we can come up with a solution that allows users to
develop applications for internet of things. The idea of internet of things came based on
RFID tags in which each RFID tag is uniquely identifiable and information is embedded
to each RFID tag so we can identify each RFID tag and information embedded into that.
Same for internet of things in which all objects are uniquely identifiable in the network
and has some information where we can identify each object in network and can get some
information from that particular object. Devices are capable to sense data that has built
in sensors and processing power also has storage capability increased and size is reduced.
These all devices have sensors connected which sense data and send data to cloud where
we can process all the data and make some conclusion. [1]

2

1.1.1 Architecture

Todays internet is using TCP/IP protocol for communication between network hosts now
same devices in IOT will use TCP/IP network for communication with different devices.
That will increase more traffic in network but with advancement in device capability it
will also increase storage and network capability. The basic architecture for IOT

Figure 1.1: Internet of things architecture

As shown in 1.1 IOT consist of five layers and each layer has its own role to support
IOT. These layers are [2]

• Perception Layer: The perception layer is also known as Device layer. It consist
of physical device and sensors. The sensors are of any type that can be location,
temperature, pressure, acceleration etc. This sensors sense the value based on type
of sensor and they will pass it to network layer from where they can transmit it to
network. The collected information is passed to network layer where network layer
provides security to send data to cloud. [3]

• Network Layer: Network layer is also called as transmission layer this layer is used
to transfer data collected by sensor to processing device through wired or wireless
technology. To transfer information interface can be WIFI, Bluetooth, ZigBee, 3G
etc. this layer is connectivity layer between sensor devices and processing devices
where we can process all the data and can make some conclusion.

• Middleware Layer: The middleware layer is also called as storage layer. In which
all the data collected from network this layer will store it into database or cloud
from where application can use the data stored in database.

• Application layer: Application layer has applications where they can use data stored
in database or at middleware layer and can make use of the data. For example the
application implemented in IOT can be smart health, smart home, smart city and
intelligent transportation. This layer collects data from cloud or storage and can
give data to user.

• Business Layer: This layer is responsible for the management of overall IOT system
including the application and services. It builds business models with graph or
flowchart of whole system. Based on the analysis of results can take the decision
and can take future actions and business strategies.

3

1.1.2 IOT challenges

There are various challenges are there in respective of IOT as information is passed from
network and anybody can access information. Various challenges in IOTs are [2]

• Naming and Identity management The IOT will connect billion of devices or objects
and each should be uniquely identifiable in network. Each object/sensor has unique
identity over the internet. The efficient naming and identity management system
required that can dynamically assign and manage unique identity for such a large
number of objects.

• Standardization There are different manufacturer involved in manufacturing differ-
ent devices with their own technology where in some cases this devices cannot able
to communicate with device that is manufactured by different manufacture so the
standardization between all the devices is needed so all the devices can communicate
easily.

• Data confidentiality and encryption Sensors will sense the data and send it to
network so confidentiality of information is very important where we can use some
standard encryption/decryption to encrypt the data and send over network and
other device can decrypt it.

• Network Capability The challenge regarding network capability is there are many
sensors and devices connected with network and the data from sensor device will
send through wired or wireless interface. The transmission system or network should
be able to collect all the data from sensors and make sure that no data loss from
any sensor due to network congestion.

• Low power The main challenge for IOT is low power of devices as embedded devices
used in IOTs are deployed many places and that has limited power capacity in this
case its very important to save power whenever its possible. So there is need of
mechanism where we can power off the devices when there is no need of power and
can power up again whenever needed.

4

Chapter 2

Literature Survey

2.1 COAP (Constrained application protocol)
There are many communication protocols are available to communicate with different
devices currently there are many communication protocols available such as MQTT and
COAP. COAP (constrained application protocol) is used for low power and low memory
embedded devices where it can be used for communication instead of HTTP. Currently
there is HTTP protocol available with request and response paradigm but HTTP has
many features and more footprint. And HTTP runs over TCP where TCP will need
more resources due to three way handshake and many more complex mechanism. Now
for low power embedded devices there is no need of this heavy protocols and we can
optimize it to run over TCP. TCP also contains congestion and reliability mechanism
so it will take more time and more resources. COAP is easy protocol implementation
for communication between embedded devices. There is packet format that can support
both reliability and no reliable applications.

Figure 2.1: COAP Architecture

5

As COAP is a Restful web transfer protocol for use with constrained networks. COAP
uses client/server model of approach same as HTTP. It is designed for constrained net-
works with low overhead and lower footprint. Some points for COAP that makes better
protocol compared to HTTP is [4]:

• COAP runs over UDP (User datagram protocol) that helps to avoid costly TCP
handshake before data transmission.

• COAP protocol is only 4 byte header and provides reliable transfer and no reliable
transfer as it uses four type of messages

– Confirmable: This type of message provides reliability over UDP. Where in
some applications we need to provide acknowledgement also in this case client
will send the packet by setting this message type and server will give acknowl-
edgement.

– Non-Confirmable: This type of messages provides no reliability and used for
applications where there is no need for acknowledgement or reliability in this
case client can send the no confirmable message by setting message type.

– Acknowledgement/Reset message: This type of message is used to provide
acknowledgement back to client for confirmable messages.

• COAP has minimal header format that saves lot of power for constrained nodes
compare to running HTTP in that constraint nodes.

• COAP provides both reliability and non-realiability support that allows COAP to
use in both kind of use case or applications.

Figure 2.2: COAP Communication

6

2.2 DTLS (datagram transport layer security)

To provide security above UDP layer DTLS (Datagram transport layer security) plays
major role where security is very important for small embedded devices. The basic idea
to design DTLS is to provide the security over UDP. We cannot use TLS there because
datagrams may be lost or reordered. And TLS has no any internal facility to provide
reliability. Unreliability creates problems for TLS at two levels [5]

• TLS dont allow independent decryption of individual records. Because integrity
checks depends on sequence no if record N is not received then the integrity check
on record (N+1) will be based on the wrong sequence no and it will be failed.

• TLS handshake assumes that handshake messages are delivered reliably and it
breaks if those messages are lost.

DTLS protocol is composed of two layers lower layer called as DTLS Record protocol
layer which provides connection security that has two basic properties i) The connection is
private by symmetric encryption ii) the connection is reliable by adding message integrity
so no one can temper the data. The protocol contains four higher level protocols

• DTLS Handshake Protocol : This protocol is used for negotiating security param-
eters that will be used for encrypting actual content of message.

• DTLS change cipher spec protocol : The change cipher protocol exits to signal
transition in ciphering strategies. It is used to notify the receiving party that
subsequent records will be protected using the negotiated parameters.

• DTLS Alert Protocol : This protocol is used at any time during the handshake and
up to the closure of a session, signaling either fatal errors or warnings.

• DTLS Application data : - Application data messages are carried by the record layer
and are fragmented, compressed and encrypted based on the current connection
state.

DTLS is not fully optimal for constrained network as it was designed for traditional
computer networks. For example large buffers are needed to handle message loss by
retransmitting the last flight of handshake protocol or to store all the fragments. Another
problem is to use x.509 certificates that are used for mutual authentication for both
parties. But these certificates are sometime big and can take few kilobytes and that leads
to fragmentation in network with small MTU size and that resulting higher chance of
retransmission of whole packet if any one flight in packet is missing. So DTLS recommends
to use raw public key in which instead of transmitting big chunk of data for certificates
we can only send public key and other party can validate the public key.

• Packet loss : TLS works with TCP where it provides reliability but it cannot work
with UDP where there is no reliability and messages can be lost and whole TLS
handshake may fail. To overcome this problem DTLS comes over UDP to provide
security in which client start retransmission timer after sending client hello and
wait for hello-verify packet from server if no any packet or hello-verify packet from
client then client will assume that either client hello or hello verify request is lost
then client will again start retransmitting client hello to server and server will reply
with hello-verify response. The server also maintains retransmission and when it
will expires the server will also start retransmission.[5]

7

Figure 2.3: Packet loss in DTLS

• Denial of service : to prevent from denial of service DTLS has a mechanism in
which after sending client hello first server will send hello-verify request and then
again client hello will be sent from client this is also helps to prevent from IP
spoofing attack so the server will only maintain state for client only after getting
client hello message second time from server. DTLS also support certificate based
authentication and PSK (pre shared key) mode where key is already shared between
two parties prior. In hello-verify message server generates cookie and send it to
client so client will send second client hello by providing same cookie then server
will add some state information for clients and start client key exchange. [6]

Figure 2.4: Prevent denial of service attack

8

Figure 2.5: DTLS handshake

9

Chapter 3

Implementation

3.1 Console Tool
To provide access of internet and to support different application internet of things pro-
vides WIFI, NFC and Bluetooth APIs. But in embedded system we didnt have any
interface through which we can test all the APIs for WIFI, NFC and Bluetooth. To test
all the APIs for different radios we need tool through which we can send commands from
interface to tool that will send commands to firmware and firmware will give response
back and can verify that particular API is working properly or not. There are many
challenges as how to make tool through which we can test all the APIs. I came up with
packet format through which we can satisfy the requirement. Before there was tool that
can help to test all the APIs. But that was a just serial interface in which we can give
string text in form of commands but there we need to handle events such as Backspace,
Tab that requires extra memory and for embedded systems memory is limited and its
difficult to add new APIs testing as there was memory constraint.

• Current Approach With the current approach we can send commands through
PUTTY interface to console tool that will reside in embedded system. And console
tool will call particular API based on command and that will send commands to
firmware and firmware will send response back to console tool and that will show
results back to PUTTY again. With the current approach there are problems

– Console tool will reside in embedded system and manually we need to handle
all the events like backspace, tab that will require more memory. For the
embedded system there is only limited amount of memory so there is need to
optimize console tool.

– For the testing team there is no scope to automate the testing so there is need
for some tool through which we can also automate the whole testing system.

• my approach

Came up with solution in which we decided to have Perl script interface in PC that
will form packet with command and particular arguments and that will be sent
through serial interface from Perl to embedded system where there is a console tool
that will receive packet and parse packet and will get command and arguments.
And based on API id it will call respective APIs that will send request to firmware
based on commands and get response back and form packet and sent it to Perl

10

script where it will decide based on response that API executed successfully or not
of API executed successfully then it will form packet for next command and sent it
to console interface.

I developed Perl script that will open port and send particular command by form-
ing particular packet to console tool. And console tool will receive all the bytes for
particular packet and then start to parse it. After parsing packet based on API id it
will map to particular API and call particular API with provided arguments. API
will send request to firmware based on API and get response back from firmware
and that will form packet and sent it back to Perl script through console applica-
tion. Major advantage of this approach is we are able to reduce memory required
for console tool in embedded system and loading whole console interface tool in
embedded we can offload some load or processing to PC so we can reduce memory
to console tool. We are also able to do automation as we can write any script to
test APIs and can send commands by forming packet from any script and console
interface or tool will parse it. So we can automate the whole test framework. At the
current stage I have developed Perl script for some commands by forming packet
and tested the APIs. In future we are going to develop whole test framework for
all the APIs.

– Learning

∗ Perl script to communicate to embedded system and send commands
through serial port.

∗ Designed the packet format to send from Perl script to embedded device.

∗ Got knowledge about execution of API in system and firmware calls.

• Bring up activity : I was involved in new chip bring up activity by porting of some
application and solved problems came in porting of applications in new chip. I was
involved in supporting of this chip and ported some application in which board can
work as both station and AP mode and TCP server and client applications in which
board can act as TCP client or server and can communicate through socket with
PC. Also ported application scan to show all nearby AP results. Solved problems
related to WPS and TCP bidirectional issue.

3.2 Heartbeat Monitor Application
We have interface to connect to cloud through embedded system and WIFI. I developed
application in which we can monitor heartbeat of any person that has embedded device
with heartbeat sensor that will continuously send data to cloud and android applica-
tion which can read data from cloud and can show the graph real time. Through this
application we can monitor heartbeat of any person or family members remotely. In
the application heartbeat sensor will continuously give data to from microcontroller and
that will send data to cloud. From cloud android phone has application that will read
continuous data from cloud and will plot real time graph through which we can monitor
heartbeat remotely.

3.2.1 Learning

• I got the knowledge to interface external sensor with microcontroller through some
interface.

11

Figure 3.1: Heartrate monitor application

• I got the knowledge to read data from sensor and APIs to send data from micro-
controller to cloud.

• Made an android application to get data from cloud and draw the graph real time
based on values from cloud.

3.3 COAP (Constrained application protocol)
- Internet of things technology has major concerns over power management and connec-
tivity. For small tiny devices its very important that they consume less power and can
respond for long period of time. Now to communicate with this tiny devices we need
some protocol that we can give request to the tiny devices and they can respond back
with proper response. Currently traditional many protocol are available with which we
can communicate with this tiny devices but because of protocol overhead it will consume
lot of power for this small devices. So here we need some protocols for constrained en-
vironment that can consume less power and can give same features as HTTP. COAP is
same protocol as HTTP that give request response mechanism for client and server so
client can request for particular resource and server can provide that resource. Here some
of the benefits that allows COAP over HTTP to consume less power and provide same
functionality. [7]

3.3.1 HTTP v/s COAP

• HTTP runs over TCP where COAP runs over UDP that allows COAP to skip some
of the connection establishment sequences.

• Because COAP runs over UDP some of the TCP functionality replicated directed
in COAP where we can provide Confirmable (acknowledgement required) request
and Non-Confirmable request (No acknowledgement is required).

12

• Requests and responses are exchanged asynchronously over COAP where in HTTP
previously established connection is used.

• HTTP has big HTTP header where COAP has only 4 byte of header.

3.3.2 COAP server features

• Service discovery COAP server has mechanism where client can request for all the
available services that are with server and server can respond with all the available
services to client and then client can request for particular service. Server has
mechanism where it will detect for well-known services request and respond with
all the available services. Client can request for discovery of all the resources so
server can parse the packet and it will send all the available services registered with
server. [8]

• Request for particular service Here server provides all the services and client can
perform some operation with particular service. For example home automation
server has registered all the available services and client request for all the available
services with server and then it can give request for particular service. Here server
provides methods for service that you can perform operation. All methods that the
server can responds are

– GET : GET method is available with server that client can give request for
particular service. For example if client wants to know that status of TV
in house then client will give request with GET method so server will parse
request and send the status of TV that it is turn ON or OFF.

– POST : POST method available with server for particular service where client
can give request with method POST and with payload so server can perform
the operation. For example client can give POST request with payload 1 for
TV as a service and server can parse the request and can turn on the TV.

– PUT : PUT method allow to update for particular service where you can
change that representation of particular service.

– DELETE : client can also delete some of the services form server if client
font want that service with server. Client can send the request with method
DELETE so server deletes that service from list of available services with
server.

Reliable and Non-Reliable requests [9]

• CON request If client want reliability for particular service and needs acknowledg-
ment that server has received particular request or not at this time after receiving
request from client server will parse the request and if its CON request then server
will respond for the same by giving acknowledgment.

• NONCON request if client dont want any reliability for request and there is no need
of any acknowledgment that server has received request from client or not then client
simply set message type as NONCON and server will not give any acknowledgment
and just give response with proper payload.

13

• Separate Response If in some of the cases where client sends the request and server
will take more time to process and service that particular request then client will
wait for acknowledgment for CON request and it will create lot off retransmissions
from client side to prevent this retransmission server will send response as acknowl-
edgment and empty response so client can sense that it will take some more time
for server to process and it will not retransmit the packet.

• Piggyback response In some of the cases where response is ready then server will
send piggyback response to client where it will combine both data and acknowledg-
ment for request.

Ping request and response Protocol also provides functionality in which client can ping
the server and can identify that server is available or not. If server is available then
server will give response back with RST message type. And then only client can send the
request to server.

Observe Protocol provides option in which client can register with server for interest in
particular resource so when value changes for particular service then all the interested
client who have all registered with servers are notified with the latest value.

14

Figure 3.2: Observe for resource

Here first message client registers its interest for particular topic in which client is
interested. So client will give the request with method GET and observe option so server
will check the option and if Observe = 0 then add client into registered client for particular
topic and save token value for that particular client too. If Observe = 1 then deregister
or delete client entry from list for particular interested clients if available otherwise dont
add it. And server also returns the current value for that particular resource and if client
is registered properly and client entry is added to list then server also add option observe
with value so client can determine that now he is registered with server for particular
topic and whenever state changes for that particular topic then client will be notified with
latest value. Now whenever state of any service is changed then server will notify all the
registered client for that particular service with latest value and adds observe sequence
number so client can identify latest value from server. Sequence number is 24 bit number
that will be incremented every time when the state of the service is changed. Server also
sends notification with CON type of message so the client will send ACK if client wants

15

to continue to get updates for particular resource otherwise client will send RST message
so server will delete entry for that particular client and remove client from list so after
that client will not be notified for any change in status in notifications.

while subscribers are in list of observers then goal of protocol is to keep the resource
state updated for all subscriber or observer who observed for the particular resource.
Here there will be some latency between the resource state changed and status update
to observers but we can not avoid client and server to be out of sync. There are some
problems in which COAP notification message can get lost that can cause the client to
assume old state of resource until it receives new notification. Also server will assume that
client is not interested in this topic now and client don’t want to receive any notifications
in future so server will delete entry of that particular client from list and server will stop
sending notifications so client will assume older state of resource and client has to register
its interest again. The protocol addresses this issue as follows :

• Protocol follows best effort approach for sending notification when client state gets
changed. but client should see the change in state as soon as possible and it should
be also informed about all the possible states.

• It labels notification with a maximum duration that indicates maximum age up to
which resource state is considered as latest update. when the age of the notification
received reaches the limit then client will not consider that resource representation
as a latest notification and client will not use until it receives new notification
update.

• The protocol guarantees that if the resource state is not changed then all observer
has resource state that will be considered as a latest resource state.

A server that is not able to process the request or not able to add client in registered
client list then server will just ignore the registration and process the GET request as
usual. The resulting response must not include observe option which signals the client
that server is not able to add client into servers registered client list for particular topic
and it will not be notified of changes in the state of resource. If the observe option in
GET request is set to 1 (deregister) then the server must remove any existing entry with
a matching endpoint/token pair from list of observer. And respond with same without
including option observe in response.

16

3.3.3 Modules

Figure 3.3: Design diagram

I have implemented COAP server that creates thread and waits for request from client.
So I have designed module in which user can add any number of services in server side
and when client request for particular service the request will be parsed by server and give
response to client. If request is type of CON message then server adds ACK in response
and give response based on request from client. Server has particular handler for each
service which will be available to do task when request comes for particular service from
client.

I have designed and implemented module for service discovery, Ping request and
response and subscription and notification for particular service. All available services
are already registered with server so server can parse the packet and can give proper
response. Here COAP server thread is waiting for message in queue once message is

17

received by network thread then that will push to queue after that COAP server thread
start processing packet and call respective callback handler that is already registered.
Then after processing request and performing operation application thread will push the
data into queue with send event. So server will start for sending data to client and it
also checks the observer list that any observer has subscribed for this particular topic if
yes then it will send packets to all observers and wait for response if client responds with
ACK that means client is still interested in getting any notification from server side if
client says RST then it means that client is not interested in now getting notifications
for the same topic. Server will try several time if ACK or RST doesnt come and if still
no reply is coming then server will delete observer from the list.

3.4 MQTT (Message Queue telemetry transport)
MQTT is a lightweight protocol in which subscriber will subscribe for particular topic
with broker and publisher also publishes for same topic then all subscriber will be notified
with the published value. Broker also provides some of the functionality for clean session
in which it will clear out all the previous messages and clean the session broker also allows
publisher to publish messages based on quality of service. Broker also provides option
for will message in which if subscriber or publisher got disconnected from broker then all
other connected clients will be notified. MQTT runs over TCP so it provides reliability.
[10]

Figure 3.4: MQTT Protocol

• connect message Subscriber or publisher connects with broker with some of the
parameters. A first packet from client to server should be connect so client can
connect to server and can subscribe for particular topic. Connect packet contains
fields for Username, Password, Will retain, Will QOS, clean session etc. Connect
message provides username and password so if client specifies correct username and
password then client can connect with server and after authorizing only server allows
client to connect to server. After sending connect message to broker client will wait
for acknowledgement and once acknowledgement received it will start subscribing

18

or publishing for topic. The fixed header for all the messages is

Figure 3.5: MQTT Fixed header

• Publish message Publisher also connects to broker first for some topic and send
connect message. Once publisher is connected with broker it can publish to that
topic. Publish packet also contains some of the fields like DUP (If value of DUP is 0
that means this is the packet sent first time and if value is 1 that means this publish
message is duplicate and send again because client didnt get the acknowledgement
of previous packet. Publish packet also has field for QOS (Quality of service) which
indicates the levels of assurance for delivery of application messages.

• subscribe message Subscriber first connects to broker and then subscribe for par-
ticular topic subscriber also has some unique client id and it will have some of the
parameters like topic name with requested QOS so broker will maintain all the
packets based on QOS levels. If QOS is 0 then it will send traffic as best traffic
and if QOS value is 1 then subscriber has to acknowledge this packet but here also
duplicate packets may arrive. In QOS 2 broker will ensure that packet should be
delivered exactly once and there should not be any duplicate packets. The server
must acknowledge packet with SUBACK packet and client waits for packet that
publisher publishes. Client can also unsubscribe for particular topic by giving topic
name, client id and with proper unsubscribe frame format. So once broker receives
this frame broker understands that client or subscriber wants to unsubscribe for
particular topic and now he is not interested in getting notification for this particu-
lar topic so broker will give acknowledgement or confirmation that client is deleted
from the list of subscriber for this particular topic. [11]

• Ping Request and Ping Response: Ping Request packet is sent from client to server.
This indicates that client is alive in respect of no transmission of any control packets.
Ping response will be sent from server to client that server is also alive and it has
received request from client.

• Disconnect Disconnect packet is sent from client to indicate to close the connection
to server. after this packet client and server both closes network connection.

• Quality of services

– QOS 0 : At most Once delivery MQTT supports various QOS levels to pro-
vide reliable delivery of any packets. QOS0 indicates best effort delivery of
packet. so broker will not wait for any acknowledgment from client and there
is no guarantee of packet that it will reach to client or not. when there is no
requirement or no need to ensure for delivery of packet then broker can send

19

packet with QOS level 0. here only 1 packet will arrive to client because there
is no retransmission.

– QOS 1 : At least once delivery The quality of service with level 1 ensures
that message or packet should reach at least once to client. so first broker
will send packet to client and then client will send acknowledgment to broker
so broker can ensure that packet is reached to client or not if packet is not
reached to client then broker will again retransmit the same packet and wait for
acknowledgment but here duplicate packet may arrive to client with duplicate
flag set.

Figure 3.6: QOS Support

– QOS 2 : Exactly once delivery This is the highest level of delivery of quality
of service where neither loss nor duplication of messages are acceptable. In
QOS2 there are two levels of acknowledgment in which when publisher pub-
lishes message to broker then client will receive two types of acknowledgment if
client is not receiving any acknowledgment from broker then client will again
retransmit the publish packet. Must send a publish packet containing this
packet identifier with QOS= 2 and DUP =0. Must treat the packet as unac-
knowledged until it has received the corresponding PUBREC packet from the
receiver.

20

Chapter 4

Conclusion and Future Scope

4.1 Conclusion
Internet of things helps to monitor your things,useful information remotely by connecting
sensors to cloud. so technology helps to improve quality of life. with the implementa-
tion of protocols like COAP and MQTT it is very useful for the M2M communication
where one device communicates to another without human intervention. so main goal
to implement COAP is to reduce power consumed by constrained device where HTTP
consumes lot more power for this constrained device. so it helps in the lifetime of con-
strained devices and also allows machine to machine communication without any human
intervention. MQTT is very useful in case where our mobile act as publisher and all
other devices act as a subscriber so with one click i can communicate to all devices in my
home. implementation of DTLS over UDP is also important part here because security
is major concern in Internet of things. and TLS only works over TCP so it is very nec-
essary to implement DTLS over UDP that allows to communicate with device by proper
authentication and by providing message integrity.

4.2 Future Scope
Implementation of COAP and MQTT protocol allows to do communication with machine
to machine without any human intervention. in future to save more power for constrained
devices we can implement COAP/HTTP proxy where underlying all the constrained
devices will run COAP as a protocol because that has minimal header and saves lot
of power for constrained devices compare to HTTP. so underlying network runs COAP
protocol and we can design proxy that can act as a gateway and that has capabilities to
handle both COAP and HTTP request. so benefit here is that for mobile side we are
only using HTTP protocol so from mobile we can request HTTP resource and proxy can
map HTTP resource to COAP resource and protocol header conversion. so underlying
network only get COAP packet so they can process easily and can give it to proxy now
again proxy can convert same COAP header to proper HTTP header conversion and
resource mapping and send it to mobile. so here it provides two kind of advantages like
mobile no need to worry about COAP prtocol and it can simply send HTTP request and
underlying constrained node can only handle COAP so there is no need for constrained
nodes to understand HTTP protocol and processing. so it saves lot of power and cost for
constrained devices. Proxy can also store some of the reply for resource from constrained
devices and if any new request comes then without giving all request to constrained nodes
proxy only can handle the request and send response back in HTTP response format. In

21

future work i also need to implement DTLS over UDP that helps to communicate devices
securely over UDP protocol.

22

References

[1] S. K. Hannes Tschofenig Sye Loong Keoh, “Securing the internet of things : A
standardization perspective.,” IEEE, IEEE, 2014.

[2] s. u. k. Rifaqat zaheer shahid khan Raullah khan, “Future internet : The internet of
things architechture,possible applications and key challenges.,” IEEE, IEEE, 2012.

[3] S. K. Noboru Koshizuka Ken Sakamura Takeshi Yashiro, “An internet of things
architechture for embedded appliances.,” p. 314.

[4] F. B. c. v. D. p. Rodolfo De Paz, Alberola Szyman, “Constrained application protocol
for low power embedded networks,” pp. 702–707, IEEE, IEEE, 2012.

[5] s. l. k. oscar garcia sandeep Martina Brachmann, “End to end transport security in
the ip based internet of things,” IEEE, IEEE, 2012.

[6] E. Rescorla, “Datagram transport layer security,” pp. 1–104, 2012.

[7] A. P. Zach Shelby Carstern Bormann, “Coap:an application protocol for billions of
tiny internet node,” pp. 62–67, IEEE, IEEE, 2012.

[8] K. Hartake, “Observing resources in coap,” pp. 1–68, December 2014.

[9] Z. Shelby, k.Hartke, and c.Bormann, “Constrained application protocol,” pp. 1–236,
June 2013.

[10] “Mqtt 3.1,” pp. 1–81, October 2014.

[11] X. M. Alvin Valera Colin Keng Dinesh Thangavel, “Performance evalution of mqtt
and coap via a common middleware.,” pp. 1–6, IEEE, IEEE, 2014.

23

	Certificate
	Statement of Originality
	Acknowledgments
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Internet Of Things
	Architecture
	IOT challenges

	Literature Survey
	COAP (Constrained application protocol)
	DTLS (datagram transport layer security)

	Implementation
	Console Tool
	Heartbeat Monitor Application
	Learning

	COAP (Constrained application protocol)
	HTTP v/s COAP
	COAP server features
	Modules

	MQTT (Message Queue telemetry transport)

	Conclusion and Future Scope
	Conclusion
	Future Scope

	References

