
APPLICATION OF GRAPHICS
PROCESSING UNIT FOR PARALLEL

PROCESSING IN STRUCTURAL
ENGINEERING

By

Vivek K. Patel

13MCLC12

DEPARTMENT OF CIVIL ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2015

APPLICATION OF GRAPHICS
PROCESSING UNIT FOR PARALLEL

PROCESSING IN STRUCTURAL
ENGINEERING

Major Project

Submitted in partial fulfillment of the requirements For the degree of

Master of Technology

In

Civil Engineering

(Computer Aided Structural Analysis and Design)

By

Vivek K. Patel

13MCLC12

DEPARTMENT OF CIVIL ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

MAY 2015

Declaration

This is to certify that

• The thesis comprises my original work towards the Degree of Master of Tech-

nology in Civil Engineering (Computer Aided Structural Analysis And Design)

at Nirma University and has not been submitted elsewhere for a degree.

• Due acknowledgement has been made in the text to all other materials used.

Vivek K. Patel

iii

Certificate

This is to certify that the Major Project Report entitled “Application of Graphics

Processing Unit for Parallel Processing in Structural Engineering ” submit-

ted by Mr.Vivek Patel (Roll No: 13MCLC12) towards the partial fulfillment of

the requirements for the degree of Master of Technology in Civil Engineering (Com-

puter Aided Structural Analysis And Design) of Nirma University is the record of

work carried out by him under our supervision and guidance. The work submitted in

our opinion reached a level required for being accepted for examination. The results

embodied in this major project work to the best of our knowledge have not been

submitted to any other University or Institution for award of any degree or diploma.

Dr. P.V.Patel

Guide and Head of Department

Department of Civil Engineering,

Institute of Technology,

Nirma University,

Ahmedabad.

Dr. K. Kotecha

Director, Examiner

Institute of Technology,

Nirma University,

Ahmedabad. Date of Examination

iv

Abstract

Multicore machines and hyper-threading technology have enabled scientists and en-

gineers to speed up computationally intensive applications. However, the use of these

advanced computing technology requires parallel programming techniques. Solution

of linear equation is a computational intensive process in analysis of structural sys-

tem. With increase in size of problems more linear equations need to be solved which

increases execution time of structural analysis dramatically. To overcome this prob-

lem parallel programming can be implemented in structural engineering applications.

Objective of this project is to use the concept of parallel programming in Finite Ele-

ment Analysis of structure using NVIDIA GPU as Hardware. Parallel programming

on GPU is carried out using CUDA C language which is based on platform developed

by NVIDIA. Unlike CPU, advantage of using GPU is that its architecture allow us

to execute many parallel threads slowly, rather than executing a single thread very

quickly.

In a few years, many standard software products will be based on concepts of par-

allel programming. Thus, the need for parallel programming will extend to all areas

of software development. The application area for parallel computing will be much

larger than scientific computing, which will be main area of parallel computing for

many years.

v

vi

In present study computationally intensive problems of structure engineering are im-

plemented on Graphics Processing Unit(GPU) using concept of parallel computing.

For implementation of parallel program on GPU , computational intensive parts of

Finite Element Analysis like Matrix multiplication and solution of linear equation are

considered. To measure performance of parallel program with respect to sequential

program speed up factor is calculated which is ratio of sequential execution time to

parallel execution time.

For parallel implementation of Gaussian Elimination solver, linear equation of system

representing equilibrium equations of Finite Element Analysis is used. For generation

of equation in form of [A]{x}={B}, Finite Element Analysis of Axially loaded bar

using 3 node element is considered. Data generated from Finite Element Analysis are

always in form of [K]{x}={F}, which is similar to [A]{x}={B}, where K=stiffness

matrix, x=displacement vector and F= Force vector. For Solution of displacement

vector x, inversion of K matrix is done using Gaussian Elimination method. Sequen-

tial program is developed using C language and parallel program is developed using

CUDA C language. To compare performance of program, speed up factor is calcu-

lated for different number of equation ranging from 100 to 1000.

For parallel implementation of Half Band solver, Finite Element problem used in

Gaussian Elimination method is used but in this case a matrix stored in Half Band

Form. Data generated from Finite Element analysis are in form of [K]{x}={F} is

converted in to [A]{x}={B}, where A= Half Band stiffness matrix , x= displacement

vector and F=Force vector. For solution of displacement vector x, inversion of Half

Band matrix is done using Gaussian Elimination method. Sequential program is de-

veloped using c language and parallel program is developed using CUDA c language.

To compare performance of program speed up factor is calculated for equation rang-

ing from 100 to 10000.

Literature survey shows that parallelization whole Finite Element method rather than

vii

focusing equation solver leads to better performance. For parallel implementation Fi-

nite Element method, Finite Element analysis of rectangular beam using CST element

is developed. Parallel program is developed using CUDA C language. To compare

performance of parallel program speed up factor is calculated for number of elements

ranging from 10 to 10240.

Acknowledgement

I would like to express my immense gratitude to my guide Dr. Paresh V. Patel,Head

of Civil Engineering Department, Institute of Technology, Nirma University, Ahmed-

abad for his valuable guidance and continual encouragement throughout my major

project work. His constant support and interest in subject equipped me with a great

understanding of different aspects of the major project work. His extreme supervision

and direction right from beginning motivate me to complete this work.

My sincere thanks to Dr. Sharad P. Purohit, Professor, Civil Engineering Department

and Dr. Urmil V. Dave, Professor, Civil Engineering Department for their kind

suggestions and motivational words throughout the major project work.

A special thanks to Dr K Kotecha, Hon’ble Director, Institute of Technology, Nirma

University, Ahmedabad for providing required resources for my project and healthy

research environment.

I would like to thank all my friends for their everlasting support and encouragement

in all possible ways throughout the major project work.

Most importantly deepest appreciation and thanks to Almighty and my family for

their unending love, affection and personal sacrifices during the whole tenure of my

study at Nirma University.

Vivek K. Patel

13MCLC12

viii

Abbreviations

CPU...Central Processing Unit

GPU...Graphics Processing Unit

GPGPU........................General-Purpose Computing On Graphics Processing Unit

CUDA..Compute Unified Device Architecture

OpenCL...Open Computing Language

ALU...Arithmetic Logic Unit

OpenGL...Open Graphics Library

FEM..Finite Element Method

MPP...Massively parallel processors

ix

Contents

Declaration iii

Certificate iv

Abstract v

Acknowledgement viii

Abbreviations ix

Contents xiii

List of Figures xv

List of Tables 1

1 Introduction to parallel computing 2
1.1 General . 2
1.2 Introduction . 2
1.3 Background of Parallel Processing . 4

1.3.1 Amdahls law . 5
1.4 Types of Parallelization . 7

1.4.1 Bit-Level parallelism . 7
1.4.2 Instruction level parallelism 8
1.4.3 Task parallelism . 8

1.5 Hardware . 8
1.5.1 Memory and communication 8
1.5.2 Classes of parallel computers 10

1.6 Objective of study . 17
1.7 Scope of Work . 18
1.8 Organization of Report . 18

2 Literature Survey 21
2.1 General . 21

x

CONTENTS xi

2.2 Introduction of parallel computing . 21
2.3 Comparison between CUDA and OpenCL 22
2.4 Algorithm for parallel Processing . 22
2.5 Application of parallel processing . 24
2.6 Sumary . 33

3 Introduction to GPU Computing 34
3.1 General . 34
3.2 Background of GPU Computing . 34

3.2.1 Central Processing Units . 35
3.3 The Rise of GPU computing . 36

3.3.1 Brief History of GPUs . 37
3.3.2 Early GPU computing . 38

3.4 Introduction to CUDA . 38
3.5 CUDA Architecture . 39

3.5.1 General . 39
3.5.2 CUDA Architecture . 39
3.5.3 Use of the CUDA architecture 40

3.6 Execution of Program on GPU . 41
3.7 Programming Concepts . 42

3.7.1 Heterogeneous computing . 42
3.7.2 Kernels . 42
3.7.3 Blocks . 44
3.7.4 Threads . 44
3.7.5 Indexing . 45
3.7.6 Memory management . 45

3.8 Languages Supported by NVIDIA CUDA 47
3.9 Applications Accelerated using CUDA 47
3.10 Development Environment for CUDA C 48
3.11 Example : Matrix Multiplication . 48

3.11.1 General . 48
3.11.2 Algorithm . 49
3.11.3 Code . 49
3.11.4 Results . 57

3.12 Summary . 58

4 Gaussian Elimination 61
4.1 General . 61
4.2 Algorithm of Gaussian Elimination 61

4.2.1 Storage . 64
4.2.2 Formation of Upper Triangular Matrix 64

4.3 Sequential Program . 66
4.3.1 Generation of Upper Triangular Matrix 66

CONTENTS xii

4.3.2 Back Substitution . 67
4.4 Parallel Program . 67

4.4.1 Generation of Upper Triangular Matrix 67
4.4.2 Back Substitution . 69

4.5 Results . 69
4.6 Summary . 70

5 Half Band Matrix 71
5.1 General . 71
5.2 Algorithm of Half Band Solver . 72

5.2.1 Storage of Half Band Matrix 74
5.2.2 Formation of Upper Triangular matrix in Half Band Format . 74

5.3 Sequential Program . 76
5.3.1 Generation of Upper triangular Matrix 76
5.3.2 Back Substitution . 77

5.4 Parallel Program . 78
5.4.1 Generation of Upper triangular matrix 78
5.4.2 Back Substitution . 79

5.5 Results . 80
5.5.1 Comparison of Gaussian Elimination and Half Band Program 80

5.6 Summary . 85

6 Finite Element Analysis Using Parallel Programming 86
6.1 General . 86
6.2 Algorithm . 86

6.2.1 Problem details . 87
6.2.2 Flow of program . 88

6.3 Results . 88
6.4 Summary . 90

7 Summary and Conclusion 91
7.1 Summary . 91
7.2 Conclusion . 93
7.3 Future Scope of Work . 94

A Matrix Multiplication 95
A.1 Sequential Program . 95
A.2 Parallel Program . 98

B Gauss Elimination 103
B.1 Sequential Program . 103
B.2 Parallel Program . 107

CONTENTS xiii

C Half Band 113
C.1 Sequential Program . 113
C.2 Parallel Program . 117

D Finite Element 123
D.1 Sequential Program . 123
D.2 Parallel Program . 148

E List of Paper Published/Communicated 174

References 177

List of Figures

1.1 IBM Blue Gene . 3
1.2 Amdahl’s law . 6
1.3 Distributed shared memory network 9
1.4 Cluster computing . 12
1.5 Blue gene . 13
1.6 NVIDIA Tesla GPU card . 16
1.7 Inside View of GPU . 16
1.8 GPU in Laptop . 17

3.1 CUDA Architecture . 40
3.2 GPU Acceleration . 41
3.3 CPU Core Vs GPU Core . 42
3.4 Host . 43
3.5 Device . 43
3.6 CUDA Thread Index . 44
3.7 CUDA Block Index . 46
3.8 Indexing of Array . 46
3.9 Matrix Multiplication of A and B Matrix 49
3.10 Execution Time Comparison Graph1 59
3.11 Execution Time Comparison Graph2 60

4.1 Storage of Matrix for Parallel computing 64
4.2 Storage of stiffness matrix(A) and Force Vector(B) 65
4.3 Formation of Upper triangular matrix in Program 65
4.4 Comparison of Speed Up Factor with number of equations 70

5.1 How Half Band Matrix differ from Gaussian Elimination Matrix . . . 72
5.2 Formation of Upper Triangular matrix 75
5.3 Comparison of sequential and parallel Execution time Half Band Matrix 83
5.4 Comparison of sequential Execution time between 83
5.5 Comparison of parallel execution time 84
5.6 Comparison of communication time 84

6.1 Problem details . 87

xiv

LIST OF FIGURES xv

6.2 Comparison of Execution time CPU Vs GPU 89

List of Tables

3.1 function of CPU and GPU in CUDA 43
3.2 CUDA C functions for Memory Management 46
3.3 Languages Supported by NVIDIA CUDA 47
3.4 Execution Time of Matrix Multiplication using Core i7 CPU and Nvidia

Gefore GT 750M GPU . 58

4.1 Execution Time of Gaussian Elimination 70

5.1 Execution Time of Half Band . 81
5.2 Comparison:Execution Time of Gaussian Elimination(GE) and Half

Band(HB) . 82

6.1 Execution Time of FE Analysis Program 89

1

Chapter 1

Introduction to parallel computing

1.1 General

In the past two decades, the development of algorithms for structural engineering

applications has received a boost due to the advent of parallel computers. Consider-

able research is being done in order to rewrite algorithm originally designed to run

on sequential machines as well as to develop new methods that take advantage of

parallelism offered by the multicore processing computers.

In this project comparison of different parallel algorithms are studied to find out

best method for parallel computation. More Focus is made on solving finite element

problems rather than concentrating on equation solver, which will lead to higher

performance.

1.2 Introduction

Parallel computing is a form of computation in which many calculations are carried

out simultaneously. Operating on Principal that large Problems can often be divided

into smaller ones, which then solved in parallel. There are several forms of parallel

computing: bit level, instruction level, Data and task parallelism[3]

2

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 3

Parallelism has been employed for many years, mainly in high performance computing

but interest in it has grown lately due to physical constraints preventing frequency

scaling. As Power consumption and heat generation by computer became main con-

cern in recent years parallel computing has become dominant in computer architecture

mainly in form of multi-core processor.[3]

Figure 1.1: IBM Blue Gene

Figure 1.1 shows a picture of IBN Blue Gene super computer. Blue Gene supercom-

puter use large number of low frequency processors to achieve better performance

to energy ratio. Blue Gene is Fastest computer in world from November,2004 to

November 2007 as per Top 500 organisation.[4]

Parallel computers can be roughly classified according to the level at which the hard-

ware supports parallelism, With multi-core and multiprocessor computers having mul-

tiple processing element within a single machine ,while Clusters, MPPs and grids use

multiple computes to work on the same task. Specialized parallel computer archi-

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 4

tectures are sometimes used alongside traditional processors, for accelerating specific

task.[3]

Parallel computer programs are more difficult to write than sequential ones, because

parallelization introduce several new classes of potential software bugs. Communi-

cation and synchronization between the different subtasks are typically some of the

greatest obstacles to getting good parallel performance.[3]

1.3 Background of Parallel Processing

Traditionally, computer software has been written for serial computation. To solve

a problem, an algorithm is constructed and implemented as a serial stream of in-

structions. These instructions are executed on a central processing unit(CPU) on

one computer. Only one instruction may execute at a time, After one instruction is

finished next instruction is executed.[3]

Parallel computing on the other hand uses multiple processing elements simultane-

ously to solve a problem. This is accomplished by breaking the problem into in-

dependent parts so that each processing element can execute its part of algorithm

simultaneously with the others. The Processing elements can be diverse and include

resources such as a single computer with multiple processors, several networked com-

puters, specialized hardware or any combination of the above.[3]

Frequency scaling was the dominant reason for improvements in computer perfor-

mance from the mid-1980s until 2004. The runtime of a program is equal to the

number of instructions multiplied by the average time per instruction. Maintaining

everything else constant, increasing the clock frequency decreases the average time it

takes to execute an instruction. Thus an increase in frequency decreases runtime for

all compute bound programs.[3]

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 5

However, Power consumption by a chip is given by the equation P=C×V2×F, Where

P is power, C is the capacitance being switched per clock cycle which is propor-

tional to the number of transistors, V is on Voltage and F is the processor frequency.

Increases in frequency increase the amount of power used in processor. Increasing

processor power consumption led to Intels May 2004 cancellation of its Tejas and

Jayhawk processors, which is generally cited as the end of frequency scaling.[3]

Moores Law is empirical observation that transistor density in a microprocessor dou-

bles every 18 to 24 months. Despite power consumption issue and repeated predic-

tions of its end, Moores law is still in effect. With the end of frequency scaling, these

additional transistor can be used to add extra hardware for parallel computing.[3]

1.3.1 Amdahls law

Optimally, the speed up from parallelization would be linear means doubling the

number of processing elements should halve the runtime and doubling it a second

time should again halve the runtime.[1]

However, very few parallel algorithms achieve optimal speed-up. Most of them have

a near liner speed up for small number of processing elements, which flattens out into

a constant value for large number of processing elements.[1]

The potential speed up of an algorithm on a parallel computing platform is given by

Amdahls law, originally formulated by Gene Amdahl in the 1960s. It states that a

small portion of the program which cannot be parallelized will limit the overall speed

up available from parallelization.[1]

A program solving a large mathematical or engineering problem will typically consist

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 6

of several parallelizable parts and several non-parallelizable (sequential) parts. If α

is the fraction of running time a program spends on non-parallelizable parts, then:

lim
P→∞

1
1−α
α

+ α
=

1

α
(1.1)

1
α

is the maximum speed up with parallelization of the program, with P being the

number of processors used. If the sequential portion of program accounts for 10% of

the runtime (α= 0.1) , we can get no more than a 10× speed-up, regardless of how

many processors are added. This puts an upper limit on the usefulness of adding more

parallel execution units. When a task cannot be partitioned because of sequential

constrains, the application of more effort has no effect on the schedule.[1]

Figure 1.2: Amdahl’s law

Figure 1.2 state a graphical representation of Amdahls law. The speed-up of a pro-

gram from parallelization is limited by how much of the program can be parallelized.

For example, if 90% of the program can be parallelized, the theoretical maximum

speed-up using parallel computing would be 10× no matter how many processor are

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 7

used.

Amdahls law assume that the running time of the sequential portion of the program

is independent of the number of processor.

1.4 Types of Parallelization

1.4.1 Bit-Level parallelism

From the advent of very large scale integration computer-chip fabrication technology

in the 1970s until about 1986, speed up in computer architecture was driven by dou-

bling computer word size the amount of information the processor can manipulate

per cycle. Increasing the word size reduces the number of instructions the processor

must execute to perform an operation on variable whose sizes are greater than the

length of the word.[5]

For example, where an 8-bit processor has to add two 16-bit integers, the processor

must first add the 8 lower-order bits from each integration using the standard addi-

tion instruction, then add the 8 higher order bits using an add with carry instruction

and the carry bit from the lower order addition. Thus, an 8-bit processor requires two

instruction to complete a single operation, where a 16-bit processor would be able to

complete the operation with a single instruction.[5]

Historically, 4-bit microprocessor were replaced with 8-bit, then 32-bit microproces-

sors. This trend generally came to an end with the introduction of 32-bit processors,

which has been a standard in general purpose computing for two decades. Not until

recently with the advent of X86-64 architectures, 64 bit processors become common

place.[5]

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 8

1.4.2 Instruction level parallelism

A computer program, is in essence, a stream of instructions executed by a proces-

sors. These instructions can be re-ordered and combined into groups which are then

executed in parallel without changing the result of the program. This is known

as instruction-level parallelism. Advances in instruction-level parallelism dominated

computer architecture from the mid 1980 until the mid-1990.[5]

1.4.3 Task parallelism

Task parallelism is the characteristic of a parallel program that entirely different

calculations can be performed on either the same or different sets of data. This

contrasts with data parallelism, where the same calculation is performed on the same

or different sets of data. Task parallelism involves the decomposition of task into sub-

tasks and then allocating each sub-task to processor for execution. The processors

would then execute these sub-task simultaneously and often cooperatively. Task

parallelism does not usually scale with the size of a problem.[5]

1.5 Hardware

1.5.1 Memory and communication

Main memory in the parallel computer is either shared memory (shared between all

processing elements in a single address space), or distributed memory (in which each

processing element has its own local address space). Distributed memory refers to the

fact that the memory is logically distributed, but often implies that it is physically

distributed as well. Distributed shared memory and memory virtualization combine

the two approaches, where the processing element has its own local memory and ac-

cess to the memory on non-local processors. Access to local memory are typically

faster than access to non-local memory.[3]

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 9

Figure 1.3: Distributed shared memory network

Computer architecture in which each element of main memory can be accessed with

equal latency and bandwidth are known as Uniform Memory Access (UMA) systems.

Typically, that can be achieved only by a shared memory system, in which the mem-

ory is not physically distributed. A system that does not have this property is known

as Non-Uniform Memory Access (NUMA) architecture. Distributed memory systems

have non-uniform memory access.[3]

Computer system make use of caches-small, fast memories located close to the pro-

cessor which store temporary copies of memory values (in both physical and logi-

cal sense). Parallel computer systems have difficulties with catches that may store

the same value in more than one location, with the possibility of incorrect program

execution.[3]

Figure 1.3 state the logical view of Non-Uniform Memory Access (NUMA) architec-

ture. Processor in one directory can access the directory’s memory with less latency

than they can access memory in other directory’s memory.[3]

Processor-Processor and Processor-memory communication can be implemented in

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 10

hardware in several ways, including via shared (multiported or multiplexed) memory,

a crossbar switch, a shared bus or an interconnect network of a myriad of topologies

including star, ring, tree, hypercube or n-dimensional mesh.[3]

Parallel computers based on interconnect networks need to have some kind of routing

to enable the passing of messages between nodes that are not directly connected. The

medium used for communication between the processors is likely to be hierarchical in

large multiprocessor machines.[3]

1.5.2 Classes of parallel computers

Parallel computers can be roughly classified according to the level at which the hard-

ware supports parallelism. This classification is broadly analogous to the distance

between basic computing nodes. These are not mutually exclusive. For example,

cluster of symmetric multiprocessors are relatively common.

Multicore computing

A multicore processor is a processor that includes multiple execution units (”cores”)

on the same chip. These processors differ from superscalar processors, which can issue

multiple instructions per cycle from one instruction stream (thread). In contrast, a

multicore processor can issue multiple instructions per cycle from multiple instruction

streams. IBM’s Cell microprocessor, designed for use in the Sony PlayStation 3, is

another prominent multicore processor.[2]

Each core in a multicore processor can potentially be superscalar as well that is, on

every cycle, each core can issue multiple instructions from one instruction stream.

Simultaneous multithreading (of which Intel’s HyperThreading is the best known)

was an early form of pseudo-multicoreism. A processor capable of simultaneous mul-

tithreading has only one execution unit (”core”), but when that execution unit is

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 11

idling (such as during a cache miss), it uses that execution unit to process a second

thread.[2]

Symmetric multiprocessing

A symmetric multiprocessor (SMP) is a computer system with multiple identical

processors that share memory and connect via a bus. Bus contention prevents bus

architectures from scaling. As a result, SMPs generally do not comprise more than 32

processors. ”Because of the small size of the processors and the significant reduction

in the requirements for bus bandwidth achieved by large caches, such symmetric mul-

tiprocessors are extremely cost-effective, provided that a sufficient amount of memory

bandwidth exists.”[2]

Distributed computing

A distributed computer (also known as a distributed memory multiprocessor) is a

distributed memory computer system in which the processing elements are connected

by a network. Distributed computers are highly scalable.[2]

Cluster computing

A cluster is a group of loosely coupled computers that work together closely, so that

in some respects they can be regarded as a single computer. Clusters are composed of

multiple standalone machines connected by a network. While machines in a cluster

do not have to be symmetric, load balancing is more difficult if they are not. The

most common type of cluster is the Beowulf cluster, which is a cluster implemented

on multiple identical commercial off-the-shelf computers connected with a TCP/IP

Ethernet local area network. Beowulf technology was originally developed by Thomas

Sterling and Donald Becker is shown in Figure 1.4. The vast majority of the TOP500

supercomputers are clusters.[2]

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 12

Figure 1.4: Cluster computing

Massive parallel processing

A massively parallel processor (MPP) is a single computer with many networked pro-

cessors. MPPs have many of the same characteristics as clusters, but MPPs have

specialized interconnect networks (whereas clusters use commodity hardware for net-

working). MPPs also tend to be larger than clusters, typically having ”far more”

than 100 processors.[2]

In a MPP, “ Each CPU contains its own memory and copy of the operating system

and application. Each subsystem communicates with the others via a high-speed in-

terconnect.”

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 13

Blue Gene shown in Figure1.5 is the fifth fastest supercomputer in the world according

to the June 2009 TOP 500 ranking. Blue Gene has massively parallel processor.

Figure 1.5: Blue gene

Grid computing

Grid computing is the most distributed form of parallel computing. It makes use of

computers communicating over the Internet to work on a given problem. Because of

the low bandwidth and extremely high latency available on the Internet, distributed

computing typically deals only with embarrassingly parallel problems.[2]

Most grid computing applications use middleware, software that sits between the

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 14

operating system and the application to manage network resources and standardize

the software interface. The most common distributed computing middleware is the

Berkeley Open Infrastructure for Network Computing (BOINC). Often, distributed

computing software makes use of ”spare cycles”, performing computations at times

when a computer is idling.[2]

Specialized parallel computers

Within parallel computing, there are specialized parallel device that remain niche

areas of interest. While not domain-specific, they tend to applicable to only a few

classes of parallel problems.[2]

Reconfigurable computing with field-programmable gate arrays

Reconfigurable computing is the use of a field-programmable gate array (FPGA) as

a co-processor to a general purpose computer. An FPGA is, in essence, a computer

chip that can rewire itself for a given task.[2]

FPGAs can be programmed with hardware description languages such as VHDL or

Verilog. However, programming in these languages can be tedious. Several vendors

have created C to HDL languages that attempt to emulate the syntax and semantics

of the C programming language, with which most programmers are familiar. The

best known C to HDL languages are Mitrion-C, Impulse C, DIME-C, and Handel-C.

Specific subsets of SystemC based on C++ can also be used for this purpose.[2]

AMD’s decision to open its HyperTransport technology to third-party vendors has

become the enabling technology for high-performance reconfigurable computing.

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 15

General-purpose computing on graphics processing units (GPGPU)

General-purpose computing on graphics processing units (GPGPU) is a fairly re-

cent trend in computer engineering research. GPUs are co-processors that have been

heavily optimized for computer graphics processing. Computer graphics processing

is a field dominated by data parallel operations particularly linear algebra matrix

operations.[2]

In the early days, GPGPU programs used the normal graphics APIs for executing

programs. However, several new programming languages and platforms have been

built to do general purpose computation on GPUs with both Nvidia and AMD re-

leasing programming environments with CUDA and Stream SDK respectively.[2]

Other GPU programming languages include BrookGPU, PeakStream, and Rapid-

Mind. Nvidia has also released specific products for computation in their Tesla series.

The technology consortium Khronos Group has released the OpenCL specification,

which is a framework for writing programs that execute across platforms consisting of

CPUs and GPUs. AMD, Apple, Intel, NVIDIA and others are supporting OpenCL.[2]

Figure 1.6 shows picture of NVIDIA GPU used in desktop computers and Figure 1.7

shows inside view of GPU. Figure 1.8 is GPU used in laptop computers.

Vector processors

A vector processor is a CPU or computer system that can execute the same instruc-

tion on large sets of data. Vector processors have high-level operations that work on

linear arrays of numbers or vectors. An example, vector operation is A = B × C,

where A, B, and C are each 64-element vectors of 64-bit floating-point numbers.

Cray computers became famous for their vector-processing computers in the 1970s

and 1980s. However, vector processors both as CPUs and as full computer systems

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 16

Figure 1.6: NVIDIA Tesla GPU card

Figure 1.7: Inside View of GPU

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 17

Figure 1.8: GPU in Laptop

have generally disappeared. Modern processor instruction sets do include some vec-

tor processing instructions, such as with AltiVec and Streaming SIM D Extensions

(SSE).[2]

1.6 Objective of study

The major objectives of present study are:

• To understand CUDA C and it’s implementation for parallel programming in

structural engineering applications.

• To study various Numerical methods available for Parallel Programming.

• To understand effect of parallelization in Structure engineering applications like

Finite element analysis problems where massive computation is required.

• Compare performance of different parallel algorithm to solve structure analysis

problems.

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 18

1.7 Scope of Work

In order to achieve above objective the scope of work for major project is decided as

follow.

• Understanding Fundamentals of Parallel Computing.

• Understanding CUDA C and its Specification.

• Study of Various Parallel Processing technique for Structure Engineering appli-

cations.

• Development of Computer program for solving equations based on Gaussian

Elimination and Half Band Solver.

• Development of parallel computer program for Finite Element Analysis and its

implementation on GPU.

1.8 Organization of Report

The study carried out in this major project is related to the application of parallel

processing in structural engineering. The content of major project is divided into

different chapter as follows.

Chapter 1 include Introduction to parallel computing as well as background of Par-

allel Processing. It also covers Types of parallelization available and different types

of hardware available for Parallel Processing.It includes objective of study and scope

of work .

Chapter 2 covers literature review which is divided into four different parts. It includes

Paper based on Introduction of parallel computing, Comparison between CUDA C

and OpenCL, Algorithm for parallel processing and Application of parallel processing.

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 19

Chapter 3 covers different aspects of GPU computing which include brief history

of GPU computing, various terminology used in GPU computing , CUDA language

specification and CUDA architecture.This chapter also covers list of application ac-

celeration by GPU computing and Software tools available for GPU Programming.

At the end application of parallel programming is explained with example of Matrix

Multiplication.

Chapter 4 introduce Gaussian Elimination method to solve linear system of equation

in form of [A]{x}={B} using concept of parallel programming on Graphics process-

ing Unit. parallel program is developed using CUDA C language and compared with

sequential program developed using C language. Comparison of parallel program and

sequential program is done based on execution time and speed up factor.For genera-

tion of equations, Finite element analysis of axially loaded bar using 3 node element

is adopted.

Chapter 5 introduce Half Band solver based on gaussian elimination method. Par-

allel program is developed using CUDA C language and compared with sequential

program developed using C language. Comparison of parallel program and sequential

program is done based on Execution time and speed up factor. For generation of

equations, Finite element analysis of axially loaded bar using 3 node element is used

and all equations are converted into Half Band form.

Chapter 6 explain parallelization of whole Finite Element program instead of con-

centrating on equation solver. Finite Element Analysis of Cantilever beam having

point load at end is carried out using CST element. Parallel program is developed

using CUDA C language and compared with sequential program developed using C

language. Comparison of parallel program and sequential program is done based on

Execution time and speed up factor.

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTING 20

Chapter 7 contains detailed summary of project, concluding remarks and Future scope

of work.

Chapter 2

Literature Survey

2.1 General

In this chapter literature related to various aspects of parallel programming and its

applications in structural engineering field are reviewed.

2.2 Introduction of parallel computing

Sotelino[22] presented some of the parallel algorithms that have been developed for

parallel computing. More specifically, it was a survey of parallel algorithms applica-

ble for structural engineering. Such algorithms included parallel solvers, techniques

for the parallelization of the finite element method. There was good discussion on

research in the development of concurrent algorithms for parallel architectures. The

discussion in the section of Iterative solver and direct solvers were concerned with the

solution of a system of linear algebraic equations. In this work, an attempt was made

to provide a thorough survey of the methods that were directly related to structural

engineering applications.

21

CHAPTER 2. LITERATURE SURVEY 22

2.3 Comparison between CUDA and OpenCL

Karimi et al.[13]presented comparison between CUDA and OpenCL Platform. CUDA

and OpenCL offer two different interfaces for programming GPUs. As per this paper,

OpenCL is an open standard that can be used to program CPUs, GPUs, and other

devices from different vendors, while CUDA is specific to NVIDIA GPUs. Although

OpenCL promises a portable language for GPU programming, its generality may en-

tail a performance penalty. In this paper Comparison of performance of CUDA and

OpenCL was done using complex, near-identical kernels. In tests, CUDA performed

better when transferring data to and from the GPU. CUDA kernel execution was

also faster than OpenCL. CUDA seems to be a better choice for application where

high performance is important otherwise the choice between CUDA and OpenCL

was made based on familiarity with system, available development tools for target

hardware.

2.4 Algorithm for parallel Processing

Sharma et al.[10] presented Gauss Jordan algorith for matrix inversion on a CUDA

platform to exploit the large scale parallelization feature of a massively multithreaded

GPU. The algorithm was tested for various types of matrices (Sparse, band ,identity)

and the performance were studied and compared with CPU based parallel meth-

ods. Matrix size of 64×64, 128×128, 256×256, 512×512, 1024×1024, 1536×1536 and

2048×2048 were used for measurement of execution time. All matrix sizes were tested

for different types of matrix like sparse, identity and band Total speed up factor for

2048 was between 20 to 25. Authors found GPU based parallelization much faster

than CPU based parallelization.

Kruzel and Banas[15] presented work on computational aspects of the problem

of numerical integration in finite element calculations and considered an openCL

implementation of related algorithms. As a platform for testing the implementation

CHAPTER 2. LITERATURE SURVEY 23

they chose the PowerXCell processors. Although the processor was considered old for

today standard , they investigated it’s performance due to two features : Wide vector

units and relatively slow connection of computing cores with main global memory.

The performed analysis of parallelization options could also be used for designing

numerical integration algorithms for other processors with vector registers. They

considered higher order finite element approximations and implemented the standard

algorithm of numerical integration for prismatic element.

The performance results presented for finite element numerical integration algorithm

running on the powerXCell processor proved that the algorithm could be successfully

ported to multi-core processor with manually managed memory hierarchy and vector

execution units.

Yang et al.[8] tested Cholesky decomposition on GPU and FPGAs. Cholesky de-

composition has been widely utilized for positive symmetric matrix factorization in

solving least square problems. Various parallel accelerators including GPUs and FP-

GAs had been explored to improve performance. In this paper, Cholesky decomposi-

tion was implented on both FPGAs and GPUs by designing a dedicated architecture

for FPGAs and exploiting massively parallel computation for GPUs. Performance

of the cholesky decomposition on GPUs, CPUs, FPGAs and hybrid systems were

compared in both single and double precision. Result showed that the FPGA imple-

mentation had better efficiency with respect to clock cycles compared with our pure

GPU implementation.

Hsieh et al.[21] presented general sparse matrix and parallel computing technologies

for finite element solution of large scale structural problems in a PC cluster environ-

ment. The general sparse matrix technique was first employed to reduce execution

time and storage requirement for solving the simultaneous equilibrium equations in

finite element analysis . To further reduce the time required for large scale structural

analysis , two parallel processing approaches for sharing computational workloads

among collaborating processors were then investigated. One approach adopted a

publicly available parallel equation solver, called SPOOLES, to directly solve the

CHAPTER 2. LITERATURE SURVEY 24

sparse finite element equations while other employed a parallel substructure method

for the finite element solution. This work focused more on integrating the general

sparse matrix technique and the parallel substructure method for large scale finite

element solutions. Additionally, Numerical studies had been conducted on several

large scale structural analysis using a PC cluster to investigate the effectiveness of

the general sparse matrix and parallel computing technologies in reducing time and

storage requirement in large scale finite element analysis.

2.5 Application of parallel processing

Patel [17] presented work related to introduction of High performance computing

to Structural engineering. Main focus was solution of structural engineering related

problem using OpenCL for parallel programming. He used OpenCL as parallel pro-

gramming platform and C++as programming language.For experiment two different

solver was used for solution of equation. First was Gaussian elimination method, in

which execution time measured for number of equations from range 100 to 10000.

Another method was Half band in which displacement for 2D plane frame was calcu-

lated for different matrix size. structure size (No of bay*Number of story) of 50×50,

100×100, 150×150, 200×200, and 250×250 were solved. Program was tested on

different CPU and GPU. Speed Up factor for both method and all different CPU

and GPU was calculated. For Gaussian Elimination max Speed Up was 1702 for i7-

2630QM processor and for 10000 no of equation. For Half Band method max speed

up was 3.9 for i7-3450 for 250×250 size of matrix.

Wang et al.[16] presented work on the GPU parallelization of complex three-dimensional

software for nonlinear analysis of concrete structures. It focused on coupled thermo-

mechanical analysis of complex structures As the modeling of a large structure by

means of FEM/DEM may lead to prohibitive computation times, a parallelization

strategy was required. In this paper comparative study between the GPU and CPU

CHAPTER 2. LITERATURE SURVEY 25

computation results was presented, and the runtimes and speedups were analyzed.

The results showed that dramatic performance improvements gained from GPU paral-

lelization. One example was given to demonstrate GPU implementation with CUDA

in which program was made to run on multiple GPU. In main experiment program to

calculate displacement due to stress was given, in which program was tested on 3 dif-

ferent GPU and compared with CPU. Comparison was done for execution time , gen-

eration of stiffness matrix and also for copy output from GPU to CPU(communication

time). Errors in results compared to CPU results were also calculated in percentage

and compared. In this study, the CDEM(Coupled Finite/Discrete Element Method

) was successfully accelerated by using GPUs. Detailed tests on accuracy, runtime,

and speedup were performed on different GPUs. Authors concluded Maximum and

minimum speed up observed was 417 and 102.

Dziekonski et al.[6] presented an efficient technique for fast generation of sparse

systems of linear equations. The proposed approach employed a graphics processing

unit (GPU) for both numerical integration and matrix assembly. The performance

results obtained on a test platform consisting of a GPU (1x Tesla C2075-448 core)

and a CPU (2x twelve-core Opterons), indicated that the GPU implementation of the

matrix generation allows one to achieve speedups by a factor of 81. Speed up factor

for numerical integration for tesla vs opteron was 77.88. The obtain performance re-

sults indicated that the proposed GPU accelerated implementation allow significant

reduction in matrix generation time.

Hajjar and Abel[11] presented work regarding Parallel Processing Of Nonlinear

Dynamic Analysis Of Steel Frame Structures Using Domain Decomposition In this

paper analysis of three-dimensional framed structure subjected to seismic loading us-

ing parallel processing. Non linearity requires frequent updating of stiffness matrix.

In this paper, loading was multicomponent, non proportional and time varying and

time span of the seismic loading may be on the order of 10 to 100 times the fun-

CHAPTER 2. LITERATURE SURVEY 26

damental period of the structure. Therefore thousands of the steps must be run to

model properly the nonlinear behavior. Domain decomposition method was adopted

in this research for parallel processing. This paper concluded that the performance

of Domain Decomposition improve considerably with increase in size of problems.

Kandasamy[14] dealt with a research concept of parallel finite element (FE) sim-

ulation for moving boundary and adaptive refinement problems using graphics pro-

cessing unit (GPU).The main concern in this study was to improve the numerical

performance of continuous FE simulation using recent data-parallel computing tech-

nology (GPU-CUDA).The computational time for existing simulations was very long

using conventional parallel computing technique (MPI). This short-coming could be

overcomed using data parallel computing power of CPU and GPU by increasing the

overall performance of FE simulation. By adapting the computing power of graphic

processors for multi-threaded fine-grain parallelization for FE assembly and solving,

overall performance could be significantly improved.

In this paper Numerical Simulation of Tunnel boring process was carried out using

CUDA programming. Parallelization of FE simulation was done using domain de-

composition technique. The whole model was subdivided into many subdomains and

each part solved by different processors as distributed or shared memory. To repre-

sent the reality of real time tunnel boring process numerical computation should be

fast enough to update the current state of boring process. This type of large scale

FEM modeling handles huge domain with many hundred thousand DOFs.

In continuous simulations, each and every time step solution was updated for the

next step calculation. When the problem size increased, required solution time in

each step dramatically increased. To meet the fast solution, parallel computing tech-

niques were applied. The major part of the research was the application of GPU

parallelization in whole part of FE simulation of tunnel boring process.The ultimate

CHAPTER 2. LITERATURE SURVEY 27

goal of this research was to make GPUs system capable to compute custom applica-

tion with minimum modifications of programs.

Bahcecioglu and Kurc[7] presented work related to decrease the analysis time for

nonlinear dynamic analysis of large scale structural models utilizing the GPUs.In the

implementation, explicit version of the Newmark family of algorithms was utilized.

This type of algorithm enabled the computations to be applied on each finite element,

eliminating the need for global matrix assembly. Two different GPU implementations

were tested. In the first approach, creation of elemental matrices and computation

of the explicit Newmark algorithm were separated into two different kernels. The

second approach fused these two kernels at compile time into a single kernel code.

Both implementations were developed using CUDA language. Implementation details

of both algorithms were discussed in detail noticing optimization differences. Both

GPU implementations were tested and compared with a CPU implementation using

models with varying sizes.

For testing both implementation various model sizes from 10,000 to 10,00,000 were

analyzed and compared to a CPU implementation. For each model size, a two dimen-

sional and a three dimensional model was constructed composed of nonlinear quadri-

lateral and nonlinear hexahedron elements respectively. Models were constructed

in order to analyze the performance characteristics of implementations. Two di-

mensional models were in square shape and three dimensional models were in cubic

shape. All models were loaded dynamically with prescribed displacements that rep-

resent east-west component from Treasure Island record of Loma Prieta Earthquake.

Two dimensional models were analyzed for 100 time steps and three dimensional

models were analyzed for 20 time steps for comparison purposes.

Both implementations resulted in similar performance characteristics that outper-

formed the CPU implementation in two dimensional models. In three dimensional

CHAPTER 2. LITERATURE SURVEY 28

models CPU implementation had enough computation to suppress communication

costs and outperformed GPU implementations.

Qian et al.[26] carried out research of parallel computing for Large scale Finite-

Element Model of WheelRail Rolling Contract. For the increasing requirement of

calculation scale and computing accuracy, the parallel computing method and par-

allel computing environment became an effective way to solve this problem. The

parallel computing method of contact problem was analyzed firstly. Then the contact

algorithms and parallel computing of ABAQUS was introduced and parallel comput-

ing environment using MPI in ABAQUS is put forward. On the basis of cluster, some

different finite element model was solved by implicit and explicit solution. It is found

that mesh size of wheel/rail contact field was refined to 0.75mm in order to ensure

accuaracy for engineering. At last, the parallel computing for the contact problem of

wheel/rail was discussed using the speedup and efficiency.

Fan et al.[27] presented application of parallel computing in large Eigenvalue prob-

lems for engineering structures. A parallel solving system was constructed via inte-

grating these software packages into the finite element parallel computing framework-

PANDA. The finite element model of engineering structures was built in pre-processing

software-MSC.Patran. Based on interface between PANDA and MSC.Patran, the

model information was translated in PANDA to generate stiffness and mass matri-

ces in a parallel way. Utilizing these matrices, a large scale parallel computing of

eigenvalues was carried out via calling software packages in PANDA. The numerical

results show that PANDA frame was competent for carrying out large scale parallel

computing of eigenvalue problems in virtue of supercomputer, the computing scale

attains millions degree of freedom and the parallel efficiency was favorable. They

gave a brief review on some dominant algorithm and freely available software for nu-

merical solution of large sparse eigenvalue problems. There was also description of

whole processes of parallel computing for eigenvalue problems arising from engineer-

CHAPTER 2. LITERATURE SURVEY 29

ing structures. In the analysis example solved, the number of degree of freedom of

the finite element model was about 2.3 mllions.

Fu[9] presented parallel finite element method using domain decomposition technique

which was implemented on a distributed parallel environment of workstation cluster.

The algorithm was presented for solving the conjugate gradient method on a parallel

platform with element based domain decomposition. Using the developed code, struc-

tural analysis of a dam was solved on workstation cluster and results were presented.

The parallel performance was analysed,On the basis of mode synthesis analysis, par-

allel algorithm of solving large scale structural eigen problem was presented by FU.

The numerical results showed that this parallel algorithm was effective for large scale

structure eigen problem. Parallel computing for numerical example of structural

modal analysis was performed on DELL workstation cluster in school of computer en-

gineering and science, Shanghai University. It was a cluster with 8 processor arranged

in 4 dual-processor nodes with 2.4GHz Intel Xeon chips (512KB cache) and 1GB of

memory per node. These nodes were connected with 100Mbps Ethernet interconnect.

Leow et al.[28] presented parallel implementation of a direct method for solving

linear equations called Gaussian Elimination.The solution of a linear system of equa-

tions constitute an important part in the field of linear algebra that is widely used

in industries like aerospace, aeronautics, solid mechanics, fluid dynamics, oil research

and numerous others. Through evaluations had been performed for variants of imple-

mentation that exploit different memory features on an NVIDIA Tesla C1060 GPU.

Compared to a serial implementation on an Intel Core i7, the execution time for for-

ward elimination on the GPU was reduce by a factor of 183 when using both global

and shared memory systems, and by a factor of 185 when using only global memory.

The maximum size of matrix considered for study was 8182 × 8192.

Reddy et al.[18]described the design and the implementation of parallel routines in

CHAPTER 2. LITERATURE SURVEY 30

Heterogeneous SCALAPACK library that solve a dense system of linear equations. It

was discussed that the efficiency of these parallel routines was due to the most impor-

tant feature of the library, which was the automation of the difficult optimization task

of parallel programming on heterogeneous computing cluster. They showed that the

efficiency of these parallel routines was due to the most important feature of library ,

which was the automation of the difficult optimization task of parallel programming

on heterogeneous computing cluster, Other features were the determination of the

accurate values of the platform parameters such as speed of the processor and the

latencies and bandwidth of the communication links connecting different pairs of pro-

cessors, the optimal values of the algorithmic parameters such as the total number

of processes, the 2D process grid arrangement and the efficient mapping of the pro-

cesses executing the parallel algorithm to the executing nodes of the heterogeneous

computing cluster.

Stefanski et al.[23]evaluated the usability and performance of open computing Lan-

guage (OpenCL) targeted for implementation of the Finite-Difference Time-Domain

(FDTD) method. The simulation speed was compared to implementation based on

alternative techniques of parallel processor programming. Moreover, the portability

of OpenCL FDTD code between modern computing architectures was assessed. The

average speed of OpenCL FDTD simulations on a GPU was about 1.1 times lower

than a comparable CUDA based solver for domains with sizes varying from 503 to

4003 cells. Although OpenCL code dedicated to GPU can be executed on multi-core

CPUs, a direct porting did not provide satisfactory performance due to an application

of architecture specific feature in GPU code. Therefore, the OpenCL kernels of the

developed FDTD code were optimized for multi-core CPUs. However, this improved

OpenCL FDTD code was still about 1.5 to 2.5 times slower than the FDTD solver

developed in the OpenMP parallel programming standard. The study concluded that,

despite current performance drawbacks, the future potential of OpenCL was signifi-

cant due to its flexibility and portability to various architectures.

CHAPTER 2. LITERATURE SURVEY 31

Wang et al.[25] used Gaussian Elimination and Gauss-Jordan methods because of

their extensive use in finite element applications. In most cases, dense, nonsymmet-

ric, real systems were solved but similar methods for banded and complex system

were presented.Parallel solution algorithms based on the Gaussian Elimmination and

Gauss-Jordan were implemented and compared. These parallel solvers were applied

to large, dense or banded systems of equation arising from finite element analysis of

2-D and 3-D electromagnetic field problems. Both real and complex matrices were

considered with emphasis on very large systems. The speed up obtained by paral-

lelization on the MPP compared to sequential computers was almost three order of

magnitude.

In engineering applications it is often necessary to solve large systems of equations

that were either too large or require too much computer resources to be economically

feasible on standard computers. For this type of problem a parallel machine was very

attractive. The type of systems considered were those arising from the application of

the Finite element method(FEM) to engineering applications. The FEM was particu-

larly computationally intensive , yet its various parts were either intrinsically parallel

or could be parallelized. By using a parallel processor, considerably faster solution

could be achieved or, alternatively , large problems could be solved.

Mani et al.[24] proposed a parallel Gaussian elimination technique for the solution

of liner equations. They considered the direct solution of [A]{x} = {C}, where A

is a banded matrix with half bandwidth b. They modeled the situation as a acyclic

directed graph. In this graph, the nodes represented arithmetic operation applied to

the elements of A and the arcs represents the precedence relation that exists among

the operations in the solution process. This graph gives clear picture to user in iden-

tifying the operations that can be done in parallel. this graph was also useful in

scheduling operations to the processors. The absolute minimum completion time and

the lower bound on the minimum number f processors required to solve the equations

CHAPTER 2. LITERATURE SURVEY 32

in minimum time can be found from it. Speedup approached a limit using parallel

processors , set by the absolute minimum time was also brought out from this graph.

McGinn et al.[20] presented parallel algorithm for gaussian elimination. Elimina-

tion in both a shared memory environment, using OpenMP, and in a distributed

memory environment, using MPI. Parallel LU and gaussian algorithms for linear sys-

tems had been studied extensively and the paper presented the results of examining

various load balancing schemes on both platforms. It was noted that the impact on

performance occur as one changes the size of Matrix i.e. When increase in Value of

Number of equations the MPI displays an improvement in performance as oppose to

the openMP program where performance increase seems to diminish. It is possible

that as n increases one may find a point where the distributed environment would

show a greater increase in performance than the shared platform.

Liu et al.[12] designed and developed a GPU based Bi-Conjugate Gradient STABi-

lized solver that need both generality and stability requirements. It was well suited

for all types of banded linear systems and this solver combined with new matrix

deposition method with several optimization for inter-GPU and inter-machine com-

munications to achieve good scalability on large scale GPU clusters. Solving a banded

linear system efficiently is important to many scientific and engineering applications.

Current solvers achieve good scalability only on linear systems that can be partitioned

into independent subsystems. They designed a number of GPU and MPI optimization

to speed up inter GPU- and intermachine communications and evaluated the solver

on Poisson equation and advection diffusion equation as well as several other banded

systems. The solver achieved a speedup of more than 21 times running from 6 to 192

GPUs on the XSEDE’S Keeneland supercomputer and because of small communica-

tion overload, could scale up to 32 with GPUs on Amazon EC2 with relatively slow

ethernet network.

CHAPTER 2. LITERATURE SURVEY 33

Zhang et al.[29] presented a GPU based parallel Jacobian iterative solver for dense

linear equations. Modern GPUs are high performance as many core processors fit

for large scale parallel computing. They provided a novel way for accelerating the

solution process. First, they introduced background for accelerating linear equations

solver together with GPUs and the corresponding parallel platform CUDA. They

compared experimental results of CUDA program with traditional programs on CPU.

Experiments showed that it obtained speed up of approximately 59 times with single

floating point at low precision, 19 times with double at high precision.

2.6 Sumary

In this chapter literature on Application of parallel computing,Algorithms for parallel

Programming as well as performance comparison between CUDA and OpenCL are

discussed briefly.It gives an overview of the work carried out by various researchers

in different fields of structural engineering.

Chapter 3

Introduction to GPU Computing

3.1 General

Multicore machines and hyper-threading technology have enabled scientists, engi-

neers, and financial analysts to speed up computationally intensive applications in a

variety of disciplines. Today, another type of hardware promises even higher compu-

tational performance: the graphics processing unit (GPU).

Originally used to accelerate graphics, GPUs are increasingly applied to scientific

calculations. Unlike a traditional CPU, which includes no more than a handful of

cores, a GPU has a massively parallel array of integer and floating-point processors,

as well as dedicated, high-speed memory. A typical GPU comprises hundreds of these

smaller processors.

3.2 Background of GPU Computing

In recent years, much has been made of the computing industry’s widespread shift

to parallel computing. Nearly all consumer computers in the year 2015 ship with

multicore central processors. From the introduction of dual-core, low-end netbook

machines to 8 and 16 core workstation computers, parallel computing no longer lim-

34

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 35

ited to exotic supercomputers or mainframes.[19]

Moreover, electronic devices such as mobile phones and portable music players have

begun to incorporate parallel computing capabilities in an effort to provide function-

ality well beyond those of their predecessors.[19]

More and more, software developers will need to cope with a variety of parallel com-

puting platforms and technologies in order to provide novel and rich experiences for

an increasingly sophisticated base of users.[19]

3.2.1 Central Processing Units

For 30 years, one of the important methods for the improving the performance of

consumer computing devices has been to increase the speed at which the proces-

sors clock operated. Starting with the first personal computers of the early 1980s,

consumer central processing units (CPUs) ran with internal clocks operating around

1MHz. About 30 years later, most desktop processors have clock speeds between

1GHz and 4GHz, nearly 1,000 times faster than the clock on the original personal

computer. Although increasing the CPU clock speed is certainly not the only method

by which computing performance has been improved, it has always been a reliable

source for improved performance.[19]

In recent years, manufacturers have been forced to look for alternatives to this tra-

ditional source of increased computational power. Because of various fundamental

limitations in the fabrication of integrated circuits, it is no longer feasible to rely on

upward-spiraling processor clock speeds as a means for extracting additional power

from existing architectures. Because of power and heat restrictions as well as a rapidly

approaching physical limit to transistor size, researchers and manufacturers have be-

gun to look elsewhere.[19]

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 36

Outside the world of consumer computing, supercomputers have for decades extracted

massive performance gains in similar ways. The performance of a processor used in

a supercomputer has climbed astronomically, similar to the improvements in the

personal computer CPU. However, in addition to dramatic improvements in the per-

formance of a single processor, supercomputer manufacturers have also extracted

massive leaps in performance by steadily increasing the number of processors. It is

not uncommon for the fastest supercomputers to have tens or hundreds of thousands

of processor cores working in together.[19]

In 2005, faced with an increasingly competitive marketplace and few alternatives,

leading CPU manufacturers began offering processors with two computing cores in-

stead of one. Over the following years, they followed this development with the release

of three, four, six, and eight-core central processor units. Sometimes referred to as

the multicore revolution, this trend has marked a huge shift in the evolution of the

consumer computing market.[19]

Today, it is relatively challenging to purchase a desktop computer with a CPU con-

taining but a single computing core. Even low-end, low-power central processors

ship with two or more cores per die. Leading CPU manufacturers have already an-

nounced plans for 12- and 16-core CPUs, further confirming that parallel computing

has arrived for good.[19]

3.3 The Rise of GPU computing

In comparison to the central processors traditional data processing pipeline, per-

forming general-purpose computations on a graphics processing unit (GPU) is a new

concept. In fact, the GPU itself is relatively new compared to the computing field at

large.

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 37

3.3.1 Brief History of GPUs

We have already looked at how central processors evolved in both clock speeds and

core count. In the meantime, the state of graphics processing underwent a dramatic

revolution. In the late 1980s and early 1990s, the growth in popularity of graphi-

cally driven operating systems such as Microsoft Windows helped create a market

for a new type of processor. In the early 1990s, users began purchasing 2D dis-

play accelerators for their personal computers. These display accelerators offered

hardware-assisted bitmap operations to assist in the display and usability of graphi-

cal operating systems.[19]

Around the same time, in the world of professional computing, a company by the

name of Silicon Graphics spent the 1980s popularizing the use of three-dimensional

graphics in a variety of markets, including government and defense applications and

scientific and technical visualization, as well as providing the tools to create stunning

cinematic effects. In 1992, Silicon Graphics opened the programming interface to

its hardware by releasing the OpenGL library. Silicon Graphics intended OpenGL

to be used as a standardized, platform-independent method for writing 3D graphics

applications. As with parallel processing and CPUs, it would only be a matter of

time before the technologies found their way into consumer applications.[19]

From a parallel-computing standpoint, NVIDIAs release of the GeForce 3 series in

2001 represents arguably the most important breakthrough in GPU technology. The

GeForce 3 series was the computing industrys first chip to implement Microsofts then-

new DirectX 8.0 standard. For the first time, developers had some control over the

exact computations that would be performed on their GPUs.[19]

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 38

3.3.2 Early GPU computing

The release of GPUs that possessed Computing attracted many researchers to the

possibility of using graphics hardware for more than simply OpenGL- or DirectX-

based rendering. The general approach in the early days of GPU computing was

extraordinarily convoluted. Because standard graphics APIs such as OpenGL and

DirectX were still the only way to interact with a GPU, any attempt to perform

arbitrary computations on a GPU would still be subject to the constraints of pro-

gramming within a graphics API.[19]

Essentially, the GPUs of the early 2000s were designed to produce a color for every

pixel on the screen using programmable arithmetic units known as pixel shaders. In

general, a pixel shader uses its (x,y) position on the screen as well as some additional

information to combine various inputs in computing a final color. The additional

information could be input colors, texture coordinates, or other attributes that would

be passed to the shader when it ran. But because the arithmetic being performed

on the input colors and textures was completely controlled by the programmer, re-

searchers observed that these input colors could actually be any data.[19]

Because of the high arithmetic throughput of GPUs, initial results from these ex-

periments promised a bright future for GPU computing. However, the programming

model was still far too restrictive for any critical mass of developers to form. As if the

limitations werent severe enough, anyone who still wanted to use a GPU to perform

general-purpose computations would need to learn OpenGL or DirectX since these

remained the only means by which one could interact with a GPU.[19]

3.4 Introduction to CUDA

CUDA (Compute Unified Device Architecture) is a parallel computing platform and

programming model created by NVIDIA and implemented on the graphics process-

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 39

ing units (GPUs) that NVIDIA produce. CUDA gives developers direct access to the

virtual instruction set and memory of the parallel computational elements in CUDA

GPUs.

Using CUDA, the GPUs can be used for general purpose processing, not exclu-

sively graphics. This approach is known as GPGPU(General-Purpose Computing On

Graphics Processing Unit). Unlike CPUs, however, GPUs have a parallel throughput

architecture that emphasizes executing many concurrent threads slowly, rather than

executing a single thread very quickly.

3.5 CUDA Architecture

3.5.1 General

In November 2006, NVIDIA unveiled the industrys first DirectX 10 GPU, the GeForce

8800 GTX. The GeForce 8800 GTX was also the first GPU to be built with NVIDIAs

CUDA Architecture. This architecture included several new components designed

strictly for GPU computing which make easier many of the limitations that prevented

previous graphics processors from being legitimately useful for general-purpose com-

putation.

3.5.2 CUDA Architecture

The CUDA Architecture allow each and every arithmetic logic unit (ALU) on the chip

to be arranged in logical order by a program intending to perform general-purpose

computations. Because NVIDIA intended this new family of graphics processors to be

used for general purpose computing, these ALUs were designed to use an instruction

set for general computation rather than specifically for graphics.

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 40

Figure 3.1: CUDA Architecture

Furthermore, the execution units on the GPU were allowed arbitrary read and write

access to memory as well as access to a software-managed cache known as shared

memory. All of these features of the CUDA Architecture were added in order to

create a GPU that would excel at computation in addition to performing well at

traditional graphics tasks. CUDA Architecture natively support all computational

interfaces as shown in Figure 3.1 (standard languages and APIs)[19]

3.5.3 Use of the CUDA architecture

The effort by NVIDIA to provide consumers with a product for both Computation and

graphics could not stop at producing hardware incorporating the CUDA Architecture.

Regardless of how many features NVIDIA added to its chips to facilitate computing,

there continued to be no way to access these features without using OpenGL or Di-

rectX.

To reach the maximum number of developers possible, NVIDIA took industry stan-

dard C and added a relatively small number of keywords in order to harness some of

the special features of the CUDA Architecture. A few months after the launch of the

GeForce 8800 GTX, NVIDIA made public a compiler for this language, CUDA C.

And with that, CUDA C became the first language specifically designed by a GPU

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 41

company to facilitate general-purpose computing on GPUs.

In addition to creating a language to write code for the GPU, NVIDIA also provides a

specialized hardware driver to exploit the CUDA Architectures massive computational

power. Users are no longer required to have any knowledge of the OpenGL or DirectX

graphics programming interfaces, nor are they required to force their problem to look

like a computer graphics task.

3.6 Execution of Program on GPU

Figure 3.2: GPU Acceleration

GPU-accelerated computing offers unprecedented application performance by offload-

ing compute-intensive portions of the application to the GPU, while the remainder

of the code still runs on the CPU as per Figure 3.2. From a user’s perspective, ap-

plications simply run significantly faster.[19]

A simple way to understand the difference between a CPU and GPU is to compare

how they process tasks. A CPU consists of a few cores optimized for sequential serial

processing while a GPU consists of thousands of smaller, more efficient cores designed

for handling multiple tasks simultaneously as per Figure 3.3.

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 42

Figure 3.3: CPU Core Vs GPU Core

3.7 Programming Concepts

3.7.1 Heterogeneous computing

Heterogeneous computing refers to systems that use more than one kind of processor

incorporating specialized processing capabilities to handle particular tasks. Heteroge-

neous System Architecture (HSA) systems utilize multiple processor types (typically

CPUs and GPUs), GPU processing, apart from its well-known 3D graphics rendering

capabilities, can also perform mathematically intensive computations on very large

data sets, while CPUs can run the operating system and perform traditional serial

tasks.

3.7.2 Kernels

Parallel portion of application execute as a kernel, Entire GPU executes Kernel which

means Kernels works as a GPU function.As per Table 3.1 CPU is generally referred

as Host and GPU is referred as Device In GPU Computing.If we run CUDA program

then Host execute functions and Device Execute kernals.

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 43

Table 3.1: function of CPU and GPU in CUDA

Name Referred as Work
CPU Host Execute Functions
GPU Device Execute Kernals

Figure 3.4: Host

Figure 3.5: Device

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 44

Figure 3.4 and 3.5 shows picture of Center processing unit and Graphics Processing

unit used in Computers. As shown in Table 3.1, CPU is referred as Host and GPU

referred as Device in CUDA .

3.7.3 Blocks

If we are running program for vector addition in Parallel on GPU than each Parallel

invocation of VectorAdd() kernal is referred to as a Block. Block exist in 2d grid

as per Figure 3.6 so Indexing of Blocks is done using blockIdx.x for X direction and

blockIdx.Y for Y direction. On the device, each block can execute in parallel.

3.7.4 Threads

Figure 3.6: CUDA Thread Index

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 45

A block can be split into parallel threads. Threads are also exist in 2d/3d Grid. For

Indexing of Thread ThreadIdx.x and ThreadIdx.y can be used as shown Figure 3.6

in X and Y direction respectively. On device each thread can execute in parallel.

Advantage of Threads over Blocks is that thread share same memory if they are in

same block so better computation take place compared to blocks[19] .

3.7.5 Indexing

Indexing of array is one of the most important aspects of GPU computing. for

indexing of array in one direction following formula can be used:

index = threadId.x+ blockId.x ∗ (BlockWidth) (3.1)

To find index of Thread as shown in Figure3.7 then index of thread=2+2*4=10.

same way as per Figure 3.8 index of thread=4+2*8=20.

so,as per Figure 3.7 index value starts from 0 to max value 15 which mean program

can handle total 16 number of process in parallel for this particular size of grid. we

can define Size of Grid using number of blocks and threads. Grid size(4,3) means 4

number of blocks in which each block consist of 3 number of threads. Figure 3.7 and

3.8 are example of (4,4) and (4,8)grid size respectively.

3.7.6 Memory management

Host and device memory are

• separate entities Device pointers point to GPU memory

• May be passed to/from host code

• May not be dereferenced in host code Host pointers point to CPU memory

• May be passed to/from device code

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 46

Figure 3.7: CUDA Block Index

Figure 3.8: Indexing of Array

• May not be dereferenced in device code

Simple CUDA API(Table 3.2) for handling device memory Similar to the C equiva-

lents malloc(), free(), memcpy().

Table 3.2: CUDA C functions for Memory Management
Name of Function Descripson

cudaMalloc() allocate Space for Variable on GPU
cudaMemcpy() Copy memory from Host to Device in both ways

cudaFree() free up space allocated on GPU

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 47

3.8 Languages Supported by NVIDIA CUDA

List of Language in which we can do GPU programming by using CUDA libraries are

shown in Table 3.3 .

Table 3.3: Languages Supported by NVIDIA CUDA
Name of Language Library or API

Fortran FORTRAN CUDA
F# Alea.CUDA
Java jCUDA

Mathematica CUDALink
MATLAB Parallel Computing Toolbox

.NET CUDA.NET
Python Numba, NumbaPro, PyCUDA

3.9 Applications Accelerated using CUDA

Since its debut in early 2007, a variety of industries and applications have enjoyed a

great deal of success by choosing to build applications in CUDA C. These benefits

often include orders-of-magnitude performance improvement over the previous state-

of-the-art implementations.

Furthermore, applications running on NVIDIA graphics processors enjoy superior

performance per watt than implementations built exclusively on traditional central

processing technologies. The following list represent just a few Application in which

people have put CUDA C and the CUDA Architecture into successful use.

• MATLAB

• ANSYS Mechanical

• MATHEMATICA

• ABAQUS

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 48

• LabView

3.10 Development Environment for CUDA C

The prerequisites to developing code in CUDA C are as follows:

• A CUDA-enabled graphics processor

• An NVIDIA device driver

• A CUDA development toolkit

• A standard C compiler

NVIDIA Cuda Toolkit used for development environment for c/c++ language for

building GPU accelerated application.

The CUDA toolkit include a compiler for NVIDIA GPUs, Math libraries and tools for

debugging and optimizing the performance of applications.Latest version of CUDA

toolkit available is 6.5.

For standard C Compiler on windows Oprating System Visual Studio or Eclipse can

be used as per you preferance.NVIDIA Nsight Plug in is available for both compiles.

3.11 Example : Matrix Multiplication

3.11.1 General

To understand effect of parallel programming in computation heavy application ex-

ample of matrix multiplication is shown in this chapter. For comparison and check

speed improvement two different programs are developed. First program is standard

c program(sequential) which run on CPU using c language. Second program is de-

veloped using CUDA c language which run in Parallel on GPU. Comparison is done

based on execution time and speed up factor as shown in table 3.4 .

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 49

3.11.2 Algorithm

As shown in Figure 3.9 example of Matrix Multiplication [A] ∗ [B] = [C] is given. So

in case of sequential program all elements of [C] matrix is calculated one by one in

sequence.

For example If we execute sequential program, It will calculate all elements of [C]

matrix in following sequence first C11,second C12,third C13 C33. In case of

parallel program all elements of [C] matrix are calculated in parallel. In parallel

program, All members of [C] matrix will be calculated together at same time in

parallel.

Algorithm for Sequential program is simple to understand no explanation required for

that but in case of parallel program we need to make kernal for matrix multiplication

in such a way that each element of resulting matrix is executed in parallel.

Figure 3.9: Matrix Multiplication of A and B Matrix

3.11.3 Code

Sequential Program using C

Code for Sequential matrix multiplication is given below.

//Matrix Multiplication in CPU

#include<stdio.h>

#include<time.h>

//BLOCK_SIZE is size Multiplier for Square matrix

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 50

#define BLOCK_SIZE 1

void main()

{

int N, K;

K = 100;

N = K*BLOCK_SIZE;//N=size of square Matrix

float *A, *B, *C;//A*B=C

//for measurement of execution time

clock_t begin, end;

double ExecTime;

//Output file

FILE *out;

//starting of Matrix Multiplication

begin = clock();

out = fopen("output.txt", "w");

printf("Executing Matrix Multiplcation");

printf("\nMatrix size: %d\n", N);

A = new float[N*N];

B = new float[N*N];

C = new float[N*N];

// Initialize matrices on the host

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 51

for (int row = 0; row<N; row++)

{

for (int col= 0; col<N; col++)

{

A[row*N + col] = row*col;

B[row*N + col] = -row*col;

}

}

// Print A and B matrix

fprintf(out, "Matrix A\n");

for (int row = 0; row<N; row++)

{

for (int col = 0; col<N; col++)

{

fprintf(out, "%f\t", A[row*N + col]);

}

fprintf(out,"\n");

}

fprintf(out, "Matrix B\n");

for (int row = 0; row<N; row++)

{

for (int col = 0; col<N; col++)

{

fprintf(out, "%f\t", B[row*N + col]);

}

fprintf(out, "\n");

}

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 52

// Now do the matrix multiplication on the CPU

float sum;

for (int row = 0; row<N; row++){

for (int col = 0; col<N; col++){

sum = 0;

for (int n = 0; n<N; n++){

sum += A[row*N + n] * B[n*N + col];

}

C[row*N + col] = sum;

}

}

fprintf(out, "Matrix C\n");

for (int row = 0; row<N; row++)

{

for (int col = 0; col<N; col++)

{

fprintf(out, "%f\t", C[row*N + col]);

}

fprintf(out, "\n");

}

//end of Matrix Multiplication

end = clock();

ExecTime = end - begin;

printf("\nExecution Time=%f",ExecTime);

fprintf(out, "\ntime spent=%f",ExecTime);

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 53

}

Parallel Program using CUDA C

Code for parallel matrix multiplication is given below. Unlike in sequential code, in

parallel code Kernal calculate all products of matrix multiplication in parallel at a

same time.

//Program for Matrix multiplication on GPU

#include<cuda.h>

#include<cuda_runtime.h>

#include<stdio.h>

#include<time.h>

//define dimension of block

#define BLOCK_SIZE 1 //Block_size=Number of threads per block

//kernal for Matrix Multiplication

__global__ void gpuMM(float *A, float *B, float *C, int N)

{

// Matrix multiplication for NxN matrices C=A*B

// Each thread computes a single element of C

int row = blockIdx.y*blockDim.y + threadIdx.y;

int col = blockIdx.x*blockDim.x + threadIdx.x;

float sum = 0;

for (int n = 0; n < N; ++n)

sum += A[row*N + n] * B[n*N + col];

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 54

C[row*N + col] = sum;

}

int main()

{

// where A, B and C are NxN matrices on Device

//hA,hB and hC are matrices on Host(CPU)

//dA,dB and dC are for Device(GPU)

int N, K; //K=size of Grid in 2d

K = 100;

N = K*BLOCK_SIZE; // N=Size of square matrix for 100*100 size of Matrix N=100

clock_t begin, end; //for mesurement of execution time

double dt;

FILE *out; // output file

out = fopen("output.txt", "w");

//begin time of Matrix Multiplication

begin = clock();

printf("Executing Matrix Multiplcation");

printf("\nMatrix size: %d", N);

// Allocate memory on the host

float *hA, *hB;

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 55

hA = new float[N*N];

hB = new float[N*N];

// Initialize matrices on the host

for (int j = 0; j<N; j++){

for (int i = 0; i<N; i++){

hA[j*N + i] = i*j;

hB[j*N + i] = -i*j;

}

}

//print Matrix A and B

fprintf(out,"\n A matrix \n");

for (int j = 0; j<N; j++){

for (int i = 0; i<N; i++){

fprintf(out, "%f\t", hA[j*N + i]);

}

fprintf(out, "\n");

}

fprintf(out, "\n B matrix \n");

for (int j = 0; j<N; j++){

for (int i = 0; i<N; i++){

fprintf(out, "%f\t", hB[j*N + i]);

}

fprintf(out, "\n");

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 56

}

// Allocate memory on the device

int size = N*N*sizeof(float);

float *dA, *dB, *dC;

cudaMalloc(&dA, size);

cudaMalloc(&dB, size);

cudaMalloc(&dC, size);

//specify size of Block and Thread

dim3 threadBlock(BLOCK_SIZE, BLOCK_SIZE);

dim3 grid(K, K);

// Copy matrices from the host to device

cudaMemcpy(dA, hA, size, cudaMemcpyHostToDevice);

cudaMemcpy(dB, hB, size, cudaMemcpyHostToDevice);

//Execute the matrix multiplication kernel

gpuMM <<< grid, threadBlock >>> (dA, dB, dC, N);

// Allocate memory to store the GPU answer on the host

float *hC;

hC = new float[N*N];

// Now copy the GPU result back to CPU

cudaMemcpy(hC, dC, size, cudaMemcpyDeviceToHost);

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 57

fprintf(out, "\n C matrix \n");

for (int j = 0; j<N; j++){

for (int i = 0; i<N; i++){

fprintf(out, "%f\t", hC[j*N + i]);

}

fprintf(out, "\n");

}

//end of Matrix Multiplication

end = clock();

dt = (end - begin);//total Execution time

printf("Execution time=%f\n",dt);

//fprintf(out, "\ntime spent=%f", dt);

}

3.11.4 Results

Execution time for different sizes of Matrix is compared for both program as shown

in Table 3.4 which clearly indicate that with increase in size of matrix execution time

for sequential program increase drastically.

In case of parallel program with increase in execution time is not much compared to

sequential program.Comparison of execution time for sequential program and parallel

program is done in Figure 3.10 and 3.11.

As per shown in Figure 3.10 up to matrix size 500 ×500 Execution time of Sequential

Program is lower than Parallel Program after that size speed Up factor for Matrix

Multiplication Program is increasing drastically as shown in Figure3.11.Speed Up

factor is ratio of execution time of Sequential Program to Parallel Program.

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 58

Table 3.4: Execution Time of Matrix Multiplication using Core i7 CPU and Nvidia
Gefore GT 750M GPU

Size of Matrix CPU(ms) GPU(ms) Speed Up Factor
100×100 4 534 0.01
200×200 26 545 0.05
300×300 120 571 0.21
400×400 220 599 0.37
500×500 487 639 0.76
600×600 850 650 1.31
700×700 1300 680 1.91
800×800 1900 700 2.71
900×900 3326 730 4.56

1000×1000 4505 769 5.86
1100×1100 9239 818 11.29
1200×1200 13620 907 15.02
1300×1300 30000 1010 29.7
1400×1400 36684 1118 32.81
1500×1500 48763 1235 39.48

3.12 Summary

This chapter include basic understanding related to GPU programming which include

rise of GPU computing to languages for GPU computing. GPU programming con-

cepts and various terminology is also included in this chapter. Example of Matrix

multiplication Parallel program is also given with algorithm and results to have clear

understanding of parallel computing on GPU.

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 59

Figure 3.10: Execution Time Comparison Graph1

CHAPTER 3. INTRODUCTION TO GPU COMPUTING 60

Figure 3.11: Execution Time Comparison Graph2

Chapter 4

Gaussian Elimination

4.1 General

Gaussian Elimination is algorithm for solving system of linear equation. This method

is consist of two parts, Triangularization and Back Substitution.

In Triangulariztion , Matrix is converted to Uppertriangular matix using row oper-

ation. If we represent system of linear equation using AX=B where X is unknown,

then we need to convert it in to UX=G using row operations. In Back Substitution

we first solve last equation and after that next to last.

In Gaussian Elimination if we denote the original linear system by Ax=b where,

A=[aij] ,b=[bi]
T ,1 ≤ i ≤ n and n is order of system. We reduce the system to

the triangular form Ux=g by adding multiples of one equation to another equation,

eliminating some unknown from the second equation.

4.2 Algorithm of Gaussian Elimination

Assume a11 6= 0 and Define row multiplier by

61

CHAPTER 4. GAUSSIAN ELIMINATION 62

mi1=
ai1

(1)

a11(1)
, i = 2, 3, ..., n

These are used in eliminating the x1 term form below equation through n.

Define

aij
(2) = aij

(1) −mi1a1j
(1) i, j = 2, .., n

bi
(2) = bi

(1) −mi1b1
(1) i = 2, .., n

Here, First row of A and b are left undistributed, and the first column of A(1), below

the diagonal,is set to zero. The system A(2)x = b(2)lookslike

a11
(1) a12

(1) . . a1n
(1)

0 a22
(2) . . a2n

(2)

.

.

0 an2
(2) . . ann

(2)





x1

x2

.

.

xn


=



b1
(1)

b2
(2)

.

.

bn
(2)


We continue to eliminate unknowns,going onto columns 2, 3, etc., and this is expressed

generally as follows.

Let 1 ≤ k ≤ n− 1. Assume that Ax
(k) = b(2) has been constructed with x1, x2, ...xk−1

eliminated at successive stages and A(k) has the form

Ax
(k) =



a11
(1) a12

(1) a1n
(1)

0 a22
(2) a2n

(2)

0 . . 0 akk
(k) . . akn

(k)

.

.

0 . . 0 ank
(k) . . ann

(k)


Assume akk

(k) 6= 0Define the multipliers.

mij =
a
(
ikk)

a
(
kkk)

, i = k + 1, ..., n

CHAPTER 4. GAUSSIAN ELIMINATION 63

Use these to remove the unknown’s xk from equations k+1 through n. Define

a
(k+1)
ij = a

(k)
ij −mika

(k)
kj

b
(k+1)
i = b

(k)
i −mikb

(k)
k , i = k + 1, ..., n

The earlier rows 1 through k are left undisturbed, and zeros are introduced into

column k below the diagonal element. By continuing in this manner, after n-1 steps,

we obtain A(n)x = b(n) i.e.

aij
(2) = aij

(1) −mi1a1j
(1) i, j = 2, .., n

bi
(2) = bi

(1) −mi1b1
(1) i = 2, .., n

Here, First row of A and b are left undistributed, and the first column of A(1), below

the diagonal,is set to zero. The system A(2)x = b(2)lookslike



a11
(1) . . . a1n

(1)

0 . .

. . .

. . .

0 . . . ann
(n)





x1

x2

.

.

xn


=



b1
(1)

.

.

.

bn
(n)


Let U= A(n) and g=b(n). The system Ux=g is Upper triangular and easy to solve by

back substitution.

xn = gn
unn

and

xk = 1
ukk

[gk −
∑n

j=k+1 ukjxj] ,k=n-1,n-2,...1

CHAPTER 4. GAUSSIAN ELIMINATION 64

Figure 4.1: Storage of Matrix for Parallel computing

4.2.1 Storage

As we can see in Figure 4.1 How we can store matrix for parallel computing in vector

format because parallel programming does not support multi dimensional array. In

this Figure 4.1 left and right table show storage of matrix in sequential and parallel

program. In parallel program index of Matrix is calculated by

Index=RowID*Width of Matrix+ColumnID.

For A32=(2×5)+1=11, For A54=(4×5)+3=23

Gaussian Elimination parallel program presented in this report is use to solve Ax=b

type of linear system which is similar to Kx=F where K=stiffness matrix, x=Displacement

Vector and F=Force vector.

In Gaussian Elimination parallel program we need to store Stiffness matrix and Force

Vector. Program presented in this report made to store Stiffness matrix and Force

Vector as single matrix because of parallel programming does not support multi-

dimension array. In Gaussian Elimination method matrix shown in Figure 4.2 is

referred as Augmented Matrix.

4.2.2 Formation of Upper Triangular Matrix

As shown in Figure4.3, in sequential process all the Red Elements are calculated one

after one in sequence.As in case of Parallel Program all red Elements are calculated

in parallel.

CHAPTER 4. GAUSSIAN ELIMINATION 65

Figure 4.2: Storage of stiffness matrix(A) and Force Vector(B)

Figure 4.3: Formation of Upper triangular matrix in Program

CHAPTER 4. GAUSSIAN ELIMINATION 66

4.3 Sequential Program

In this section sequential code of Gaussian Elimination solver is given. Code is divided

into two parts. Part 1 convert augmented matrix to upper triangular matrix and Part

2 takes care of back substitution.

4.3.1 Generation of Upper Triangular Matrix

Code to generate upper triangular matrix from augmented matrix is given below.

// loop for the generation of upper triangular matrix

for (j = 0; j < N; j++)

{

fprintf(out, "\n\n****Formation of Upper trinagular matrix=%d ****\n", j + 1);

fprintf(out,"------M vector-----");

for (i = 0; i < N; i++)

{

if (i>j)

{

c = A[i*(N+1)+j] / A[j*(N+1)+j];

fprintf(out,"\n%f",c);

for (k = 0; k < N + 1; k++)

{

A[i*(N+1)+k] = A[i*(N+1)+k] - c*A[j*(N+1)+k];

}

}

}

CHAPTER 4. GAUSSIAN ELIMINATION 67

4.3.2 Back Substitution

Code for Back Substitution process is given below.

float *x;

x = (float *)malloc(N * sizeof(float));

x[N- 1] = A[N*(N + 1)-1] / A[N*(N+1)-2];

fprintf(out, "X[%d]=%f", N - 1, x[N - 1]);

//this loop is for backward substitution

float sum;

for (int i = N - 2; i >= 0; i--)

{

sum = 0;

for (int j = i + 1; j < N; j++)

{

sum = sum + A[i*(N + 1) + j] * x[j];

}

x[i] = (A[i*(N + 1) + N] - sum) / A[i*(N + 1) + i];

}

4.4 Parallel Program

In this section parallel code of Gaussian Elimination solver is given. Same as se-

quential program, Code is divided into two parts. Part 1 convert Augmented matrix

to upper triangular matrix in parallel and Part 2 takes care of back substitution in

sequence.

4.4.1 Generation of Upper Triangular Matrix

Code to generate upper triangular matrix from Augmented matrix is given below.

// Kernel-1 for Generation of m vector

CHAPTER 4. GAUSSIAN ELIMINATION 68

__global__ void k1(float *A,float *M,float c,int i,int N)

{

int tid = blockIdx.x + gridDim.x*blockIdx.y;

M[tid] = A[(tid+i)*(N+1)+i-1]/c;

}

// Kernel-2 for Update A Matrix

__global__ void k2(float *A,float *M,int i,int N)

{

int tid = blockIdx.x + gridDim.x*blockIdx.y;

int row_id = tid / (N-i + 2);

int col_id = tid % (N-i + 2);

int index = 0;

if (i == 1)

{

index = i*(N + 2) - 1 + tid;

}

else

{

index = i*(N + 2) - 1 + tid+i*row_id-row_id;

}

int s_index = col_id + (i-1)*(N+2);

A[index] = A[index] - M[row_id] * A[s_index];

}

CHAPTER 4. GAUSSIAN ELIMINATION 69

4.4.2 Back Substitution

Code for Back Substitution process is given below which is same as sequential pro-

gram.

float *x;

x = (float *)malloc(N * sizeof(float));

x[N - 1] = A[N*(N + 1) - 1] / A[N*(N + 1) - 2];

fprintf(out, "X[%d]=%f",N-1, x[N-1]);

//this loop is for backward substitution

float sum;

for (int i = N - 2; i >=0; i--)

{

sum = 0;

for (int j = i+1 ; j < N; j++)

{

sum = sum + A[i*(N+1)+j] * x[j];

}

x[i] = (A[i*(N+1)+N] - sum) / A[i*(N+1)+i];

}

4.5 Results

In Table 4.1 it is significant that with increase in number of equation speed up factor

of program is also increasing. So for higher Number of equation execution time of

Program on GPU compared CPU program will be much lower. So by implementing

this program as solver in another program in which number of equations are in terms

of 100000-500000 we can significantly improve execution time. For testing of this

program core i7-4500U processor CPU and Nvidia GeForce GT 750M GPU is used

as hardware platform.

CHAPTER 4. GAUSSIAN ELIMINATION 70

Table 4.1: Execution Time of Gaussian Elimination

Number of
Equations

CPU
(ms)

Communication
Time (ms)

Execution
time (ms)

Total
time(ms)

SpeedUp
Factor

100 16 1 75 76 0.2105
200 65 1 255 256 0.2539
300 150 1 477 478 0.3138
400 290 2 652 654 0.4434
500 503 2 770 772 0.6516
600 740 2 992 994 0.7445
700 1100 2 1366 1368 0.8041
800 1550 3 1897 1900 0.8158
900 2110 3 2485 2488 0.8481
1000 2764 4 3159 3163 0.8739

Figure 4.4: Comparison of Speed Up Factor with number of equations

4.6 Summary

In this chapter Gaussian Elimination Algorithm for solution of Ax=b type of linear

equation is presented. Based on that algorithm, Gaussian Elimination Sequential

and parallel programs are implemented on CPU and GPU respectively.Comparison

of both program is done based on execution time and Speed Up factor .

Chapter 5

Half Band Matrix

5.1 General

Half Band Matrix solver is improved version of Gaussian Elimination Solver mainly

suitable for process like Analysis of Structure. In Process of Structure analysis, Final

version of Assemble stiffness matrix is always same like symmetrical along diagonal

member. So, to reduce storage and number of calculation only Upper triangular

Matrix is stored.

If we take example of 5× 5 matrix size than as shown in Figure 5.1 it shows matrix

used for gaussian elimination in which matrix is diagonally symmetrical and element

shown with red colour are zero. Now in Gaussian elimination matrix only green

elements shown in figure is important for storage which is diagonally symmetrical. In

Half band Matrix we store only Upper triangular matrix and fill remaining portion

with zero elements.

71

CHAPTER 5. HALF BAND MATRIX 72

Figure 5.1: How Half Band Matrix differ from Gaussian Elimination Matrix

5.2 Algorithm of Half Band Solver

Storage scheme of half band matrix

a11 a12 a13 a14 a15

a22 a23 a24 a25 a26

a33 a34 a35 a36 a37

a44 a45 a46 a47 a48

a55 a56 a57 a58

a66 a67 a68

a77 a78

a88


a. c=a12

a11

b. Modify second row element

á21 = a21 − a12a12
a11

CHAPTER 5. HALF BAND MATRIX 73

á22 = a22 − a13a12
a11

á23 = a23 − a14a12
a11

á24 = a24 − a15a12
a11

c. Modify right hand side b2 as

b́2 = b2 − a12b1
a11

d. Now change value of a12 as follows

á12 = c

e. Now change value of a12 as follows

á12 = c

After Following above four steps we get following matrix

´a11 a12 a13 a14 a15

´a21 ´a22 ´a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54

a61 a62 a63

a71 a72

a81


Taking the second equation, one may follow the same steps as 1 to 4 as before. This

is to be repeated for (Number of Equation-1) times. For N th equation and modifying

the athNL element

´aIJ = aIJ − aNLaNK

aN1

b́I = bI − aNLbN
aN1

CHAPTER 5. HALF BAND MATRIX 74

5.2.1 Storage of Half Band Matrix

To understand Half Band Matrix storage consider symmetric matric shown below

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36 a37

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a62 a63 a64 a65 a66 a67 a68

a73 a74 a75 a76 a77 a78

a84 a85 a86 a87 a88


Above matrix is symmetrical about main diagonal, so in Half Band Matrix only

storage of Upper Triangular take in to consideration as shown in below matrix

a11 a12 a13 a14 a15

a22 a23 a24 a25 a26

a33 a34 a35 a36 a37

a44 a45 a46 a47 a48

a55 a56 a57 a58

a66 a67 a68

a77 a78

a88


Total Number of Element in Gaussian Elimination Matrix=8×8=64.Total Number

of Element in Half Band Matrix =8×5=40. With increase size of matrix this storage

efficiency improve drastically.

5.2.2 Formation of Upper Triangular matrix in Half Band

Format

As per shown in Figure 5.2 number of formation to covert Half Band matrix to Upper

triangular matrix depend on number of row. Each formation is also divided into two

CHAPTER 5. HALF BAND MATRIX 75

sub part.

Part 1 calculated M vector which is required to update A and B matrix. Part 2

Update Matrix A and B as per calculated value of M vector. Figure 5.2 shows

how Half band matrix is converted to upper triangular matrix with each formation

level. In this figure elements shown with red colour are updated with each formation.

For sequential program red colour elements are updated in sequence and for parallel

program all red elements are updated in parallel.

Figure 5.2: Formation of Upper Triangular matrix

CHAPTER 5. HALF BAND MATRIX 76

5.3 Sequential Program

In this section sequential code of Half Band matrix solver is given. Code is divided

into two parts. Part 1 convert half band matrix to upper triangular matrix and Part

2 takes care of back substitution.

5.3.1 Generation of Upper triangular Matrix

Code to generate upper triangular matrix from Half Band is given below.

void band(float *A, float *B, int NN, int MM)

{

//triangularise and reduce right hand side

int NL, NM, MR, N, L, K, i, j;

float BN, C;

NL = NN - MM + 1;

NM = NN - 1;

MR = MM;

for (int N = 1; N <= NM; N++)

{

if (A[N*(MM)+1] == 0)

{

fprintf(out, "ZERO OR NEGATIVE ELEMENT ON MAIN DIAGONAL OF \n");

fprintf(in, "TRIANGULARIZED MATRIX FOR EQUATION %d ", N);

}

BN = B[N];

B[N] = BN / A[N*MM+1];

if (N>NL)

MR = NN - N + 1;

for (int L = 2; L <= MR; L++)

CHAPTER 5. HALF BAND MATRIX 77

{

if (A[N*MM+L] == 0)

continue;

C = A[N*MM + L] / A[N*MM + 1];

i = N + L - 1;

j = 0;

for (int K = L; K <= MR; K++)

{

j = j + 1;

A[i*MM + j] = A[i*MM + j] - C*A[N*MM + K];

}

B[i] = B[i] - C*BN;

A[N*MM + L] = C;

}

}

5.3.2 Back Substitution

Code for Back substitution process is given below.

//Back Substitute

i = NN;

B[NN] = B[NN] / A[NN*MM + 1];

for (int N = 1; N <= NM; N++)

{

i = i - 1;

if (N<MM)

MR = N + 1;

for (int j = 2; j <= MR; j++)

{

CHAPTER 5. HALF BAND MATRIX 78

K = i + j - 1;

B[i] = B[i] - A[i*MM + j] * B[K];

}

}

}

5.4 Parallel Program

In this section parallel code of Half Band matrix solver is given. Code is divided into

two parts. Part 1 convert half band matrix to upper triangular matrix in parallel and

Part 2 takes care of back substitution in sequence.

5.4.1 Generation of Upper triangular matrix

Code to generate upper triangular matrix from Half Band is given below.

//Kernel1 for Calculation of M vector

__global__ void kernel1(float *A, float *M, int i,int BW)

{

int tid = blockIdx.x ;

M[tid] = A[(i - 1)*(BW + 1) + tid + 1] / A[(i - 1)*(BW + 1)];

}

//kernel 2 for update A matrix

__global__ void kernel2(float *A, float *M,int i,int BW)

{

int tid = blockIdx.x + gridDim.x*blockIdx.y;

CHAPTER 5. HALF BAND MATRIX 79

int index = (BW+1)*i + tid;

int row_id = tid / (BW + 1);

int col_id = tid % (BW + 1);

int max = BW - 1;

int min = (BW - 1) - row_id;

if (col_id<min || col_id>max)

{

int s_index;

if (col_id == BW)

{

s_index = (i - 1)*(BW + 1) + col_id;

}

else

{

s_index= (i - 1)*(BW + 1) + col_id + row_id + 1;

}

A[index] = A[index]-M[row_id]*A[s_index];

}

}

5.4.2 Back Substitution

Code for Back substitution process is given below. Back substitution is sequential

process so it’s parallel code remain same as sequential code because it can’t be solved

in parallel.

//Back Substitute

i = NN;

B[NN] = B[NN] / A[NN*MM + 1];

for (int N = 1; N <= NM; N++)

CHAPTER 5. HALF BAND MATRIX 80

{

i = i - 1;

if (N<MM)

MR = N + 1;

for (int j = 2; j <= MR; j++)

{

K = i + j - 1;

B[i] = B[i] - A[i*MM + j] * B[K];

}

}

}

5.5 Results

For testing of Half Band program, A separate program of 3 node axially loaded bar

element is used for generation of input data. As we can see in table 5.1 up to 10000

number of equation performance of sequential program is better than parallel pro-

gram. Reason for poor performance of parallel program is that number of parallel

calculation in Half Band solver depend on size of Band with and for 3 node bar ele-

ment band width is only 3.

5.5.1 Comparison of Gaussian Elimination and Half Band

Program

In Table 5.2 comparison of Sequential time, Communication time and execution time

for parallel program and speed up factor is given. In this table terms like GE and

HB are used instead of Gaussian Elimination and Half Band method.

CHAPTER 5. HALF BAND MATRIX 81

Table 5.1: Execution Time of Half Band

Number of
Equations

CPU
(ms)

Communication
Time (ms)

Execution
time (ms)

Total
time(ms)

100 3 0.0477 11.0386 11.0863
200 4 0.0761 20.3266 20.4027
300 6 0.0928 33.8397 33.9325
400 8 0.0798 53.7541 53.8339
500 18 0.0733 64.2443 64.3176
600 22 0.0727 66.8758 66.9485
700 27 0.0762 86.6793 86.7555
800 28 0.0783 96.3533 96.4316
900 30 0.0937 104.8847 104.9785
1000 37 0.0686 128.2848 128.3534
2000 41 0.0960 262.6367 262.7327
3000 43 0.0974 443.4242 443.5216
4000 61 0.1460 611.2761 611.4221
5000 72 0.2120 841.1025 841.3145
6000 90 0.1820 1071.1183 1071.3003
7000 104 0.2126 1357.6125 1357.8252
8000 110 0.1638 1651.3832 1651.5470
9000 115 0.1840 1989.2682 1989.4522
10000 125 0.2256 2334.5437 2334.7693

As per Figure 5.3 we can say that for smaller size of Band with sequential program

is much faster than parallel program.For band width size 3, number of parallel cal-

culation will be 3+2+1=5 which means only 5 number of elements are calculated in

parallel which leads to poor parallel performance. To test true performance of Half

Band Solver on GPU it is important that Size of Band width must be large.

As per Figure 5.4 it is clear that for smaller band width, Half Band Matrix Program

clearly outperform Gaussian Elimination program. With increase in size of Band

width this difference will become smaller.

In Figure 5.5 comparison of parallel program based on Gaussian Elimination method

CHAPTER 5. HALF BAND MATRIX 82

Table 5.2: Comparison:Execution Time of Gaussian Elimination(GE) and Half
Band(HB)

Number of
Equations

CPU
(ms)

Communication
Time (ms)

Execution
time (ms)

Total
time(ms)

SpeedUp
Factor

100(GE) 16 1 75 76 0.2105
100(HB) 3 0.0477 11.0386 11.0863 0.2706

200(GE) 65 1 255 256 0.2539
200(HB) 4 0.0761 20.3266 20.4027 0.1961

300(GE) 150 1 477 478 0.3138
300(HB) 6 0.0928 33.8397 33.9325 0.1768

400(GE) 290 2 652 654 0.4434
400(HB) 8 0.0798 53.7541 53.8339 0.1486

500(GE) 503 2 770 772 0.6516
500(HB) 18 0.0733 64.2443 64.3176 0.2799

600(GE) 740 2 992 994 0.7445
600(HB) 22 0.0727 66.8758 66.9485 0.3286

700(GE) 1100 2 1366 1368 0.8041
700(HB) 27 0.0762 86.6793 86.7555 0.3112

800(GE) 1550 3 1897 1900 0.8158
800(HB) 28 0.0783 96.3533 96.4316 0.2904

900(GE) 2110 3 2485 2488 0.8481
900(HB) 30 0.0937 104.8847 104.9785 0.2858

1000(GE) 2764 4 3159 3163 0.8739
1000(HB) 37 0.0686 128.2848 128.3534 0.2883

and Half Band Method is done. Same as sequential program the difference of exe-

cution time between both program is high but in case of parallel program difference

between execution time is lower than sequential program.

In Figure 5.6 comparison of communication time between Gaussian elimination par-

allel program and Half Band Parallel program is done. From the figure it is clearly

evident that for Half Band requirement of storage is less compared to Gaussian elim-

ination method, thus communication time is low.

CHAPTER 5. HALF BAND MATRIX 83

Figure 5.3: Comparison of sequential and parallel Execution time Half Band Matrix

Figure 5.4: Comparison of sequential Execution time between

CHAPTER 5. HALF BAND MATRIX 84

Figure 5.5: Comparison of parallel execution time

Figure 5.6: Comparison of communication time

CHAPTER 5. HALF BAND MATRIX 85

5.6 Summary

In this chapter Storage of Stiffness matrix to Half Band Matrix is discribed with

example. Program Based on Half Band Matrix for Sequential and parallel program

Developed and implemented on CPU and GPU respectively. Results of Both programs

are presented and comparison is done based on Execution time of program. In end

comparison of Execution time of Gaussian Elimination and Half Band Matrix is given.

Chapter 6

Finite Element Analysis Using

Parallel Programming

6.1 General

In Finite Element analysis Matrix Multiplication and Solution of linear equation

are most computational intensive part. Execution of Computational intensive part

in parallel will lead to lower execution time. In this project program is made to run

Finite Element Analysis of Cantilever beam using CST Element in parallel. Sequential

program is prepared using C language and implemented on CPU. Parallel program is

prepared using NVIDIA CUDA C and implemented on GPU. For parallel program in

FEM Analysis computational intensive part like Calculation of B Matrix , K Matrix

, Calculation of Displacement Vector and calculation stress are replaced with parallel

program.

6.2 Algorithm

As we can see in Figure 6.1, For simplicity FEM Analysis of Cantilever beam with

point load at end is done to explain concept of parallel programming in FEM. Reason

for choosing cantilever beam is that we can easily calculate max displacement from

86

CHAPTER 6. FINITE ELEMENTANALYSIS USING PARALLEL PROGRAMMING87

available formula to cross check results given by program.

6.2.1 Problem details

Figure 6.1: Problem details

As Input parameters, Program will take geometry, element along length and depth for

meshing, material property and point load at end. To reduce complexity of problem

program is developed such a way that it generate boundary condition for cantilever

beam by itself. So, if we want to use this program for another type of beam than we

just need to take care of boundary conditions in program. Type of element is fixed

in this program and all nodal points for cantilever beam are calculated as per CST

CHAPTER 6. FINITE ELEMENTANALYSIS USING PARALLEL PROGRAMMING88

element.

Example of meshing for 10 parts along length and 2 parts along depth is shown in

Figure 6.1. In last picture how program will assign Element ID and nodes to each

element is shown.

6.2.2 Flow of program

In this section, main difference between Sequential and Parallel program is given.

In below figure parts with blue colour is calculated in sequence in both program.

Part with Red color is calculated in sequence for sequential program and parallel for

parallel program.

6.3 Results

From Table 6.1 it is evident that for Number of elements more than 10000 parallel

program will give better results compared to sequential Program. Figure 6.2 also

explain same thing in graphical format.

CHAPTER 6. FINITE ELEMENTANALYSIS USING PARALLEL PROGRAMMING89

Table 6.1: Execution Time of FE Analysis Program
No Elements

along
length

Elements
along
width

Number
of Ele-
ments

Number
of
Nodes

DOF CPU GPU Speed
Up

1 5 1 10 12 24 15 561 0.0267
2 10 2 40 33 66 48 598 0.0802
3 20 4 160 105 210 114 651 0.1751
4 50 10 1000 561 1122 906 1386 0.6536
5 160 32 10240 5313 10626 57926 55927 1.0357

Figure 6.2: Comparison of Execution time CPU Vs GPU

CHAPTER 6. FINITE ELEMENTANALYSIS USING PARALLEL PROGRAMMING90

6.4 Summary

In this chapter Finite Element based program for calculation of Cantilever beam is

presented. For Sequential program c language is used and implemented on CPU.

Parallel Program CUDA c lanuage is used and implemented on GPU. Comparison of

both program is done based on Execution time and Speed Up factor and presented.

Chapter 7

Summary and Conclusion

7.1 Summary

Solution of linear equation is a computational intensive process in analysis of struc-

tural system. With increase in size of problems more linear equations need to be solved

which increases execution time of structural analysis dramatically.In this project the

concept of parallel programming is used in Finite Element Analysis of structure using

NVIDIA GPU as Hardware. Parallel programming on GPU is implemented using

CUDA C language and than compared with sequential program.

In present study computation intensive part of Finite Element analysis like Matrix

multiplication and Solution of linear equation is developed using concept of parallel

programming. The concept of parallel matrix multiplication and solution of linear

equation is implemented in Finite Element Analysis using triangular element for can-

tilever beam.

For Matrix Multiplication Program is tested for different sizes of matrix up to 1500×1500.

Sequential program is developed in C language and parallel program is developed in

CUDA C. Sequential and Parallel Program compared based on execution time and

91

CHAPTER 7. SUMMARY AND CONCLUSION 92

speed up Factor.

Gaussian Elimination program is developed for solution of linear system of equation

like [A][x]=[b] which is quite similar to [K][d]=[F] linear equations generated in Fi-

nite Element Analysis. For generation of input Axially loaded bar using 3 node finite

element program is developed.Sequential program is developed in C language and

parallel program is developed in CUDA C.Program is tested up to 1000 numbers of

equations and compared based on Execution time and speed up factor.

Half Band solution of equations is improved version of Gaussian Elimination solution

technique in terms of Storage and calculations. Half Band Program is developed to

solve [A][x]=[b] type of linear system, where [A]=Stiffness matrix in Half Band form

,[x]=displacement vector and [b]=Force vector.Sequential program is developed in C

language and parallel program is developed in CUDA C. For generation of input Ax-

ially loaded bar using 3 node finite element program is developed.Program is tested

up to 10000 number of equations and compared based on Execution time and speed

up factor.

Parallel Finite Element program for stress analysis of Cantilever beam is presented.

For Sequential program C language is used and implemented on CPU. Parallel Pro-

gram is developed using CUDA C lanuage and implemented on GPU. Comparison

of both program is done based on Execution time and Speed Up factor and pre-

sented.For 10000 number of equation Speed Up factor is higher than 1 means that

for more than 10000 number of element parallel program can give better performance

than sequential program.

CHAPTER 7. SUMMARY AND CONCLUSION 93

7.2 Conclusion

Based on study carried out in this project following conclusions are drawn.

• Performance of Parallel program depend on type of numerical algorithm adopted.

• Performance of parallel and sequential program also depends on Hardware plat-

form used for implementation.

• In Finite Element analysis by parallelizing computational intensive part like

Matrix multiplication and Solution of linear equation significant reduction in

total execution time can be achieved.

• Speed Up factor which is ratio of Sequential time to Parallel time improve

significantly with increase in size of problem and increase in parallel part of

program.

• Parallelization of entire Program instead of only equation solver leads to higher

computational efficiency.

• From Parallel implementation of Gaussian Elimination:

– Maximum speed up 0.87 achieved for solving 1000 number of equation .

– It is evident that speed up factor for Gaussian Elimination increase with

increase in number of equations.

• From Parallel implementation of Half Band equation Solver

– Speed up factor is depend upon size of Band width not number of equation.

– For smaller size of band width, Half Band Program clearly out perform

Gaussian elimination program in terms of execution time.

– Maximum speed up of 0.28 for Half Band program compared to 0.87 for

gaussian elimination program it is evident that for smaller band width this

method is not suitable for parallel computing.

CHAPTER 7. SUMMARY AND CONCLUSION 94

• From Parallel implementation of Finite Element Method

– Maximum speed up of 1.03 is achieved in this study when number of equa-

tion is 10000 which means parallel program will perform better for more

than 10000 number of equation.

– Speed up factor of Finite element program depend on number of equation

and type of solver used in program.

7.3 Future Scope of Work

The study carried in this project can be extended to include following aspects:

• Performance comparison between OpenCL and CUDA platform.

• Development of efficient algorithm to suit different hardware platforms.

• Development of Computer program for dynamic analysis using parallel pro-

gramming on GPU.

• Various structural engineering problems like FEM analysis using numerical in-

tegration, non-linear dynamic analysis.

Appendix A

Matrix Multiplication

A.1 Sequential Program

//Matrix Multiplication in CPU

#include<stdio.h>

#include<time.h>

//BLOCK_SIZE is size Multiplier for Square matrix

#define BLOCK_SIZE 1

void main()

{

int N, K;

K = 100;

N = K*BLOCK_SIZE;//N=size of square Matrix

float *A, *B, *C;//A*B=C

//for measurement of execution time

clock_t begin, end;

95

APPENDIX A. MATRIX MULTIPLICATION 96

double ExecTime;

//Output file

FILE *out;

//starting of Matrix Multiplication

begin = clock();

out = fopen("output.txt", "w");

printf("Executing Matrix Multiplcation");

printf("\nMatrix size: %d\n", N);

A = new float[N*N];

B = new float[N*N];

C = new float[N*N];

// Initialize matrices on the host

for (int row = 0; row<N; row++)

{

for (int col= 0; col<N; col++)

{

A[row*N + col] = row*col;

B[row*N + col] = -row*col;

}

}

// Print A and B matrix

fprintf(out, "Matrix A\n");

for (int row = 0; row<N; row++)

APPENDIX A. MATRIX MULTIPLICATION 97

{

for (int col = 0; col<N; col++)

{

fprintf(out, "%f\t", A[row*N + col]);

}

fprintf(out,"\n");

}

fprintf(out, "Matrix B\n");

for (int row = 0; row<N; row++)

{

for (int col = 0; col<N; col++)

{

fprintf(out, "%f\t", B[row*N + col]);

}

fprintf(out, "\n");

}

// Now do the matrix multiplication on the CPU

float sum;

for (int row = 0; row<N; row++){

for (int col = 0; col<N; col++){

sum = 0;

for (int n = 0; n<N; n++){

sum += A[row*N + n] * B[n*N + col];

}

C[row*N + col] = sum;

APPENDIX A. MATRIX MULTIPLICATION 98

}

}

fprintf(out, "Matrix C\n");

for (int row = 0; row<N; row++)

{

for (int col = 0; col<N; col++)

{

fprintf(out, "%f\t", C[row*N + col]);

}

fprintf(out, "\n");

}

//end of Matrix Multiplication

end = clock();

ExecTime = end - begin;

printf("\nExecution Time=%f",ExecTime);

fprintf(out, "\ntime spent=%f",ExecTime);

}

A.2 Parallel Program

//Program for Matrix multiplication on GPU

#include<cuda.h>

#include<cuda_runtime.h>

#include<stdio.h>

#include<time.h>

APPENDIX A. MATRIX MULTIPLICATION 99

//define dimension of block

#define BLOCK_SIZE 1 //Block_size=Number of threads per block

//kernal for Matrix Multiplication

__global__ void gpuMM(float *A, float *B, float *C, int N)

{

// Matrix multiplication for NxN matrices C=A*B

// Each thread computes a single element of C

int row = blockIdx.y*blockDim.y + threadIdx.y;

int col = blockIdx.x*blockDim.x + threadIdx.x;

float sum = 0;

for (int n = 0; n < N; ++n)

sum += A[row*N + n] * B[n*N + col];

C[row*N + col] = sum;

}

int main()

{

// where A, B and C are NxN matrices on Device

//hA,hB and hC are matrices on Host(CPU)

//dA,dB and dC are for Device(GPU)

int N, K; //K=size of Grid in 2d

K = 100;

N = K*BLOCK_SIZE; // N=Size of square matrix for 100*100 size of Matrix N=100

APPENDIX A. MATRIX MULTIPLICATION 100

clock_t begin, end; //for mesurement of execution time

double dt;

FILE *out; // output file

out = fopen("output.txt", "w");

//begin time of Matrix Multiplication

begin = clock();

printf("Executing Matrix Multiplcation");

printf("\nMatrix size: %d", N);

// Allocate memory on the host

float *hA, *hB;

hA = new float[N*N];

hB = new float[N*N];

// Initialize matrices on the host

for (int j = 0; j<N; j++){

for (int i = 0; i<N; i++){

hA[j*N + i] = i*j;

hB[j*N + i] = -i*j;

}

}

//print Matrix A and B

APPENDIX A. MATRIX MULTIPLICATION 101

fprintf(out,"\n A matrix \n");

for (int j = 0; j<N; j++){

for (int i = 0; i<N; i++){

fprintf(out, "%f\t", hA[j*N + i]);

}

fprintf(out, "\n");

}

fprintf(out, "\n B matrix \n");

for (int j = 0; j<N; j++){

for (int i = 0; i<N; i++){

fprintf(out, "%f\t", hB[j*N + i]);

}

fprintf(out, "\n");

}

// Allocate memory on the device

int size = N*N*sizeof(float);

float *dA, *dB, *dC;

cudaMalloc(&dA, size);

cudaMalloc(&dB, size);

cudaMalloc(&dC, size);

//specify size of Block and Thread

dim3 threadBlock(BLOCK_SIZE, BLOCK_SIZE);

dim3 grid(K, K);

APPENDIX A. MATRIX MULTIPLICATION 102

// Copy matrices from the host to device

cudaMemcpy(dA, hA, size, cudaMemcpyHostToDevice);

cudaMemcpy(dB, hB, size, cudaMemcpyHostToDevice);

//Execute the matrix multiplication kernel

gpuMM <<< grid, threadBlock >>> (dA, dB, dC, N);

// Allocate memory to store the GPU answer on the host

float *hC;

hC = new float[N*N];

// Now copy the GPU result back to CPU

cudaMemcpy(hC, dC, size, cudaMemcpyDeviceToHost);

fprintf(out, "\n C matrix \n");

for (int j = 0; j<N; j++){

for (int i = 0; i<N; i++){

fprintf(out, "%f\t", hC[j*N + i]);

}

fprintf(out, "\n");

}

//end of Matrix Multiplication

end = clock();

dt = (end - begin);//total Execution time

printf("Execution time=%f\n",dt);

//fprintf(out, "\ntime spent=%f", dt);

}

Appendix B

Gauss Elimination

B.1 Sequential Program

//Program for Solution of Matrix based on Gaussian Elimination

#include<stdio.h>

#include<stdlib.h>

#include<time.h>

FILE *in, *out,*t;

int main()

{

int i, j, k,N;

clock_t begin, end;

double ExecTime;

begin = clock();

in = fopen("input.txt", "r");

out = fopen("output.txt", "w");

t = fopen("time.txt","w");

103

APPENDIX B. GAUSS ELIMINATION 104

fscanf(in, "%d", &N);

fprintf(out,"Number of Equations=%d\n",N);

fprintf(t, "Number of Equations=%d\n", N);

float *A;

int size = (N)*(N+1);

A = (float *)malloc(size * sizeof(float));

int index=0;

fprintf(out, "\nAugmented Matrix\n");

for (i = 0; i < N; i++)

{

for (j = 0; j < (N + 1); j++)

{

index = i*(N + 1) + j;

fscanf(in,"%f", &A[i*(N+1)+j]);

fprintf(out, "%f\t", A[i*(N+1)+j]);

}

fprintf(out, "\n");

}

float c = 0;

// loop for the generation of upper triangular matrix

for (j = 0; j < N; j++)

{

fprintf(out, "\n\n****Formation of Upper trinagular matrix=%d ****\n", j + 1);

APPENDIX B. GAUSS ELIMINATION 105

fprintf(out,"------M vector-----");

for (i = 0; i < N; i++)

{

if (i>j)

{

c = A[i*(N+1)+j] / A[j*(N+1)+j];

fprintf(out,"\n%f",c);

for (k = 0; k < N + 1; k++)

{

A[i*(N+1)+k] = A[i*(N+1)+k] - c*A[j*(N+1)+k];

}

}

}

fprintf(out, "\n------A Matrix-----");

for (int l = 0; l < N; l++)

{

fprintf(out, "\n");

for (int m = 0; m < (N + 1); m++)

{

fprintf(out, "%f\t", A[l*(N + 1) + m]);

}

}

}

fprintf(out, "\n\n****** final Formation of Upper trinagular matrix\n");

APPENDIX B. GAUSS ELIMINATION 106

for (i = 0; i < N; i++)

{

for (j = 0; j < (N + 1); j++)

{

fprintf(out, "%f\t", A[i*(N + 1) + j]);

}

fprintf(out, "\n");

}

float *x;

x = (float *)malloc(N * sizeof(float));

x[N- 1] = A[N*(N + 1)-1] / A[N*(N+1)-2];

fprintf(out, "X[%d]=%f", N - 1, x[N - 1]);

//this loop is for backward substitution

float sum;

for (int i = N - 2; i >= 0; i--)

{

sum = 0;

for (int j = i + 1; j < N; j++)

{

sum = sum + A[i*(N + 1) + j] * x[j];

}

x[i] = (A[i*(N + 1) + N] - sum) / A[i*(N + 1) + i];

}

fprintf(out, "\nSolution");

for (int i = 0; i < N; i++)

{

APPENDIX B. GAUSS ELIMINATION 107

fprintf(out, "\nx%d=%f\t", i, x[i]);

}

end = clock();

ExecTime = end - begin;

fprintf(t,"\nExecution Time=%f", ExecTime);

return(0);

}

B.2 Parallel Program

//Program for Gaussian Elimination on GPU

#include<cuda.h>

#include<cuda_runtime.h>

#include<stdio.h>

#include<time.h>

FILE *in, *out,*t;

// Kernel-1 for Generation of m vector

__global__ void k1(float *A,float *M,float c,int i,int N)

{

int tid = blockIdx.x + gridDim.x*blockIdx.y;

M[tid] = A[(tid+i)*(N+1)+i-1]/c;

}

// Kernel-2 for Update A Matrix

APPENDIX B. GAUSS ELIMINATION 108

__global__ void k2(float *A,float *M,int i,int N)

{

int tid = blockIdx.x + gridDim.x*blockIdx.y;

int row_id = tid / (N-i + 2);

int col_id = tid % (N-i + 2);

int index = 0;

if (i == 1)

{

index = i*(N + 2) - 1 + tid;

}

else

{

index = i*(N + 2) - 1 + tid+i*row_id-row_id;

}

int s_index = col_id + (i-1)*(N+2);

A[index] = A[index] - M[row_id] * A[s_index];

}

int main()

{

int N;

//Allocation of Variable on Host

//float A[N*(N + 1)],M[N-1],x[N];

clock_t begin, end;

double ExecTime;

begin = clock();

t = fopen("time.txt", "w");

APPENDIX B. GAUSS ELIMINATION 109

//file input-Output

in = fopen("G4000.txt", "r");

out = fopen("output.txt", "w");

fscanf(in, "%d", &N);

fprintf(out, "Number of Equations=%d\n", N);

float *A;

int hsize = (N)*(N + 1);

A = (float *)malloc(hsize * sizeof(float));

float *M;

M = (float *)malloc((N-1) * sizeof(float));

//scan augmented matrix from input file on CPU

fprintf(out,"Scanned Matrix from input file\n");

for (int i = 0; i < N; i++)

{

for (int j = 0; j < N + 1; j++)

{

fscanf(in, "%f", &A[i*(N + 1) + j]);

//fprintf(out, "%f\t", A[i*(N + 1) + j]);

}

//fprintf(out, "\n");

}

//Allocation of Memory on GPU

int size = N*(N + 1)*sizeof(float);

APPENDIX B. GAUSS ELIMINATION 110

int msize = (N - 1)*sizeof(float);

float *dA;

float *dM;

cudaMalloc(&dA,size);

cudaMalloc(&dM,msize);

//Specify Size of Block and Thread

dim3 grid(4000,4000);

dim3 threadBlock(1,1);

//Copy Augmented matrix from host to device

cudaMemcpy(dA,A,size,cudaMemcpyHostToDevice);

float c;

for (int i = 1; i < N; i++)

{

//fprintf(out, "\n-----Loop=%d-------", i);

c = A[(i-1)*(N+1)+i-1];

//fprintf(out, "\n C=%f\n",c);

k1 << <(N - i), 1 >> >(dA,dM,c,i,N);

cudaMemcpy(M, dM, msize, cudaMemcpyDeviceToHost);

/*fprintf(out, " \nM vector\n");

for (int l = 0; l < N - 1; l++)

{

// fprintf(out, "%f\t", M[l]);

} */

k2 << < ((N-i)*(N+2-i)),1>> >(dA,dM,i,N);

APPENDIX B. GAUSS ELIMINATION 111

//copy result back to CPU

cudaMemcpy(A, dA, size, cudaMemcpyDeviceToHost);

/*print updated A matrix

fprintf(out, "\n\n Updated A matrix\n");

for (int l = 0; l < N; l++)

{

for (int o = 0; o< N + 1; o++)

{

fprintf(out, "%f\t", A[l*(N + 1) + o]);

}

fprintf(out, "\n");

} */

}

float *x;

x = (float *)malloc(N * sizeof(float));

x[N - 1] = A[N*(N + 1) - 1] / A[N*(N + 1) - 2];

fprintf(out, "X[%d]=%f",N-1, x[N-1]);

//this loop is for backward substitution

float sum;

for (int i = N - 2; i >=0; i--)

{

sum = 0;

for (int j = i+1 ; j < N; j++)

{

sum = sum + A[i*(N+1)+j] * x[j];

}

x[i] = (A[i*(N+1)+N] - sum) / A[i*(N+1)+i];

APPENDIX B. GAUSS ELIMINATION 112

}

fprintf(out, "\nSolution");

for (int i = 0; i < N; i++)

{

fprintf(out, "\nx%d=%f\t", i, x[i]);

}

end = clock();

ExecTime = end - begin;

fprintf(t, "\nExecution Time=%f", ExecTime);

fclose(in);

fclose(out);

fclose(t);

return 0;

}

Appendix C

Half Band

C.1 Sequential Program

//computer program for band solver

#include<stdio.h>

#include<conio.h>

#include<math.h>

#include<stdlib.h>

#include<time.h>

FILE *in, *out,*t;

void band(float *A, float *B, int NN, int MM);

int main()

{

//float A[30][10], B[20], temp;

int NN, MM;

clock_t begin, end;

double ExecTime;

begin = clock();

113

APPENDIX C. HALF BAND 114

in = fopen("input.txt", "r");

t = fopen("time.txt", "w");

out = fopen("output.txt", "w");

fscanf(in, "%d ", &NN);

MM = 8;

float *A;

A = (float *)malloc(8*NN * sizeof(float));

float *B;

B = (float *)malloc(NN * sizeof(float));

fprintf(out, "No of equations =%d \n Band width %d\n", NN, MM);

//fprintf(out, "\n A matrix");

for (int i = 1; i <= NN; i++)

{

for (int j = 1; j <= MM; j++)

{

fscanf(in, "%f", &A[i*MM+j]);

//fprintf(out, "%f\t", A[i*MM + j]);

}

fscanf(in, "%f", &B[i]);

//fprintf(out, "%f \n", B[i]);

}

band(A, B, NN, MM);

fprintf(out, "B[%d]=%f\n", NN, B[NN]);

APPENDIX C. HALF BAND 115

fprintf(out, "\nsolution Vector\n");

for (int i = 1; i <= NN; i++)

{

fprintf(out, "B[%d]=%f\n",i, B[i]);

}

end = clock();

ExecTime = end - begin;

//fprintf(t, "\nExecution Time=%f", ExecTime);

}

void band(float *A, float *B, int NN, int MM)

{

//triangularise and reduce right hand side

int NL, NM, MR, N, L, K, i, j;

float BN, C;

NL = NN - MM + 1;

NM = NN - 1;

MR = MM;

for (int N = 1; N <= NM; N++)

{

if (A[N*(MM)+1] == 0)

{

fprintf(out, "ZERO OR NEGATIVE ELEMENT ON MAIN DIAGONAL OF \n");

fprintf(in, "TRIANGULARIZED MATRIX FOR EQUATION %d ", N);

}

BN = B[N];

B[N] = BN / A[N*MM+1];

APPENDIX C. HALF BAND 116

if (N>NL)

MR = NN - N + 1;

for (int L = 2; L <= MR; L++)

{

if (A[N*MM+L] == 0)

continue;

C = A[N*MM + L] / A[N*MM + 1];

i = N + L - 1;

j = 0;

for (int K = L; K <= MR; K++)

{

j = j + 1;

A[i*MM + j] = A[i*MM + j] - C*A[N*MM + K];

}

B[i] = B[i] - C*BN;

A[N*MM + L] = C;

}

}

//Back Substitute

i = NN;

B[NN] = B[NN] / A[NN*MM + 1];

for (int N = 1; N <= NM; N++)

{

i = i - 1;

if (N<MM)

MR = N + 1;

for (int j = 2; j <= MR; j++)

{

K = i + j - 1;

APPENDIX C. HALF BAND 117

B[i] = B[i] - A[i*MM + j] * B[K];

}

}

}

C.2 Parallel Program

//Program for Gaussian Elimination on GPU

#include<cuda.h>

#include<cuda_runtime.h>

#include<stdio.h>

#include<time.h>

//Number of equation

FILE *in, *out, *t;

//Kernel1 for Calculation of M vector

__global__ void kernel1(float *A, float *M, int i,int BW)

{

int tid = blockIdx.x ;

M[tid] = A[(i - 1)*(BW + 1) + tid + 1] / A[(i - 1)*(BW + 1)];

}

APPENDIX C. HALF BAND 118

//kernel 2 for update A matrix

__global__ void kernel2(float *A, float *M,int i,int BW)

{

int tid = blockIdx.x + gridDim.x*blockIdx.y;

int index = (BW+1)*i + tid;

int row_id = tid / (BW + 1);

int col_id = tid % (BW + 1);

int max = BW - 1;

int min = (BW - 1) - row_id;

if (col_id<min || col_id>max)

{

int s_index;

if (col_id == BW)

{

s_index = (i - 1)*(BW + 1) + col_id;

}

else

{

s_index= (i - 1)*(BW + 1) + col_id + row_id + 1;

}

A[index] = A[index]-M[row_id]*A[s_index];

}

}

int main()

{

int N, BW;

//Allocation of Variable on Host

APPENDIX C. HALF BAND 119

//float A[N*(BW + 1)], M[BW - 1],x[N];

clock_t begin, end;

double ExecTime;

begin = clock();

//file input-Output

in = fopen("HB10000.txt", "r");

out = fopen("output.txt", "w");

t = fopen("time.txt", "w");

fscanf(in,"%d",&N);

BW = 3;

float *A;

int hsize = (N)*(BW + 1);

A = (float *)malloc(hsize * sizeof(float));

float *M;

M = (float *)malloc((BW - 1) * sizeof(float));

//scan augmented matrix from input file on CPU

//fprintf(out, "Scanned Matrix from input file\n");

for (int i = 0; i < N; i++)

{

for (int j = 0; j < BW+1; j++)

{

fscanf(in, "%f", &A[i*(BW + 1) + j]);

// fprintf(out, "%f\t", A[i*(BW + 1) + j]);

}

//fprintf(out, "\n");

APPENDIX C. HALF BAND 120

}

//Allocation of Memory on GPU

int size = N*(BW + 1)*sizeof(float);

int msize = (BW - 1)*sizeof(float);

float *dA;

float *dM;

cudaMalloc(&dA, size);

cudaMalloc(&dM, msize);

//Specify Size of Block and Thread

dim3 Blocks(3, 4, 1);

dim3 threadsPerBlock(1, 1, 1);

//Copy Augmented matrix from host to device

cudaMemcpy(dA, A, size, cudaMemcpyHostToDevice);

for (int i = 1; i <N; i++)

{

kernel1 << < BW-1, 1 >> >(dA, dM, i,BW);

kernel2 << < (BW-1)*(BW+1), 1 >> >(dA, dM, i,BW);

cudaMemcpy(M, dM, msize, cudaMemcpyDeviceToHost);

/*

fprintf(out, "**********************Formation =%d***************************",i);

fprintf(out, " \nM vector\n");

for (int i = 0; i < BW - 1; i++)

APPENDIX C. HALF BAND 121

{

fprintf(out, "%f\t", M[i]);

} */

cudaMemcpy(A, dA, size, cudaMemcpyDeviceToHost);

/*

fprintf(out, "\nUpdated Matrix from input file\n");

for (int i = 0; i < N; i++)

{

for (int j = 0; j < BW + 1; j++)

{

fscanf(in, "%f", &A[i*(BW + 1) + j]);

fprintf(out, "%f\t", A[i*(BW + 1) + j]);

}

fprintf(out, "\n");

} */

}

//fprintf(out, "***********Back Substitution**************\n");

float *x;

x = (float *)malloc(N * sizeof(float));

x[N - 1] = A[N*(BW + 1) - 1] / A[N*(BW + 1) - (BW+1)];

fprintf(out, "\nX[%d]=%f\n", N - 1, x[N - 1]);

//this loop is for backward substitution

float sum;

for (int i = N - 2; i >= 0; i--)

{

sum = 0;

for (int j = 1; j < BW; j++)

APPENDIX C. HALF BAND 122

{

if (A[i*(BW + 1) + j]!=0)

{

sum = sum + A[i*(BW + 1) + j] * x[i + j];

}

}

x[i] = (A[i*(BW + 1) + BW] - sum) / A[i*(BW + 1)];

}

fprintf(out, "\nSolution");

for (int i = 0; i < N; i++)

{

fprintf(out, "\nx%d=%f\t", i, x[i]);

}

end = clock();

ExecTime = end - begin;

fprintf(t, "\nExecution Time=%f", ExecTime);

fclose(in);

fclose(out);

fclose(t);

return 0;

}

Appendix D

Finite Element

D.1 Sequential Program

//**************Finite Element Analysis Based on CST Element*****************

#include<stdio.h>

//for dynamic array

#include<stdlib.h>

#include<conio.h>

#include<math.h>

//to measure Execution time

#include<time.h>

//Generate input-Output File

FILE *in, *out,*temp,*t;

char filename[15],file[15];

123

APPENDIX D. FINITE ELEMENT 124

//Half Band Solver

void band(float *HBMatrix, float *ForceVector, int NN, int MM);

int main()

{

float Length,Depth,Thickness,ModulasOfElasticity,PoissonRatio,PointLoad;

int PartX,PartY,NumberOfElement,NumberOfNode,TypeofElement;

//clock data type to mesure time interval at different points

clock_t tstart, tinput,tnode,tcoordinate,tDmat,tBmat,tKmat,tHB,tForce,tdis;

double ExecTime;

//**************PART A: INPUT DATA ************************

tstart = clock();

//scan input file

in = fopen("input.dat","r");

fscanf(in, "%f %f %f", &Length, &Depth, &Thickness);

fscanf(in,"%d %d",&PartX,&PartY);

fscanf(in,"%f %f %d %f",&ModulasOfElasticity,&PoissonRatio,&TypeofElement,&PointLoad);

NumberOfElement = PartX*PartY * 2;

NumberOfNode = (PartX + 1)*(PartY+1);

//OutPut File

APPENDIX D. FINITE ELEMENT 125

sprintf(filename, "out_%d.txt",NumberOfElement);

out = fopen(filename, "w");

temp = fopen("temp.txt","w");

//File to store execution time at different intervals

sprintf(file, "time_%d_%d.txt", PartX,PartY);

t = fopen(file,"w");

//Printing input data

fprintf(out,"*****input data*******\n");

fprintf(out, "Length=%.2f\nDepth=%.2f\nThickness=%.2f\n",Length,Depth,Thickness);

fprintf(out,"Elements along Length=%d\nElement along Depth=%d\n",PartX,PartY);

fprintf(out,"Modulas of Elasticity=%.2f\npoisson’s Ratio=%.2f\nPoint Load=%.2f\n",ModulasOfElasticity,PoissonRatio,PointLoad);

if (TypeofElement == 0)

{

fprintf(out,"Type of Element = Plain stress Element");

}

if (TypeofElement == 1)

{

fprintf(out, "Type of Element = Plain strain Element");

}

tinput = clock();

ExecTime = tstart - tinput;

fprintf(t,"Input data=%f\n",ExecTime);

APPENDIX D. FINITE ELEMENT 126

//*********PART B:GENERATION OF NODE FOR EACH ELEMENT*********

int *DataNode;

DataNode = (int *)calloc(NumberOfElement*3, sizeof(int));

int BlockID = 0;

int ColID = 0;

fprintf(out,"\n\n------Nodal Point Calculation----------");

for (int i = 0; i < NumberOfElement; i++)

{

BlockID = (i/2)+1;

ColID = i / (PartX * 2);

DataNode[i*3] = BlockID+ColID;

if (i % 2 == 0)

{

DataNode[i * 3 + 1] = (PartX + 1) + BlockID + 1+ColID;

DataNode[i * 3 + 2] = DataNode[i * 3 + 1] - 1;

}

else

{

DataNode[i * 3 + 1] = DataNode[i * 3]+1;

DataNode[i * 3 + 2] = (PartX + 1) + BlockID + 1 + ColID;

}

fprintf(out, "\n %d\t%d\t%d", DataNode[i*3],DataNode[i*3+1],DataNode[i*3+2]);

APPENDIX D. FINITE ELEMENT 127

}

tnode = clock();

ExecTime = tnode-tinput;

fprintf(t, "Node=%f\n", ExecTime);

//********PART C: Generation of joint coordinates for each node********

float *DataJoint;

DataJoint = (float *)calloc(NumberOfNode*2,sizeof(float));

float lengthX = 0;

float lengthY = 0;

lengthX = Length / PartX;

lengthY = Depth / PartY;

float CoordinateX = 0;

float CoordinateY = 0;

fprintf(out, "\n\n------joint coordinates Calculation----------");

for (int i = 0; i < NumberOfNode; i++)

{

DataJoint[i * 2] = CoordinateX;

DataJoint[i * 2 + 1] = CoordinateY;

CoordinateX = CoordinateX + lengthX;

APPENDIX D. FINITE ELEMENT 128

if ((i + 1) % (PartX + 1) == 0)

{

CoordinateX = 0;

CoordinateY = CoordinateY + lengthY;

}

fprintf(out,"\n%d\t%f\t%f",i+1,DataJoint[i*2],DataJoint[i*2+1]);

}

tcoordinate = clock();

ExecTime = tcoordinate - tnode;

fprintf(t, "Coordinates=%f\n", ExecTime);

//*********PART D:Generation of [D] matrix for all elements**********

fprintf(out, "\n\n------Calculation of D Matrix----------");

float DMatrix[9];

float c;

if (TypeofElement == 0)

{

c =ModulasOfElasticity/(1-PoissonRatio*PoissonRatio);

DMatrix[0] = DMatrix[4] = c * 1;

DMatrix[1] = DMatrix[3] = c*PoissonRatio;

DMatrix[2] = DMatrix[5] = DMatrix[6] = DMatrix[7] = 0;

APPENDIX D. FINITE ELEMENT 129

DMatrix[8] = c*(1 - PoissonRatio)*0.5;

//Print Dmatrix

for (int i = 0; i < 3; i++)

{

for (int j = 0; j < 3; j++)

{

fprintf(out,"%.2f\t",DMatrix[i*3+j]);

}

fprintf(out, "\n");

}

}

tDmat = clock();

ExecTime = tDmat-tcoordinate;

fprintf(t, "D Matrix=%f\n", ExecTime);

//********PART E : Generation of B matrix for all the element**************

float *BMatrix;

BMatrix = (float *)calloc(NumberOfElement * 7 , sizeof(float));

//to store temporary value of nodes and coordinates

APPENDIX D. FINITE ELEMENT 130

int ii,jj,kk;

float ix, iy, jx, jy, kx, ky;

float b1, b2, b3, c1, c2, c3;

float Delta;

fprintf(out, "\n\n------Calculation of B Matrix----------");

for (int n = 0; n < NumberOfElement; n++)

{

ii = DataNode[n * 3];

jj = DataNode[n * 3 + 1];

kk = DataNode[n * 3 + 2];

ix = DataJoint[(ii - 1) * 2];

iy = DataJoint[(ii - 1) * 2 + 1];

jx = DataJoint[(jj - 1) * 2];

jy = DataJoint[(jj - 1) * 2 + 1];

kx = DataJoint[(kk - 1) * 2];

ky = DataJoint[(kk - 1) * 2 + 1];

b1 = jy - ky;

b2 = ky - iy;

b3 = iy - jy;

c1 = kx - jx;

c2 = ix - kx;

c3 = jx - ix;

APPENDIX D. FINITE ELEMENT 131

Delta = 0.5*((jx*ky - jy*kx) - (ix*ky-kx*iy) + (ix*jy-iy*jx));

if (Delta<0)

{

Delta = -Delta;

}

BMatrix[7 * n] = Delta;

BMatrix[7 * n + 1] = b1;

BMatrix[7 * n + 2] = b2;

BMatrix[7 * n + 3] = b3;

BMatrix[7 * n + 4] = c1;

BMatrix[7 * n + 5] = c2;

BMatrix[7 * n + 6] = c3;

//print B matrix on temp file

fprintf(out,"\nB matrix element=%d",n);

fprintf(out,"\n%0.2f\t0.00\t%0.2f\t0.00\t%0.2f\t0.00",BMatrix[7*n+1],BMatrix[7*n+2],BMatrix[7*n+3]);

fprintf(out, "\n0.00\t%0.2f\t0.00\t%0.2f\t0.00\t%0.2f", BMatrix[7 * n + 4], BMatrix[7 * n + 5], BMatrix[7 * n + 6]);

fprintf(out, "\n%0.2f\t%0.2f\t%0.2f\t%0.2f\t%0.2f\t%0.2f", BMatrix[7 * n + 4], BMatrix[7 * n + 1], BMatrix[7 * n + 5], BMatrix[7 * n + 2], BMatrix[7 * n + 6], BMatrix[7 * n + 3]);

fprintf(out,"\nCalculated value of Delta=%f\n",Delta);

}

tBmat = clock();

ExecTime = tBmat - tDmat;

fprintf(t, "B Matrix=%f\n", ExecTime);

APPENDIX D. FINITE ELEMENT 132

//**********PART F: calculation for stifness matrix for each member*********

float *KMatrix;

KMatrix = (float *)calloc(NumberOfElement *36 , sizeof(float));

//to store B matrix for each element

float tempB[18];

//to store resultant matrix for D*B

float tempK[18] = {0};

//to store transpose of B matrix

float tempBT[18] = {0};

float sum = 0;

//to store temp matrix during row col conversation

float tempKmat[36] = { 0 };

fprintf(out, "\n\n------Calculation of K Matrix----------");

for (int i = 0; i < NumberOfElement; i++)

{

tempB[0] = tempB[13] = BMatrix[7 * i + 1] * 0.5 / BMatrix[7 * i];

tempB[2] = tempB[15] = BMatrix[7 * i + 2] * 0.5 / BMatrix[7 * i];

tempB[4] = tempB[17] = BMatrix[7 * i + 3] * 0.5 / BMatrix[7 * i];

tempB[7] = tempB[12] = BMatrix[7 * i + 4] * 0.5 / BMatrix[7 * i];

tempB[9] = tempB[14] = BMatrix[7 * i + 5] * 0.5 / BMatrix[7 * i];

tempB[11] = tempB[16] = BMatrix[7 * i + 6] * 0.5 / BMatrix[7 * i];

APPENDIX D. FINITE ELEMENT 133

tempB[1] = tempB[3] = tempB[5] = tempB[6] = tempB[8] = tempB[10] = 0;

//part1:Matrix multiplication of D and B Matrix

for (int l = 0; l < 3; l++)

{

for (int k = 0; k < 6; k++)

{

sum = 0;

for (int j = 0; j < 3; j++)

{

sum = sum + DMatrix[l * 3 +j] * tempB[j*6+k];

}

tempK[l * 6 + k]=sum;

}

}

//Part2: Matrix Multiplication for obtaining K matrix

//here first we need to obtain transpose of B matrix

for (int j = 0; j < 6; j++)

{

for (int k = 0; k < 3; k++)

{

tempBT[j * 3 + k] = tempB[k * 6 + j];

}

}

fprintf(out, "\n\nFinal K matrix for Element=%d\n", i);

APPENDIX D. FINITE ELEMENT 134

for (int l = 0; l < 6; l++)

{

for (int k = 0; k < 6; k++)

{

sum = 0;

for (int j = 0; j < 3; j++)

{

sum = sum + tempBT[l*3+j] * tempK[j*6+k];

}

KMatrix[l * 6 + k+i*36]=sum*Thickness*Delta;

fprintf(out, "%0.2f\t", KMatrix[l * 6 + k + i * 36]);

}

fprintf(out,"\n");

}

//arrange K matrix row and column in proper sequence

//this is required for assemble global matrix

if (i%2==0)

{

for (int j = 0; j < 6; j++)

{

for (int k = 0; k < 6; k++)

{

tempKmat[j * 6 + k] = KMatrix[i * 36+j * 6 + k];

}

}

//conversion

//part 1 Upper diagonal blocks

APPENDIX D. FINITE ELEMENT 135

KMatrix[i * 36 + 2] = tempKmat[4];

KMatrix[i * 36 +3] = tempKmat[5];

KMatrix[i * 36 + 8] = tempKmat[10];

KMatrix[i * 36 + 9] = tempKmat[11];

KMatrix[i * 36 + 4] = tempKmat[2];

KMatrix[i * 36 + 5] = tempKmat[3];

KMatrix[i * 36 + 10] = tempKmat[8];

KMatrix[i * 36 + 11] = tempKmat[9];

KMatrix[i * 36 +14] = tempKmat[28];

KMatrix[i * 36 + 15] = tempKmat[29];

KMatrix[i * 36 + 20] = tempKmat[34];

KMatrix[i * 36 + 21] = tempKmat[35];

KMatrix[i * 36 + 16] = tempKmat[26];

KMatrix[i * 36 + 17] = tempKmat[27];

KMatrix[i * 36 + 22] = tempKmat[32];

KMatrix[i * 36 + 23] = tempKmat[33];

KMatrix[i * 36 + 28] = tempKmat[14];

KMatrix[i * 36 + 29] = tempKmat[15];

KMatrix[i * 36 + 34] = tempKmat[20];

KMatrix[i * 36 + 35] = tempKmat[21];

//lower blocks

KMatrix[i * 36 + 12] = tempKmat[24];

KMatrix[i * 36 + 13] = tempKmat[25];

KMatrix[i * 36 + 18] = tempKmat[30];

APPENDIX D. FINITE ELEMENT 136

KMatrix[i * 36 + 19] = tempKmat[31];

KMatrix[i * 36 + 24] = tempKmat[12];

KMatrix[i * 36 + 25] = tempKmat[13];

KMatrix[i * 36 + 30] = tempKmat[18];

KMatrix[i * 36 + 31] = tempKmat[19];

KMatrix[i * 36 + 26] = tempKmat[16];

KMatrix[i * 36 + 27] = tempKmat[17];

KMatrix[i * 36 + 32] = tempKmat[22];

KMatrix[i * 36 + 33] = tempKmat[23];

}

fprintf(out, "\n\nFinal K matrix after re arrangement Element=%d\n", i);

for (int j = 0; j < 6; j++)

{

for (int k = 0; k < 6; k++)

{

fprintf(out, "%.2f\t", KMatrix[j * 6 + k + i * 36]);

}

fprintf(out, "\n");

}

}

tKmat = clock();

APPENDIX D. FINITE ELEMENT 137

ExecTime = tKmat - tBmat;

fprintf(t, "K Matrix=%f\n", ExecTime);

//*****************PART G:Assemble stiffness matrix*******************

//here logic is update Global stiffness matrix based on it’s node value

float *GlobalKMatrix;

//GlobalKMatrix = (float *)malloc(NumberOfNode * 4*(PartX+3) * sizeof(float));

GlobalKMatrix = (float *)calloc(NumberOfNode * 4 * NumberOfNode , sizeof(float));

//fprintf(temp, "\nGlobal Matix initialization to zero\n");

fprintf(out, "\n\n------Assemble of K Matrix----------");

//array to store row and col ID

int RID[6] = {0};

int index = 0;

for (int i = 0; i < NumberOfElement; i++)

{

if (i%2==0)

{

ii = DataNode[i * 3];

jj = DataNode[i * 3 + 2];

kk = DataNode[i * 3 + 1];

}

APPENDIX D. FINITE ELEMENT 138

else

{

ii = DataNode[i * 3];

jj = DataNode[i * 3 + 1];

kk = DataNode[i * 3 + 2];

}

RID[0] = ii * 2 - 2;

RID[1] = ii * 2 - 1;

RID[2] = jj * 2 - 2;

RID[3] = jj * 2 - 1;

RID[4] = kk * 2 - 2;

RID[5] = kk * 2 - 1;

for (int j = 0; j < 6; j++)

{

for (int k = j; k < 6; k++)

{

//For Half Band

//index = RID[j] * (PartX + 3) * 2 + RID[k] - RID[j];;

//GlobalKMatrix[index] = GlobalKMatrix[index]+ KMatrix[i * 36 + j * 6 + k];

index = RID[j] * (NumberOfNode)* 2 + RID[k];

GlobalKMatrix[index] = GlobalKMatrix[index] + KMatrix[i * 36 + j * 6 + k];

}

}

APPENDIX D. FINITE ELEMENT 139

}

fprintf(temp, "\n\n------Assemble of Global Matrix----------\n");

//initialize Global Matrix to zero

for (int i = 0; i < NumberOfNode * 2; i++)

{

fprintf(temp, "%d\t", i);

for (int j = 0; j < NumberOfNode * 2; j++)

{

fprintf(temp, "%0.2f\t", GlobalKMatrix[i*(NumberOfNode) * 2 + j]);

}

fprintf(temp,"\n");

}

//apply Boundry conditions

//Node for Fixed suport

int *BC;

BC = (int *)malloc((PartY+1) * sizeof(float));

BC[0] = 1;

for (int i = 0; i < PartY; i++)

{

BC[i+1] = BC[i]+PartX+1;

}

//fprintf(temp, "\nBoundry conditions");

for (int i = 0; i < PartY+1; i++)

{

APPENDIX D. FINITE ELEMENT 140

// fprintf(temp,"\nBC[%d]=%d",i,BC[i]);

}

//Calculate Row ID for Global Matrix

int *RowBC;

RowBC = (int *)malloc((PartY + 1)*2 * sizeof(float));

for (int i = 0; i < PartY + 1; i++)

{

RowBC[2*i] = BC[i] * 2 - 2;

RowBC[2 * i + 1] = BC[i] * 2 - 1;

}

//fprintf(temp, "\nBoundry conditions Row Index");

for (int i = 0; i < PartY + 1; i++)

{

//fprintf(temp, "\nRowBC[%d]=%d\nRowBC[%d]=%d", i * 2, RowBC[i * 2], i * 2+1, RowBC[i * 2+1]);

}

//Store global matrix to halfBand

float *HBMatrix;

//GlobalKMatrix = (float *)malloc(NumberOfNode * 4*(PartX+3) * sizeof(float));

int HBsize = (NumberOfNode - (PartY + 1)) * 2+1;

HBMatrix = (float *)calloc(HBsize * (2 * (PartX + 3)+1) , sizeof(float));

//Store HB Matrix after applying BC

int HBrow = 1;

int HBcol = 1;

APPENDIX D. FINITE ELEMENT 141

int bid = 0;

int cid = 0;

for (int i = 0; i < NumberOfNode * 2; i++)

{

if (i!=RowBC[bid])

{

HBcol = 1;

cid = bid;

for (int j = i; j < NumberOfNode * 2; j++)

{

if (j!=RowBC[cid])

{

HBMatrix[HBrow*(PartX + 3) * 2 + HBcol] = GlobalKMatrix[i * (NumberOfNode)* 2 + j];

HBcol = HBcol + 1;

}

else

{

cid = cid + 1;

if (cid==(PartY+1)*2)

{

cid = cid - 1;

}

}

}

HBrow = HBrow + 1;

APPENDIX D. FINITE ELEMENT 142

}

else

{

bid = bid + 1;

}

}

fprintf(temp, "\n\n-----------Final Half Band -------------\n");

//initialize Global Matrix to zero

for (int i = 1; i < HBsize; i++)

{

fprintf(temp, "%d\t", i);

for (int j = 1; j <= (PartX + 3) * 2; j++)

{

fprintf(temp, "%0.2f\t", HBMatrix[i*(PartX + 3) * 2 + j]);

}

fprintf(temp,"\n");

}

tHB = clock();

ExecTime = tHB-tKmat ;

fprintf(t, "GLobal=%f\n", ExecTime);

//Calculation of Force Vector

float *ForceVector;

ForceVector = (float *)malloc((HBsize+1)* sizeof(float));

APPENDIX D. FINITE ELEMENT 143

for (int i = 1; i <= HBsize; i++)

{

ForceVector[i] = 0;

}

ForceVector[HBsize-1] = PointLoad;

fprintf(temp,"\nForce Vector\n");

for (int i = 1; i < HBsize; i++)

{

fprintf(temp,"\n%d\t%f",i,ForceVector[i]);

}

tForce = clock();

ExecTime = tForce-tHB;

fprintf(t, "Force=%f\n", ExecTime);

//calculation to find displacement vector

int BandWidth = (PartX + 3) * 2;

band(HBMatrix, ForceVector, HBsize-1,BandWidth);

fprintf(temp, "\nsolution Vector\n");

for (int i = 1; i <HBsize; i++)

{

fprintf(temp, "\n%d\t%f", i, ForceVector[i]);

APPENDIX D. FINITE ELEMENT 144

}

fprintf(temp, "\nDisplacement Vector\n");

bid = 0;

for (int i = 0; i <NumberOfNode*2; i++)

{

if (i==RowBC[bid])

{

fprintf(temp, "\n%d\t0", i);

bid = bid + 1;

}

else

{

fprintf(temp, "\n%d\t%f", i, ForceVector[i-bid+1]);

}

}

//Calculation of stress for each Element

float *Stress = (float*)calloc(3*NumberOfElement,sizeof(float));

for (int i = 0; i < NumberOfElement; i++)

{

tempB[0] = tempB[13] = BMatrix[7 * i + 1] * 0.5 / BMatrix[7 * i];

tempB[2] = tempB[15] = BMatrix[7 * i + 2] * 0.5 / BMatrix[7 * i];

tempB[4] = tempB[17] = BMatrix[7 * i + 3] * 0.5 / BMatrix[7 * i];

APPENDIX D. FINITE ELEMENT 145

tempB[7] = tempB[12] = BMatrix[7 * i + 4] * 0.5 / BMatrix[7 * i];

tempB[9] = tempB[14] = BMatrix[7 * i + 5] * 0.5 / BMatrix[7 * i];

tempB[11] = tempB[16] = BMatrix[7 * i + 6] * 0.5 / BMatrix[7 * i];

tempB[1] = tempB[3] = tempB[5] = tempB[6] = tempB[8] = tempB[10] = 0;

//part1:Matrix multiplication of D and B Matrix

for (int l = 0; l < 3; l++)

{

for (int k = 0; k < 6; k++)

{

sum = 0;

for (int j = 0; j < 3; j++)

{

sum = sum + DMatrix[l * 3 + j] * tempB[j * 6 + k];

}

tempK[l * 6 + k] = sum;

}

}

///Part 2: Matrix multilication of tempk and q

}

tdis = clock();

ExecTime = tdis-tForce;

fprintf(t, "Disp=%f\n", ExecTime);

APPENDIX D. FINITE ELEMENT 146

ExecTime = tdis - tinput;

fprintf(t, "Total=%f\n", ExecTime);

fclose(in);

fclose(out);

fclose(temp);

return 0;

}

void band(float *HBMatrix, float *ForceVector, int NN, int MM)

{

//triangularise and reduce right hand side

int NL, NM, MR, N, L, K, i, j;

float BN, C;

NL = NN - MM + 1;

NM = NN - 1;

MR = MM;

for (int N = 1; N <= NM; N++)

{

if (HBMatrix[N*(MM)+1] == 0)

{

fprintf(out, "ZERO OR NEGATIVE ELEMENT ON MAIN DIAGONAL OF \n");

fprintf(in, "TRIANGULARIZED MATRIX FOR EQUATION %d ", N);

}

BN = ForceVector[N];

ForceVector[N] = BN / HBMatrix[N*MM + 1];

if (N>NL)

MR = NN - N + 1;

for (int L = 2; L <= MR; L++)

{

APPENDIX D. FINITE ELEMENT 147

if (HBMatrix[N*MM + L] == 0)

continue;

C = HBMatrix[N*MM + L] / HBMatrix[N*MM + 1];

i = N + L - 1;

j = 0;

for (int K = L; K <= MR; K++)

{

j = j + 1;

HBMatrix[i*MM + j] = HBMatrix[i*MM + j] - C*HBMatrix[N*MM + K];

}

ForceVector[i] = ForceVector[i] - C*BN;

HBMatrix[N*MM + L] = C;

}

}

//Back Substitute

i = NN;

ForceVector[NN] = ForceVector[NN] / HBMatrix[NN*MM + 1];

for (int N = 1; N <= NM; N++)

{

i = i - 1;

if (N<MM)

MR = N + 1;

for (int j = 2; j <= MR; j++)

{

K = i + j - 1;

ForceVector[i] = ForceVector[i] - HBMatrix[i*MM + j] * ForceVector[K];

}

APPENDIX D. FINITE ELEMENT 148

}

}

/*****Sample Input File********

3000 600 200

10 2

200000 0.24

0 - 100

Details

length depth thickness

parts-along-length parts-along-depth

Elasticity Poisson’s-Ratio

Type-of-Element(0 for plain stress/1 for plain strain)

LoadatEnd-Ydir

*/

D.2 Parallel Program

//Finite Element Analysis Based on CST Element Parallel Program

#include<cuda.h>

APPENDIX D. FINITE ELEMENT 149

#include<cuda_runtime.h>

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

#include<math.h>

#include<time.h>

FILE *in, *out, *temp, *t;

char filename[15];

char file[15];

void band(float *HBMatrix, float *ForceVector, int NN, int MM);

//kernel-1:Generation of Node for each element

__global__ void k1(float *DataNode,int X)

{

int tid = blockIdx.x + gridDim.x* blockIdx.y;

int BlockID = 0;

int ColID = 0;

BlockID = (tid / 2) + 1;

ColID = tid / (X * 2);

DataNode[tid * 3] = BlockID + ColID;

//ColID = ColID + 1;

if (tid % 2 == 0)

{

DataNode[tid * 3 + 1] = (X + 1) + BlockID + 1 + ColID;

DataNode[tid * 3 + 2] = DataNode[tid * 3 + 1] - 1;

}

else

{

APPENDIX D. FINITE ELEMENT 150

DataNode[tid * 3 + 1] = DataNode[tid * 3] + 1;

DataNode[tid * 3 + 2] = (X + 1) + BlockID + 1 + ColID;

}

}

//Kernel-2:Generation of joint coordinate for each node

__global__ void k2(float *DataJoint, int X,float Lx,float Ly)

{

int tid = blockIdx.x + gridDim.x* blockIdx.y;

float CoordinateX = 0;

float CoordinateY = 0;

int Rid = 0;

int Cid=0;

Rid = (tid) / (X + 1);

Cid = (tid) % (X+1);

CoordinateX = Lx * Cid;

CoordinateY = Ly * Rid;

DataJoint[tid * 2] = CoordinateX;

DataJoint[tid * 2 + 1] = CoordinateY;

}

APPENDIX D. FINITE ELEMENT 151

//Kernel-3:Calculate B matrix for each element

__global__ void k3(float *BMatrix, float *DataNode, float *DataJoint)

{

int tid = blockIdx.x + gridDim.x* blockIdx.y;

//to store temporary value of nodes and coordinates

int ii, jj, kk;

float ix, iy, jx, jy, kx, ky;

float b1, b2, b3, c1, c2, c3;

float Delta;

ii = DataNode[tid * 3];

jj = DataNode[tid * 3 + 1];

kk = DataNode[tid * 3 + 2];

ix = DataJoint[(ii - 1) * 2];

iy = DataJoint[(ii - 1) * 2 + 1];

jx = DataJoint[(jj - 1) * 2];

jy = DataJoint[(jj - 1) * 2 + 1];

kx = DataJoint[(kk - 1) * 2];

ky = DataJoint[(kk - 1) * 2 + 1];

b1 = jy - ky;

b2 = ky - iy;

b3 = iy - jy;

c1 = kx - jx;

APPENDIX D. FINITE ELEMENT 152

c2 = ix - kx;

c3 = jx - ix;

Delta = 0.5*((jx*ky - jy*kx) - (ix*ky - kx*iy) + (ix*jy - iy*jx));

if (Delta<0)

{

Delta = -Delta;

}

BMatrix[7 * tid] = Delta;

BMatrix[7 * tid + 1] = b1;

BMatrix[7 * tid + 2] = b2;

BMatrix[7 * tid + 3] = b3;

BMatrix[7 * tid + 4] = c1;

BMatrix[7 * tid + 5] = c2;

BMatrix[7 * tid + 6] = c3;

}

//kernel-4:Calculate K matrix for each element

__global__ void k4(float *KMatrix, float *BMatrix, float *DMatrix, float Thickness)

{

int tid = blockIdx.x + gridDim.x* blockIdx.y;

//to store B matrix for each element

float tempB[18];

//to store resultant matrix for D*B

float tempK[18] = { 0 };

APPENDIX D. FINITE ELEMENT 153

//to store transpose of B matrix

float tempBT[18] = { 0 };

//to store temp matrix during row col conversation

float tempKmat[36] = { 0 };

float sum = 0;

tempB[0] = tempB[13] = BMatrix[7 * tid + 1] * 0.5 / BMatrix[7 * tid];

tempB[2] = tempB[15] = BMatrix[7 * tid + 2] * 0.5 / BMatrix[7 * tid];

tempB[4] = tempB[17] = BMatrix[7 * tid + 3] * 0.5 / BMatrix[7 * tid];

tempB[7] = tempB[12] = BMatrix[7 * tid + 4] * 0.5 / BMatrix[7 * tid];

tempB[9] = tempB[14] = BMatrix[7 * tid + 5] * 0.5 / BMatrix[7 * tid];

tempB[11] = tempB[16] = BMatrix[7 * tid + 6] * 0.5 / BMatrix[7 * tid];

tempB[1] = tempB[3] = tempB[5] = tempB[6] = tempB[8] = tempB[10] = 0;

//part1:Matrix multiplication of D and B Matrix

for (int l = 0; l < 3; l++)

{

for (int k = 0; k < 6; k++)

{

sum = 0;

for (int j = 0; j < 3; j++)

{

sum = sum + DMatrix[l * 3 + j] * tempB[j * 6 + k];

}

tempK[l * 6 + k] = sum;

}

}

APPENDIX D. FINITE ELEMENT 154

//Part2: Matrix Multiplication for obtaining K matrix

//here first we need to obtain transpose of B matrix

for (int j = 0; j < 6; j++)

{

for (int k = 0; k < 3; k++)

{

tempBT[j * 3 + k] = tempB[k * 6 + j];

}

}

//fprintf(temp, "\n\nFinal K matrix for Element=%d\n", i);

for (int l = 0; l < 6; l++)

{

for (int k = 0; k < 6; k++)

{

sum = 0;

for (int j = 0; j < 3; j++)

{

sum = sum + tempBT[l * 3 + j] * tempK[j * 6 + k];

}

KMatrix[l * 6 + k + tid * 36] = sum*Thickness*BMatrix[7 * tid];

//fprintf(temp, "%.2f\t", KMatrix[l * 6 + k + i * 36]);

}

//fprintf(temp, "\n");

}

//arrange K matrix row and column in proper sequence

//this is required for assemble global matrix

if (tid % 2 == 0)

APPENDIX D. FINITE ELEMENT 155

{

for (int j = 0; j < 6; j++)

{

for (int k = 0; k < 6; k++)

{

tempKmat[j * 6 + k] = KMatrix[tid * 36 + j * 6 + k];

}

}

//conversion

//part 1 Upper diagonal blocks

KMatrix[tid * 36 + 2] = tempKmat[4];

KMatrix[tid * 36 + 3] = tempKmat[5];

KMatrix[tid * 36 + 8] = tempKmat[10];

KMatrix[tid * 36 + 9] = tempKmat[11];

KMatrix[tid * 36 + 4] = tempKmat[2];

KMatrix[tid * 36 + 5] = tempKmat[3];

KMatrix[tid * 36 + 10] = tempKmat[8];

KMatrix[tid * 36 + 11] = tempKmat[9];

KMatrix[tid * 36 + 14] = tempKmat[28];

KMatrix[tid * 36 + 15] = tempKmat[29];

KMatrix[tid * 36 + 20] = tempKmat[34];

KMatrix[tid * 36 + 21] = tempKmat[35];

KMatrix[tid * 36 + 16] = tempKmat[26];

KMatrix[tid * 36 + 17] = tempKmat[27];

KMatrix[tid * 36 + 22] = tempKmat[32];

KMatrix[tid * 36 + 23] = tempKmat[33];

APPENDIX D. FINITE ELEMENT 156

KMatrix[tid * 36 + 28] = tempKmat[14];

KMatrix[tid * 36 + 29] = tempKmat[15];

KMatrix[tid * 36 + 34] = tempKmat[20];

KMatrix[tid * 36 + 35] = tempKmat[21];

//lower blocks

KMatrix[tid * 36 + 12] = tempKmat[24];

KMatrix[tid * 36 + 13] = tempKmat[25];

KMatrix[tid * 36 + 18] = tempKmat[30];

KMatrix[tid * 36 + 19] = tempKmat[31];

KMatrix[tid * 36 + 24] = tempKmat[12];

KMatrix[tid * 36 + 25] = tempKmat[13];

KMatrix[tid * 36 + 30] = tempKmat[18];

KMatrix[tid * 36 + 31] = tempKmat[19];

KMatrix[tid * 36 + 26] = tempKmat[16];

KMatrix[tid * 36 + 27] = tempKmat[17];

KMatrix[tid * 36 + 32] = tempKmat[22];

KMatrix[tid * 36 + 33] = tempKmat[23];

}

}

//Kernel-5:Calculate F vector for each node

__global__ void k5(float *ForceVector, int NumberOfNode, int PointLoad)

APPENDIX D. FINITE ELEMENT 157

{

int tid = blockIdx.x + gridDim.x* blockIdx.y;

ForceVector[tid] = 0;

}

//kernel-5:Calculate stress

int main()

{

//float A[N*(N + 1)];

float Length, Depth, Thickness, ModulasOfElasticity, PoissonRatio, PointLoad;

int PartX, PartY, NumberOfElement, NumberOfNode, TypeofElement;

clock_t tstart, tinput, tnode, tcoordinate, tDmat, tBmat, tKmat, tHB,tForce,tdis;

double ExecTime;

tstart = clock();

in = fopen("input.dat", "r");

fscanf(in, "%f %f %f", &Length, &Depth, &Thickness);

fscanf(in, "%d %d", &PartX, &PartY);

fscanf(in, "%f %f %d %f", &ModulasOfElasticity, &PoissonRatio, &TypeofElement, &PointLoad);

NumberOfElement = PartX*PartY * 2;

NumberOfNode = (PartX + 1)*(PartY + 1);

sprintf(filename, "out_%d.txt", NumberOfElement);

out = fopen(filename, "w");

temp = fopen("temp.txt", "w");

sprintf(file, "time_%d_%d.txt", PartX, PartY);

t = fopen(file, "w");

//Printing input data

fprintf(out, "*****input data*******\n");

APPENDIX D. FINITE ELEMENT 158

fprintf(out, "Length=%.2f\nDepth=%.2f\nThickness=%.2f\n", Length, Depth, Thickness);

fprintf(out, "Elements along Length=%d\nElement along Depth=%d\n", PartX, PartY);

fprintf(out, "Modulas of Elasticity=%.2f\npoisson’s Ratio=%.2f\nPoint Load=%.2f\n", ModulasOfElasticity, PoissonRatio, PointLoad);

if (TypeofElement == 0)

{

fprintf(out, "Type of Element = Plain stress Element");

}

if (TypeofElement == 1)

{

fprintf(out, "Type of Element = Plain strain Element");

}

tinput = clock();

ExecTime = tstart - tinput;

fprintf(t, "Input data=%f\n", ExecTime);

//Generation of Nodal data for each element

float *DataNode;

DataNode = (float *)malloc(NumberOfElement * 3 * sizeof(float));

int BlockID = 0;

int ColID = 0;

//Allocation of Memory on GPU

int size = NumberOfElement*3*sizeof(float);

float *DataNodeGPU;

cudaMalloc(&DataNodeGPU, size);

//Specify Size of Block and Thread

dim3 grid(NumberOfElement, 1);

dim3 threadBlock(1, 1);

APPENDIX D. FINITE ELEMENT 159

k1 << <NumberOfElement,1 >> >(DataNodeGPU,PartX);

cudaMemcpy(DataNode, DataNodeGPU, size, cudaMemcpyDeviceToHost);

for (int i = 0; i < NumberOfElement; i++)

{

//fprintf(temp, "No of Element =%d\tnode:%.2f\t%.2f\t%.2f\n",i, DataNode[i * 3], DataNode[i * 3 + 1], DataNode[i * 3 + 2]);

}

tnode = clock();

ExecTime = tnode - tinput;

fprintf(t, "Node=%f\n", ExecTime);

//Generation of joint coordinates for each node

float *DataJoint;

DataJoint = (float *)malloc(NumberOfNode * 2 * sizeof(float));

//Allocation of Memory on GPU

size = NumberOfNode * 2 * sizeof(float);

float *DataJointGPU;

cudaMalloc(&DataJointGPU, size);

float lengthX = 0;

float lengthY = 0;

lengthX = Length / PartX;

lengthY = Depth / PartY;

//Specify Size of Block and Thread

//dim3 grid(NumberOfNode, 1);

APPENDIX D. FINITE ELEMENT 160

//dim3 threadBlock(1, 1);

k2 << <NumberOfNode, 1 >> >(DataJointGPU,PartX,lengthX,lengthY);

cudaMemcpy(DataJoint, DataJointGPU, size, cudaMemcpyDeviceToHost);

for (int i = 0; i < NumberOfNode; i++)

{

// fprintf(temp, "\n%d\t%f\t%f", i + 1, DataJoint[i * 2], DataJoint[i * 2 + 1]);

}

tcoordinate = clock();

ExecTime = tcoordinate - tnode;

fprintf(t, "Coordinates=%f\n", ExecTime);

//Generation of [D] matrix for all elements

float DMatrix[9];

float c;

//Allocation of Memory on GPU

size = 9 * sizeof(float);

float *DMatrixGPU;

cudaMalloc(&DMatrixGPU, size);

if (TypeofElement == 0)

{

c = ModulasOfElasticity / (1 - PoissonRatio*PoissonRatio);

DMatrix[0] = DMatrix[4] = c * 1;

DMatrix[1] = DMatrix[3] = c*PoissonRatio;

DMatrix[2] = DMatrix[5] = DMatrix[6] = DMatrix[7] = 0;

DMatrix[8] = c*(1 - PoissonRatio)*0.5;

APPENDIX D. FINITE ELEMENT 161

//Print Dmatrix

//fprintf(temp, "D matrix\n");

for (int i = 0; i < 3; i++)

{

for (int j = 0; j < 3; j++)

{

//fprintf(temp, "%.2f\t", DMatrix[i * 3 + j]);

}

//fprintf(temp, "\n");

}

}

cudaMemcpy(DMatrixGPU, DMatrix, size, cudaMemcpyHostToDevice);

tDmat = clock();

ExecTime = tDmat - tcoordinate;

fprintf(t, "D Matrix=%f\n", ExecTime);

//Generation of B matrix for all the element

//no need to store whole matrix only three b and three c members+ value of delta

//total 7 value of each member

float *BMatrix;

BMatrix = (float *)malloc(NumberOfElement * 7 * sizeof(float));

//Allocation of Memory on GPU

size = NumberOfElement*7 * sizeof(float);

float *BMatrixGPU;

cudaMalloc(&BMatrixGPU, size);

APPENDIX D. FINITE ELEMENT 162

k3 << <NumberOfElement, 1 >> >(BMatrixGPU, DataNodeGPU,DataJointGPU);

cudaMemcpy(BMatrix, BMatrixGPU, size, cudaMemcpyDeviceToHost);

for (int n = 0; n < NumberOfElement; n++)

{

//print B matrix on temp file

//fprintf(temp, "\nB matrix element=%d", n);

//fprintf(temp, "\n%0.2f\t0.00\t%0.2f\t0.00\t%0.2f\t0.00", BMatrix[7 * n + 1], BMatrix[7 * n + 2], BMatrix[7 * n + 3]);

//fprintf(temp, "\n0.00\t%0.2f\t0.00\t%0.2f\t0.00\t%0.2f", BMatrix[7 * n + 4], BMatrix[7 * n + 5], BMatrix[7 * n + 6]);

//fprintf(temp, "\n%0.2f\t%0.2f\t%0.2f\t%0.2f\t%0.2f\t%0.2f", BMatrix[7 * n + 4], BMatrix[7 * n + 1], BMatrix[7 * n + 5], BMatrix[7 * n + 2], BMatrix[7 * n + 6], BMatrix[7 * n + 3]);

//fprintf(temp, "\nCalculated value of Delta=%f\n", BMatrix[7 * n]);

}

tBmat = clock();

ExecTime = tBmat - tDmat;

fprintf(t, "B Matrix=%f\n", ExecTime);

// calculation for stifness matrix for each member

float *KMatrix;

KMatrix = (float *)malloc(NumberOfElement * 36 * sizeof(float));

//Allocation of Memory on GPU

size = NumberOfElement * 36 * sizeof(float);

float *KMatrixGPU;

cudaMalloc(&KMatrixGPU, size);

k4 << <NumberOfElement, 1 >> >(KMatrixGPU, BMatrixGPU, DMatrixGPU,Thickness);

cudaMemcpy(KMatrix, KMatrixGPU, size, cudaMemcpyDeviceToHost);

for (int i = 0; i < NumberOfElement; i++)

{

//fprintf(temp, "\n\nFinal K matrix for Element=%d\n", i);

APPENDIX D. FINITE ELEMENT 163

for (int l = 0; l < 6; l++)

{

for (int k = 0; k < 6; k++)

{

//fprintf(temp, "%.2f\t", KMatrix[l * 6 + k + i * 36]);

}

//fprintf(temp, "\n");

}

}

tKmat = clock();

ExecTime = tKmat - tBmat;

fprintf(t, "K Matrix=%f\n", ExecTime);

// Assemble stiffness matrix

//here logic is update Global stiffness matrix based on it’s node value

float *GlobalKMatrix;

//GlobalKMatrix = (float *)malloc(NumberOfNode * 4*(PartX+3) * sizeof(float));

GlobalKMatrix = (float *)malloc(NumberOfNode * 4 * NumberOfNode * sizeof(float));

//fprintf(temp, "\nGlobal Matix initialization to zero\n");

fprintf(out, "\n\n------Assemble of K Matrix----------");

//initialize Global Matrix to zero

for (int i = 0; i < NumberOfNode * 2; i++)

{

//fprintf(temp, "%d\t", i);

for (int j = 0; j < NumberOfNode * 2; j++)

{

GlobalKMatrix[i*(NumberOfNode * 2) + j] = 0;

APPENDIX D. FINITE ELEMENT 164

//fprintf(temp, "%0.2f\t", GlobalKMatrix[i*(PartX + 3) * 2 + j]);

}

//fprintf(temp,"\n");

}

//array to store row and col ID

int RID[6] = { 0 };

int ii, jj, kk;

int index = 0;

for (int i = 0; i < NumberOfElement; i++)

{

if (i % 2 == 0)

{

ii = DataNode[i * 3];

jj = DataNode[i * 3 + 2];

kk = DataNode[i * 3 + 1];

}

else

{

ii = DataNode[i * 3];

jj = DataNode[i * 3 + 1];

kk = DataNode[i * 3 + 2];

}

RID[0] = ii * 2 - 2;

APPENDIX D. FINITE ELEMENT 165

RID[1] = ii * 2 - 1;

RID[2] = jj * 2 - 2;

RID[3] = jj * 2 - 1;

RID[4] = kk * 2 - 2;

RID[5] = kk * 2 - 1;

for (int j = 0; j < 6; j++)

{

for (int k = j; k < 6; k++)

{

//For Half Band

//index = RID[j] * (PartX + 3) * 2 + RID[k] - RID[j];;

//GlobalKMatrix[index] = GlobalKMatrix[index]+ KMatrix[i * 36 + j * 6 + k];

index = RID[j] * (NumberOfNode)* 2 + RID[k];

GlobalKMatrix[index] = GlobalKMatrix[index] + KMatrix[i * 36 + j * 6 + k];

}

}

}

fprintf(temp, "\n\n------Assemble of Global Matrix----------\n");

//initialize Global Matrix to zero

for (int i = 0; i < NumberOfNode * 2; i++)

{

fprintf(temp, "%d\t", i);

for (int j = 0; j < NumberOfNode * 2; j++)

APPENDIX D. FINITE ELEMENT 166

{

fprintf(temp, "%0.2f\t", GlobalKMatrix[i*(NumberOfNode)* 2 + j]);

}

fprintf(temp, "\n");

}

//apply Boundry conditions

//Node for Fixed suport

int *BC;

BC = (int *)malloc((PartY + 1) * sizeof(float));

BC[0] = 1;

for (int i = 0; i < PartY; i++)

{

BC[i + 1] = BC[i] + PartX + 1;

}

//fprintf(temp, "\nBoundry conditions");

for (int i = 0; i < PartY + 1; i++)

{

// fprintf(temp,"\nBC[%d]=%d",i,BC[i]);

}

//Calculate Row ID for Global Matrix

int *RowBC;

RowBC = (int *)malloc((PartY + 1) * 2 * sizeof(float));

for (int i = 0; i < PartY + 1; i++)

{

RowBC[2 * i] = BC[i] * 2 - 2;

APPENDIX D. FINITE ELEMENT 167

RowBC[2 * i + 1] = BC[i] * 2 - 1;

}

//fprintf(temp, "\nBoundry conditions Row Index");

for (int i = 0; i < PartY + 1; i++)

{

//fprintf(temp, "\nRowBC[%d]=%d\nRowBC[%d]=%d", i * 2, RowBC[i * 2], i * 2+1, RowBC[i * 2+1]);

}

//Store global matrix to halfBand

float *HBMatrix;

//GlobalKMatrix = (float *)malloc(NumberOfNode * 4*(PartX+3) * sizeof(float));

int HBsize = (NumberOfNode - (PartY + 1)) * 2 + 1;

HBMatrix = (float *)malloc(HBsize * (2 * (PartX + 3) + 1) * sizeof(float));

fprintf(temp, "\n\n-----------Half Band Initialization-------------\n");

//initialize Global Matrix to zero

for (int i = 1; i < HBsize; i++)

{

fprintf(temp, "%d\t", i);

for (int j = 1; j <= (PartX + 3) * 2; j++)

{

HBMatrix[i*(PartX + 3) * 2 + j] = 0;

fprintf(temp, "%0.2f\t", HBMatrix[i*(PartX + 3) * 2 + j]);

}

fprintf(temp, "\n");

}

APPENDIX D. FINITE ELEMENT 168

//Store HB Matrix after applying BC

int HBrow = 1;

int HBcol = 1;

int bid = 0;

int cid = 0;

for (int i = 0; i < NumberOfNode * 2; i++)

{

if (i != RowBC[bid])

{

HBcol = 1;

cid = bid;

for (int j = i; j < NumberOfNode * 2; j++)

{

if (j != RowBC[cid])

{

HBMatrix[HBrow*(PartX + 3) * 2 + HBcol] = GlobalKMatrix[i * (NumberOfNode)* 2 + j];

HBcol = HBcol + 1;

}

else

{

cid = cid + 1;

if (cid == (PartY + 1) * 2)

{

cid = cid - 1;

}

APPENDIX D. FINITE ELEMENT 169

}

}

HBrow = HBrow + 1;

}

else

{

bid = bid + 1;

}

}

fprintf(temp, "\n\n-----------Final Half Band -------------\n");

//initialize Global Matrix to zero

for (int i = 1; i < HBsize; i++)

{

fprintf(temp, "%d\t", i);

for (int j = 1; j <= (PartX + 3) * 2; j++)

{

fprintf(temp, "%0.2f\t", HBMatrix[i*(PartX + 3) * 2 + j]);

}

fprintf(temp, "\n");

}

APPENDIX D. FINITE ELEMENT 170

tHB = clock();

ExecTime = tHB - tKmat;

fprintf(t, "GLobal=%f\n", ExecTime);

//Calculation of Force Vector

float *ForceVector;

ForceVector = (float *)malloc((HBsize + 1)* sizeof(float));

//Allocation of Memory on GPU

size = (HBsize + 1)* sizeof(float);

float *ForceVectorGPU;

cudaMalloc(&ForceVectorGPU, size);

k5 << <HBsize+1, 1 >> >(ForceVectorGPU, NumberOfNode,PointLoad);

cudaMemcpy(ForceVector, ForceVectorGPU, size, cudaMemcpyDeviceToHost);

ForceVector[HBsize - 1] = PointLoad;

fprintf(temp, "\nForce Vector\n");

for (int i = 1; i < HBsize; i++)

{

// fprintf(temp, "\n%d\t%f\t%f", i + 1, ForceVector[i * 2], ForceVector[i * 2 + 1]);

}

ForceVector[HBsize - 1] = PointLoad;

//calculation to find displacement vector

int BandWidth = (PartX + 3) * 2;

band(HBMatrix, ForceVector, HBsize - 1, BandWidth);

APPENDIX D. FINITE ELEMENT 171

fprintf(temp, "\nsolution Vector\n");

for (int i = 1; i <HBsize; i++)

{

fprintf(temp, "\n%d\t%f", i, ForceVector[i]);

}

fprintf(temp, "\nDisplacement Vector\n");

bid = 0;

for (int i = 0; i <NumberOfNode * 2; i++)

{

if (i == RowBC[bid])

{

fprintf(temp, "\n%d\t0", i);

bid = bid + 1;

}

else

{

fprintf(temp, "\n%d\t%f", i, ForceVector[i - bid + 1]);

}

}

tdis = clock();

//ExecTime = tdis - tForce;

//fprintf(t, "Disp=%f\n", ExecTime);

ExecTime = tdis - tinput;

fprintf(t, "Total=%f\n", ExecTime);

fclose(in);

fclose(out);

APPENDIX D. FINITE ELEMENT 172

return 0;

}

void band(float *HBMatrix, float *ForceVector, int NN, int MM)

{

//triangularise and reduce right hand side

int NL, NM, MR, N, L, K, i, j;

float BN, C;

NL = NN - MM + 1;

NM = NN - 1;

MR = MM;

for (int N = 1; N <= NM; N++)

{

if (HBMatrix[N*(MM)+1] == 0)

{

fprintf(out, "ZERO OR NEGATIVE ELEMENT ON MAIN DIAGONAL OF \n");

fprintf(in, "TRIANGULARIZED MATRIX FOR EQUATION %d ", N);

}

BN = ForceVector[N];

ForceVector[N] = BN / HBMatrix[N*MM + 1];

if (N>NL)

MR = NN - N + 1;

for (int L = 2; L <= MR; L++)

{

if (HBMatrix[N*MM + L] == 0)

continue;

C = HBMatrix[N*MM + L] / HBMatrix[N*MM + 1];

i = N + L - 1;

j = 0;

APPENDIX D. FINITE ELEMENT 173

for (int K = L; K <= MR; K++)

{

j = j + 1;

HBMatrix[i*MM + j] = HBMatrix[i*MM + j] - C*HBMatrix[N*MM + K];

}

ForceVector[i] = ForceVector[i] - C*BN;

HBMatrix[N*MM + L] = C;

}

}

//Back Substitute

i = NN;

ForceVector[NN] = ForceVector[NN] / HBMatrix[NN*MM + 1];

for (int N = 1; N <= NM; N++)

{

i = i - 1;

if (N<MM)

MR = N + 1;

for (int j = 2; j <= MR; j++)

{

K = i + j - 1;

ForceVector[i] = ForceVector[i] - HBMatrix[i*MM + j] * ForceVector[K];

}

}

}

Appendix E

List of Paper

Published/Communicated

a. Application of Graphics processing unit for parallel processing in structural engi-

neering, 7th National civil engineering student symposium(Aakaar 2015),Indian

Institute of Technology Bombay,Mumbai.

174

References

[1] Amdahls law: Wikipedia -http://en.wikipedia.org/wiki/amdahlslaw.

[2] Classes of parallel computer wikipedia -http://en.wikipedia.org/wiki/classesparallelcomputers.

[3] Parallel computing :wikipedia -http://en.wikipedia.org/wiki/parallelcomputing.

[4] Top 500 systems - top 500-http://www.top500.org/featured/top-systems.

[5] Types of parallelization:wikipedia -http://en.wikipedia.org/wiki/parallelization.

[6] A.Lamecki A.Dziekonski, P.Sypek and M.Mrozowski. Finite element matrix gen-

eration on gpu. Progress In Electromagnetics Research,, 128:249–265, May 2012.

[7] T. Bahcecioclu and O. Kurc. Nonlinear dynamic finite element analysis withgpu.

In 14th International Conference on Computing in Civil and Building Engineer-

ing. International Society for Computing in Civil and Building Engineering, June

2012.

[8] JunKu Lee Getao Liang David D. Jenkins Gregory D. Peterson Depeng Yang,

Junqing Sun and Husheng Li. Performance comparison of cholesky decompo-

sition on gpus and fpgas. Department of Electrical Engineering and Computer

Science ,University of Tennessee.

[9] Chaojiang Fu. Parallel computing for finite element structural analysis on work-

station cluster. IEEE, 2008.

175

REFERENCES 176

[10] Baidurya Bhattacharya Girish Sharma, Abhishek Agrawala. A fast parallel gauss

jordan algorithm for matrix inversion using cuda. Computers and Structures,

128:31–37, September 2013. Elsevier.

[11] Jerome F. HAJJARl and John F. ABEL. Parallel processing of nonlinear dy-

namic analysis of steel frame structures using domain decomposition. In Tokyo-

Kyoto, editor, Proceedings of Ninth World Conference on Earth.quake Engineer-

ing, volume V. JAPAN, August 1988.

[12] Rajat Mittal Hang Liu, Jung-Hee Seo and H. Howie Huang. Gpu-accelerated

scalable solver for banded linear systems. IEEE, 2013.

[13] Neil G. Dickson Kamran Karimi and Firas Hamze. A performance comparison

of cuda and opencl. Master’s thesis, ARXIV Cornell University, 2008.

[14] Vishnukanthan Kandasamy. Parallel fem simulation using gpus. Institute for

Computing in Engineering,Ruhr University, 2011.

[15] Filip Kruzel and Krzysztof Banas. Vectorized opencl implementation of numer-

ical integration for higher order finite elements. Elesevier, August 2013.

[16] Guoxin Zhang Zhaosong Ma Lixiang Wang, Shihai Li and Lei Zhang. A gpu based

parallel procedure for non-linear analysis of complex structure using coupled

fem/dem approach. Mathematical Problems in Engineering, page 15, September

2013. Hindawi Publishing Corporation.

[17] Konark Patel. Application of parallel processing in structural engineering. Mas-

ter’s thesis, Nirma University, May 2013.

[18] Alexey Lastovetsky Ravi Reddy and Pedro Alonso. Parallel solvers for dense

linear systems for heterogeneous computational clusters. IEEE, 2009.

[19] Jason Sanders. Cuda By Example, An Introduction to General-Purpose GPU

Programming. Addison Wesley, 1 edition, july 2010.

REFERENCES 177

[20] S.F.McGinn and R.E.Shaw. Parallel gaussian elimination using openmp and

mpi. IEEE, 2002.

[21] Yuan Sen Yang Shang Hsien Hsieh and Po Yao Hsu. Integration of general

sparse matrix and parallel computing technologies for large-scale structural anal-

ysis. Computer-Aided Civil and Infrastructure Engineering, pages 423–438, 2002.

BlackwellPublishing.

[22] E D Sotelino. Parallel processing techniques in structural engineering application.

Journal of Structural Engineering, 129(12):1698–1706, December 2003. ASCE.

[23] N. Chavannes T.P.Stefanski, S. Benkler and N. Kuster. Parallel implementation

of the finite-difference timedomain method in open computing language. IEEE,

2010.

[24] N. Balakrishnan V. Mani, B. Dattaguru and T.S. Ramamurthy. Parallel gassian

elimnation for banded matrix - a computational model. IEEE, 1990.

[25] Jian-She Wang and Nathan Ida. Parallel algorithms for direct solution of large

systems of equations. IEEE, 1988.

[26] Wang Chengguo Xiao Qian and GuoGe. The research of parallel computing for

large-scale finite element model of wheeilrail rolling contact. IEEE, 2010.

[27] Pu Chen Zuogui Ning Xuanhua Fan, Rui-an Wu and Jian Li. Parallel computing

of large eigenvalue problems for engineering structures. IEEE, 2011.

[28] Ibrahim Guven Erdogan Madenci Yoon Kah Leow, Ali Akoglu. High performance

linear equation solver using nvidia gpus. University of Arizona.

[29] Qinghai Miao Zhihui Zhang and Ying Wang. Cuda-based jacobis iterative

method. IEEE, 2009.

	Declaration
	Certificate
	Abstract
	Acknowledgement
	Abbreviations
	Contents
	List of Figures
	List of Tables
	Introduction to parallel computing
	General
	Introduction
	Background of Parallel Processing
	Amdahlâ•Žs law

	Types of Parallelization
	Bit-Level parallelism
	Instruction level parallelism
	Task parallelism

	Hardware
	Memory and communication
	Classes of parallel computers

	Objective of study
	Scope of Work
	Organization of Report

	Literature Survey
	General
	Introduction of parallel computing
	Comparison between CUDA and OpenCL
	Algorithm for parallel Processing
	Application of parallel processing
	Sumary

	Introduction to GPU Computing
	General
	Background of GPU Computing
	Central Processing Units

	The Rise of GPU computing
	Brief History of GPUs
	Early GPU computing

	Introduction to CUDA
	CUDA Architecture
	General
	CUDA Architecture
	Use of the CUDA architecture

	Execution of Program on GPU
	Programming Concepts
	Heterogeneous computing
	Kernels
	Blocks
	Threads
	Indexing
	Memory management

	Languages Supported by NVIDIA CUDA
	Applications Accelerated using CUDA
	 Development Environment for CUDA C
	Example : Matrix Multiplication
	General
	Algorithm
	Code
	Results

	Summary

	Gaussian Elimination
	General
	Algorithm of Gaussian Elimination
	Storage
	Formation of Upper Triangular Matrix

	Sequential Program
	Generation of Upper Triangular Matrix
	Back Substitution

	Parallel Program
	Generation of Upper Triangular Matrix
	Back Substitution

	Results
	Summary

	Half Band Matrix
	General
	Algorithm of Half Band Solver
	Storage of Half Band Matrix
	Formation of Upper Triangular matrix in Half Band Format

	Sequential Program
	Generation of Upper triangular Matrix
	Back Substitution

	Parallel Program
	Generation of Upper triangular matrix
	Back Substitution

	Results
	Comparison of Gaussian Elimination and Half Band Program

	Summary

	Finite Element Analysis Using Parallel Programming
	General
	Algorithm
	Problem details
	Flow of program

	Results
	Summary

	Summary and Conclusion
	Summary
	Conclusion
	Future Scope of Work

	Matrix Multiplication
	Sequential Program
	Parallel Program

	Gauss Elimination
	Sequential Program
	Parallel Program

	Half Band
	Sequential Program
	Parallel Program

	Finite Element
	Sequential Program
	Parallel Program

	List of Paper Published/Communicated
	References

