
Dynamic Charting Framework for
graphical analysis in Trace and Debug Tool

By

Shishir Sompura

13MCEN23

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2015

Dynamic Charting Framework for graphical
analysis in Trace and Debug Tool

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering(Network Technology)

By

Shishir Sompura

(13MCEN23)

Guided By

Prof. Monika Shah

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

May 2015

3

Undertaking for Originality of the Work

I, Shishir Sompura, Roll. No.13MCEN23, give undertaking that the Major

Project entitled “Dynamic Charting Framework for graphical analysis in

Trace and Debug Tool” submitted by me, towards the partial fulfillment of the

requirements for the degree of Master of Technology in Computer Science and En-

gineering(NT) of Nirma University, Ahmedabad, is the original work carried out by

me and I give assurance that no attempt of plagiarism has been made. I understand

that in the event of any similarity found subsequently with any published work or

any dissertation work elsewhere; it will result in severe disciplinary action.

Signature of Student

Shishir Sompura - 13MCEN23

Endorsed by:

Prof. Monika Shah

4

Certificate

This is to certify that the Major Project entitled “Dynamic Charting Frame-

work for graphical analysis in Trace and Debug Tool ” submitted by Shishir

Sompura (13MCEN23), towards the partial fulfillment of the requirements for the

degree of Master of Technology in Computer Science and Engineering(NT) of

Institute of Technology, Nirma University, Ahmedabad is the record of work

carried out by him under my supervision and guidance. In my opinion, the submitted

work has reached a level required for being accepted for examination. The results

embodied in this major project, to the best of my knowledge, haven’t been submitted

to any other university or institution for award of any degree or diploma.

Mr. Vinod Allu Sivala Prof. Monika Shah

Team Lead, Guide-Assistant Professor,

Intel Mobile Communication, Bangalore. Nirma University, Ahmedabad.

Mrs. Ramandeep Kaur Prof. Gaurang Raval

Engineering Manager PG-Coordinator(CSE-NT),

Intel Mobile Communication, Bangalore. Nirma University, Ahmedabad.

Dr. Sanjay Garg Dr K Kotecha

HOD (CSE Dept.), Director,

Nirma University, Ahmedabad. Nirma University, Ahmedabad.

5

Abstract

Dynamic Charting Framework for graphical analysis in trace and debug tool con-

tributes towards the success of organization in analyzing system behavior. Trace tool

captures different traces from the hardware and software Component and these traces

are used for analyzing system behavior. Manual process makes it very hard for the

analyzer to analyze these traces. As the traces coming from component like LTE, 3G

and 4G have a wide range of parameters (RSRP, RSRQ, UL PRB, DL RNTI etc.),

The computation required for these parameters is very complex and needs human

effort for calculating these parameters for a set of traces which in turn introduces

delay in the analyzing process. To minimize these difficulty and delay, Dynamic

Charting framework will be implemented reducing the human intervention making

the analyzing process more interactive and easily understandable.

6

Acknowledgements

First and foremost, sincere thanks to Mrs. Ramandeep Kaur, Manager,Platform

Tool Development, Intel Mobile Communication India Private Limited, Bangalore.

I enjoyed her vast knowledge and owe her lots of gratitude for having a profound

impact on this report.

I would like to thank my Mentor, Mr. Vinod All Sivala,Team Lead, Intel Mo-

bile Communication India Private Limited, Bangalore for her valuable guidance.

Throughout the training, She has given me much valuable advice on project work.

Without her, this project work would never be completed.

My deepest thanks to Prof. Monika Shah, Assistant Professor, Department of

Computer Science and Engineering, Institute of Technology, Nirma University, for

giving me an opportunity and guidance throughout the project. It was only due to

her valuable opinion, cheerful enthusiasm and ever friendly nature that I was able to

do part of my research work in a respectable manner.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Science and Engineering Department, Institute of Technology, Nirma Univer-

sity, Ahmedabad for his kind support and providing basic infrastructure and healthy

research environment.

Last, but not the least, no words are enough to acknowledge constant support and

sacrifices of my family members because of whom I am able to complete the first part

of my dissertation work successfully.

Shishir Sompura

13MCEN23

Contents

Undertaking for Originality of the Work 3

Certificate 4

Abstract 5

Acknowledgements 6

List of Figures 9

1 Introduction 1

1.1 Background . 1

1.2 Objective of Study . 1

1.3 Requirement of Dynamic Charting Framework 1

2 Literature Survey 3

2.1 Background . 3

2.1.1 Cellular Modem . 3

2.1.2 Importance of tracing . 4

2.2 Overview of System tracing . 4

2.3 Trace tool Setup . 6

2.4 Trace Tool Architecture . 7

2.4.1 Trace Tool Front End . 7

2.4.2 Trace tool Backend . 9

2.4.3 Decoders . 10

2.4.4 Scripts Framework . 11

2.4.5 Charting Framework . 12

3 Problem Statement 13

3.1 Problem Statement . 13

3.2 Significance . 13

7

CONTENTS 8

4 Methodology for Implementation 14
4.1 Objective . 14
4.2 Design Approach . 15

4.2.1 Design Approach 1 . 15
4.2.2 Design Approach 2 . 16

4.3 Approach to be implemented . 17
4.4 Challenges . 17

4.4.1 Challenges in Plotting . 17

5 Implementation 18
5.1 Implementation Methodology . 18

5.1.1 Plot Resource . 19
5.1.2 Trace Tool Automation . 19
5.1.3 Cached File . 20

5.2 Plotting a chart . 20
5.2.1 Genration of Chart . 20

5.3 Example of Plotting with LTE plot resources 21

6 Methodology Tools 23
6.1 Tools . 23

6.1.1 GIT . 23
6.1.2 Beyond Compare (Licensed tool for comparison of text, folder,

zip) . 24
6.1.3 Shared drives . 24
6.1.4 RTC Project Planning . 24
6.1.5 Testing Devices , Accessories and Tools 24
6.1.6 Klockwork . 24
6.1.7 Jenkins PCQG and Sanity . 25

7 Conclusion and Future Work 26
7.1 Conclusion . 26

Appendices 28

List of Figures

2.1 Tracing from different component(Reprinted from [2]) 4
2.2 Trace Concept (Reprinted from [2]) 5
2.3 Trace Tool Setup . 6
2.4 Trace Tool Architecture (Reprinted from [2]) 7
2.5 Eclipse Platform Component(Reprinted from [6]) 8
2.6 Script LifeCycle (Reprinted from [2]) 12

4.1 Design Proposal 1 . 15
4.2 Design Proposal 2 . 16

5.1 TraceTool Automation Automation and Trace tool Interation 19
5.2 Trace Tool Automation . 20
5.3 Handshake . 21
5.4 Plot of RSRP(LTE) . 22

6.1 GIT . 23

9

Chapter 1

Introduction

1.1 Background

Trace and Debug tool maintains the log of traces which are captured from the User

Equipment. User can analyze the trace using this tool.

1.2 Objective of Study

Charting in Trace and Debug tool is very useful for the user to analyze the User

Equipment behavior. As Manual process makes it very hard for the analyzer to

analyze the hardware traces, So Charting framework will be implemented reducing

the human intervention making the analyzing process more interactive and easily

understandable.

1.3 Requirement of Dynamic Charting Framework

As the evolution of telecommunication, new technologies like 3g and 4g has evolved

with high speed data transfer, low latency and packet optimized radio access technol-

ogy supporting flexible bandwidth deployment. Same times its network architecture

has been designed with the goal to support packet switched traffic with seamless

1

CHAPTER 1. INTRODUCTION 2

mobility and great quality of service. In LTE or any other cellular network, User

Equipement(UE) report some sort of signal to base station for various decision mak-

ing. It can be used for down link scheduling(using CSI), cell selection, Up link schedul-

ing, Hand Over, cell reselection, calculation of uplink and downlink path loss for power

control, multipath propagation, uplink interface and for location base service. All of

these are achieved by different parameter called RSRP, RSSI, RSRQ, and RSTD. As

this parameter has a wide range of values, we can create plugin by using charting

framework but it would be very difficult because there are various parameters So Its

not good to have a dedicated plugin for creating a chart for one parameter. And

another cause is SWT charts is not as powerful plotting tool as comparison to the

other available. So there is something require that can overcome this problems.

Chapter 2

Literature Survey

This chapter provides an overview of the research done in the field of System Software.

Here the first section defines why the trace is important. What is the old concept of

tracing and advantage of new concept of tracing and then the architecture of System

trace tool.Packet Header defined for the tool.

2.1 Background

This section provides introduction to intel in mobile platform.

2.1.1 Cellular Modem

Mobile modem platform consists of processors and other peripherals for example:-

USB, Wi-Fi, Bluetooth, Battery power and etc. The processors are communication

processor and application processor. Mostly peripherals contain connectivity and

data storage contents in Modem Hardware. [2]

Modem generates various type of Signals this are 2G, 3G, 2g FW (2g firmware),

3G FW,4G, etc.[2] Modem cores produce this signals for each events. These signals

contain the packets for the particular type.

3

CHAPTER 2. LITERATURE SURVEY 4

Figure 2.1: Tracing from different component(Reprinted from [2])

2.1.2 Importance of tracing

Tracing of a software and hardware behavior is a very crucial task. With this traces

we can analyze the system behavior and find out issues during development and pro-

duction. It is essential during conformance, interoperability.[2] Lets take an example

for describing where the tracing is needed for the modem analyzer. When user is

making a call using the mobile and is moving from one cell to another one (hand-off)

then in between the mobile call gets disconnected due to some reason, then there may

be some chance of crash happen in the modem. So if we are continuously capturing

traces from the modem, then by analyzing the log, we can come to know the reason

behind this crash (core dump).

2.2 Overview of System tracing

Traces are generated by the software running on the cores.[2] These cores allow tracing

of mobile software behavior and its interaction with the network.[2] For testing the

functionality, these traces are very useful. The trace information can be transferred

CHAPTER 2. LITERATURE SURVEY 5

to the outside world over one of the standard communication interfaces like: USIB,

USIF, MIPI etc.

There are different component that generates traces that requires high bandwidth

trace stream and some requires low bandwidth trace stream.[2] Each component gen-

erates a signal and is transferred to X which is a hardware that is configured to choose

traces defined by AT Commands. Then this hardware transfer these traces to trace

tool.[2] For capturing traces, we have two ways: -

• For high bandwidth traces, we have dedicated stream that transfers the high

bandwidth traces to Trace Box. The Trace Box contains the storage device

where we can store that trace and later we can analyze them.[2]

• For low bandwidth trace, We have a stream like USB and U-ART. That will

transfer the traces directly to the trace tool.

Figure 2.2: Trace Concept (Reprinted from [2])

CHAPTER 2. LITERATURE SURVEY 6

2.3 Trace tool Setup

[2] The system architecture for tracing contains different component:-

Figure 2.3: Trace Tool Setup

• User Equipment: - It could be either mobile or a test hardware setup. User

Equipment contains the modem for capturing traces. The hardware Setup con-

tains communication port (high bandwidth communication stream port and low

bandwidth communication stream port).

• Trace Box: - It has a storage device which can store some traces. Trace box

stores the traces that are coming from high bandwidth stream. In trace box,

we can also filter the traces according to their unique identifier.[2]

• Trace Tool: - Trace tool records and decode these traces and provides an easy

graphical interface to view, search and analyze trace data. Trace tool can run in

two modes: - Headless Mode and UI mode. Headless Mode is just a command

line interface from where we can trigger different operation via firing a specific

CHAPTER 2. LITERATURE SURVEY 7

command. In UI Mode, We have a User Interface, in that User have different

Option for performing specific operations.[2]

2.4 Trace Tool Architecture

The architecture of trace tool is shown below: -

Architecture.png

Figure 2.4: Trace Tool Architecture (Reprinted from [2])

2.4.1 Trace Tool Front End

Trace tool Front End is developed in java with Eclipse RCP Plugin development.

Eclipse provides the plugin environment as well as platform to work on[4] It is de-

veloped in Eclipse IDE (Integrated Development Environment). IDE is defined as a

collection of tools and platforms. Where tools are plugins and platform refers to our

java platform. Eclipse is an IDE because it provides plugin development as well as

CHAPTER 2. LITERATURE SURVEY 8

platform (RCP). Now the eclipse also gives us some API that helps us in creating a

Figure 2.5: Eclipse Platform Component(Reprinted from [6])

good UI component. Eclipse Architecture is shown in below figure5. It contains five

components:-

• Java Development Tooling:- JDT provides a set of plug-ins that add the

capabilities of a full- featured java IDE to Eclipse platform.[6] The JDT plugins

provides APIs so that they can themselves be further extended by other tool

plugin builder. The JDT plugins are categorized into:

– JDT APT

– JDT Core

– JDT Debug

– JDT UI

– JDT Text

CHAPTER 2. LITERATURE SURVEY 9

• Plugin Development Environment[6]:-The plugin Development environ-

ment(PDE) provides tools to create, develop, test, debug, build and deploy

Eclipse plug-ins, features, updates sites and RCP products. PDE also provides

OSGI tooling, which makes it an ideal environment for component program-

ming, not just Eclipse PDE. There are three component of Eclipse PDE:- Build,

UI and API Tools. Each of these components operates like a project unto its

own, with its own set of committers, bug categories and mailing list.

• Eclipse Platform:-Eclipse platform contains four components: - Workbench,

Workspace, Help and Team.[6] Eclipse Platform contains several of API like

SWT and JFACE. As we know in java we have swing and AWT framework but

this are OS dependent means they use only OS specific item for creating GUI

component. So Sometimes if we dont want to use the OS specific items then

Eclipse has created its own GUI component and created some APIs for them.

So whenever we want to create our own GUI component then we can use them.

• Platform Runtime

• New tool/Plugins

2.4.2 Trace tool Backend

Backend is used to capture and decode trace messages.[2] The Backend contains

the code for recording traces and interfacing to the Decoders and is implemented in

C/C++ (as this was shown to be able to process data approximately twice as fast

as Java). A consequence of the language split is the need for all decoded data to

be passed upwards through the JNI to the Front End. Due to the predicted JNI

bottleneck, the API to the Backend was designed to minimize to a practical extent

the amount of data that needs to be passed through the JNI (for example by only

returning the needed parts of needed messages, and only upon request rather than

as a continuous stream). The Backend was also designed so that it could be used

CHAPTER 2. LITERATURE SURVEY 10

stand-alone with a different front end (although this was not a requirement and was

only used as a guideline to help enforce a clean and well documented interface).

Backend contains Backend API, handlers that interacts with different interfaces.

Backend interacts with the Hardware and the Decoders and its API.Backend also

maintains the Message database for storing the traces. Message database provides

easy writing and reading of messages, possibly using several files within the session.

In this, the recording speed is currently only limited but OS access to the mass

storage device. The Databases class stores messages in the order that are written

to it, and indexes them in this order. There is a possibility that there will be a

future requirement to be able to reorder the messages in the Database according to

GTS. If this changes in the future, a new version of the Database could be written

which provides extended indexing information based on GTS to make such reordering

efficient.

2.4.3 Decoders

Decoders in trace tool are used for decoding the trace message.[2] There is one YDe-

coder class processes all incoming Y streams. It decodes Y data link and transport

layers to and converts to a series of objects type Messages. This messages are then

stored in database.

Trace Messages are primarily decoded by Decoders which are developed and main-

tained external to trace tool. Trace tool defines an interface which these decoders

must adhere to, and it is defined in a header file.[2] Decoder is a single DLL with no

extra file. After decoding, Each message is decoded into several data fields. The name

and type of the field depends upon the message unique identifier, and are defined by

the decoders.

CHAPTER 2. LITERATURE SURVEY 11

The Backend decodes one Trace Message at a time. This message is always spec-

ified by a search of the message database, starting from a defined index and in a

defined direction.[2] Typically the user of the Backend will want to decode a range

of messages; this is done by using a series of searches, with each search starting at

the position the previous search ended. The Backend always returns to the caller the

position a search ends to make this algorithm easy for the caller to implement.

For the special case of live capture, where it is desired to always display the most

recent messages, it is recommended to search the message database backwards from

the end-of-file. In this way the most recent trace messages will be displayed, even if

the trace data rate is faster than the caller can keep up with.[2] The Trace Tool is

designed for the analysis of Trace Messages. It is presumed that he user of the Trace

Tool knows what sources of Trace Messages he is interested in. These sources are

specified to the Backend in terms of a unique identifier list. With each request for

finding and decoding a message, the list is passed and used to filter which messages

are found by the search and decoded.

2.4.4 Scripts Framework

The scripting framework is implemented using Java 1.6 scripting framework. It sup-

ports Java scripts. Script functionalities include: -

• Post process the messages

• Operate the STT in an automated environment

When more complex fields are required on a message, which cannot be provided by

the standard decoder, a script can be used. Script offers almost all the functionality,

which the GUI provides a user. More functionality will be added to the set of APIs

based on the requirements.Scripting framework provides standard interfaces, which

CHAPTER 2. LITERATURE SURVEY 12

it requires the implementation from every script to run. A Trace Tool script should

implement the standard mandatory functions that the scripting FW expects for a

successful script execution.

• Script LifeCycle

Figure 2.6: Script LifeCycle (Reprinted from [2])

2.4.5 Charting Framework

Chart base framework (independent of any network technology) supplied by Trace and

debug tool how to set up the environment to create plug-in based charts and create

your own framework enhancements. This framework contains general functionality for

rendering the chart but no logic on how to calculate actual data. Additionally, some

functionality to handle environment independent data is provided. In this charting

framework, it uses the SWT chart for plotting.

Chapter 3

Problem Statement

3.1 Problem Statement

Dynamic Charting Framework for graphical analysis in Trace and Debug

Tool

3.2 Significance

Trace Tool captures trace from the User Equipment and maintains these traces in a

Y file.For large set of traces, User usually tries to create a graph for easily analyzing

the behavior. For large set of data it is very difficult to maintain the data and plot

it. So there should be some functionality added to the Trace Tool that will create a

required Graph/Chart for the User.

13

Chapter 4

Methodology for Implementation

4.1 Objective

Dynamic Charting for graphical analysis in Trace and Debug Tool. As

discussed in the previous section, trace tool should have some mechanism to plot a

chart for network analysis. So that User will be able to create throughput charts,

RSSI/total gain charts, cell measurement charts and etc. But as the evolution in

telecommunication technology, there are different protocol evolved like LTE, 4g and

3g. In these cellular network, UE reports some sort of signal to base station for

various decision making. These signals can be used for down link scheduling(using

CSI), cell selection, Up link scheduling, Hand Over, cell reselection, calculation of

uplink and downlink path loss for power control, multipath propagation, uplink in-

terface and for location base service. These signals have wide range of parameters like

RSRP,RSRQ,RSSI,RSTD and etc. If User wants to analyze the above characteristics

then he needs to compute these parameters. But as the large amount of traces and

wide range of these parameters, It would be very difficult for the user to analyze the

network behavior. So Dynamic Charting will help user by integrating these charting

concept with the trace tool and simplify the analysis process for the user.

14

CHAPTER 4. METHODOLOGY FOR IMPLEMENTATION 15

4.2 Design Approach

4.2.1 Design Approach 1

Figure 4.1: Design Proposal 1

• Pros :-

– Reuse of logic and no code duplication

– Support Command line interface

– Plot resource will be attached with decoder, So GUI will be dynamic and no

need to load all the resources and manage all the plot resources separately.

• Cons :-

CHAPTER 4. METHODOLOGY FOR IMPLEMENTATION 16

– Data sync with the trace and debug tool and Chart Generation Tool plot

will be lost (because of the difference in the data processing rate)

– The two processes uses different way for processing the messages. This can

result in inconsistency in the data presented in trace tool and in chart.

4.2.2 Design Approach 2

Figure 4.2: Design Proposal 2

• Pros :-

– Due to recent changes in Trace and Debug Tool (Engine pre-filtering) time

to plot the resource is much faster. Chart Generation tool would also have

the same benefits.

CHAPTER 4. METHODOLOGY FOR IMPLEMENTATION 17

– Using TAV fallback mechanism Trace and Debug Tool can support all the

plots that are delivered with CAPS

• Cons :-

– Code duplication till we have final solution in place

– Performance issue when plot resource is dependent on Structured Data

4.3 Approach to be implemented

Based on the pros and cons of the approaches, Design approach 1 is the most suitable

for implementation, which is much more effective than the other two approaches. The

advantage of this approach is that Code will not be duplicated and it will also support

command line interface.

4.4 Challenges

So for implementing these Charts, There are different plotting tool available.

4.4.1 Challenges in Plotting

• Trace tool does not have any way to interact with Plotting Tool.

• There should be some way defined for creating a Plotting Tool script that should

contain X-Y data points.

• As we know that in traces, same fields are not filled for each trace. So while

plotting, we need to cache all of the field that will increase communication

overhead.

• It’s very difficult to manage plot resource. As there are lot of plot resource for

each component, so it will consume more space and complex to manage all plot

resource separately.

Chapter 5

Implementation

5.1 Implementation Methodology

It involves the implementation of the Trace Tool Automation that is responsible for

interacting with trace tool and Chart generation tool. The below diagram shows the

interaction between the trace tool and Trace Tool Automation. The whole process

includes the below functions :-

• Launch Trace Tool Automation.exe.

• Create Socket Connection between trace tool and Trace Tool Automation.

• Create Socket Connection between Trace Tool Automation and Chart genera-

tion tool.

• Create Session and based on the decoder loaded generate an xml which will be

sent back to trace tool that will be used for generating UI.

• Export the trace to a specific format and generate cached file.

• send plot resource to Chart generation tool.

• send the cached file to Chart Generation tool.

• Appropriate Chart will be generated.

18

CHAPTER 5. IMPLEMENTATION 19

Figure 5.1: TraceTool Automation Automation and Trace tool Interation

5.1.1 Plot Resource

Plot resource is a file that is written in the format that chart generation tool can

understand. This file contains the information about what to plot and how to read

the cached file.

5.1.2 Trace Tool Automation

Trace Tool Automation is a tool which browses the high bandwidth trace messages

and performs several actions, like script executions or pre-defined actions.

Trace Tool Automation is dedicated for automation. It is intended to be used

in batch-files.Trace Tool Automation takes istp file and decoders and based on that

will generate an xml file and send it back to STT for GUI update. It also sends the

selected plot resource to Chart Generation tool and export the traces to different file

CHAPTER 5. IMPLEMENTATION 20

format.

Figure 5.2: Trace Tool Automation

5.1.3 Cached File

Cached File contain the data what we want to plot. This file structure contains data

followed by a header. These have solved one more challenge: - As we know that

in traces, Same fields are not filled for each trace. So while plotting, We

need to cache all of the field that would require some effort in reading as

tools needs to read field that doesn’t have any data. As it adds a header

that contain the some unique identifier and field which are filled. It also prefixes

this unique identifier and cache only filled fields. As this would increase quite some

processing overhead but it will help in reducing communication overhead.

5.2 Plotting a chart

5.2.1 Genration of Chart

Chart Generation is done in following steps:-

• Initially for creating a chart, Tool launch Trace Tool Automation.exe. and start

Server and create a TCP connection between Trace Tool Automation and Trace

Tool.

CHAPTER 5. IMPLEMENTATION 21

Figure 5.3: Handshake

• Then Trace Tool Automation generate the xml file by extracting resource file

from decoder. And it sends the xml to trace tool for GUI update.

• User select the plot resource to be plotted and send Plot request to Trace Tool

Automation, then it will create a TCP connection to Chart Generation tool and

send plot resource.

• Trace Tool Automation also start generating the cache for the selected resource.

• Once it is done then send the cached file to Chart generation tool and plot will

be generated.

5.3 Example of Plotting with LTE plot resources

Here is the example of plot generated in PLOTTING TOOL for LTE(long term

evaluation) traces.So as we have discussed in the chapter 2 about LTE plot. Like there

are different parameter that are used for calculating down link scheduling(using CSI),

CHAPTER 5. IMPLEMENTATION 22

cell selection, Up link scheduling, Hand Over, cell reselection, calculation of uplink

and downlink path loss for power control, multipath propagation, uplink interface

and for location base service. So here i am plotting a chart of RSRP (Recieved signal

received power) that gives some information about signal strength while hand offs.

Figure 5.4: Plot of RSRP(LTE)

Chapter 6

Methodology Tools

6.1 Tools

6.1.1 GIT

GIT is a version controlling tool used for maintaining project.[7] It maintains reposi-

tories of the project and allows developer to work parallel on same file in repositories.

And also allow some merging tool for conflicts. Developer can create more than one

branch and do their own changes in it.[7]

Figure 6.1: GIT

23

CHAPTER 6. METHODOLOGY TOOLS 24

6.1.2 Beyond Compare (Licensed tool for comparison of text,

folder, zip)

Beyond Compare is a merging tool which is used for merging files that have some

conflicts.

6.1.3 Shared drives

In Shared Drives, we maintain the all release update and tools so that any developer

could access to the tool and release whenever required.

6.1.4 RTC Project Planning

This is an IBM tool for maintaining the project states. This is used for tracking

project states.[3]

6.1.5 Testing Devices , Accessories and Tools

• User Equipment: - User Equipment is integrated circuit that have modem

inbuilt on it and some testing environment. It user equipment contains the

architecture of device modem. It contains MIPI1, MIPI2, USBH and USB on

it.

• Test Machine

• UI Test Automation Framework: - Provides functional and regression test

automation for software applications and environments.

6.1.6 Klockwork

It is used for the semantic analysis of the source code.[9]

CHAPTER 6. METHODOLOGY TOOLS 25

6.1.7 Jenkins PCQG and Sanity

Jenkins is used for build generation.[8] In Jenkins it also run unit test cases that

ensure the code quality. Sanity machine runs some basic set of QTP test cases, this

ensures the quality product.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

As a conclusion, I would like to say Dynamic Charting framework would help analyzer

in describing the system behavior easily.With this approach, we reduces the resource

file space by attaching it within decoders. These charts can also be easily shared

among the organization for further inputs.It will provide a great user experience in

analyzing the traces.

26

Bibliography

[1] WhitePaper :- Using RTC to Manage Multi-Partner Project Governance at National Grid

[2] Intel Confidential Document for trace tool

[3] intel.library.com - Intel docs for propriety tools.

[4] An Eclipse Plugin for the Automated Reverse-Engineering of Software Programs,Dugerdil, P. ; Dept. of Inf.

Syst., HEG-Univ. of Appl. Sci., Geneva ; Kony, D. ; Belmonte, J. , 2009

[5] Jagadish K(worker of INTEL), ”IPC: AP- CP Communication:” http://jagsposts.blogspot.in/2012/06/

ipc-ap-cp-communication.html

[6] Eclipse Java Development IDE https://eclipse.org/

[7] GIT http://git-scm.com/

[8] Jenkins http://jenkins-ci.org/

[9] Klockwork http://www.klocwork.com/

[10] The impact of channel environment on the RSRP and RSRQ measurement of handover performance ;He Xian ;

Broadband Commun. Network Lab., Beijing Univ. of Posts Telecommun., Beijing, China ; Wu Muqing ; Miao

Jiansong ; Zhang Cunyi , 2011.

27

 http://jagsposts.blogspot.in/2012/06/ipc-ap-cp-communication.html
 http://jagsposts.blogspot.in/2012/06/ipc-ap-cp-communication.html
https://eclipse.org/
http://git-scm.com/
http://jenkins-ci.org/
http://www.klocwork.com/

Appendices

28

	Undertaking for Originality of the Work
	Certificate
	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Background
	Objective of Study
	Requirement of Dynamic Charting Framework

	Literature Survey
	Background
	Cellular Modem
	Importance of tracing

	Overview of System tracing
	Trace tool Setup
	Trace Tool Architecture
	Trace Tool Front End
	Trace tool Backend
	Decoders
	Scripts Framework
	Charting Framework

	Problem Statement
	Problem Statement
	Significance

	Methodology for Implementation
	Objective
	Design Approach
	Design Approach 1
	Design Approach 2

	Approach to be implemented
	Challenges
	Challenges in Plotting

	Implementation
	Implementation Methodology
	Plot Resource
	Trace Tool Automation
	Cached File

	Plotting a chart
	Genration of Chart

	Example of Plotting with LTE plot resources

	Methodology Tools
	Tools
	GIT
	Beyond Compare (Licensed tool for comparison of text, folder, zip)
	Shared drives
	RTC Project Planning
	Testing Devices , Accessories and Tools
	Klockwork
	Jenkins PCQG and Sanity

	Conclusion and Future Work
	Conclusion

	Appendices

