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Abstract

The opportunistic spectrum access based on cognitive radio (CR) plays an important

role to improve spectral efficiency in wireless communications. To utilize the spectrum

efficiently, many spectrum sensing schemes have been proposed in the literature of

cognitive radio. For a quick detection of primary user (PU), CR should perform

the sensing task at lower number of received observations. In addition to this, the

detection performance also depends upon channel conditions and transmitted PU

signal. Some sensing schemes have assumed that information of PU and channel

state information is known a priori. However, in actual practice, it is difficult to have

this a priori information. Therefore, detection of null hypothesis (absence of PU),

using goodness of fit (GoF) based non-parametric scheme, is of interest wherein no

information about PU and channel is required at CR. In this thesis, we focus on GoF

based sensing for achieving better detection performance at lower number of received

observations, false alarm probability and signal to noise ratio (SNR).

In the category of non-parametric sensing, energy detection (ED) based sensing

is the simplest one for spectrum sensing due to its low complexity. To improve the

performance of ED sensing, antenna diversity is used. However, the assumption of

having perfect information about distribution of noise at CR becomes very crucial

at the low SNR of the PU signal. In case of having imperfect variance of noise, the

performance of the ED degrades drastically and results in SNR wall. Therefore, it is

of interest to develop a non-parametric sensing algorithm, which gives better perfor-

mance at low SNR with less number of observations and false alarm probabilities.

Recently, some GoF based sensing schemes have been proposed in the category

of non-parametric sensing. In this kind of sensing, empirical cumulative distribu-

tion function (ECDF) is determined from the received observations, denoted by Fn.

This ECDF is compared with known CDF of noise (F0) or we test the null hypothesis
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(Fn=F0). The deviation of ECDF from the known CDF of noise (F0) decides presence

or absence of PU. The methods based on this concept are called as Goodness of Fit

(GoF) based non-parametric sensing methods. The prevailing methods are Ander-

son Darling (AD) sensing, Kolmogorov-Smirnov (KS) sensing, Student-t sensing and

Order statistics (OS) based sensing. These methods have used all observations to de-

termine the ECDF. However, the distance of the CDF and ECDF is higher especially

at the right tail, even at null hypothesis, due to less number of observations. This

results in degradation of the performance, especially, at low SNR. To alleviate this

problem, in this thesis, a concept of Type-II right censoring is used. In this approach,

we drop some observations in the right tail and determine the statistics using retained

observations. We call it as Censored Anderson Darling (CAD) sensing scheme. This

proposed CAD scheme makes receiver simple and also outperforms the ED sensing

and OS sensing at lower values of SNR in receiver operating characteristics (ROC).

Further, we have assumed imperfect value of variance of noise in CAD sensing, called

as Blind-CAD (B-CAD), and shown the performance.

The above-mentioned GoF sensing schemes have assumed PU as a constant

signal. However, the performance of AD sensing with different PU signals such as

independent and identically distributed (i.i.d) Gaussian and single frequency sine sig-

nals is degraded. Hence, we propose a Likelihood Ratio Statistics (LRS-G2) sensing

based on a likelihood ratio statistic (G2) using robust normality test, which outper-

forms all the prevailing GoF based sensing along with ED in various scenarios such

as different structures of PU, different channel conditions and unknown variance of

noise.

Till now, the background noise or thermal noise is modelled using Gaussian dis-

tribution. However, in radio channel, it may be non-Gaussian noise (NGN) due to

a mixture of man-made and natural electromagnetic sources. Unfortunately, sensing

schemes, designed for additive Gaussian noise, do not perform well in NGN envi-

ronment. Therefore, we assume narrow band interference as NGN at CR which is

modelled using Middleton Class-A interference model. The proposed LRS-G2 sensing

is also used assuming this Middleton Class-A NGN environment and we show that

the effect of Gaussian noise in ROC is worst compared to non-Gaussian noise.
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Chapter 1

Introduction

In the last couple of years, the wireless networks have been the fastest growing indus-

try in the filed of telecommunications. A large number of users are trying to connect

seamlessly with one another via several applications with mobile devices. With ever

increasing demand of bandwidth and limited onboard resources, the existing wireless

services are struggling to provide higher data rate, Quality of Service (QoS), ubiqui-

tous connectivity, higher speed, machine intelligence, scalability etc. These are the

major requirements to meet the future wireless networks like Machine-to-Machine

communication and Internet of Things (IoT), where we expect in the order of 106 de-

vices may share the resources (Wu et al.). The constraints for fulfilling the demands

are spectrum and power.

While transmission power may be limited for some wireless systems, the spec-

trum is even more limited, and is in fact becoming a scarce resource. With the

rapid progress in wireless communication services, the majority of spectrum has al-

ready been licensed or designated for some special applications. The fixed amount of

spectrum is not a feasible option for growing number of wireless applications. This

shortage of spectrum becomes a severe bottleneck for the development of emerging

wireless systems.

In the recent report (FCC White Report), the Federal Communication Commis-

sion (FCC) published that the majority of the spectrum, which has been licensed,

remains under-utilized i.e. majority of the spectrum resource has not been used at

all the time in all the places. Recently, in India also, the spectrum measurement

campaign has been initiated and actual spectrum occupancy in UHF band of 470

1



CHAPTER 1. INTRODUCTION 2

MHz to 590 MHz has been measured, and the similar trend is reported (Naik et

al.). Therefore, optimum utilization of spectrum becomes a thrust area in research

community.

An unused portion of frequency band of primary users (licensed users) is called

spectrum hole (Tandra, Mishra, and Sahai). One of the possible ways to exploit the

spectrum hole is via opportunistic spectrum access (OSA). It allows cognitive radio

users (CR) or unlicensed users to reuse the spectrum which is generally licensed to

primary users. However, the priority of the primary users for the spectrum must

be observed to avoid the interference. The OSA calls for new radio technology for

the CR. Simultaneously, a new radio concept, cognitive radio, was proposed based

on Software Defined Radio (SDR) (Mitola). The CR supports the idea of OSA to

resolve the problem of spectrum under utilization.

The basic idea of CR is for the radio to have cognition capability, to learn

from the environment and adapt its transmissions from the environment (Haykin).

To support OSA, the CR has to conduct spectrum sensing to locate spectrum hole.

Furthermore, it chooses the available frequency band to use automatically, especially

from the licensed users. In this way, CR can enhance the utilization of spectrum and

give solution for spectrum scarcity for future wireless communications. However, to

maintain priority of PU, i.e. least interference to PU, is a challenging task. This

motivates us to work on spectrum sensing algorithms in the field of CR.

1.1 Motivation

The cognitive radio user (CR) has to detect the unused channels of primary user (PU)

and initiate the communication between CR in licensed band without creating inter-

ference to PU. This operation is called as spectrum sensing (Haykin). The spectrum

sensing function is suffered by multipath fading, receiver uncertainty, interference etc.

Therefore, design of a spectrum sensing algorithm for future wireless communications

is a challenging problem in research community. In last couple of years, many efforts

are initiated by researches to provide spectrum access in opportunistic way. There are

different local spectrum sensing techniques such as cyclo-stationary detection, feature

detection, matched filtering etc (Akyildiz et al.)(Yucek and Arslan)(Axell et al.).

All the spectrum sensing techniques can be classified in two categories: para-
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metric and non-parametric sensing. In the parametric methods, certain parameters of

PU are assumed to be known at the CR terminal. However, inaccurate assumptions

of the known parameters lead towards degradation in detection performance. Hence,

non-parametric spectrum sensing is matter of interest, where no information about

PU is assumed but statistics of background noise is assumed to be known. In this

category, Energy Detection (ED) (Urkowitz) (Digham, Alouini, and Simon) (Chen)

is the simplest method. However, when there is in accurate information of statistics

of noise, ED is susceptible to low signal-to-noise ratio (SNR). The detection perfor-

mance of ED degrades significantly under noise uncertainty conditions (Tandra and

Sahai) and introduces SNR wall.

Recently, some goodness of fit (GoF) based sensing schemes have been proposed

in the category of non-parametric sensing. In this kind of sensing, empirical cumu-

lative distribution function (ECDF) is determined using the received observations,

denoted by Fn. This ECDF is compared with known cumulative distribution func-

tion (CDF) of noise (F0) or we test the null hypothesis (Fn=F0). The deviation of

ECDF from the known CDF of noise (F0) decides presence or absence of PU. The

methods, based on this concept, are called as GoF based sensing.

The GoF based different prevailing sensing schemes are Anderson Darling sensing

(Wang et al.), two sample Kolmogorov-Smirnov (KS) sensing (Zhang et al.), one

sample KS sensing (Arshad, Briggs, and Moessner), sensing based on Jarque-Bera test

(Lu, Wu, and Iyengar), Cramer-von-Misses sensing (Kieu-Xuan and Koo), Student t-

sensing (Arshad and Moessner), Higher Order statistics (Denkovski, Atanasovski, and

Gavrilovska) and Order statistics based sensing (Rostami, Arshad, and Moessner).

All these GoF based sensing methods outperform ED sensing methods considering

additive background noise as white Gaussian. The focus of this thesis is GoF based

non-parametric sensing.

In summary, based on the survey on GoF, following are identified as the key

motivations.

(a) In determination of ECDF, the received observations of higher amplitudes are

very few. These observations may be avoided which reduces complexity of the

detection algorithms.
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(b) The prevailing GoF based sensing methods perform well in Additive White Gaus-

sian Noise (AWGN) or quasi-static channels. It is of interest to observe the

performance of these methods in the real time scenario of time varying channels.

(c) The prevailing GoF based sensing schemes assume PU signal as a constant. How-

ever, in the real time scenario, it may be random or deterministic as a single tone

sine signal.

(d) In practice, high detection probabilities are expected for lower number of re-

ceived observations (n), i.e. for less sensing time. The prevailing GoF based

sensing methods have obtained higher detection performance with the range of

n = 103 to n = 106. As per the time bandwidth product, the sensing time will

be higher in such conditions. Hence, achieving higher detection performance at

lower observations in the range of n = 14 to n = 50 is a matter of interest.

(e) The majority of the sensing schemes have chosen the value of false alarm proba-

bility (Pf ) as 0.1 based on TV white space standard IEEE 802.22. This value of

Pf shows upper maximum limit. In actual practice, it should be low enough to

reduce the false detection of PU and reducing the total error at CR. Hence, it is

of the interest to develop non-parametric sensing scheme which works under the

lower range of false alarm probabilities of 10−3 to 0.05.

(f) Generally, for mathematical tractability, the gaussian noise with known variance

is considered under H0. In actual practice, noise variance is not known a priori.

Hence, complete blind detection scheme, i.e unknown PU signal as well as noise

variance also, is more realistic approach to detect PU at CR.

(g) The noise due to different sources (man-made noise, co-channel interference, mi-

crowave oven etc) and environmental pertubances gives impulsive characteristics.

Hence, to consider Gaussian noise (thermal noise or background noise) under H0

is not sufficient. Under the non-Gaussian noise environment, the performance of

GoF based sensing is also of interest.
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1.2 Thesis Contributions

In this thesis, the major contributions are:

First, to alleviate the problem of utilizing all observations at cognitive radio user

(CR), a novel non-parametric sensing scheme based on the concept of Type-II right

censoring (Lawless) is proposed. In this approach, we drop some observations in

the right tail and determine the statistics using retained observations. We call it as

Censored Anderson Darling (CAD) sensing scheme. This proposed CAD scheme is

evaluated under AWGN channel, quasi-static channel and time varying channel using

first order autoregressive model (AR).

Second, to make sensing operation realistic, we have assumed that the noise variance

is unknown under H0. With the imperfect value of the variance in CAD sensing, a

new scheme is proposed called as Blind-CAD (B-CAD). We have presented the com-

parative performance with other non-parametric schemes such as Blind AD sensing

and ED sensing.

Third, the existing GoF based sensing schemes give better detection performance

with the assumption of constant PU signal. However, for different PU signals such

as independent and identically distributed (i.i.d) Gaussian and single frequency sine

signals, ED sensing outperforms the GoF sensing schemes. Hence, we develop a

novel scheme called as Likelihood Ratio Statistic (LRS-G2) sensing based on a robust

normality test for the gaussian noise environment. The proposed scheme outperforms

all the prevailing GoF based sensing along with ED in various scenarios such as

different structures of PU, different channel conditions and unknown variance of noise.

Fourth, till now, the background noise or thermal noise is modeled using Gaussian

distribution. However, in radio channel, the actual noise may be non-Gaussian noise

(NGN) due to a mixture of man-made and natural electromagnetic sources. Unfortu-

nately, sensing schemes, designed for additive Gaussian noise, do not perform well in

NGN environment. Therefore, we assume Middleton Class-A noise model under H0 as

NGN at the CR. The proposed LRS-G2 sensing is evaluated under NGN assumption.
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1.3 Organizations of the Thesis

This thesis is organized and structured as follows:

Chapter 2 gives the overview spectrum sensing schemes in cognitive radio, fo-

cussing on non-parametric sensing schemes. This chapter describes the basics of

goodness of fit technique to formulate the problem of primary user detection using

null hypothesis testing (H0).

Chapter 3 proposes a novel Censored AD (CAD) spectrum sensing scheme in the

non-parametric category. The concept of Type-II right censoring is introduced to

develop the proposed scheme. The detection performance of the proposed scheme

is evaluated in different channel conditions such as AWGN, quasi-static and time

varying channel which is modeled using autoregressive process.

Chapter 4 evaluates the performance of CAD sensing algorithm assuming noise

uncertainty conditions. This blind detection scheme is proposed using student-t dis-

tribution. The performance of this Blind CAD (B-CAD) scheme is compared with

the existing Blind-AD and Energy detection scheme.

Chapter 5 proposes robust LRS-G2 sensing scheme assuming different types of PU

signals and fading channels. The detection performance is presented and compared

with prevailing GoF based sensing taking low false alarm probability and less number

of received observations at CR.

Chapter 6 investigates the performance of LRS-G2 sensing scheme in non-gaussian

noise (NGN) environment. This NGN environment is modelled using Middleton

Class-A model. Under such assumption, the detection performance is evaluated with

approximate analysis and simulation both. Furthermore, the effect of different pa-

rameters in Middleton Class-A model such as Gaussian to non-Gaussian ratio (Γ)

and impulsive index (A) on the detection probabilities are presented.

Chapter 7 concludes the thesis with summary of contributions and suggests rec-

ommendations for the further research. Also, some challenges are discussed.



Chapter 2

Literature Survey

Due to transition from voice-only communications to multimedia type applications,

demand of higher data rates is increasing day by day. However, due to limitations

of the natural frequency spectrum, the current static frequency allocation schemes

can not accommodate the requirements of an increasing number of higher data rate

devices. Therefore, we need to device some innovative techniques to exploit the

available spectrum efficiently. One of the techniques is Cognitive Radio (Mitola). It

is a new promising technology focussed to reduce the problem of spectrum scarcity

in wireless communications. The unlicensed users or cognitive radio users (CR) are

allowed to access the unused spectrum of licensed users or primary users (PU). These

frequency bands are assigned such that they does not affect the quality of service

(QoS) of the licensed network (Haykin).

The research in cognitive radio has been encouraged by the measurements of

the Federal Communications Commission (FCC), which have revealed that there is a

significant amount of licensed spectrum which remains largely under utilized in vast

temporal and geographic dimensions. For instance, a field spectrum measurement

results, taken in New York city, has shown that the maximum total spectrum occu-

pancy is only 13.1% for 30 MHz to 3 GHz. Recently, measurement of TV white space

in the 470-590 MHz band, carried out across India, (Naik et al.) has shown similar

results. Due to under utilization of the licensed spectrum all over the world, the

FCC has recently issued Notice of Proposed rule making regarding cognitive radio

that requires rethinking of the wireless communication architectures so that emerging

radios can share spectrum with PUs without causing harmful interference to them

7
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(FCC White Report). The FCC has also allowed the access of unlicensed users to the

broadcast television spectrum at locations where that spectrum is not being used by

licensed services.

The key element of cognitive radio is the spectrum sensing. Spectrum sensing

methods are classified by two ways, parametric and non-parametric. The focus of this

thesis is on non-parametric sensing. In this chapter, a spectrum sensing problem as

a binary hypothesis testing is presented. We also present survey of some parametric

and non-parametric sensing methods. In the non-parametric sensing methods, we

present GoF based sensing, where a spectrum sensing problem is considered as a null

hypothesis testing. Finally, we define some problem statements of our interest.

2.1 Binary Hypothesis Testing

In cognitive radio networks, one important function of the cognitive users (CR) is to

detect the presence of primary users utilizing the channel, and to access the channel

in such a way that it causes a little performance degradation to the primary users.

Designing fast and accurate spectrum sensing algorithm is a challenging task. In

general, spectrum sensing is a problem of detection theory, which is considered as a

binary hypothesis testing for the following hypotheses:

H0 : There is only noise.

H1 : There is a signal transmitting. (2.1)

After collecting some samples, a statistic y can be calculated for each sensing method,

and compared with some threshold to make a decision.

The algorithms for spectrum sensing seek to balance the conflicting goals of min-

imizing interference to the PU while maximizing the throughput of the CR. Therefore,

performance of a sensing algorithm is typically characterized in terms of the proba-

bility of detection Pd, i.e. to sense the existence of the PU and the probability of false

alarm Pf , i.e. falsely declaring that the PU is active and thus missing a spectrum

opportunity.

The probability of false alarm is defined as

Pf = P{y > λ|H0} (2.2)



CHAPTER 2. LITERATURE SURVEY 9

and the probability of detection as

Pd = P{y > λ|H1} (2.3)

Thus, Pf is related to the throughput of the cognitive radio system, while Pm is

related to the interference to the primary system, where Pm = 1 − Pd is probability

of miss detection. The tradeoff between Pd and Pf is a crucial task. The plot of

probability of detection (Pd) against probability of false alarm (Pf ) is called Receiver

Operating Characteristic (ROC) curve.

2.2 Parametric Spectrum Sensing

In parametric sensing method, the CR uses some available information of PU in the

detection. Some parameters of the transmitted signal are known a priori at CR.

Under this category many spectrum sensing schemes are proposed. Few of them

are discussed in brief such as Matched filtering based detection, Feature detection,

Wavelet based detection and Waveform-Based Sensing. The exhaustive survey on

spectrum sensing has been presented in (Yucek and Arslan), (Zeng et al.), (Wang

and Liu), (Axell et al.) and (Lu et al.).

2.2.1 Matched Filter based Detection

This is an optimum sensing scheme (Proakis). It is derived based on the correlation

with the received signal. A matched filter based detection (MFD) gives the maximum

detection performance. However, it has very strict assumption that the transmitted

PU signal must be known a priori at the CR. In actual practice, the PU signal is not

known. The MFD maximize the output SNR in the presence of background noise.

This sensing scheme can be applicable only in the scenario where the PU signal is

known completely.

The major advantage of the MFD is that the highest detection probabilities

can be achieved at lower false alarm probability and reduced sensing time. On the

other hand, the drawback is that the MFD can be implemented for the particularly

one PU signal only. Hence, multiple radios should be implemented to accommodate

more number of PU signals which increases the complexity. In addition to this, MFD

requires perfect synchronization. The detection performance of MFD is also severely
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degraded due to errors in received pilot frames or preambles due to the time varying

wireless channel.

In digital video broadcasting for terrestrial operations (DVB-T), the pilot based

MFD has been proposed in (Lv et al.). It is exclusively designed for the PU signal

as the DVB-T signal. Furthermore, the entropy based MFD has been proposed in

(Nagaraj), where the MFD output in the form of estimated entropy is compared with

the threshold.

2.2.2 Waveform Based Detection

In the transmitted PU signals, some known patterns are transmitted for the syn-

chronization purpose. The known patterns may be spreading sequences, midambles,

preambles, pilot patterns etc. Such sequences are effectively utilized in current GSM

and CDMA wireless networks. Hence, sensing can be done by correlating the received

PU signal with a known copy of the pattern as proposed in (Tang). The waveform

based sensing scheme can be applicable only when, the CR knows signal patterns

of transmitted signal a priori. Therefore, it is also called as coherent sensing. The

transmitted signal is deteriorated by the multipath fading, so the signal patterns also

become erroneous. In such scenario, the detection performance of coherent sensing

degrades quickly due to synchronization error at the CR. Let us consider,

H0 : xj = nj

H1 : xj = sj + nj, (2.4)

where j = 1, 2, ..., N and sj are samples of known pattern of PU and nj are sample

of noise signal. Using waveform based sensing or coherent sensing, decision statistics

y can be expressed as

y = Re

[
N∑
j=1

xjs
∗
j

]
, (2.5)

where (∗) denotes conjugate operation. In the absence of the PU i.e. under H0, the

statistics will be

y = Re

[
N∑
j=1

njs
∗
j

]
, (2.6)
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In the presence of the PU i.e. under H1, the statistics will be

y =
N∑
j=1

|sj|2+Re

[
N∑
j=1

njs
∗
j

]
, (2.7)

The decision on the presence of a primary user signal can be made by comparing the

decision metric y against a fixed threshold λ.

The waveform based sensing outperforms ED in the context of reliability and

convergence time (Tang). Furthermore, as discussed in (Cabric, Tkachenko, and

Brodersen), the waveform based sensing needs lower sensing time to detect PU signal.

It is also shown that the higher detection performance can be achieved as the length of

the known signal pattern increases. In (Geirhofer, Tong, and Sadler), the preambles

of IEEE 802.11b are utilized for analyzing the performance of WLAN.

2.2.3 Feature Detection

The feature detector is also known as cyclostationary feature detector (CFD) . The

CFD utilizes the cyclostationary feature of the transmitted PU signals. The statis-

tical properties of PU signal such as mean and autocorrelation changes with time

which helps to design efficient sensing algorithm. It can be realized using cyclic au-

tocorrelation function (CAF) of the received PU signal. The fourier series expansion

of CAF gives the cyclic spectrum density (CSD) . The CSD generates spikes, when

the PU signal is present. It generally happens when the cyclic frequency (carrier

frequency or symbol or chip code) and fundamental frequency of the transmitted PU

signal matches. In the presence of noise signal, no spikes are generated due to non

cyclostationary behaviour of noise signal. Hence, based on the CSD, a CFD decides

the presence or absence of PU signal.

The main advantage of CFD is that it can distinguish the noise and transmitted

PU signal at very low SNR i.e a weak signal can be detected using CFD. However,

the PU signals are required to be oversampled with respect to the symbol rate or

the chip rate to use the periodicity features of the CFD. Hence, the computational

complexity of such detectors is always high.

An optimum multicycle spectral correlation based feature detector has been

proposed in (Gardner). This detector requires phase information of the PU signal in

advance. The CFD based on cyclic frequencies is presented in (Gardner and Spooner).
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The CFDs for CDMA signal in DVB-T and universal mobile telecommunication sys-

tem (UMTS) signal have been proposed in (Goh, Lei, and Chin) and (Marques,

Bastos, and Gameiro) respectively. The CFD for cognitive radio application has been

proposed in (Sutton, Nolan, and Doyle).

2.2.4 Wavelet Based Detection

Wavelet transform is a multi-resolution analysis, where an input signal is decomposed

into different frequency components, and then each component is studied with reso-

lutions matched to its scales. The wavelet transform uses irregularly shaped wavelets

as basic functions and thus represents sharp changes and local features. For signal

detection over wide-band channels, the wavelet approach offers advantages in terms

of both implementation cost and flexibility in adapting the dynamic spectrum, as

opposed to the conventional use of multiple narrow-band bandpass filters.

A Wavelet based detection (WBD) is a filter bank approach for spectrum sensing

is proposed in (Tian1 and Giannakis). The input signal has to passed through a bank

of filters. The output power of the each filter is measured as an estimate of the

spectral power over the associated sub-band. The accurate temporal and frequency

analysis can be done with high and low frequency components of wavelets respectively

as discussed in (Tian2 and Giannakis). The wavelet has good property for describing

the singularities which help in spectrum sensing. It is specially helpful for detecting

sharp band edges in OFDM signals.

2.3 Non-parametric Spectrum Sensing

In case of non-parametric sensing methods, CR does not use any information of PU

in detection. The various non-parametric spectrum sensing schemes are discussed

in this section. First, we discuss Energy Detection (ED) (Urkowitz) based sensing.

Then, we consider spectrum sensing as Null hypothesis testing problem, which is

known as Goodness of Fit (GoF) based sensing. Few of them are Anderson Darling

sensing (Wang et al.), Kolmogorov-Smirnov sensing (Arshad and Moessner), Order

statistics based sensing (Rostami, Arshad, and Moessner), Cramer-von-Misses sensing

(Kieu-Xuan and Koo) and Jarque-Bera sensing (Lu, Wu, and Iyengar).
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2.3.1 Energy Detection

The energy detector (ED) is one of the most commonly employed spectrum sensing

schemes, since it does not require any prior knowledge about the structure of the PU

signal as proposed in (Urkowitz) and (Digham, Alouini, and Simon). In ED, non-

coherent detection method is used in which the energy of the received signal is used

to determine the presence of primary signals. Energy detection is essentially based on

the difference between the energy of the transmitted signal and that of the interfering

noise. The energy of the samples is compared with predefined threshold (λ). If the

energy exceeds the threshold, we say that PU is present otherwise it is absent. For

the AWGN channel, let the received symbols are represented as (Urkowitz),

xj =
√
γasj + nj, j = 1, 2, ..., n (2.8)

where sj is jth BPSK symbol of PU and sj ∈ {−1, 1}, received at the CR terminal.

In (2.8), γa indicates average SNR of a symbol and nj represents real AWGN i.e.

n ∼ N (0, 1). For energy detection, we have the test statistics,

y =
n∑

j=1

x2
j (2.9)

Here, y is the decision variable. If y > λ, the PU signal is present and y ≤ λ, the

PU signal is absent. For a given hypothesis H0, y is a central chi-square distributed

variable with n degrees of freedom, and the probability density function

p
Y |H0(y|H0) =

yn/2−1e−y/2

2n/2Γ(N/2)
, y ≥ 0, (2.10)

where Γ(·) is the gamma function. Now,

Pf = P{y > λ|H0}

=

∫ ∞

λ

p
Y |H0(y|H0)dy

= 1− Γ(n/2, λ/2), (2.11)

where Γ(a, x) is incomplete gamma function. For a given hypothesis H1, the distri-

bution of y follows a non-central chi-square distribution with n degrees of freedom

and the probability density function

p
Y |H1(y|H1) =

1

2

(
y

γc

)n−2
4

e−(y+γc)/2In/2−1(
√
yγc) (2.12)
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Now,

Pd = P{y > λ|H1}

=

∫ ∞

λ

p
Y |H1(y|H1)dy

= QN/2(
√
Nγa,

√
λ), (2.13)

where QN (a, b) is the generalized Marcum Q-function.

Although the energy detection approach can be implemented without any prior

knowledge of the PU signal, it has poor performance under low SNR conditions. This

is because the noise variance is not accurately known at the low SNR and the noise

uncertainty may render the energy detection useless. Furthermore, Energy detector is

unable to differentiate the interference from other CR users sharing the same channel

and the PU.

2.3.2 Goodness of Fit based Sensing

The performance of the ED is degraded at low SNR or in the presence of imperfect

information of noise variance. Now, we discuss about other type of non-parametric

sensing, in which spectrum sensing problem is considered as null hypothesis testing

instead of binary hypothesis testing (Wang et al.).

In Null hypothesis testing based sensing, the detection of PU signal is done based

on the known CDF of noise and the empirical CDF (ECDF) of received observations.

If the deviation between them is higher than a specific threshold, we declare PU is

present otherwise PU is absent. Detailed procedure for this GoF based sensing is as

follows.

Let Y = {Yi}ni=1, represents n real valued observations available at the CR. The

Y1, Y2 · · ·Yn are received samples drawn from the noise distribution in the absence of

the PU signal. We assume that noise samples are independent with known cumulative

distribution function CDF F0(y). If PU signal is present, then the CDF of the received

observations (i.e. ECDF) is deviated from the CDF of noise. Thus, the presence or

absence of PU is equivalent to test the null hypothesis (H0),

H0 : Y is an i.i.d sequence drawn with distribution F0(y) (2.14)

It is important to note that no information about the PU signal is required a priori.
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Let FY (y) be the empirical distribution of the received observations Y , which

can be determined as

FY (y) = |{i : Yi ≤ y, 1 ≤ I ≤ n}|/n (2.15)

Where, |· · · | shows cardinality. When the PU signal is not present, the FY (y) con-

verges to F0(y) with unity probability as n approaches infinity. On the other hand,

in the presence of PU signal, the FY (y) deviates from F0(y) and we reject the null hy-

pothesis (H0). To measure the distance between the FY (y) and to F0(y), various null

hypothesis tests called as goodness of fit (GoF) test such as Anderson Darling test,

Kolmogorov-Smirnov test, Order statistics, Cramer-von-Misses test and Jarque-Bera

test have been proposed in the literature.

Anderson-Darling Sensing

The Anderson-Darling (AD) sensing has been proposed in (Wang et al.) for the

AWGN channel. The AD test is conducted assuming PU signal as unity. The brief

procedure for detecting the PU signal is as given below:

The critical value (threshold), denoted by t, is determined at a desired Pf using

limited distribution given in (Anderson and Darling),

lim
n→∞

Pr(A
2
c < t|H0) =

√
2π

t

∞∑
j=0

aj(4j + 1) exp

⎛
⎝− (4j + 1)2π2

8t

⎞
⎠ (2.16)

×
∫ ∞

0

exp

⎛
⎝ t

8(w2 + 1)
− (4j + 1)2π2w2

8t

⎞
⎠dw

Where, aj = (−1)jΓ(j+0.5)
Γ(0.5)j!

and Γ denotes gamma function. It is observed that

computation of the threshold (t) from the (2.16) is not straightforward. Hence,

pre-defined statistical tables are utilised to get the value of threshold as given

in (Anderson and Darling).

Let Y be the n received observations, where Y = {Y1, Y2, ....Yn}. Without loss

of generality, we assume that all the observations are in ascending order, i.e

Y1 ≤ Y2 ≤ Y3.... ≤ Yn.
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The test statistic A2
c is computed as,

A2
c = n

∫ ∞

−∞
(FY (y)− F0(y))

2Φ(F0(y))dF0(y) (2.17)

= −
n∑

i=1

(2i− 1)(lnZi + ln(1− Zn+1−i))

n
− n,

where, Zi = F0(Yi) and Φ(F0(y)) represents the weighting function. The F0(y)

and FY (y) represent the CDF under hypothesis H0 and ECDF respectively. For

a special case of AWGN channel and, they may be defined as

F0(y) =
1√
2π

∫ y

−∞
e

−x2

2 dx (2.18)

and,

FY (y) =
1√
2π

∫ y

−∞
e

−(x−√
ρ)2

2 dx (2.19)

where ρ is received SNR.

Finally, compare AD Test statistics A2
c as defined in (2.17) with threshold (2.16).

Declare a PU is present if A2
c > t , otherwise declare PU is absent.

The AD sensing gives a higher detection performance as compared to ED sensing at

the low number of received observations with assumption of constant PU and AWGN

channel. However, for the different structure of PU signal such as Gaussian or single

tone sine signal, the performance of AD sensing is degraded compared to ED sensing

(Nguyen-Thanh, Kieu-Xuan, and Koo). Furthermore, the performance of AD sensing

has been presented, assuming wireless channels, in (Lei, Wang, and Shen).

Kolmogorov-Smirnov Sensing

The Kolmogorov-Smirnov (KS) sensing has been proposed in (Arshad, Briggs, and

Moessner) and (Arshad and Moessner), which is based on the KS test. The KS sensing

has been proposed for the rician fading environment and constant PU signal. The

decision process at CR is similar to AD sensing process. However, the KS statistic is

computed in different manner. If, out of n, the ith received observation is denoted by

yi, then KS statistic is defined as,

TKS = sup {|Fn(yi)− F0(yi)| : −∞ < yi < +∞, 1 ≤ i ≤ n} (2.20)

= max(D+, D−)
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where, D+ = maxi

{
i
n
− Z(i)

}
and D− = maxi

{
Z(i) − i−1

n

}
. The Zi = F (yi) is de-

fined using Probability Integral Transform (PIT) i.e computing CDF from the received

observations.

The threshold for KS sensing, i.e. λKS, for a given Pf can be calculated as,

Pf = 1− F (TKS|H0;λKS) (2.21)

The detection of PU is done at CR if the TKS > λKS, than Hypothesis H0 is

rejected or PU is present.

The above-mentioned test is considered as one sample test, where we determine

ECDF of noise. However, two samples KS test has been proposed (Zhang et al.),

where ECDF is computed for both noise and received signal. Here, KS sensing and

sequential KS sensing are used. This test is considered in 2× 2 MIMO system model

to evaluate the performance and compared with ED sensing (Digham, Alouini, and

Simon) and covariance based detection (Zeng and Liang2).

Order Statistic Sensing

The Order Statistic (OS) based sensing has been proposed in (Glen, Leemis, and

Barr),(Rostami, Arshad, and Moessner) for AWGN channel. Similar to AD and

KS sensing methods, the OS sensing is applicable to any noise distribution under

H0. However, the noise distribution should be known a priory. Furthermore, the

OS sensing is based on the quantiles of ordered observations in the distributions.

These quantiles are presented as ρ vector and used to compute the test statistic. The

extreme values in the ρ-vector indicates poor fit with the noise distribution under H0.

A brief overview of this sensing algorithm is discussed below:

Let y = [y1, y2, ..., yn] be received observations at CR terminal.

Based on the PIT elements (zi) of received observations yi are, zi = F0(yi) ,

i ∈ S, where z = [z1, z2, · · · , zn]T and S = 1, 2, 3 · · ·n.

Without loss of generality, we will assume that all the elements in z are in

ascending order, i.e. z1 ≤ z2 · · · ≤ zn.

The ρ-vector is computed as,

ρi = β(zi; i, n− i+ 1), i ∈ S, (2.22)
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where β(y;α, β) denotes beta CDF with α and β as shape parameters of the

distribution.

Without loss of generality, the authors (Rostami, Arshad, and Moessner) have

assumed that the elements in ρ are in ascending order, i.e the ρ is ρ = [ρ1, ρ2, ..., ρn]
T .

The test statistic τos is calculated according to the formula given below:

τos =
∑
i∈S

|ρi − i

(n+ 1)2
| (2.23)

The threshold (λos) in the detection rule is approximated as

λos = 2.599 + 0.8228n− 30.79PFA + 73.79P 2
FA − 49.08P 3

FA − 0.6466PFAn

(2.24)

Finally, compare OS Test statistic (τos) is compared with threshold λos. A PU

is declared present if τos > λos, otherwise PU is absent.

The OS sensing outperforms AD sensing and ED sensing both in AWGN channel and

lower number of observations.

Cramer-von-Mises sensing

The Cramer-von-Mises (CvM) sensing has been proposed in (Kieu-Xuan and Koo) for

AWGN channel. It is also a type of null hypothesis testing. It gives better detection

performance than ED sensing and KS sensing. However, the AD sensing outperforms

CvM sensing. In (Kieu-Xuan and Koo), lower bound on detection probability has

been derived.

Jarque-Bera Sensing

The first CR standard is defined for TV white space detection and it is IEEE 802.22.

In this standard, DTV signal should be detected effectively at required false alarm

probability. With this background, Jarque-Bera (JB) sensing has been proposed in

(Lu, Wu, and Iyengar). The PU signal is considered as DTV signal. The detection

performance is compared with the higher ordered statistics (HOS) based sensing as

proposed in (Denkovski, Atanasovski, and Gavrilovska). The JB sensing outperforms

HOS based sensing at low SNR regime.
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2.4 Conclusion

The spectrum sensing is a key element in cognitive radio technology. In this chapter,

we discuss mainly about two types of spectrum sensing techniques such as paramet-

ric and non-parametric sensing. In non-parametric sensing, we define the problem of

spectrum sensing as a null hypothesis testing, known as GoF based sensing. Further,

we present different GoF based sensing such as AD, KS, OS, CvM and JB sensing

methods. In the next chapter, we study AD sensing with an interest of less compu-

tational complexity by processing less number of observations. We call this scheme

as Censored AD sensing.



Chapter 3

CAD Sensing using Type-II Right

Censoring

In Goodness of Fit (GoF) based sensing, the detection problem is formulated as Null

hypothesis testing instead of binary hypothesis testing. In this case the CDF of noise

or CDF under null hypothesis (H0) is perfectly known at cognitive radio user (CR).

Based on the deviation of this CDF with the empirical CDF of received observations,

the presence or absence of PU is determined. The different GoF based sensing such

as AD, OS, CvM and KS sensing are discussed in Chapter 2.

All the above-mentioned GoF based sensing methods have used all observa-

tions to determine ECDF. However, the deviation of the CDF and ECDF is higher

especially at the right tail due to less number of observations. This incomplete infor-

mation of CDF on the right tail introduces an error in determining statistics in GoF

based sensing, especially at low SNR. To alleviate this problem, we have used the

concept of censored data which has already been used in survival analysis (Lawless).

In view of this, we drop some observations in the right tail, which carry incomplete

information of the CDF. Furthermore, we use less number of received observations

for processing in case of the proposed CAD sensing compared to the observations in

case of AD sensing (Wang et al.). This leads towards reduced processing cost after

censoring. In some applications such as wireless sensor network based on cognitive

radio, we can save energy of node (CR) by processing less number of observations. In

this chapter, we present receiver operating characteristics (ROC) of the CAD sensing

in AWGN and time varying channel, which is modelled by first order autoregressive

20
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(AR1) process.

3.1 System Model

Let y = [y1, y2, ..., yn]
T be the received signal vector at CR, where n denotes total

number of observations. We assume received observations are i.i.d real valued and

each yi is represented as,

yi =
√
ρhs+ wi, i = 1, 2, 3, · · · · · ·n, (3.1)

where s ∈ {0, 1}, ρ is the received SNR, h represents the channel fading coefficient,

which is assumed to be random variable with the standard normal distribution. We

also assume that the channel is quasi-static. In (3.1), wi, where 1 ≤ i ≤ n, denotes

Gaussian noise samples. In (3.1), s = 1 and 0 denote presence and absence of PU

respectively.

3.2 GoF Based Type-II Right Censoring

The GoF test is a statistical test for identifying the presence of certain distribu-

tion (D’Agostino). More specifically, all received observations are independent and

identically distributed (i.i.d) random variables with cumulative distribution function

(CDF), denoted by F . In this kind of sensing, the test of the null hypothesis (F =

F0) against the alternative hypothesis (F �= F0) has been done, where F0 is available

CDF of noise. For performing any GoF test, the empirical CDF (ECDF) is deter-

mined from the received observations. This ECDF is compared with the known CDF

(F0) under the null hypothesis. The distance of the ECDF from the CDF decides

whether PU is present or absent.

We assume that all n observations are in ascending order after applying sorting

operation. Without loss of generality, we assume that y1 ≤ y2 ≤ · · yn. Now, apply

the concept of censoring, first r observations are retained and the last n − r obser-

vations are dropped or censored as shown in Fig.3.1. Hence, yr is the highest valued

observation. This method of censoring n − r observations is known as Type-II right

censoring. (Lawless).

In this scenario, the problem of spectrum sensing as null hypothesis testing
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Figure 3.1: Number of received (n) and censored (n− r) observations

problem as GoF testing is defined as (Wang et al.),

H0 : FY (y) = F0(y)

H1 : FY (y) �= F0(y) (3.2)

where F0(y) is known a priori.

For the proposed scheme, called as CAD sensing , the modified Cramer-von Mises

GoF statistic is used to measure distance between FY (y) and F0(y). Let Fn(y) be the

Empirical Cumulative Distribution Function (ECDF) of the received observations y,

which can be expressed as

Fn(y) =
|{i : yi ≤ y, 1 ≤ i ≤ n}|

n
, (3.3)

where |· · · | indicates cardinality.
In this case, based on the asymptotic distribution of censored observations,

statistic can be expressed as (Pettitt and Stephens),

q,pA
2
n = n

∫ p

q

(Fn(y)− F0(y))
2

F0(y)(1− F0(y))
dF0(y), 0 ≤ q < p ≤ 1, (3.4)

where p denotes censoring ratio which can be expressed as

p = lim
n→∞

r

n
.

Here, we take q = 0 for single censoring i.e Type-II right censoring. The same

statistic can be written as,

pA
2
n = n

∫ p

0

(Fn(y)− F0(y))
2

F0(y)(1− F0(y))
dF0(y) (3.5)

The above quadratic statistics pA
2
n can be solved using integration by parts and

approximated as (Pettitt and Stephens),

pA
2
n = − 1

n

r∑
i=1

(2i− 1)(lnzi − ln(1− zi))− 2
r∑

i=1

ln(1− zi)

− 1

n
[(r − n)2ln(1− zr)− r2lnzr + n2zr], (3.6)
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where zi = F0(yi).

Based on censored observations, H0 is rejected when pA
2
n > λ, where λ is the

value of threshold. The λ is selected such that the false alarm probability (Pf ) under

H0 is at a desired level α ,

α = P{ pA
2
n > λ|H0} (3.7)

To find λ, it is worth to mention that the distribution of pA
2
n under H0 is inde-

pendent of the F0(y). To observe this, apply probability integration transform (PIT)

for available observations. Hence,

pA
2
n = n

∫ 1

0

(Fz(z)− z)2

z(1− z)
dz, (3.8)

where z = F0(y) and Fz(z) denotes ECDF of zi. Here, zi = F0(yi) for 1 ≤ i ≤ r.

All statistics of observations up to zr are independent and uniformly distributed

over [0, p], where p ∈ [0, 1]. As shown in (Wang et al.) for AD sensing, the distribution

of A2
n is independent of the F0(y). The same is also true for the distribution of pA

2
n.

As given in (D’Agostino) (Pettitt and Stephens), the value of λ is determined for a

specific value of Pf and censoring ratio p. For example, when Pf = 0.05 and p = 0.4,

the value of λ is 1.133.

3.3 CAD Sensing Algorithm in Time-varying Chan-

nel using AR-1 Model

In the literature of GoF based sensing, the detection performance of spectrum sensing

algorithms has been shown assuming Additive White Gaussian (AWGN) or quasi-

static channel. Here, we consider time-varying channel, which is modelled by first

order AR process (Gomadam and Jafar). Using Monte Carlo simulations, the re-

ceiver operating characteristics (ROC) is presented for different time-varying channel

conditions.

3.3.1 Modified System Model

Let us consider a communication link in a time varying and flat fading channels,

characterized by a first ordered autoregressive (AR1) model (Gomadam and Jafar)

hi = ahi−1 +
√
1− a2vi, (3.9)
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where hi ∼ N (0, 1) and vi denotes independent and identically distributed (i.i.d) as

Gaussian with mean zero and variance one. In (3.9), a indicates correlation coefficient

where 0 ≤ a ≤ 1. Here a = 1 and a = 0 denote quasi-static and independent channel

respectively. The value of a will be determined using Jake’s autocorrelation function

(Gomadam and Jafar). At cognitive radio user (CR), the received observations xi,

for 1 ≤ i ≤ N , are real valued and represented as,

yi =
√
ρshi + wi, i = 1, 2, 3, · · · · · ·n, (3.10)

where s ∈ {0, 1}, ρ is the received SNR and additive noise wi, for 1 ≤ i ≤ n, are the

samples from standard Gaussian probability distribution function. In (3.10), s = 1

and 0 denote presence and absence of PU respectively.

3.3.2 CAD Sensing Algorithm

Let us summarize, the above discussion in the following steps for CAD sensing algo-

rithm:

Step:1 Find the threshold λ for a given probability of false alarm Pf using (3.7).

Step:2 Sort the received observations in ascending order. Without loss of gener-

ality, we assume that the received observations are in ascending order.

y1 ≤ y2 ≤ ·· ≤ yr ≤ yr+1 ≤ ·· ≤ yn,

where yr+1 ≤ yr+2 · · ≤ yn observations are censored.

Step:3 Calculate the required test statistic pA
2
n for the observations y1 ≤ y2 ≤ ·· ≤ yr

as defined in (3.6).

Step:4 If pA
2
n > λ, then reject null hypothesis H0 and decide PU is present.

Step:5 Compute performance metric as Probability of Detection (Pd) with a given

value of Pf .
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Figure 3.2: ROC for CAD sensing with n = 20 at SNR = −2dB in quasi-static channel

3.4 Performance Results

In this section, we have shown the performance of the CAD sensing algorithm with

receiver operating characteristics (ROC) using simulations for quasi static channel.

The ROC curves are obtained for different values of observations (n), censoring ratio

(p) and SNR (ρ). We have also presented ROC for ED and OS sensing algorithms

with quasi static channel, time varying channel using AR1 and compared them with

the proposed one.

Fig. 3.2 shows ROC for CAD sensing for different values of p such as 0.2, 0.4,

0.6 and 0.8, and fixed value of n as 20 with an SNR of -2dB. It can be seen that

Pd increases with p for a fixed value of Pf . It is expected because higher number of

observations improves the detection probability.

Fig. 3.3 shows ROC for CAD sensing at SNR of −6dB in AWGN and quasi-

static channels. We have taken r = 12 and n = 20. It can be seen that higher

detection performance is observed in AWGN channel compared to quasi-static fading

channel. As we can see from (3.6) that the test statistic (pA
2
n) depends on empirical

CDF (Fn(y)). In case of AWGN, the distance between empirical CDF and CDF
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Figure 3.3: ROC for CAD sensing with n = 20 and r = 12 at SNR = −6dB and p =

0.6.

(F0) under H0 is higher in presence of PU. However, it is varying in case of fading

environment. As a result, the improved detection performance in AWGN channel

compared to fading channel is expected as shown in Fig. 3.3.

Fig. 3.4 shows ROC for CAD sensing in fading channel for n = 40, r = 24

and SNR of −5dB. We have also presented ROC for ED and OS sensing algorithms

for n = 40. It can be seen that the CAD sensing outperforms ED and OS sensing.

The detection probabilities are 0.6134, 0.4 and 0.361 for CAD, ED and OS sensing

respectively for Pf = 0.05. It is to be noted that OS sensing outperforms ED and

AD sensing in AWGN channel (Rostami, Arshad, and Moessner). However, in the

considered fading channel, the performance of OS sensing is degraded drastically.

For OS sensing (Glen, Leemis, and Barr), in case of AWGN channel and in the

presence of PU (i.e. alternate hypothesis), the elements of transformation vector (β)

have less amount of variation and most of the elements are extremely high i.e. greater

than 0.99. This shows poor fit with the CDF in Null hypothesis. As a result, it leads

towards high detection probability. However, in the absence of primary users (i.e.
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Figure 3.4: ROC for CAD sensing with n = 40 and r = 24 at SNR = −5dB, p = 0.6

and Pf = 0.05 in quasi-static channel.

Null hypothesis), the elements of β vector have more amount of variation and no

extreme value is observed in all the elements. This shows good fit with the CDF in

Null hypothesis. Using this fact, (Rostami, Arshad, and Moessner) has shown that

the OS sensing outperforms AD and ED sensing in AWGN channel. However, in case

of quasi-static fading channel, the fading coefficient (h) may take any real value. Due

to inclusion of this in the received observations, the elements of β do not follow the

above mentioned trends in both the hypotheses. This leads towards degradation in

the detection performance.

In, Fig. 3.5, we have shown Pd versus SNR for Pf = 0.05, n = 40 and p = 0.6

for CAD sensing. As SNR increases, Pd increases as per expectation. We have also

presented performance of ED and OS sensing methods in the same figure. We can

see that Pd = 0.1412, 0.26 and 0.4157 for ED, OS and CAD respectively at SNR

of −8dB. It can be seen that CAD sensing has almost 6dB gain over ED sensing

with Pd = 0.8344. We can see significant improvement in Pd compared to OS sensing

especially at higher SNR. Thus, the CAD sensing outperforms ED and OS sensing
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Figure 3.5: Pd vs SNR for Pf = 0.05, n = 40 and p = 0.6 in quasi-static channel.

for the whole range of SNR from −10dB to 10dB.

Now, further the performance of the proposed CAD sensing algorithm is shown

in time varying channel which is model using AR1. Fig. 3.6 shows the impact of

time varying nature of the channel on ROC of the proposed scheme at −2dB of SNR

using different values of correlation coefficient (a) such as 0, 0.9, 0.95, 0.99, 1 taking

n = 20 and r = 12. It means 12 observations are used for the detection of PU to

identify its presence or absence. It can be seen that Pd is improved as the value of a

increases towards unity. It means the performance is degraded when channel is fast

time varying instead of slow time varying.

Fig. 3.7 shows Pd versus SNR for Pf = 0.05 for the same values of n, r and a.

As SNR increases, Pd increases as per expectation. From the results shown in Fig.

3.6 and Fig. 3.7, we can say that CAD sensing improves Pd, when the channel is

quasi-static (a = 1). However, as the value of a decreases, the performance degrades.

It should be noted that in the considered CAD sensing, test statistic and threshold

are dependent upon variance of noise only, not on the signal or channel component.

The ROC of the proposed CAD sensing is compared with the existing GoF based
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Figure 3.6: ROC for CAD sensing with n = 20 and r = 12 in time-varying channel.
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Figure 3.8: ROC for a = 0.99, n = 20 at SNR = −5dB in time-varying channel.
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Figure 3.9: Pd vs SNR for a = 0.99 and n = 20 in time-varying channel.
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sensing schemes as shown in Fig. 3.8. We have considered the time-varying channel

which is modeled using AR1 model. We take a = 0.99, n = 20, SNR = −5dB and

r = 12 (for CAD sensing only). It can be seen from the graph that CAD sensing

outperforms the other two methods in the whole range of Pf . For Pf = 0.05, Pd

in CAD sensing is 0.5247 whereas for ED and OS sensing it is 0.3641 and 0.2809

respectively.

Fig. 3.9, shows Pd versus SNR for AD, ED and OS based sensing in the consid-

ered time-varying channel and compared them with the proposed CAD sensing for

Pf = 0.05, n = 20, a = 0.99 and p = 0.6. To present fair comparison with the CAD

sensing, the AD sensing is considered without censoring. The Pd = 0.88, 0.867, 0.81

and 0.48 are achieved for AD, CAD, ED and OS sensing respectively at SNR of 8dB.

Thus, similar trend in Pd can be seen over here for a wide range of SNR.

From Fig. 3.9, it can be seen that the AD sensing has improved detection than

CAD sensing. However, CAD sensing uses lower number of observations (r = 12) for

achieving almost same detection performance as obtained for AD sensing at n = 20.

So, the CAD sensing helps for saving the processing energy of secondary user and

reducing the computational complexity too. The OS based sensing performs poorly

in comparison with CAD and ED sensing methods. However, OS sensing outperforms

in the AWGN channel only (Rostami, Arshad, and Moessner).

3.5 Conclusion

In this chapter, the problem of spectrum sensing is presented as null hypothesis testing

problem for censored observations called CAD sensing under quasi-static channel.

Also, the time varying channel is considered which is modelled using AR1 process.

The ROC is presented for the CAD sensing and compared with ED and OS sensing

methods. The CAD sensing method outperforms ED and OS sensing methods. In

this chapter, we have assumed known variance of noise. However, in a real time

scenario, it may not be known perfectly. In the next chapter, we will show the effect

of noise uncertainty on the performance of CAD sensing.



Chapter 4

Blind CAD Sensing With Noise

Uncertainty

The censoring based scheme is proposed in the last chapter. However, the CAD

sensing has an assumption that the noise variance is known a priori under the null

hypothesis. However, in actual practice due to noise uncertainty the variance is not

known. The most realistic conditions at CR are unknown PU signal and the noise

variance too. In this chapter, we present a CAD sensing method with assumptions of

unknown noise variance, called as Blind-CAD (B-CAD) sensing. For developing the

blind sensing scheme, we have used the Student-t distribution test initially proposed

by (Shen et al.). The detection performance is shown in flat fading channel. The

proposed B-CAD scheme is compared with AD Sensing (Wang et al.), Blind AD

sensing (Shen et al.) and Energy detection (ED) (Digham, Alouini, and Simon).

4.1 System Model

Let y = [y1, y2, ..., yn]
T be the received observations at CR. where n denotes total

number of observations. We assume received observations are i.i.d real valued and

each yi is represented as,

yi =
√
ρhs+ wi, i = 1, 2, 3, · · · · · ·n, (4.1)

where s ∈ {0, 1}, ρ is the received SNR, h represents the fading coefficient, which

is assumed to be random variable with the standard normal distribution. We also

assume that the channel is quasi-static. In (4.1), wi, where 1 ≤ i ≤ n, denotes noise

32
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samples with mean 0 and variance σ2, where σ2 is unknown. In (4.1), s = 1 and 0

denote presence and absence of PU respectively.

4.2 Student-t Distribution Test

The problem of unknown noise variance due to noise uncertainty using Student-t

distribution is addressed by (Shen et al.). We have used the same for the CAD

sensing based on the Type-II right censoring. The Student-t distribution is generally

used for the testing of the normality under null hypothesis specially in the conditions

where the standard deviation is not known a priori. The probability distribution

function of the noise in H0 is denoted by the Student-t distribution as

T (m− 1, t) =
Γ(m

2
)√

π(m− 1)

(
1 +

t2

m− 1

)−m
2

(4.2)

where Γ(·) is the Gamma function of m − 1 degree and m is factor of total received

observations (n). Hence, the cumulative distribution function (CDF) is denoted by

F0,m(y),

F0,m(y) =

∫ y

−∞
T (m− 1, t)dt (4.3)

The (4.3) represents CDF of noise samples in H0. It indicates that the spectrum

sensing problem is now formulated as testing whether the received observations are

derived independently from the Student-t distributions or not. It is important to note

that as compared to AD test this GoF sensing problem is different. In the case of AD

sensing, the variance must be specified a priori. However, the null hypothesis testing

using Student-t distribution is an independent of the noise variance.

4.3 B-CAD Sensing Algorithm

In this section, the Blind CAD (B-CAD) sensing scheme is presented, where uncer-

tainty in the noise variance is assumed as used in (Shen et al.). In (Shen et al.),

the spectrum sensing problem as Student-t distribution testing problem has been

considered. The summary of the modified algorithm (B-CAD) is as follows:

Select an integer m > 1, where m is a factor of n. In addition to this, the group

is obtained by dividing the samples Y = {yi}ni=1 into g = n
m

groups. Hence, the

m presents the number of received observations per group. For example if n =
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32 total received observations then using m = 2, number of groups are eight

and each group contains four observations.

For the jth group (j = 1, 2, 3 · · · · · · , g), calculate Tj,

Tj =
Yj

Sj/
√
m
, j = 1, 2 · · · , g (4.4)

where Yj is mean and S2
j is variance of the received observations in the jth group

as (Gosset),

Yj =
m−1∑
k=0

Ymj−k

m
(4.5)

S2
j =

m−1∑
k=0

(Ymj−k − Yj)
2

m− 1
(4.6)

In (4.4), Tj follows the Student-t distribution.

Select the threshold λ corresponding to probability of false alarm Pf as α

α = P{ pA
2
n > λ|H0}, (4.7)

where pA
2
n represents the modified AD test statistics shown in (Pettitt and

Stephens).

Without loss of generality, we assume that the received observations are in as-

cending order and then apply Type-II right censoring on {Tj}gj=1 with individual

groups, we get

T1 ≤ T2 ≤ ·· ≤ Tr ≤ Tr+1 ≤ ·· ≤ Tg,

where Tr+1 ≤ Tr+2 · · ≤ Tg observations under respective groups are censored.

Calculate the required test statistic pA
2
n for the individual group observations,

T1 ≤ T2 ≤ ·· ≤ Tr as defined in (4.4). In continuation with test statistics,

take the decision if pA
2
n < λ, then failed to reject null hypothesis H0 i.e If

Yj ∼ N(0, σ2), then Tj is Student-t distributed with m− 1 degree as defined in

(Lenth). It shows the absence of PU.
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Figure 4.1: Pd vs SNR for Pf = 0.05 and p = 0.8 in quasi-static channel.

Finally, compute the performance metric as Probability of Detection (Pd) with

a fixed value of Pf as defined in (4.7). The Probability of Detection (Pd) is

defined as,

Pd = P{ pA
2
n > λ|H1} (4.8)

4.4 Performance Results

In this section, we present performance of the Blind CAD method using prob-

ability of detection (Pd) versus SNR (ρ) for different values of received ob-

servations (n), Student-t parameter (m), censoring ratio (p) and false alarm

probability (Pf ). We also present performance of Blind AD sensing (assuming

unknown variance of noise) and ED sensing for comparison.

Fig. 4.1 shows Pd versus SNR for the proposed Blind CAD sensing for n = 30,

Pf = 0.05, m = 2 and SNR = 7dB. Performance of Blind AD sensing and ED

sensing is also presented. In ED sensing, noise variance is known. The value of

Pd = 0.8389 for Blind AD sensing. The similar detection performance of Pd =
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Figure 4.2: Pd vs SNR for Pf = 0.05 and p = 0.8 in quasi-static channel.

0.8316 is obtained using B-CAD sensing at r = 24, Pf = 0.05 and SNR = 7dB.

Further, it can be seen that the Blind CAD sensing outperforms ED sensing

with a gain of 4dB at Pd = 0.8.

Fig. 4.2 shows Pd versus SNR for the proposed Blind CAD sensing for n = 40,

r = 32, Pf = 0.05, m = 4 and SNR = 7dB. Similar trend can be seen in this

figure also. It can be shown from Fig. 4.1 and Fig. 4.2, B-CAD sensing has

almost 3dB gain over ED sensing with known noise power and reduced signal

processing cost at SU.

4.5 Conclusion

In this chapter, we have used Blind CAD scheme assuming unknown variance

of Gaussian noise. This noise has been modelled by Student-t distribution with

parameter m. We observed that B-CAD sensing has a gain in SNR of 4dB over

ED sensing at Pd = 0.8 and Pf = 0.05. In the next chapter, we will propose a

new GoF based sensing scheme using Likelihood Ratio Statistics.



Chapter 5

LRS-G2 Sensing Based on

Likelihood Ratio Test

In the Chapters 3 and 4, the objectives were to reduce the processing cost and

obtain the similar detection performance at reduced number of observations

during the decision process at CR. Now, continuing with the same objective of

having less number of received observations and less probability of false alarm

with higher detection probability, we propose a new robust GoF based sensing

using likelihood ratio statistics (LRS-G2) and use three different statistics, called

Za, Zk and Zc. We show performance of the proposed LRS-G2 sensing assuming

AWGN, quasi-static and time varying channel, modelled by AR1 process using

simulations. Further, we have considered three different forms of PU such as

constant, i.i.d. Gaussian and single tone sine wave. We have also considered

blind LRS-G2 assuming unknown noise variance and shown the performance.

Finally, we have presented performance of prevailing GoF based sensing schemes

and shown that the proposed one outperforms all the schemes. This is a robust

sensing scheme as its performance does not depend much on the structure of

channel or primary user. Further, this GoF based sensing scheme does not

depend much on the variance of noise. So, its blind version also gives better

performance compared to prevailing GoF based sensing schemes.

37
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5.1 Introduction

The Chi-Square (χ2) test has been proposed by (Pearson). This χ2 test was

then known as χ2 goodness of fit (GoF) test (Plackett). The χ2 test gives higher

statistical power when the number of observations are high enough. However,

the χ2 statistics in (Pearson) gives constant values for the lower number of

observations. Hence, it is difficult to take a decision on the null hypothesis.

This fact has been described in (Cochran) and references therein. To solve such

problems, the likelihood ratio statistics (G2) based null hypothesis test has been

proposed by (Cressie and Read). The authors have used the power divergence

statistic to propose the GoF test for the multinomial distributions.

Based on G2 test, using parameterization approach, (Zhang) have proposed

the powerful GoF test which provides higher statistical power in comparison

with traditional GoF tests such as Anderson-Darling (AD) test, Kolmogorov-

Smirnov (KS) test and Cramer-von-Mises (CvM) test. The new likelihood ratio

statistics (LRS) have been derived based on G2 test, called as Za, Zk and Zc.

These statistics give the highest statical power at the low number of observa-

tions. In addition to this, the same authors, (Zhang and Wu) have proposed

an omnibus normality GoF test using LRS for the Gaussian distribution under

null hypotheses.

In this chapter, we propose a novel GoF based non-parametric sensing scheme

using likelihood ratio statistics (LRS-G2). The first non-parametric sensing

scheme under GoF based sensing is AD sensing (Wang et al.). The AD sensing

method outperforms the ED sensing assuming the AWGN channel and constant

PU signal. However, (Nguyen-Thanh, Kieu-Xuan, and Koo) has investigated

the performance of AD sensing with different PU signals such as independent

and identically distributed (i.i.d) Gaussian and single frequency sine signals.

Under both these PU signals, ED sensing outperforms the AD sensing. Hence,

we will show that the proposed LRS-G2 scheme outperforms ED sensing, when

PU is modelled by i.i.d. Gaussian and single frequency sine signals. Further-

more, the test is also applied, assuming different types of channels such as addi-

tive white Gaussian noise (AWGN) and quasi-static channels. In all these cases,
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the proposed scheme outperforms the prevailing GoF based sensing schemes.

The assumption of known variance of noise in GoF based scheme as well as

in ED scheme is very crucial. We have seen that it degrades the performance

significantly. In (Shen et al.), blind AD sensing scheme has been proposed in

quasi-static channel with constant PU signal. This blind AD scheme does not

require any information about the variance of noise. This blind AD outperforms

ED sensing significantly. Our proposed scheme, without having knowledge of

variance of noise, called as Blind LRS-G2, outperforms Blind AD and ED based

sensing methods.

All GoF based sensing schemes have been used assuming AWGN or quasi-static

channel. However, in a practical scenario, the channel is time-varying. Hence,

it is of interest to evaluate the performance of the GoF sensing scheme in a

time-varying channel. We have shown the performance of the proposed scheme

assuming a time-varying channel which is modelled by first order autoregressive

(AR1) process. The proposed scheme shows significant improvement in the

performance compared to AD and ED sensing in these conditions also.

5.2 System Model

Let y = [y1, y2, ..., yn]
T be a vector of n observations of PU, received at CR,

where n ≥ 1. We assume that all the received observations are real as considered

in (Wang et al.), (Rostami, Arshad, and Moessner), (Shen et al.), and each yi

is represented as,

yi =
√
ρhisi + wi, i = 1, 2, 3, · · · · · ·n, (5.1)

where ρ is the received SNR, hi represents the channel coefficient. In (5.1),

wi ∼ N (0, σ2), where 1 ≤ i ≤ n, denotes samples of gaussian noise and si

denotes symbol of PU, which can be assumed as constant one or i.i.d. Gaussian

as si ∼ N (0, 1) or single frequency sine signal as defined in (Nguyen-Thanh,

Kieu-Xuan, and Koo). The CDF of wi is denoted by F0(w). The PU signal

as a single carrier frequency (fc) in the discrete version of sine signal can be
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represented as,

si =
√
2sin

(
2π

k
i+ θ

)
, (5.2)

where θ is an initial phase and k = fs
fc

is the ratio of the sampling frequency

(fs) to the carrier frequency (fc). The value of k is assumed to be six. Without

loss of generality, we assume that all n observations are in ascending order. It

means y1 ≤ y2 ≤ ·· ≤ yn.

We assume three different models for channel coefficient hi.

– AWGN channel: In this case, hi is assumed to be one and noise distribution

is Gaussian with mean zero and variance σ2.

– quasi-static channel: In this case, hi ∼ N (0, 1), however it remains con-

stant during a block of n symbols.

– Time-varying channel: In this case, hi ∼ N (0, 1), however it varies with

time in a block of n symbols. This channel is generated using first ordered

autoregressive (AR1) process,

hi = ahi−1 +
√
1− a2vi, 0 ≤ a ≤ 1 (5.3)

where vi denotes i.i.d as Gaussian with mean zero and variance one. In

(5.3), a indicates correlation coefficient between consecutive symbols i.e.

a = E[h∗
i−1hi], where E[·] represents expectation operator. Here, a = 1

and a = 0 denote a constant (quasi-static fading) channel and an inde-

pendent channel respectively. The value of a is determined using Jake’s

autocorrelation function (Jakes and Cox) as a = J0(2πfdTs), where fd and

Ts denote doppler frequency in Hz and symbol time in seconds respectively.

5.3 Robust Likelihood Goodness of Fit tests

In GoF based sensing, we test the received observations, whether they are

drawn from null hypothesis (H0) or not. We assume that the CDF of

Gaussian noise under H0 is known and denoted by F0(t), where t repre-

sents any continuous random variable. In literature, null hypothesis testing

algorithms are classified in two ways, Pearson’s Chi-squared test and em-

pirical distribution function (EDF) test. The AD, KS and CvM tests are
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under the category of EDF tests. In (Cressie and Read), authors have

proposed a new hypothesis test based on power divergence statistics for

null-hypothesis testing as,

2nIλ =
2n

λ(λ+ 1)

⎧⎪⎨
⎪⎩Fn(t)

[
Fn(t)

F0(t)

]λ
+ [1− Fn(t)]

[
1− Fn(t)

1− F0(t)

]λ
− 1

⎫⎪⎬
⎪⎭ (5.4)

where, λ represents a parameter for selection of goodness of fit test, n and

Fn(t) denote number of received observations and empirical CDF respec-

tively.

By selecting λ = 1, (5.4) reduces to Pearson’s Chi-squared test statistics

(X2) as,

X2 =
n[Fn(t)− F0(t)]

2

F0(t)[1− F0(t)]
(5.5)

and λ = 0, (5.4) reduces to Likelihood Ratio Statistics (LRS) as,

G2 = 2n

{
Fn(t)log

Fn(t)

F0(t)
+ [1− Fn(t)]log

1− Fn(t)

1− F0(t)

}
(5.6)

5.3.1 Traditional GoF Tests From the Pearson’s Chi-

squared Statistics

In (Zhang and Wu), authors have proposed a parametrization approach

to construct a generalized omnibus GoF tests for a specified distribution

(F0) under hypothesis H0 as normal distribution using different weight

functions. They have proposed general test statistics called as Z statistics

using,

Z =

∫ ∞

−∞
zt w(t) dt, (5.7)

where zt indicates a type of goodness of fit test statistics and w(t) denotes

weighting function. The power of any goodness of fit test depends on these

two parameters zt and w(t).

Let zt = X2 as shown in (5.5). Then, (5.7) can be expressed as

Z =

∫ ∞

−∞

n[Fn(t)− F0(t)]
2

F0(t)[1− F0(t)]
w(t) dt (5.8)
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Substituting the distinct weighting functions w(t) = F0(t), w(t) = n−1F0(t)[1−
F0(t)] and w(t) = F0(t)[1− F0(t)] in (5.8), the Z statistics represent AD,

KS and CvM statistics respectively as discussed in (D’Agostino). Using

these AD, KS and CvM statistics, different spectrum sensing schemes have

been proposed in (Wang et al.), (Arshad, Briggs, and Moessner), (Arshad

and Moessner) and (Kieu-Xuan and Koo).

5.3.2 Omnibus Normality Test from Empirical Dis-

tribution Function

The authors of (Zhang and Wu) have proposed powerful omnibus tests.

To derive such test, they used LRS-G2 by substituting (5.6) into (5.7) in

place of zt,

Z =

∫ ∞

−∞
G2 w(t) dt

=

∫ ∞

−∞
2n

{
Fn(t)log

Fn(t)

F0(t)
+ [1− Fn(t)]log

1− Fn(t)

1− F0(t)

}
w(t)dt

(5.9)

By using different weight functions (w(t)) in (5.9) as mentioned below, Z

produces Zk, Za and Zc statistics called as Zhang’s omnibus statistics.

For w(t) = 1, Z approaches Zk statistic, which is expressed as

(5.10)
Zk = max

1≤i≤n

((
i− 1

2

)
log

{
i− 1

2

nF0(y(i))

}

+

(
n− i+

1

2

)
log

{
n− i+ 1

2

n
{
1− F0(y(i))

}
})

For w(t) = Fn(t)
−1 {1− Fn(t)}−1, Z approaches Za statistic, which is ex-

pressed as

Za = −
n∑

i=1

[
log

{
F0(y(i))

}
n− i+ 1

2

+
log

{
1− F0(y(i))

}
i− 1

2

]
(5.11)

For w(t) = F0(t)
−1 {1− F0(t)}−1, Z approaches Zc statistic, which is ex-

pressed as

Zc =
n∑

i=1

[
log

{
F0(y(i))

−1 − 1

(n− 1
2
)/(i− 3

4
)− 1)

}]2
(5.12)
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The sampling distribution of the Zhang statistic (Zc), is mathematically

intractable, so it is unattainable to derive the close form expression of the

false alarm probability (Pf ) and probability of detection (Pd). Hence, we

use extensive Monte Carlo Simulations to evaluate the sensing performance

of the proposed scheme. We choose above mentioned statistics and use it

for hypothesis testing considering different conditions for channels and PU.

The effect of the different Zhang statistics (Zhang andWu) on the detection

performance of CR is discussed in the next section.

5.4 LRS-G2 Sensing Algorithm

In this section, we consider LRS-G2 sensing scheme assuming known vari-

ance of noise as well as unknown variance of noise.

5.4.1 With Known Variance of Noise

The problem of spectrum sensing as a null-hypothesis testing problem is

defined as (Wang et al.),

H0 : FY (y) = F0(y)

H1 : FY (y) �= F0(y) (5.13)

For LRS-G2 sensing, we use statistics Zc as defined in (5.12) to measure

distance between FY (y) and F0(y). Let Fn(y) be the empirical cumulative

distribution function (ECDF) of the received observations which can be

expressed as,

Fn(y) =
|{i− 1

2
: yi ≤ y, 1 ≤ i ≤ n}|

n
(5.14)

where |· · · | indicates cardinality.
We assume that the noise variance is known a priori. The noise under H0

is wi ∼ N (0, σ2). Here, we assume that σ2 = 1.

First, for the detection of PU at the CR, the value of threshold (λ) is

selected so that the false alarm probability (Pf ) is at a desired level (α)

as,

α = P{ Zc > λ|H0} (5.15)
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To find λ, it is worth mentioning that the distribution of Zc under H0 is

independent of the F0(y). Hence, after applying the probability integration

transform (PIT) for available observations,

Zc =

∫ 1

0

2n

⎧⎪⎨
⎪⎩FZ(z)log

FZ(z)

z
+ [1− FZ(z)]× log

1− FZ(z)

1− z

⎫⎪⎬
⎪⎭z−1 {1− z}−1 dz,

(5.16)

where z = F0(y) and FZ(zi) denotes ECDF of the transformed observations

zi, where zi = F0(yi) for 1 ≤ i ≤ n. Each of the statistics (Za, Zc Zk) of

observations is independent and uniformly distributed over [0, 1]. As shown

in (Wang et al.) for AD sensing, the distribution of A2 is independent of

the F0(y). The same is also true for the distribution of Zc. As given in

(Zhang and Wu), the value of λ is determined for a specific value of Pf .

For example, when Pf = 10−3 and n = 50, then the value of λ is 31.707.

Second, sort all the received observations in ascending order. Then, with-

out loss of generality, we get

y1 ≤ y2 ≤ ·· ≤ yn. (5.17)

Third, calculate the test statistic (Zc) using (5.12) as,

Zc =
n∑

i=1

[
log

{
u−1
i − 1

(n− 1
2
)/(i− 3

4
)− 1)

}]2
(5.18)

where ui = F0(yi).

At last, compare the value of (5.18) with λ. If Zc > λ, then reject the null

hypothesis H0 in favor of the presence of PU signal. Otherwise, declare

that the PU is absent. Compute performance metric as Probability of

Detection (Pd) with a given value of Pf . Furthermore, (Pd) is computed

theoretically as,

Pd = P{ Zc > λ|H1}
= 1− FZc,H1(λ)

(5.19)
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5.4.2 With Unknown Variance of Noise

In this case, LRS-G2 sensing method is used considering uncertainty in the

variance of noise, we call it Blind LRS-G2 sensing. Recently, (Shen et al.)

has proposed the Blind AD sensing method, where noise uncertainty was

considered. Authors of the papers have considered the spectrum sensing

problem as Student-t distribution testing problem. We have used the same

approach by replacing AD test with the proposed Zhang test in LRS-G2

sensing. The summary of the algorithm is as follows:

Step:1 Select an integer m, where m > 1 and it is a factor of n. Divide all

the samples Y = {yi}ni=1 into g = n
m

groups, where m number of received

observations are there in one group (Shen et al.).

Step:2 For the jth group (j = 1, 2, 3 · · · · · · g), calculate Tj,

Tj =
Yj

Sj/
√
m
, j = 1, 2 · · · , g (5.20)

where Yj is mean and S2
j is variance of the received observations in the jth

group,

Yj =
m−1∑
k=0

Ymj−k

m
and S2

j =
m−1∑
k=0

(Ymj−k − Yj)
2

m
(5.21)

Step:3 Find the threshold λ for a given probability of false alarm Pf using

(5.15).

Step:4 Sort Tj in ascending order. Then, without loss of generality, we get

T1 ≤ T2 ≤ ·· ≤ Tg

Step:5 Calculate the required test statistic Zc for each group as shown in

(5.18) by replacing yi by Tj.

Step:6 If Zc < λ, then reject null hypothesisH0 i.e If Tj ∼ N(0, σ2), then Tj

is Student-t distributed variable with m− 1 degrees. It shows the absence

of PU. Compute Pd for the fixed value of Pf . Repeat the above-mentioned

steps for other values of Pf .
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5.5 Performance Results

In this section, receiver operating characteristics (ROC) is presented i.e.

plot of Pd versus Pf for different values of SNR for the proposed LRS-G2

sensing method using simulations. We have also presented Pd versus SNR

for lower values of Pf . The three types of channels are considered such

as AWGN, quasi-static and time-varying channels using auto regressive

process (AR1) model. We have also considered three types of PU signals

such as constant, single frequency sine wave and i.i.d Gaussian with mean

zero as defined in (Nguyen-Thanh, Kieu-Xuan, and Koo).

In AWGN channel environment, Zc, Zk and Za provide similar detection

performance. So, we choose the Zc statistic for taking decision at sec-

ondary user (SU). However, in fading channel, Zk statistic provides better

performance Therefore, we choose Zk statistic for quasi-static and time

varying channel. Furthermore, we have considered the noise uncertainty

and shown its effect on detection performance by varying SNR. Finally, we

have compared all our results with prevailing GoF based sensing such as

AD, KS, OS and ED schemes.

Fig. 5.1 shows the ROC for the proposed LRS-G2 method in comparison

with prevailing GOF sensing schemes at SNR =−4dB, n= 30 and constant

PU signal. It can be seen that the proposed technique outperforms all

under AWGN channel. To observe the performance of the proposed scheme

at lower value of Pf such as 0.01, we have shown Pd versus SNR with n

= 30 under AWGN channel in Fig. 5.2. At SNR = −8dB, the detection

probabilities of 0.7293, 0.5505, 0.4026, 0.3206 and 0.0195 are achieved for

LRS-G2, KS, OS, AD and ED sensing respectively.

Considering the PU signal as a discrete sinusoidal signal or independent

and identically distributed Gaussian signal (Nguyen-Thanh, Kieu-Xuan,

and Koo), Fig. 5.3 shows ROC for the proposed scheme along with AD

and ED sensing at an SNR of −5dB and n = 30. It can be seen that the

proposed scheme outperforms both the AD and ED sensing in both the

PU signals. Furthermore, it can be seen that the ED sensing outperforms
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Figure 5.1: ROC for different sensing schemes in AWGN channel for constant PU

signal at SNR = −4dB and n = 30.
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Figure 5.2: Detection probability (Pd) versus SNR for different sensing schemes in

AWGN channel for constant PU signal at Pf = 0.01 and n = 30.
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Figure 5.3: ROC for various sensing schemes in AWGN channel with different types

of PU signals at SNR = −5dB and n = 30.

GoF based AD sensing, however proposed GoF based LRS-G2 scheme out-

performs ED sensing. It proves that the LRS-G2 scheme is robust against

the nature of PU signal.

So far, we have shown performance of the proposed scheme in AWGN

channel with different PU signals. Further, in Fig. 5.4, the detection per-

formance of LRS-G2 is shown under quasi-static channel with PU signal

as single frequency sine signal with n = 30. We have also presented per-

formance for LRS-G2 sensing taking all Zhang test statistics as derived

in (Zhang and Wu). The ED outperforms AD sensing. Interestingly, we

can observe that the LRS-G2 with Zk, Za and Zc outperform ED and AD

sensing under fading environment.

Now, we consider blind LRS- G2 with uncertainty in noise, i.e. the noise

variance (σ2) is unknown. We assume that the channel (h) is quasi-static

and PU signal is constant (Shen et al.). In Fig.5.5, we have shown Pd

versus SNR for Pf = 0.05 with m = 4 and n = 32. It can be seen that
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Figure 5.6: ROC for LRS-G2 sensing with different correlation coefficient (a) at n =

30 in time-varying channel.

uncertainty in noise degrades the performance as expected. We have also

presented performance of AD sensing and blind AD sensing (for m = 4

and m = 2) along with performance of ED sensing with known variance

of noise. It can be seen that the blind LRS-G2 outperforms AD and ED

sensing with known variance also.

In Fig. 5.6, we have shown ROC for the proposed scheme assuming PU

signal as a single frequency sine signal and channel is time-varying modelled

by AR1 process. The ROC for LRS-G2 sensing is presented for different

values of correlation coefficient (a) such as 1, 0.99, 0.98, 0.95, 0 at n = 30

and SNR of 0dB and −10dB. It can be seen that performance improves

as the value of a increases towards unity. In Fig. 5.7, we have shown Pd

versus SNR for Pf = 0.05, 0.001 for the same values of n and a. From the

results, shown in Fig. 5.6 and Fig. 5.7, we can say that LRS-G2 sensing

improves Pd when the channel is quasi-static (a = 1). However, as the

value of a decreases, the performance degrades as the channel becomes

time-varying
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In Fig. 5.8, we present ROC for ED and AD sensing in the considered time-

varying channel and compared them with the proposed LRS-G2 sensing.

We take a = 0.99, n = 30 and SNR = −10dB. It can be seen from the

graph that LRS-G2 sensing outperforms the other non-parametric methods

in the whole range of Pf .

5.6 Conclusion

A novel non-parametric spectrum sensing scheme based on likelihood ratio

statistics using goodness of fit test has been proposed. The detection per-

formance is presented using ROC assuming various types of primary user

signals as well as different channel conditions. Furthermore, the adverse

effect of noise uncertainty is also shown on the performance. The ROC for

ED and prevailing GoF based sensing schemes such as AD, OS and KS are

compared with the proposed one.

The ED based sensing usually outperforms traditional GoF based sensing

schemes when PU signal is not constant. However, the proposed GoF based

scheme outperforms ED as well as all these GoF based sensing. In case of

time-varying channel, the performance of the proposed scheme degrades

as the channel changes from slow time varying to fast time varying.



Chapter 6

LRS-G2 Sensing with

Middleton Class-A

Non-Gaussian Noise

Cognitive radio user (CR) assumes additive background noise in null hy-

pothesis (H0) as thermal noise. For this noise, Gaussian distribution, with

zero mean and some variance, is assumed. In the previous chapters, we

have shown detection performance of GoF based spectrum sensing schemes

with different values of variance, i.e. changing SNR. We have noticed that

imperfect information about this variance degrades the performance sig-

nificantly in blind sensing schemes. In today’s scenario, thermal noise

is not only the source of background noise (due to less noisy hardware),

but it includes man-made and natural electro-magnetic interference (EMI),

multi-user interferences and narrow-band or wideband interferences. These

sources of noise make the background noise non-Gaussian noise (NGN).

The resultant noise may be characterized by Middleton distributions.

In this chapter, LRS-G2 sensing scheme is evaluated under non-Gaussian

noise which is modelled by Middleton Class-A distribution. The sampling

distribution of the proposed test statistic is derived and the detection per-

formance is shown using Monte Carlo simulations. We present the results

and conclude that the performance is degraded if Gaussian component in

53



CHAPTER 6. LRS-G2 SENSINGWITHMIDDLETON CLASS-A NON-GAUSSIAN NOISE54

the Middleton noise is higher than non-Gaussian component.

6.1 Modeling of Non-Gaussian noise

The real time environment consists many sources of radiations. It af-

fects the transceiver operations. The different sources are microwave ovens

(Kanemoto, Miyamoto, and Morinaga), automobile ignitions (Middleton1),

co-channel interference in wireless networks (Gulati et al.) and many oth-

ers.

Based on the above discussion, we need accurate non-Gaussian model for

the development of the non-parametric sensing algorithm. Based on the

different environmental conditions and noise bandwidth, Middleton has

proposed a statistical-physical way to model the non-Gaussian noise radi-

ated by man-made and natural sources (Middleton1). It is used in various

fields such as SONAR, telecommunications, radar and optical communi-

cation (Middleton2). There are mainly two types of Middleton models

based on the response of the receiver to the noise as proposed in the litera-

ture: Middleton Class-A and Middleton Class-B as discussed next. In this

chapter, we have used Middleton Class-A model to characterize the ac-

tual non-Gaussian environment and evaluated the performance of LRS-G2

sensing scheme.

6.1.1 Middleton Class-A noise

This type of Middleton noise is used when the bandwidth of the receiver

(	BR) is larger than the noise bandwidth. The noise model using this

condition has very narrow spectral components. The important condition

for such noise as defined in (Middleton3),

tr	BR >> 1,

where tr is the time duration of radiation from source and 	BR represents

the bandwidth of the receiver.

Let the amplitude of the Class-A noise is denoted as W (t) and the pdf of
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its samples is given as,

f(w) =
∞∑

m=0

Am

m!
e−A

[
1√
2πσ2

m

]
e

−w2

2σ2
m , (6.1)

where σ2
m =

m
A
+Γ

1+Γ
, A and Γ represent impulsive rate and the ratio of Gaus-

sian to non-Gaussian noise component respectively.

6.1.2 Middleton Class-B noise

This noise model has opposite characteristic as compared to the Middle-

ton Class-A noise. The bandwidth of receiver is smaller than the noise

bandwidth. Similar to the Class-A noise, the condition can be defined

(Middleton3) as,

tr	BR << 1.

The closed form expression of the Middleton Class-B is not available.

It can be shown using different types of function for different values of

noise amplitudes. The detailed description of the parameters are avail-

able in (Middleton1) and (Middleton4). The different methods of estima-

tion of these parameters are available in (Middleton5). This Middleton

model is used for characterising the natural noise sources like lightning

discharges in atmosphere and man-made noises like automobile ignition

etc (Middleton1).

6.2 Noise and Interferences: Modelled us-

ing Middleton Class-A

The different types of noises and interferences are accurately modelled

using (6.1). The brief summary is presented in this section.

6.2.1 Microwave Oven

In recent years, the number of wireless devices, generally operated in ISM

bands, are increased drastically. These devices operate in frequency ranges

of 1GHz to 3GHz. In such type of devices, a microwave oven (MWO) is

one of the devices who significantly generate a high level of interference.
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This affects the performance of existing communications systems. The

statistical characteristic of an interference from the MWO is significantly

different than the characteristics of Gaussian noise. Hence, the communi-

cation systems, designed for Gaussian noise, perform poorly in the pres-

ence of high frequency interference. With this motivation, the authors

(Kanemoto, Miyamoto, and Morinaga) have proposed the statistical model

of microwave oven based on Middleton Class-A model. In this study, two

types of MWO are considered, one is trans MWO and the other is switching

MWO. The performance of the digital communication radio is evaluated

under such interference environment. The first order statistical character-

istic has been presented using Middleton Class-A model. Furthermore, the

performance of optimum receiver with and without interleave scheme has

been presented.

6.2.2 Co-channel Interference

The future wireless systems require higher bandwidth for accommodating

a more number of users. In existing wireless systems, it is achieved by the

reuse of spectrum resources. However, it causes the co-channel interfer-

ences. The performance of the wireless communication system degrades

significantly because of such interference. Hence, the physical-statical

modeling of co-channel interference has been proposed by (Gulati et al.)

in the field of Poisson-Poisson clustered distributed interferers. In wireless

networks, the Poisson-Poisson process is generally used to model the dis-

tribution of interferer clustering. The authors have proposed the unified

framework for different wireless networks such as WiFi ad hoc network, cel-

lular network and femtocell network. Furthermore, statistics of co-channel

interference are derived, which perfectly modelled using Middleton Class-A

model.

6.2.3 Micro-cellular Mobile Radio

indexMicro-cellular Mobile Radio To meet the capacity requirements and

achieve an efficient use of the spectral resources, the Micro-cellular mo-
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bile radio is designed. This mobile system provides better signal strength

because of line-of-sight transmission and the shorter radio paths. The au-

thors (Prasad, Kegel, and de Vos) have proposed a new system model for

evaluating the performance of Micro-cellular Mobile Radio system with

Rayleigh-faded co-channel interference and impulsive non-Gaussian noise

which is modelled using Middleton Class A noise. The differential phase

shift keying modulation was considered. The bit error rate (BER) and

spectral efficiency were derived for non-gaussian noise interference with

different values of the impulsive index (A) and the ratio of Gaussian to

non-Gaussian components (Γ) in Middleton Class-A model. Furthermore,

the selection diversity has been used to improve the system performance

in the case of fast multipath fading and impulsive non-Gaussian noise en-

vironment.

6.2.4 Impulsive noise to Wi-Fi Transceivers

The desktop computers and laptops are the fundamental necessity of our

daily life. These devices contain many hardware components, for example

clock generator and controllers. These generate radio frequency interfer-

ence for the IEEE 802.11 a/b/g/n Wi-Fi transceivers. This interference has

an impulsive nature. Hence, the authors of (Nassar et al.) have modelled

such interference using Middleton class-A distribution and addressed the

methods for the reduction of the interference to wireless transceivers. The

detection performance under Middleton Class A interference has been an-

alyzed for different types of receiver structure such as correlation receiver,

Wiener filter, Bayes hypothesis testing, and myriad filtering.

6.2.5 LED Light Bulb: New Interferer for Future Ra-

dio System

It is now well known that the traditional incandescent bulbs have been

replaced by light-emitting diodes (LEDs) because of their lower power con-

sumption and much longer operating life. The LED bulb uses a switching

power-supply circuit for achieving better lighting characteristics. This cir-
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cuit generates a pulsed current for driving the LED. During the ON time,

this current flows with power line to the LED and further causes unwanted

radiation of broadband electromagnetic (EM) noise (Kanno and Akiyama).

This noise contains high frequency harmonics in order of 100MHz. It covers

the bandwidth of many wireless communications services.

A number of LED bulbs will become a major source of interference to

existing communications systems.Recently, authors of (Matsumoto et al.)

have proposed the statistical modelling of such radiated electromagnetic ra-

dio interference using Middleton Class-A noise characteristics. They have

stated that the probability density function of such noise is characterized

by Middleton class-A model which provides a good approximation.

6.3 Signal Processing Algorithms using Mid-

dleton Class-A model

Middleton Class A model is useful in modeling of non-gaussian noise in

different signal processing algorithms as discussed below.

6.3.1 Channel Estimation

As the wireless channel is time-varying, the fast time-varying frequency-

selective fading channels require continuous estimation of channel state

vector. Most of the channel estimation algorithms have been proposed

with the assumption that the received signal is corrupted with background

Gaussian noise. However, in actual practice, the received signal is cor-

rupted by non-Gaussian noise. Hence, the author (El-Mahdy1) has pro-

posed an adaptive detection of signal in time varying channel with non-

Gaussian noise assumption which is modelled using the class-A model.

The channel state vector has been estimated using adaptive estimation al-

gorithms such as least mean square (LMS) and sign algorithm (SA). The

authors have justified that the LMS algorithm is not the right choice when

the noise impulsiveness becomes stronger. It happens because the perfor-

mance of the LMS algorithm depends on the squared error function which
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is sensitive to impulsive samples. The SA is a better choice which is based

on clipping the error signal. Furthermore, the theoretical performance

analysis has been presented for the proposed detector. The performance

of the detector has been affected by the noise impulsive index.

6.3.2 MIMO Channel Equalization

For higher data rate applications, MIMO wireless communication is a pre-

ferred technology. However, it suffers from inter symbol interference and

co-channel interference. Due to this, the process of equalization becomes

more tedious.

The Kalman filter is used to equalize the time varying MIMO channels with

decision feedback equalization with thermal Gaussian noise assumption,

which has been proposed by (Enescu, Sirbu, and Koivunen). However, the

received signal is significantly degraded by the impulsive noise sources as

discussed in the previous section. With non-Gaussian noise environment,

the Kalman filter is not the right option. Hence, the particle filter based

MIMO channel estimation has been proposed in (Zheng-cong, Bin, and

Ke). The authors have taken care of non-Gaussian noise which is modelled

using Middleton Class-A noise. The MIMO channel estimation has been

done using particle filter and a decision feedback equalizer which is derived

based on MMSE criterion. Furthermore, the comparison of bit error rate

performance comparison was done for Kalman Filter and Particles Filter

method in channel tracking with NGN environment.

6.3.3 Modulation Classification

The future wireless networks will rely on heterogeneity i.e different types

of wireless network users will share the resources with one another. In

such scenario, the modulation classification is an important task for tak-

ing decision on signal confirmation, identification of various interferences

and selection of demodulation scheme based on the received signal. In

(El-Mahdy2), author has proposed the classification of minimum frequency

shift keying (MFSK) signals transmitted in time varying and flat correlated
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fading channels under impulsive noise environment, which is modelled us-

ing Midlleton Class-A noise. A Karhunen-Loeve expansion has been used

for the correlated fading process. The classifier had been proposed for dif-

ferent waveforms. Furthermore, the analytical expression for the classifier

metric derived which is more sensitive to impulsive index. The proposed

classifier can be used in an environment where dense impulsive interferers

are present.

6.4 System Model

Let y = [y1, y2, ..., yn]
T be a vector of n observations of PU, received at

secondary user, where n ≥ 1. We assume that all the received observations

are real and independent, and each yi is represented as,

yi =
√
ρhisi + wi, i = 1, 2, 3, · · · · · ·n, (6.2)

where ρ, hi and wi denote received SNR, channel coefficient and sample

of Middleton class-A noise respectively. In (6.2), si denotes symbol of

PUs, which is assumed as i.i.d. Gaussian with mean zero and variance

one. Without loss of generality, we assume that all n observations are in

ascending order. It means y1 ≤ y2 ≤ · · yn. The channel is assumed to

be quasi-static, hi ∼ N (0, 1), and it remains constant during a block of n

symbols.

6.5 LRS-G2 Sensing scheme under Middle-

ton Class-A Noise

First, let Fn(y) be the Empirical Cumulative Distribution Function (ECDF)

of the received observations y (Zhang),

Fn(y) =
|{i− 1

2
: yi ≤ y, 1 ≤ i ≤ n}|

n
(6.3)

where |· · · | indicates cardinality.
The problem of spectrum sensing as a null-hypothesis testing problem is
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defined as (Wang et al.),

H0 : Fn(y) = F0(w)

H1 : Fn(y) �= F0(w). (6.4)

In (2.13), the F0(w) represents any continuous CDF of noise. Here, we

consider Middleton Class A noise as defined in (6.1).

Second, for computing the difference between Fn(y) and F0(w), the om-

nibus Zhang’s test statistics is used (Zhang), as

Zc =
n∑

i=1

[
log

{
u−1
i − 1

(n− 1
2
)/(i− 3

4
)− 1)

}]2
(6.5)

where ui = F0(yi).

Third, for the detection of PU, the value of threshold (γ) is selected such

that false alarm probability (Pf ) is α. It means

α = P{ Zc > γ|H0} (6.6)

The value of γ can be determined for a specific value of α using (Zhang).

For example, when α = 10−3 and n = 30, the value of γ is 31.707.

At last, compare the value of (6.5) with γ. If Zc > γ, then reject the null

hypothesis H0 in favor of the presence of PU signal. Otherwise, declare

that the PU is absent. Compute performance metric as Probability of

Detection (Pd) with a given value of Pf .

6.5.1 Sampling Distribution of Zc

The sampling distribution of Zc is not mathematically tractable. Hence, we

use distribution fitting technique to approximate the probability density

function (pdf) of Zc. The approximated pdf of Zc, at low SNR, is closely

matching with Log-normal pdf as shown in 6.1, which can be expressed

(Proakis), as

p(zc) =
1

zc
√
(2π)σ

e
−(lnzc−μ)2

2σ2 (6.7)

It is to be noted that mean (μ′) and standard deviation (σ′) of Zc can

be expressed as eμ+
σ2

2 and (eσ
2 − 1)e2μ+σ2

respectively. In Table 6.1, we



CHAPTER 6. LRS-G2 SENSINGWITHMIDDLETON CLASS-A NON-GAUSSIAN NOISE62

0.5 1 1.5 2 2.5 3

x 10
4

0

1

2

3

4

5

6
x 10

−4

Z
c

p
(Z

c)

Test statistics (Z
c
) at −2dB

Log−normal distribution at −2dB

Test statistics (Z
c
) at −20dB

Log−normal distribution at  −20dB

Figure 6.1: The approximated Log-normal distribution for the test statistics(Zc)

show μ′ and σ′ of Zc, while approximating it with Log-normal pdf for total

samples of n = 50000. We have also shown errors in μ′ and σ′ as (εμ′) and

(εσ′) respectively for SNR of −2 dB, −6 dB and −20 dB. It can be seen

that the errors are very low and decreasing as SNR reduces further.

Now, the theoretical detection probability(Pd) can be derived as,

Pd =P {Zc > γ|H1}
=1− FZc,H1(γ)

=1−
{
1

2
+

1

2
erf

{
ln γ − μ′
√
2σ′

}}

=
1

2
− 1

2
erf

{
ln γ − μ′
√
2σ′

}
(6.8)

In the next section, we present results using simulations and this analytical

expression of Pd.

6.6 Performance Results

In this section, for different values of SNR (ρ), the receiver operating char-

acteristics (ROC), i.e. plot of Pd versus Pf , are presented for the proposed
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Table 6.1: The parameters of approximated Log-Normal distribution for Zc with

n = 50000.

SNR = -2dB

μ′ σ′ εμ′ εσ′

10.823 0.286126 0.0016635 0.0011763

SNR = -6dB

10.7524 0.188694 0.000988 0.000698

SNR = -20dB

10.6707 0.0395586 0.000194401 0.000137465

scheme using simulations. As the considered Middleton Class A noise is a

combination of Gaussian and non Gaussian components, the dominance of

Gaussian component can be expressed by two parameters; impulsive index

(A) and the ratio of gaussian to non-gaussian noise component (Γ). We

have shown the effect A and Γ on Pd.

The ROC is shown in Fig. 6.2 for the proposed scheme at SNR of −2dB

and −6dB with received observations n = 30 in quasi-static channel with

PU signal as i.i.d Gaussian. It can be seen that analytical and simula-

tion results are closely matching as SNR reduces from −2dB to −6dB.

Assuming same noise environment, ROC for AD sensing (Wang et al.) and

Chi-square (Teguig, Le Nir, and Scheers) sensing are presented. It can be

seen that the proposed scheme outperforms both the prevailing schemes.

In Fig. 6.3, the Pd is presented for different values of Γ with SNR = 2dB,

−6dB and −12dB, taking n = 30, A = 0.2 and Pf = 0.05. Higher values of

Γ represent dominance of Gaussian noise. It can be seen that Pd decreases

as Γ increases. Thus, the performance is worst for the Gaussian noise.

In Fig. 6.4, ROC is presented for different values of A with SNR = −10dB,

n = 50, and Γ = 0.4. In this case also, higher values of A represent
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Figure 6.2: ROC with n = 30, A = 0.2, Γ=0.5 in quasi-static channel with Middleton

Class A noise.
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Figure 6.3: Pd versus Γ for different SNR , Pf = 0.05, n = 30 with A = 0.2 with

Middleton Class A noise in quasi-static channel.
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Figure 6.4: ROC at Γ = 0.4, SNR = −10dB and n = 50 with Middleton Class A

noise in quasi-static channel.

dominance of Gaussian noise. It can be seen that performance is degraded

as A increases. Thus, the performance is worst for the Gaussian noise.

6.7 Conclusion

The non-parametric sensing scheme was proposed for non Gaussian envi-

ronment modelled by Middleton class-A noise. The pdf of test statistics

was approximated as Log-normal and an expression of detection probabil-

ity Pd was derived. The simulation results are closely matching with the

analytical counterparts for lower SNR. The proposed scheme outperforms

prevailing schemes in the considered noise environment. It was also ob-

served that the performance is degraded as the contribution of Gaussian

components is higher than that of the non Gaussian components.
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Conclusion

The Cognitive radio (CR) is a key enabling technology for solving the prob-

lem of spectrum scarcity because of fixed allocation of spectrum in existing

wireless services. The CR provides legacy right to use the spectrum re-

sources assigned to licensed or primary users (PU) without interfering to it.

This can be implemented using an opportunistic spectrum access (OSA)

at CR. The OSA can be successfully implemented when CR is able to

detect the PU when it is not utilizing its allocated channel. The detect-

ing or identifying the available channel from the PU is called as spectrum

sensing. In spectrum sensing, goodness of fit (GoF) based non-parametric

algorithms are realistic as they do not require a priori information about

the transmitted signal or channel state information. A few GoF based

sensing schemes have been proposed in the literature for spectrum sens-

ing. However, majority of them have considered a very high number of

received observations, which results in high sensing time.

In this thesis, we have proposed GoF based sensing methods with a view

to reduce number of received observations without compromising detection

performance for low SNR and low probability of false alarm. Furthermore,

we have shown performance of the proposed schemes for different PU sig-

nals, channel conditions and non-Gaussian noise as a background noise,

which was modelled by Middleton Class A noise. In the subsequent sec-

tions, we show major conclusions and future work.

66
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7.1 Conclusion

The concluding remarks are as follows.

a. In the proposed Censored AD sensing (CAD sensing), with less num-

ber of received observations, the detection performance was presented

using ROC. It is almost similar to the performance of AD sensing with

all received observations. This reduces complexity of the CR terminal

in determination of statistics in decision rule.

b. In wireless communication, the performance is usually degraded due

to fading compared to the performance of AWGN channel. We have

shown performance of the proposed CAD sensing in AWGN, quasi-

static channel and time varying channel modelled by AR1 process.

We conclude that the performance is degraded when the channel is

converted from slow to fast time varying. We have also presented

performance of prevailing schemes such as ED and OS based sensing.

The proposed CAD sensing outperforms these prevailing schemes in

fading channels.

c. In GoF based sensing schemes, we do not require information about

PU, however we know about statistics of noise. Imperfect informa-

tion of this statistics may deteriorate the performance. We propose

Blind CAD sensing in which distribution of noise is modelled by using

Student t-distribution. We conclude that the proposed Blind CAD

sensing is more robust in this condition than prevailing GoF based

sensing.

d. Majority of GoF based schemes have been evaluated assuming PU

signal as constant (= 1) in literature. However, for different PU sig-

nals such as independent and identically distributed (i.i.d) Gaussian

or single frequency sine signals, the performance of GoF schemes such

as AD, KS, OS and CvM degrades. Hence, we proposed a novel ro-

bust non-parametric sensing scheme LRS-G2 based on likelihood ratio

statistic derived from the empirical distributions for the Gaussian noise

environment. We have shown that the proposed LRS-G2 outperforms
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all the prevailing schemes.

e. The proposed LRS-G2 sensing outperforms ED sensing and other tra-

ditional GoF sensing schemes at less number of received observations

and lower value of false alarm probability. Furthermore, not only for

different types of PU signals or for different channel conditions such as

AWGN channel or quasi-static channel or Time varying channel, LRS-

G2 outperforms ED sensing and traditional GoF sensing schemes. In

addition to this, Blind LRS-G2, proposed for noise uncertainty condi-

tions, outperforms Blind-AD sensing significantly with reduced num-

ber of observations.

f. The additive noise is usually assumed as Gaussian. However, when

we consider the mixed heterogeneous network environment, the addi-

tive noise cannot follow the Gaussian distribution. Hence, we designed

LRS-G2 sensing algorithm for non-Gaussian noise (NGN) environment

which is modelled using Middleton Class-A model. Under such sce-

nario of NGN, the proposed scheme outperforms recently proposed

Chi-square based sensing and AD sensing. The test-statistic of the

proposed scheme is approximated using log-normal distribution with

minimum mean square error. Based on this, the approximate closed

form expression of probability of detection (Pd) is derived for GoF

based sensing under non-Gaussian noise environment.

7.2 Future scope

In the above discussion of non-parametric sensing, we have used SISO

systems, however it can be extended for multiple input multiple output

(MIMO) systems also. The performance of the proposed schemes can be

evaluated in MIMO systems assuming different channel conditions, dif-

ferent structure of PU signals or non Gaussian noise environment. In this

thesis, we have considered PU with real signals, however it can be extended

for complex signals also. In parametric sensing, cooperative spectrum sens-

ing has several advantages. The cooperative spectrum sensing can also be

considered assuming the proposed GoF based sensing. The proposed re-
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