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ABSTRACT 
 

As embedded devices are increasingly integrated into personal and commercial 

infrastructures, security becomes a paramount issue. The design of security for 

embedded systems differs from traditional security design because these 

systems are resource constrained in their capacities and easily accessible to 

adversaries at the physical layer.  

 

Implementing security in wireless embedded devices arises new challenges due 

to the unique characteristics of battery powered embedded systems. The work is 

focused on an important constraint of such devices - battery life and examines 

how it is impacted by the use of security protocols. Software power consumption 

minimization is becoming more important and a very relevant issue in the design 

of embedded systems, in particular those dedicated to mobile devices. This 

motivates the need for minimizing power consumption from the point of view of 

software rather than at circuit and gate level, which is cumbersome. 

  

This dissertation aims at reviewing state of the art of different cryptography 

protocol implementations and optimizations for reducing the power and energy 

consumption. It also restricts the size of lookup tables and imposes constraints 

on the code size where run-time memory and program ROM are scarce 

resources. 

 

The protocols are implemented in C language. Using the gcc compiler with Sim–

Power Analyzer as the simulation kernel protocols have been evaluated on the 

ARM cores. Different coding methods have been identified aiming at reducing the 

power consumption for the ARM processors.  

 

The performance improvement of cryptography algorithms is demonstrated on 

different ARM processors such as Intel StrongARM -1110, ARM7 and ARM9TDMI, 

where Intel’s StrongARM-1110 found to be low energy processors i.e. it 

consumes low energy as compared to other processors. Also AES found to be the 

most energy efficient symmetric algorithm and RSA among the asymmetric 

implemented algorithms. So, AES in combination with RSA on the StrongARM-

1110 processor can be the best choice for implementing security protocol. 
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1          INTRODUCTION 
 

1.1 GENERAL 

 

As our lives are increasingly played out in the digital world, a variety of 

“sensitive” data is captured, stored, manipulated, or communicated by electronic 

systems. Consequently, a large and increasing number of electronic systems, 

and the ICs they contain, need to deal with security in one form or the other - 

including PCs, PDAs, wireless handsets, and smart cards, network equipment 

such as routers, gateways, firewalls, storage and web servers, etc. where 

security is rated as a primary concern in the adoption of new services and 

applications. Networked embedded systems, which account for a large portion of 

the electronics and semiconductor markets, makes the communication channel 

especially vulnerable and the need for security even more obvious. 

 

This merging of communications and computation functionality requires data 

processing in real time, and embedded systems have shown to be good solutions 

for many applications. Examples of such applications are – PDAs, cell phones, 

networked sensors, and smart cards, and some electronic commerce devices, to 

name just a few. Security concerns in such systems range from user 

identification, to secure information storage, secure software execution, and 

secure communications. Most battery-powered systems contain wireless 

communication capabilities for untethered operation, introducing new security 

concerns due to the public nature of the physical communication medium or 

channel. Since many of these applications need security functionality, this 

dissertation focuses on cryptographic algorithms and their implementation on 

embedded systems. 

 

In addition to embedded devices, the explosive growth of digital communications 

also brings additional security challenges. Millions of electronic transactions are 

completed each day, and the rapid growth of e-Commerce has made security a 

vital issue for many consumers. Valuable business opportunities are realized over 

the Internet and megabytes of sensitive data is transferred and moved over 

insecure communication channels around the world. Thus, it is imperative for the 

success of modern businesses that all these transactions be realized in a secure 
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manner. Secure communication across wired and wireless networks is typically 

achieved by employing security protocols at various layers of the network 

protocol stack (e.g., WEP at the link layer, IPSec at the network layer, TLS/SSL 

and WTLS at the transport later, SET at the application layer, etc.). The building 

blocks of a security protocol are cryptographic algorithms, which are selected 

based on the security objectives that are to be achieved by the protocol. They 

include asymmetric and symmetric encryption algorithms, which are used to 

provide authentication and privacy, as well as hash or message digest algorithms 

that are used to provide message integrity. 

 

Security protocols and the cryptographic algorithms they contain, address 

security considerations from a functional perspective, many embedded systems 

are constrained by the environments they operate in, and by the resources they 

possess. For such systems, there are several factors that are moving security 

considerations from a function centric perspective into a system architecture 

(hardware/software) design issue. For example, 

• An ever increasing range of attack techniques for breaking security such 

as software, physical and side-channel attacks require that the embedded 

system be secure even when it can be logically or physically accessed by 

malicious entities. Resistance to such attacks can be ensured only if built 

into the system architecture and implementation. 

• The processing capabilities of many embedded systems are easily 

overwhelmed by the computational demands of security processing, 

leading to undesirable tradeoffs between security and cost, or security and 

performance. 

• Battery-driven systems and small form-factor devices such as PDA’s, cell 

phones and networked sensors often operate under stringent resource 

constraints (limited battery, storage and computation capacities). These 

constraints only worsen when the device is subject to the demands of 

security. 

 

Many of the new security protocols decouple the choice of cryptographic 

algorithm from the design of the protocol. Users of the protocol negotiate on the 

choice of algorithm to use for a particular secure session. The new devices to 

support these applications, then must not only support a single cryptographic 

 2 
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algorithm and protocol, but also must be “algorithm agile", that is, able to select 

from a variety of algorithms [1]. For example, IPSec (the security standard for 

the Internet) allows choosing out of a list of different symmetric as well 

asymmetric ciphers. Some of the symmetric-key algorithms are: DES, 3DES, 

AES, IDEA, RC4, and so on. Thus, software-based systems would seem to be a 

better fit because of their flexibility. However, the security engineer is faced with 

a difficult choice. Should he/she choose in favor of performance and security, and 

pay the price of inflexibility and higher costs? Or should he/she favor flexibility 

instead? Fortunately, many embedded processors combine the flexibility of 

software on general-purpose computers with the near-hardware speed and 

better physical security than general-purpose computers. 

 

1.2 MOTIVATION 

 

A self-configuring wireless sensor networks consist of hundreds or thousands of 

small, battery-driven nodes with a wireless modem. Security for these sensor 

networks is not easy since these sensors have limited processing power, storage, 

bandwidth, and energy. The network lifetime is an important concern: as nodes 

run out of power, the connectivity decreases and the network can finally be 

partitioned and become dysfunctional. Also, the sensor network should not leak 

sensor readings to neighboring networks. In many applications (e.g., key 

distribution) nodes communicate highly sensitive data. The standard approach 

for keeping sensitive data secret is to encrypt the data with a secret key that 

only intended receivers possess, hence achieving confidentiality.  

 

The increasing popularity of power constrained mobile computers and embedded 

computing applications such as wireless sensor network drives the need for 

analyzing and optimizing power in all the components of a system. Software 

constitutes a major component of today’s systems, and its role is projected to 

grow even further. Thus, an ever-increasing portion of the functionality of 

today’s systems is in the form of instructions, as opposed to gates. This 

motivates the need for analyzing power consumption from the point of view of 

software. 
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Consider the following example system which motivate the need to address 

energy consumption issues in security protocols: a sensor node, using a Motorola 

“DragonBall” MC68328 processor and operating at a data rate of 10Kbps, 

consumes 21.5mJ and 14.3mJ, for transmitting and receiving 1024 bits of data, 

respectively [2]. In secure mode, when RSA encryption is used as part of a 

security protocol, encrypting 1024 bits of data on the node was observed to 

consume 42mJ of energy. Thus, given a typical battery capacity of 26KJ in 

sensor nodes, it can be shown that with encryption on, the battery runs out more 

than twice as fast as when there is no encryption. This example motivates us to 

investigate techniques to facilitate energy-efficient execution of security 

protocols. This objective can be achieved in multiple ways. For example: by 

making the execution of underlying cryptographic algorithms efficient through 

software techniques, we can improve the performance and energy requirements 

of security protocols. Usually, there is an overhead, in the form of more complex 

software, associated with these techniques. 

 

Software constitutes a major component of systems where power is a constraint. 

Its presence is very visible in a mobile computer, in the form of the system 

software and application programs running on the main CPU. But software also 

plays an even greater role in general digital applications, since an ever-growing 

fraction of these applications are now being implemented as embedded systems. 

Embedded systems are characterized by the fact that their functionality is 

divided between hardware and a software component. The software component 

usually consists of application-specific software running on a dedicated 

processor, while the hardware component usually consists of application-specific 

circuits. In light of the above, there is a clear need for considering the power 

consumption in systems from the point of view of software. Software impacts the 

system power consumption at various levels of the design. At the highest level, 

this is determined by the way functionality is partitioned between hardware and 

software. The choice of the algorithm and other higher-level decisions about the 

design of the software component can affect system power consumption in a big 

way. The design of system software, the actual application source code, and the 

process of translation into machine instructions - all of these determine the 

power cost of the software component. 
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The challenges of energy-efficient secure communications can be better 

addressed if energy requirements and bottlenecks are well understood. In this 

work, a detailed analysis of the energy requirements of various cryptographic 

primitives is performed, with the intention of using this data as a foundation for 

devising energy-efficient security protocols. Cryptographic algorithms are known 

to have significant computational requirements, and studies have indicated that 

they stretch the processor capabilities available in many embedded systems. 

Comprehensive energy analysis of cryptographic protocols, such as performed in 

this work, will facilitate to identify energy bottlenecks and development of energy 

efficient security mechanisms. The ability to evaluate software in terms of power 

consumption makes it feasible to search for low power implementations of given 

programs. In addition, it can guide the development of general tools and 

techniques for low power software. 

 

1.3 SCOPE OF WORK 

 

This thesis presents a comprehensive energy measurement and analysis of the 

most common cryptographic algorithms used. The energy analysis in this study is 

performed by executing cryptographic algorithms using a power estimation and 

simulation tool – Sim-Panalyzer, which measures the power consumed, and 

calculates the energy consumed during the execution of cryptographic 

algorithms. Four common encryption schemes were chosen for the study ranging 

from symmetric block ciphers (DES, 3DES, AES) to asymmetric cipher (RSA). 

This choice was driven by the objective to assess encryption schemes with 

different overheads that provide increasing levels of protection. Most 

significantly, the algorithmic choice is motivated by the constraints of embedded 

architectures, different key and block length, execution time as well as the 

energy consumption, which would severely affect the lifetime of mobile devices. 

Measurements were obtained for three different ARM processors. The analysis 

takes into account features of architectures, such as processor frequency, ISA 

characteristics - RISC in all the processors, number of pipeline stages, and the 

impact of memory hierarchies for architectures with caches. Based on the 

analysis, energy-efficient implementations of security protocols are discussed. 
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1.4 ORGANIZATION OF THE PROJECT 

 

This thesis is organized as follows: 

 

• Chapter 2 provides the brief introduction about cryptography, previous 

related work for source code optimization and energy consumption 

analysis, the security requirements of embedded system, the different 

software attacks on embedded system and challenges in design of 

embedded system. Also, what are the components that lead to software 

power consumption are explained in brief. 

• Chapter 3 explains the working of DES algorithm and introduces different 

techniques for optimizing the different permutations and substitution 

operations. It also gives brief idea about 3DES. 

• Chapter 4 explains the working of AES algorithm and its various function. 

The optimization technique introduced for the MixColumn operation is 

explained in detail. 

• Chapter 5 explains the RSA implementation in brief and the two algorithms 

used for efficient execution along with the efficient implementation of 

primality test. 

• Chapter 6 explains the different optimization methodology used for writing 

efficient C programs for ARM. 

• Chapter 7 explains Sim-Panalyzer tool used for the power and energy 

estimation of the protocols. It also explains how to install and run the 

simulator and how to calculate the power. 

• Chapter 8 presents the power and energy estimation results and the 

outcomes are discussed. 

• Chapter 9 concludes this thesis with a summary, and provides possible 

directions for relevant future research. 
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2                                                         LITERATURE SURVEY 
 

2.1 GENERAL 

 

Cryptography involves the study of mathematical techniques that allow the 

practitioner to achieve or provide the following objectives or services [1]: 

 

• Confidentiality is a service used to keep the content of information 

accessible to only those authorized to have it. This service includes both 

protections of all user data transmitted between two points over a period 

of time as well as protection of traffic flow from analysis. 

• Integrity is a service that requires that computer system assets and 

transmitted information be capable of modification only by authorized 

users. Modification includes writing, changing, changing the status, 

deleting, creating, and the delaying or replaying of transmitted messages. 

It is important to point out that integrity relates to active attacks and 

therefore, it is concerned with detection rather than prevention. Moreover, 

integrity can be provided with or without recovery, the first option being 

the more attractive alternative. 

• Authentication is a service that is concerned with assuring that the origin 

of a message is correctly identified. That is, information delivered over a 

channel should be authenticated as to the origin, date of origin, data 

content, time sent, etc. For these reasons this service is subdivided into 

two major classes: entity authentication and data origin authentication. 

• Non-repudiation is a service, which prevents both the sender and the 

receiver of a transmission from denying previous commitments or actions.  

 

In data and telecommunications, cryptography is necessary when communicating 

over any un-trusted medium, which includes just about any network, particularly 

the Internet. 

 

Cryptography, then, not only protects data from theft or alteration, but can also 

be used for user authentication. There are, in general, three types of 

cryptographic schemes typically used to accomplish these goals: secret key (or 

symmetric) cryptography, public-key (or asymmetric) cryptography, and hash 
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functions. In all cases, the initial unencrypted data is referred to as plaintext. It 

is encrypted into ciphertext, which will in turn be decrypted into usable plaintext. 

 

2.2 RELATED WORK 

 

In this work, a detailed analysis of the energy requirements of various 

cryptographic primitives are performed, with the intention of using this data as a 

foundation for devising energy-efficient security protocols. The results of the 

experiments are used to suggest ways for making the execution of the 

cryptographic algorithms energy-efficient. 

 

Security protocols and cryptographic algorithms are known to have significant 

computational requirements, and studies have indicated that they stretch the 

processor capabilities available in many embedded systems [3, 4, 5, 6]. While 

researchers have quantified and addressed the performance overhead of 

security, the energy implications are relatively less understood. Nevertheless, 

researchers have recently proposed interesting approaches to the design of 

lightweight security protocols. Low-power key management protocols have been 

devised for sensor nodes by analyzing the impact of security algorithms on the 

energy consumption of sensor nodes [2]. The work in [7] evaluated the energy 

consumption of selected key exchange protocols on a WINS sensor node, and 

proposed energy efficient ways for exchanging cryptographic keys, while custom 

protocols for low-power mutual authentication were proposed in [8, 9]. Energy 

tradeoffs in the network protocol and key management design space of sensor 

nodes were explored in [10]. Techniques to minimize the energy consumed by 

secure wireless sessions have also been proposed in [11]. The comprehensive 

energy analysis of cryptographic algorithms, such as the one performed in this 

work will facilitate identification of energy bottlenecks and development of 

energy efficient security mechanisms. 

 

2.3 SECURITY REQUIREMENTS OF EMBEDDED SYSTEMS 

 

Figure 2.1 lists the typical security requirements seen across a wide range of 

embedded systems, which are described as follows: 
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Figure 2.1: Common Security Requirements of ES 

 

• User identification refers to the process of validating users before allowing 

them to use the system. 

• Secure network access provides a network connection or service access 

only if the device is authorized. 

• Secure communications functions include authenticating communicating 

peers, ensuring confidentiality and integrity of communicated data, 

preventing repudiation of a communication transaction, and protecting the 

identity of communicating entities. 

• Secure storage mandates confidentiality and integrity of sensitive 

information stored in the system. 

• Content security enforces the usage restrictions of the digital content 

stored or accessed by the system. 

• Availability ensures that the system can perform its intended function and 

service legitimate users at all times, without being disrupted by denial of 

service attacks [12]. 

 

2.4 EMBEDDED SOFTWARE ATTACKS AND COUNTERMEASURES 

 

Software in embedded systems is a major source of security vulnerabilities. 

Three factors, which we call the Trinity of Trouble —complexity, extensibility and 

connectivity, conspire to make managing security risks in software a major 

challenge [13]. 

 

• Complexity: Software is complicated, and will become even more 

complicated in the near future. More lines of code increase the likelihood 

of bugs and security vulnerabilities. As embedded systems converge with 

 9 
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the Internet and more code is added, embedded system software is clearly 

becoming more complex. The complexity problem is exacerbated by the 

use of unsafe programming languages (e.g., C or C++) that do not protect 

against simple kinds of attacks, such as buffer overflows. For reasons of 

efficiency, C and C++ are very popular languages for embedded systems. 

In theory, we could analyze and prove that a small program is free of 

problems, but this task is impossible for programs of realistic complexity 

today. 

• Extensibility: Modern software systems, such as Java and .NET, are built 

to be extended. An extensible host accepts updates or extensions (mobile 

code) to incrementally evolve system functionality. Today’s operating 

systems support extensibility through dynamically loadable device drivers 

and modules. Advanced embedded systems are designed to be extensible 

(e.g., J2ME, Java Card). Unfortunately, the very nature of extensible 

systems makes it hard to prevent software vulnerabilities from slipping in 

as an unwanted extension. 

• Connectivity: More and more embedded systems are being connected to 

the Internet. The high degree of connectivity makes it possible for small 

failures to propagate and cause massive security breaches. Embedded 

systems with Internet connectivity will only make this problem grow. An 

attacker no longer needs physical access to a system to launch automated 

attacks to exploit vulnerable software. The ubiquity of networking means 

that there are more attacks, more embedded software systems to attack, 

and greater risks from poor software security practices. 

 

2.5 DESIGN CHALLENGES 

 

Designers of a large and increasing number of embedded systems need to 

support various security solutions in order to deal with one or more of the 

security requirements described earlier. These requirements present significant 

bottlenecks during the embedded system design process, which are briefly 

described below: 

 

• Processing Gap: Existing embedded system architectures are not capable 

of keeping up with the computational demands of security processing, due 
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to increasing data rates and complexity of security protocols. These 

shortcomings are most felt in systems that need to process very high data 

rates or a large number of transactions (e.g., network routers, firewalls, 

and web servers), and in systems with modest processing and memory 

resources (e.g., PDAs, wireless handsets, and smartcards). 

• Battery Gap: The energy consumption overheads of supporting security 

on battery-constrained embedded systems are very high. Slow growth 

rates in battery capacities (5–8% per year) are easily outpaced by the 

increasing energy requirements of security processing, leading to a battery 

gap. Various studies show that the widening battery gap would require 

designers to make energy-aware design choices (such as optimized 

security protocols, custom security hardware, and so on) for security. 

• Flexibility: An embedded system is often required to execute multiple 

and diverse security protocols and standards in order to support,            

(i) multiple security objectives (e.g., secure communications, Digital 

Rights Management (DRM), and so on), (ii) interoperability in different 

environments (e.g., a handset that needs to work in both 3G cellular and 

wireless LAN environments), and (iii) security processing in different layers 

of the network protocol stack (e.g., a wireless LAN enabled PDA that needs 

to connect to a virtual private network, and support secure web browsing 

may need to execute WEP, IPSec, and SSL). Furthermore, with security 

protocols being constantly targeted by hackers, it is not surprising that 

they keep continuously evolving. It is, therefore, desirable to allow the 

security architecture to be flexible (programmable) enough to adapt easily 

to changing requirements. However, flexibility may also make it more 

difficult to gain assurance of a design’s security. 

• Tamper Resistance: Attacks due to malicious software such as viruses 

and Trojan horses are the most common threats to any embedded system 

that is capable of executing downloaded applications. These attacks can 

exploit vulnerabilities in the operating system (OS) or application software, 

procure access to system internals, and disrupt its normal functioning. 

Because these attacks manipulate sensitive data or processes (integrity 

attacks), disclose confidential information (privacy attacks), and/or deny 

access to system resources (availability attacks), it is necessary to develop 

and deploy various HW/SW countermeasures against these attacks. In 
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many embedded systems such as smartcards, new and sophisticated 

attack techniques, such as bus probing, timing analysis, fault induction, 

power analysis, electromagnetic analysis, and so on, have been 

demonstrated to be successful in easily breaking their security. Tamper 

resistance measures must, therefore, secure the system implementation 

when it is subject to various physical and side-channel attacks. 

• Assurance Gap: It is well known that truly reliable systems are much 

more difficult to build than those that merely work most of the time. 

Reliable systems must be able to handle the wide range of situations that 

may occur by chance. Secure systems face an even greater challenge: 

they must continue to operate reliably despite attacks from intelligent 

adversaries who intentionally seek out undesirable failure modes. As 

systems become more complicated, there are inevitably more possible 

failure modes that need to be addressed. Increases in embedded system 

complexity are making it more and more difficult for embedded system 

designers to be confident that they have not overlooked a serious 

weakness. 

• Cost: One of the fundamental factors that influence the security 

architecture of an embedded system is cost. To understand the 

implications of a security related design choice on the overall system cost, 

consider the decision of incorporating physical security mechanisms in a 

single-chip cryptographic module. The Federal Information Processing 

Standard (FIPS 140-2) [FIPS] specifies four increasing levels of physical 

(as well as other) security requirements that can be satisfied by a secure 

system. Security Level 1 requires minimum physical protection; Level 2 

requires the addition of tamper-evident mechanisms such as a seal or 

enclosure, while Level 3 specifies stronger detection and response 

mechanisms. Finally, Level 4 mandates environmental failure protection 

and testing (EFP and EFT), as well as highly rigorous design processes. 

Thus, we can choose to provide increasing levels of security using 

increasingly advanced measures, albeit at higher system costs, design 

effort, and design time. It is the designer’s responsibility to balance the 

security requirements of an embedded system against the cost of 

implementing the corresponding security measures [12]. 
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2.6 SOFTWARE POWER CONSUMPTION 

 

The overall power dissipation of an embedded system does not only originate 

from the application - specific hardware, but also from the CPU, the memory and 

the address and data buses when an embedded application is running on the 

platform’s microprocessor, microcontroller or digital signal processor. This above 

power dissipation is referred to as software power dissipation. Obviously, the 

power is actually dissipated in the processor’s hardware, but it is as a 

consequence of executing an application program. There are a number of sources 

of power dissipation influenced by software and contributing to the overall power 

dissipation of the system, which are explained below. 

 

2.6.1 Bus Power 

 

Busses in an embedded system consist of unidirectional address bus lines and 

instruction bus lines (opcodes to be executed) and bi-directional data bus lines. 

With these groups of interconnecting lines, the communication of the CPU with 

the memory, I/O circuits and peripheral modules is established. Each of the 

above lines can be modeled as an RC transmission line, where R and C are the 

line’s resistance and capacitance, respectively. Activation of a line prompts for 

the charging or discharging of the capacitive load, depending on the previous 

value that this line had. For example, a transition in an 8-bit data bus between 

words 00101011 and 11100111 implies charging of 3 lines and discharging of 1 

line. Usually, bus charging and discharging of I/O lines can occur up to 80% of 

the software execution time. 

 

2.6.2 Memory Power 

 

Power dissipated by memory read and write accesses is usually one of the 

dominating components (ranging from 10% - 25%) of the total software power 

dissipation for mobile devices and portable computers [14]. In the case of DSP 

applications, where a significant amount of data is processed, this contribution 

can be substantially higher. Memory power dissipation has a number of 

components, namely power dissipated in the cell array, in the decode logic and 

sense amplifier as well as power dissipated due to charging and discharging of 
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the address or data lines capacitances. The type of access is also significant in 

how much it contributes to the overall power dissipation. In the ARM 

microprocessor, which is considered in our system, CPU cycles are divided in S-

cycles, N-cycles, and I-cycles.  

 

The S-cycles refer to sequential memory accesses, where the next word is 

returned from the same buffer, dissipating a relatively small amount of power. 

Power dissipation in the address lines during sequential memory accesses is also 

small, due to the fact that the address word changes only in one bit. If the last 

memory location of a page is to be accessed though, more power has to be 

consumed in order to access the next page.  

 

The N-cycles refer to non-sequential memory accesses. In this kind of access, 

more power is dissipated relative to sequential accesses because consecutive 

address words are irrelevant, causing large activity in the address bus. In N-

cycles usually different pages have to be accessed, contributing to more power 

dissipation, as explained above.  

 

Finally, the I-cycles refer to cycles that no memory access is involved, so no 

power is dissipated in the memory system. One more significant contributor to 

the power dissipated in the memory is the memory access patterns, affecting 

mainly the cache hits and misses. The cache, residing closer to the CPU than 

main memory, dissipates less power because the address and data lines are 

shorter and have less internal capacitance. Inappropriate memory access 

patterns lead to cache misses, consequently, power expensive main memory 

accesses. 

 

2.6.3 CPU Power 

 

When instructions are executed in the CPU, they contribute significant power to 

the overall power dissipation. The instructions can be divided into four broad 

categories: 

• Load / Store instructions 

• Branch instructions 

• Type-1 Arithmetic instructions, such as addition, subtraction, shift etc. 
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• Type-2 Arithmetic instructions, such as multiplication and division. 

 

If we assume that the average power consumption to execute one instruction is 

Wj , where j represents one of the categories mentioned above, and Ij is the 

number of times this instruction is executed, we can easily derive the CPU power 

dissipation as: 
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The power dissipated when an arithmetic instruction is executed depends 

primarily on the ALU or FPU data path that it instructed by software. Many 

different ways of optimization exist in this context, as for example replacing a 

division by power of two with corresponding right shifts. 

 

Finally, instruction scheduling is very important, because unsuccessful scheduling 

can lead to pipeline stalls, which in turn consume a considerable amount of 

power. 

 

2.6.4 Other Power Dissipation Sources 

 

There is a number of additional sources of power dissipation during software 

execution that must be taken into account, as they contribute as an overhead to 

the overall power dissipation. These sources are the clock distribution and the 

control logic and they accompany code execution in each cycle. In [15] it was 

shown that short code sequences in a number of microcontrollers and DSPs 

always dissipated a smaller amount of power than longer sequences. The 

program in longer code sequences, which demanded extra execution cycles, took 

more time to execute so that the overhead was more than that in shorter code 

sequences. 

 

Despite this problem, power management techniques nowadays tend to eliminate 

such overhead by cleverly dealing with power dissipation that does not have a 

direct contribution to the involved computational tasks. 
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3.1 DES ALGORITHM 

 

The Data Encryption Standard (DES) has been in use since the mid-1970s, 

adopted by the National Bureau of Standards (NBS) [now the National Institute 

for Standards and Technology (NIST)] as Federal Information Processing 

Standard 46 (FIPS 46-3) and by the American National Standards Institute 

(ANSI) as X3.92. DES was the first crypto scheme commonly seen in non-

governmental applications and was the catalyst for modern "public" 

cryptography.  

 

DES uses the Data Encryption Algorithm (DEA), a secret key block-cipher 

employing a 56-bit key operating on 64-bit blocks. FIPS 81 describes four modes 

of DES operation: Electronic Codebook (ECB), Cipher Block Chaining (CBC), 

Cipher Feedback (CFB), and Output Feedback (OFB). Despite all of these options, 

ECB is the most commonly deployed mode of operation. 

 

3.1.1 DES Encryption Operational Overview 

 

DES encrypts and decrypts data in 64-bit blocks, using a 64-bit key (although 

the effective key strength is only 56 bits). It takes a 64-bit block of plaintext as 

input and outputs a 64-bit block of ciphertext as shown in Figure 3.1. Since it 

always operates on blocks of equal size and it uses both permutations and 

substitutions in the algorithm, DES is both a block cipher and a product cipher 

[16-17].  

 

DES has 16 rounds, meaning the main algorithm is repeated 16 times to produce 

the ciphertext. It has been found that the number of rounds is exponentially 

proportional to the amount of time required to find a key using a brute-force 

attack. So as the number of rounds increases, the security of the algorithm 

increases exponentially.  
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Figure 3.1: DES Encryption Cipher Algorithm 

 

The three main phases of DES algorithm are: 

 

3.1.1.1 Key Scheduling 

 

Although the input key for DES is 64 bits long, the actual key used by DES is 

only 56 bits in length. The least significant (right-most) bit in each byte is a 

parity bit, and should be set so that there are always an odd number of 1s in 

every byte. These parity bits are ignored; so only the seven most significant bits 

of each byte are used, resulting in a key length of 56 bits [17].  
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The first step is to pass the 64-bit key through a permutation called Permuted 

Choice 1, or PC-1. Now that we have the 56-bit key, the next step is to use this 

key to generate 16 48-bit subkeys, called K[1]-K[16], which are used in the 16 

rounds of DES for encryption and decryption as shown in Figure 3.2.  

 

 

Figure 3.2: Key Scheduling 

 

The procedure for generating the subkeys - known as key scheduling as shown in 

Figure 3.3: 

 

1. Set the round number R to 1. 

2. Split the current 56-bit key, K, up into two 28-bit blocks, L (the left-hand 

half) and R (the right-hand half). 

3. Rotate L left by the number of bits specified for the current round, and 

rotate R left by the same number of bits as well. 

4. Join L and R together to get the new K. 

5. Apply Permuted Choice 2 (PC-2) to K to get the final K[R], where R is the 

round number we are on. 

6. Increment R by 1 and repeat the procedure until we have all 16 subkeys 

K[1]-K[16]. 
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Figure 3.3: Generation of K[I] in Round I 

 
3.1.1.2 Plaintext Preparation 

 

Once the key scheduling has been performed, the next step is to prepare the 

plaintext for the actual encryption. This is done by passing the plaintext through 

a permutation called the Initial Permutation (IP). 

 

3.1.1.3 DES Core 

 

Once the key scheduling and plaintext preparation have been completed, the 

main DES core algorithm performs the actual encryption or decryption, as shown 

in Figure 3.4. The 64-bit block of input data is first split into two halves, L and R. 

L is the left-most 32 bits, and R is the right-most 32 bits. 

 

Figure 3.4: DES Core 
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The following process is repeated 16 times, making up the 16 rounds of standard 

DES [16-17]. We call the 16 sets of halves L[0]-L[15] and R[0]-R[15]. 

 

1. R[I-1] - where I is the round number, starting at 1 - is taken and fed into 

Expansion Permutation, except that some of the bits are used more than 

once. This expands the number R[I-1] from 32 to 48 bits to prepare for 

the next step. 

2. The 48-bit R[I-1] is XORed with K[I] and stored in a temporary buffer so 

that R[I-1] is not modified. 

3. The result from the previous step is now split into 8 segments of 6 bits 

each. The left-most 6 bits are B[1], and the right-most 6 bits are B[8]. 

These blocks form the index into the S-boxes, which are used in the next 

step. The Substitution boxes, known as S-boxes, are a set of 8 two-

dimensional arrays, each with 4 rows and 16 columns. The numbers in the 

boxes are always 4 bits in length, so their values range from 0-15. The S-

boxes are numbered S[1]-S[8]. 

4. Starting with B[1], the first and last bits of the 6-bit block are taken and 

used as an index into the row number of S[1], which can range from 0 to 

3, and the middle four bits are used as an index into the column number, 

which can range from 0 to 15. The number from this position in the S-box 

is retrieved and stored away. This is repeated with B[2] and S[2], B[3] 

and S[3], and the others up to B[8] and S[8]. At this point, you now have 

8 4-bit numbers, which when strung together one after the other in the 

order of retrieval, give a 32-bit result. 

5. The result from the previous stage is now passed into the P Permutation. 

6. This number is now XORed with L[I-1], and moved into R[I]. R[I-1] is 

moved into L[I]. 

7. At this point we have a new L[I] and R[I]. Here, we increment I and 

repeat the core function until I = 17, which means that 16 rounds have 

been executed and keys K[1]-K[16] have all been used. 

 

When L[16] and R[16] have been obtained, they are joined back together in the 

same fashion they were split apart (L[16] is the left-hand half, R[16] is the right-

hand half), then the two halves are swapped, R[16] becomes the left-most 32 
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bits and L[16] becomes the right-most 32 bits of the pre-output block and the 

resultant 64-bit number is called the pre-output. 

 

The final step is to apply the Inverse Initial Permutation IP^(-1) to the pre-

output. The result is the completely encrypted ciphertext.  

 

3.1.2 DES Decryption 

 

The method described above will encrypt a block of plaintext and return a block 

of ciphertext. In order to decrypt the ciphertext and get the original plaintext 

again, the procedure is simply repeated but the subkeys are applied in reverse 

order, from K[16]-K[1]. That is, stage 2 of the Core Function as outlined above 

changes from R[I-1] XOR K[I] to R[I-1] XOR K[17-I]. Other than that, decryption 

is performed exactly the same as encryption. 

 

3.2 OPTIMIZATION TECHNIQUES FOR DES 

  

Achieving small code size and fast execution time for an implementation of DES 

is crucial with regard to the practicalities of its use in embedded applications, in 

which the available processing power is often very limited. Various optimization 

techniques can achieve improvement in both code size and execution time. Since 

DES operates on blocks of data, which are only 8 bytes in length, and the size of 

the data that needs to be encrypted or decrypted is often quite large, the speed 

of encryption/decryption in a DES implementation is an important factor. 

Typically the DES algorithm is implemented in software for these reasons, 

efficient software optimizations are an essential consideration. In addition to 

considerations of speed, for real-time embedded applications efficient usage of 

limited ROM and RAM by a DES implementation is crucial.  

 

3.2.1 Initial Permutation and Inverse Initial Permutation 

 

The DES specified by Federal Information Processing Standard (FIPS) naive 

implementation uses lookup table for the Initial Permutation, which takes more 

memory and is less efficient. Table 3.1 shows the lookup table used for 

implementing Initial Permutation. 
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Table 3.1: Lookup Tables for    Table 3.2: Lookup Tables for  

     Initial Permutations         Inverse Initial Permutations 

 

Bit  0 1 2 3 4 5 6 7

1 58 50 42 34 26 18 10 2

9 60 52 44 36 28 20 12 4

17 62 54 46 38 30 22 14 6

25 64 56 48 40 32 24 16 8

33 57 49 41 33 25 17 9 1

41 59 51 43 35 27 19 11 3

49 61 53 45 37 29 21 13 5

57 63 55 47 39 31 23 15 7

Bit 0 1 2 3 4 5 6 7 

1 40 8 48 16 56 24 64 32

9 39 7 47 15 55 23 63 31

17 38 6 46 14 54 22 62 30

25 37 5 45 13 53 21 61 29

33 36 4 44 12 52 20 60 28

41 35 3 43 11 51 19 59 27

49 34 2 42 10 50 18 58 26

57 33 1 41 9 49 17 57 25

 

For example, we can use the IP table to figure out how bit 30 of the original 64-

bit data transforms to a bit in the new 64-bit data. Find the number 30 in the 

table, and notice that it belongs to the column labeled 4 and the row labeled 17. 

Add up the value of the row and column to find the new position of the bit within 

the data. For bit 30, 17 + 4 = 21, so bit 30 becomes bit 21 of the new 64-bit 

data.  

 

The SwapMove operation implements the initial permutation in a very efficient 

way. It swaps the bits in Right, masked by M with the bits in Left, masked by   

(M << N) [18]. That is, 

 

SwapMove(Left, Right, M, N) 

{ 

 Temp = (( Left >> N) XOR Right) AND M 

 Right = Right XOR Temp 

 Left = Left XOR (Temp << N) 

} 

 

The initial permutation can be implemented by 5 calls to the SwapMove 

operation. Here the input Left is the left half of the 64 bit input data, and the 

input Right is the right half. Throughout, we are assuming a 32-bit word size. 
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IP(Left, Right) 

 

SwapMove(Left, Right, 0x0F0F0F0F,4) 

SwapMove(Left, Right, 0x0000FFFF,16) 

SwapMove(Right, Left, 0x33333333,2) 

SwapMove(Right, Left, 0x00FF00FF,8) 

SwapMove(Left, Right, 0x55555555,1)  

 

The Initial Permutation takes 30 operations in all that is, 15 XOR operations, 10 

Shift operations and 5 AND operations and also without using any lookup table 

thus saving 64 bytes each for initial and inverse initial permutation. The 

efficiency is also increased, as with lookup table all such operations would be 

performed on read-a-bit and set-a-bit basis. 

 

Table 3.2 shows the look up table for Inverse Initial Permutation. Since the 

inverse initial permutation simply undoes the permutation performed by the 

initial permutation, the SwapMove functions are called in the reverse order to 

implement the inverse initial permutation. 

 

IIP(Left, Right) 

 

SwapMove(Left, Right, 0x55555555,1)  

SwapMove(Right, Left, 0x00FF00FF,8) 

SwapMove(Right, Left, 0x33333333,2) 

SwapMove(Left, Right, 0x0000FFFF,16) 

SwapMove(Left, Right, 0x0F0F0F0F,4) 

 

3.2.2 Permuted Choice 1(PC-1) 

 

Also the DES naive implementation uses lookup table for the Permuted Choice-1 

operation, which results in a 56-bit key. Figure 3.6 shows the lookup table used 

for Permuted Choice – 1. 
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These tables are used just like Initial Permutation and Inverse Initial 

Permutation. For example, we can use the PC-1 table to figure out how bit 30 of 

the original 64-bit key transforms to a bit in the new 56-bit key. Find the number 

30 in the table, and notice that it belongs to the column labeled 5 and the row 

labeled 36. Add up the value of the row and column to find the new position of 

the bit within the key. For bit 30, 36 + 5 = 41, so bit 30 becomes bit 41 of the 

new 56-bit key. Note that bits 8, 16, 24, 32, 40, 48, 56 and 64 of the original 

key are not in the table. These are the unused parity bits that are discarded 

when the final 56-bit key is created.  

 

Table 3.3: Lookup Tables for PC-1 
 

Bit 0 1 2 3 4 5 6 

1 57 49 41 33 25 17 9 

8 1 58 50 42 34 26 18

15 10 2 59 51 43 35 27

22 19 11 3 60 52 44 36

29 63 55 47 39 31 23 15

36 7 62 54 46 38 30 22

43 14 6 61 53 45 37 29

50 21 13 5 28 20 12 4 

 

The HalfMove operation implements the PC1 permutation in a very efficient way. 

It swaps the bits in half, masked by M with the bits in half, masked by (M >> 

N)[18]. That is, 

 

HalfMove(Half, M, N) 

{ 

 Temp = (( Half << (16-N)) XOR Half) AND M 

 Half = Half XOR Temp XOR (Temp >> (16- N)) 

} 

 

The PC-1 permutation can be implemented by making calls to SwapMove and 

HalfMove functions.  
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PC-1 

 

SwapMove(Right, Left,  0x0F0F0F0F,4) 

HalfMove (Left,0xCCCC0000,-2) 

HalfMove (Right,0xCCCC0000,-2) 

SwapMove(Right, Left, 0x55555555,1) 

SwapMove(Left, Right, 0x00FF00FF,8) 

SwapMove(Right, Left, 0x55555555,1) 

Right =   ((Right AND 0x000000FF) << 16) |  

(Right AND 0x0000FF00) |  

((Right AND 0x00FF0000) >> 16) |  

((Left AND 0xFF000000) >> 4)) 

Left = Left AND 0x0FFFFFFF 

 

Some bit shifting is performed at the end because calls to the SwapMove and 

HalfMove operations do not quite produces the result we want. The resulting 28 

bits in each half are aligned to the least significant end so that when the bits out 

of the key schedule are used as indices into other tables, one less bit shift will be 

required. 

 

The PC-1 Permutation takes 47 operations in all that is, 18 XOR operations, 15 

Shift operations, 11 AND operations and 3 OR operations and also without using 

any lookup table thus saving 56 bytes. The computing efficiency is increased 

very high. 

 

3.2.3 The Substitution Operation 

 

Rather than using eight two-dimensional tables, the selection function data may 

be represented in a single 64-element array where each element is 32 bits long. 

For a given 6-bit input to the 8 original selection functions, the corresponding 4 

bit outputs are concatenated together to form a 32-bit element of the new array. 

Then, depending on which selection function output value we are interested in, 

we mask out unneeded bits from this 32-bit value. The total output of the 

selection functions after concatenation will then simply is the 32 bit outputs.  
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3.2.4 Permuted Choice 2(PC2) 

 

Permuted choice 2 and the cipher function fare the two major operations in each 

round of DES. Optimizing the permuted choice 2 brings significant gains in 

performance in time. The simplest optimization is to implement this function as a 

lookup table. The bigger the lookup table for PC2, the faster the operation of 

PC2. Hence, there is a trade-off between time and code size. For real-time 

embedded applications where ROM size and speed are equally important, it was 

decided to implement PC2 as a 4-bit lookup table. This requires (24 x 8) bytes 

and 14 lookups each using a 4-byte mask. Had speed been a more crucial factor, 

the table was implemented, say, as an 8-bit lookup, which would have required 

48 bytes. 

 

As a consequence of the above optimizations, both the encryption and the 

decryption operations execute in fixed time. The execution time has no 

correlation with the given input data and the key. Thus no timing information 

leaked, in contrast to some cases of the naive implementation. 

 

3.3 TRIPLE DES (3DES) ALGORITHM 

 

When it was found that a 56-bit key of DES is not enough to guard against brute 

force attacks, 3DES was chosen as a simple way to enlarge the key space 

without a need to switch to a new algorithm. The use of three steps is essential 

to prevent attacks that are effective against double DES encryption. 

 

The 3DES algorithm is a simple variant of the DES algorithm. The DES function is 

replaced by three rounds of that function, an encryption followed by a decryption 

followed by an encryption, each with independent keys, k1, k2 and k3 [19] as 

shown in Figure 3.5. In general 3DES with three different keys has a key length 

of 168 bits: three 56-bit DES keys (with parity bits 3DES has the total storage 

length of 192 bits). When all three keys (k1, k2 and k3) are the same, 3DES is 

equivalent to DES.  
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Figure 3.5: Triple DES 

 

The simplest variant of 3DES commonly known as EDE, operates as follows: 

DES(k3;DES − 1(k2;DES(k1;M))) 

where M is the message block to be encrypted and k1, k2, and k3 are DES keys.  

 

The optimization techniques applied for the DES algorithm are also used for 

3DES algorithm. 

 

 

 27 



4                  AES ALGORITHM 
 

4.1 AES ALGORITHM 

 

This standard specifies the Rijndael algorithm, a symmetric block cipher that 

can process data blocks of 128 bits, using cipher keys with lengths of 128, 192, 

and 256 bits. The algorithm may be used with three different key lengths 

indicated above, and therefore these different “flavors” may be referred to as 

“AES-128”, “AES-192”, and “AES-256”. 

 

The input and output for the AES algorithm each consist of sequences of 128 bits 

(digits with values of 0 or 1). These sequences will sometimes be referred to as 

blocks and the number of bits they contain will be referred to as their length. The 

Cipher Key for the AES algorithm is a sequence of 128, 192 or 256 bits [20]. 

 

The basic unit for processing in the AES algorithm is a byte. All byte values in the 

AES algorithm will be presented as the concatenation of its individual bit. 

 

Internally, the AES algorithm’s operations are performed on a two-dimensional 

array of bytes called the State. The State consists of four rows of bytes, each 

containing Nb bytes, where Nb is the block length divided by 32. In the State 

array denoted by the symbol s, each individual byte has two indices, with its row 

number r in the range 0 ≤ r < 4 and its column number c in the range 0≤ c<Nb. 

This allows an individual byte of the State to be referred to as either sr,c or s[r,c]. 

For this standard, Nb = 4, i.e., 0 ≤ c < 4. 

4.2 THE RIJNDAEL ALGORITHM 
 
Rijndael is an iterated block cipher with a variable block length and key length. 

The block length and the key length can be independently set to 128, 192 or 256 

bits, whereas AES restricts the block length to 128 bits only [20]. At the start of 

the Cipher, the input is copied to the State array. After an initial Round Key 

addition, the State array is transformed by implementing a round function 10, 

12, or 14 times (depending on the key length), with the final round differing 

slightly from the first Nr-1 rounds. The final State is then copied to the output. 

The key that is provided as input is expanded into an array of forty-four 32-bit 
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words, w[i]. Four distinct words (128 bits) serve as a round key for each round; 

these are indicated in Figure 4.1. 

 

 
 

Figure 4.1: AES Encryption Procedure 

 

Four different stages are used, one of permutation and three of substitution: 

 

• Substitute bytes: Use an S-box to perform a byte-by-byte substitution of 

the block 

• Shift rows: A simple permutation 

• Mix Columns: A substitution that makes use of arithmetic over GF(28) 

• Add round key: A simple bitwise XOR of the current with a portion of the 

expanded key 

 

Only the Add Round Key stage makes use of the key. For this reason, the cipher 

begins and ends with an Add Round Key stage. The other three stages together 

provide confusion, diffusion, and non-linearity, but by themselves would provide 

no security because they do not use the key. Each stage is easily reversible. For 
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the Substitute Byte, Shift Row, and MixColumns stages, an inverse function is 

used in the decryption algorithm. For the Add Round Key stage, the inverse is 

achieved by XORing the same round key to the block, using the result that         

A ⊕ B = B. The decryption algorithm is not identical to the encryption algorithm. 

Once it is established that all four stages are reversible, it is easy to verify that 

decryption does recover the plaintext. The final round of both encryption and 

decryption consists of only three stages.  

 

 
 

 

Figure 4.2: Pseudo Code for the AES Cipher 

 

The Cipher is described in the pseudo code in Figure 4.2. The individual 

transformations - SubBytes, ShiftRows, MixColumns, and AddRoundKey – 

process the State and are described in the following subsections. In Figure 4.2, 

the array w[] contains the key schedule.  

 

As shown in Figure 4.2, all Nr rounds are identical with the exception of the final 

round, which does not include the MixColumns transformation. 
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4.2.1 SubBytes Transformation 

 

The SubBytes transformation is a non-linear byte substitution that operates 

independently on each byte of the State matrix, using a substitution table       

(S-box), which is invertible. 

 

4.2.2 ShiftRows Transformation 

 

In the ShiftRows transformation, the bytes in the last three rows of the State are 

cyclically shifted over different numbers of bytes (offsets). The first row, r = 0 is 

not shifted. 

 

Specifically, the ShiftRows transformation proceeds as follows: 

S’r,c =  S r,(c+ shift(r,Nb))mod Nb  for 0 < r < 4 and 0 ≤ c < Nb, 

where the shift value shift(r,Nb) depends on the row number, r, as follows (recall 

that Nb= 4): 

shift(1, 4) = 1; shift( 2, 4) = 2; shift( 3, 4) =  3 

This has the effect of moving bytes to “lower” positions in the row (i.e., lower 

values of c in a given row), while the “lowest” bytes wrap around into the “top” 

of the row (i.e., higher values of c in a given row). 

 

4.2.3 MixColumns Transformation 

 

The MixColumns transformation operates on the State column-by-column, 

treating each column as a four-term polynomial. The columns are considered as 

polynomials over GF(28) and multiplied modulo x4 + 1 with a fixed polynomial 

a(x), given by the expression, 

 

a(x) = {03}x3 + {01}x2 + {01}x + {02} 

 

This polynomial is co-prime to (x4 + 1), and therefore the transformation is 

invertible. This transformation can be written under the form of a matrix 

multiplication. Pose s’c(x) = a(x) ⊗ sc(x), for 0 ≤ c ≤ 3, that is for all the 4 
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columns in the State matrix [21]. As a result of this multiplication, the 4 bytes in 

a column c are replaced by the following ones (for c = 0, 1, 2 and 3): 

 

S’0,c = 02 * S0,c ⊕ 03 * S1,c  ⊕ S2,c ⊕ S3,c 

S’1,c = S0,c ⊕ 02 * S1,c  ⊕ 03 * S2,c ⊕ S3,c 

S’2,c = S0,c ⊕ S1,c  ⊕ 02 * S2,c ⊕ 03 * S3,c 

S’3,c = 03 * S0,c ⊕ S1,c  ⊕ S2,c ⊕ 02 * S3,c 

 

where the * operator stands for a multiplication in GF(28), with:  

m(x) = x8 + x4 + x3 + x + 1 

as irreducible generator polynomial. Performing a complete round means simply 

applying these 4 transformations to the State matrix, in the following order: 

round = {SubBytes, ShiftRows,MixColumns, AddRoundKey} 

Performing the final round means simply applying to the State matrix the 

following transformations, in the order: 

finalround = {SubBytes, ShiftRows, AddRoundKey} 

 

4.2.4 AddRoundKey Transformation 

 

In the AddRoundKey transformation, a Round Key is added to the State matrix 

by a simple bitwise XOR operation. Each Round Key consists of Nb words from 

the key schedule. Those Nb words are each added into the columns of the State, 

such that, 

[S’0,c , S’1,c , S’2,c , S’3,c ] = [ S0,c , S1,c , S2,c , S3,c ] ⊕ [ Wround*Nb+c]  for 0 ≤ c < Nb,  

where [wi] are the key schedule words, and round is a value in the range 0 ≤ 

round ≤ Nr. In the Cipher, the initial Round Key addition occurs when round = 0, 

prior to the first application of the round function as shown in Figure 4.2. The 

application of the AddRoundKey transformation to the Nr rounds of the Cipher 

occurs when 1 ≤ round ≤ Nr. 
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4.3 KEY EXPANSION 
 
The AES algorithm takes the Cipher Key K, and performs a Key Expansion 

routine to generate a key schedule. The Key Expansion generates a total of Nb 

(Nr + 1) words: the algorithm requires an initial set of Nb words, and each of the 

Nr rounds requires Nb words of key data. The resulting key schedule consists of 

a linear array of 4-byte words, denoted [wi], with i in the range               

0 ≤ i < Nb (Nr + 1). 

 

The expansion of the input key into the key schedule proceeds according to the 

pseudo code in Figure 4.3. 

 

 

Figure 4.3: Pseudo Code for Key Expansion 

 

SubWord is a function that takes a four-byte input word and applies the S-box to 

each of the four bytes to produce an output word. The function RotWord takes a 

word [a0,a1,a2,a3] as input, performs a cyclic permutation, and returns the 

word [a1,a2,a3,a0]. The round constant word array, Rcon[i], contains the values 
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given by [xi-1,{00},{00},{00}], with x i-1 being powers of x (x is denoted as 

{02}) in the field GF(28) (note that i starts at 1, not 0).  

 

From Figure 4.3, it can be seen that the first Nk words of the expanded key are 

filled with the Cipher Key. Every following word, w[i], is equal to the XOR of the 

previous word, w[i-1], and the word Nk positions earlier, w[i-Nk]. For words in 

positions that are a multiple of Nk, a transformation is applied to w[i-1] prior to 

the XOR, followed by an XOR with a round constant, Rcon[i]. This transformation 

consists of a cyclic shift of the bytes in a word (RotWord), followed by the 

application of a table lookup to all four bytes of the word (SubWord). 

 

It is important to note that the Key Expansion routine for 256-bit Cipher Keys 

(Nk = 8) is slightly different than for 128- and 192-bit Cipher Keys. If Nk = 8 and 

i-4 is a multiple of Nk, then SubWord is applied to w[i-1] prior to the XOR. 

 

4.4 INVERSE CIPHER 

 

The Cipher transformations in Sec. 4.1 can be inverted and then implemented in 

reverse order to produce a straightforward Inverse Cipher for the AES algorithm. 

The individual transformations used in the Inverse Cipher - InvShiftRows, 

InvSubBytes, InvMixColumns, and AddRoundKey [17]– process the State 

and are described in the following subsections. 

 

The Inverse Cipher is described in the pseudo code in Figure 4.4. In Figure 4.4, 

the array w[] contains the key schedule, which was described previously. 

 

4.4.1 InvShiftRowsTransformation 

 

InvShiftRows is the inverse of the ShiftRows transformation. The bytes in the last 

three rows of the State are cyclically shifted over different numbers of bytes 

(offsets).  
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Figure 4.4: Pseudo Code for the AES Inverse Cipher 

 

 

4.4.2 InvSubBytes Transformation 

 

InvSubBytes is the inverse of the byte substitution transformation, in which the 

inverse S-box is applied to each byte of the State. This is obtained by applying 

the inverse of the affine transformation followed by taking the multiplicative 

inverse in GF(28). 

 

4.4.3 InvMixColumns Transformation 

 

InvMixColumns is the inverse of the MixColumns transformation. InvMixColumns 

operates on the State column-by-column, treating each column as a four term 

polynomial. The columns are considered as polynomials over GF(28) and 

multiplied modulo x4 + 1 with a fixed polynomial a-1(x), given by 

a-1(x) = {0b}x3 + {0d}x2 + {09}x + {0e} 

 

4.4.4 Inverse of the AddRoundKey Transformation 

 

AddRoundKey, which was described in Sec. 4.2.4, is its own inverse, since it only 

involves an application of the XOR operation. 
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4.5 OPTIMIZATION TECHNIQUES FOR AES ALGORITHM 

 

This section illustrates the optimized version of the Rijndael AES algorithm. Both 

the encryption and the decryption algorithms have been optimized. All the 

operations in the AES algorithm described above, with the exception of the 

MixColumn transformation, are quite straightforward to implement, therefore 

optimization is mainly concentrated on implementation of the MixColumn 

transformation and also by the fact that, compact implementations of MixColumn 

transformation is responsible for about 50% of the encryption and decryption 

time. 

 
4.5.1 Optimize MixColumn for Encryption 

 

In the MixColumn transformation, each column of the State is considered as a 

polynomial with coefficients in GF(28), and multiplied modulo x4 + 1 with a fixed 

polynomial {03}x3 + {01}x2 + {01}x + {02}, co-prime to the modulo [21]. 

Assuming that the column before transformation consists of the bytes (b0, b1, b2, 

b3), each byte representing a polynomial in GF(28), the transformed column 

bytes (c0, c1, c2, c3) are computed as follows: 

 

c0 = {02} * b0 ⊕  {03} * b1 ⊕  {01} * b2  ⊕ {01} * b3 

 c1 = {01} * b0 ⊕  {02} * b1 ⊕  {03} * b2  ⊕ {01} * b3            (4.1)  

c2 = {01} * b0 ⊕  {01} * b1 ⊕  {02} * b2  ⊕ {03} * b3 

c3 = {03} * b0 ⊕  {01} * b1 ⊕  {01} * b2  ⊕ {02} * b3 

 

where * denotes polynomial multiplication in GF(28) defined by the irreducible 

polynomial x8 + x4 + x3 + x + 1, and ⊕ denotes simple XOR at byte level. 

Multiplication by {02} in GF(28) can be implemented at byte level with a left shift 

followed by a conditional bitwise XOR with {1b}, called as doubling operation. 

Multiplication by larger coefficients can be implemented with repeated 

multiplications by {02} and XORs with previously calculated results. 

 

The MixColumn implementation described by Gladman [26] requires 4 XORs, 3 

rotate and one doubling operation, incurring 16 XORs, 12 rotates and 4 doubling 

operations per AES round.  

 36 



Chapter 4  AES Algorithm 

The new optimized MixColumn implementation that requires 3 XORs, 3 rotations 

and one doubling operation, incurring 12 XORs, 12 rotations and 4 doubling 

operations per AES round. However, using the ARM barrel shifter, the 12 

rotations can be combined with 12 XORs without any penalty, resulting in 12 

XORs and 4 doubling operations effectively per round. The proposed MixColumn 

implementation, in addition to cutting down the number of logical operations, can 

support all block lengths multiples of 32-bits. 

 

Assuming that b = (b0, b1, b2, b3) is the input column to be transformed, s as a 

32-bit temporary variables, and c = (c0, c1, c2, c3) is the result, the steps of the 

MixColumn transformation are given as follows, 

s0 = b0 ⊕ b1 

    s1 = b1 ⊕ b2     (4.2) 

s2 = b2 ⊕ b3 

s3 = b3 ⊕ b0 

 

c0 = {02} * s0 ⊕  b1 ⊕ b2 ⊕ b3 

c1 = b0 ⊕ {02} * s1 ⊕ b2 ⊕ b3   (4.3) 

c2 = b0 ⊕ b1 ⊕ {02} * s2 ⊕ b3 

c3 = b0 ⊕ b1 ⊕ b2 ⊕ {02} * s3 

 

Therefore the MixColumns transformation is computed in only 3 steps: a sum 

step, a doubling step and a final sum step per AES rotation. The final result of 

Equation 4.3 is equal to Equation 4.1. 
 

4.5.2 Optimize MixColumn for Decryption 

 

In the case of decryption this double-and-add method is used in a more 

substantial way, and the steps necessary to compute the InvMixColumns 

transformation are 7: 4 sum steps and 3 doubling steps [21]. In the case of 

InvMixColumns the double-and-add method can be improved by considering the 

particular values of the constant coefficients. Note that there are only two 

coefficients containing a bit 1 in the third position, namely the coefficients 0x0e 

and 0x0d. These coefficients are used in combination with the operands b0 and b2 

contained both in the first row and in the third row, and are used in combination 
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with the operands b1 and b3 contained both in the second row and in the fourth 

row. 

 

To save a doubling operation we can add these two operand pairs and store the 

result in b0 and b1, respectively. Instead of calculating the sub-expression         

04 * b0 ⊕ 04 * b2, we can calculate the sub-expression expression 04*(b0 ⊕ b2), 

since we do not need to store separately either addend. Moreover, note that 

every coefficient contains a bit 1 in the fourth position. The last calculation deals 

with this bit. Hence we can add the previously computed values b0 and b1, which 

are 04*(b0 ⊕ b2) and 04*(b1 ⊕ b3), respectively, and then double them, so that 

the sub-expression 08*(b0 ⊕ b1 ⊕ b2 ⊕ b3) is obtained, which must be 

accumulated to every operand ci. 

 

Assuming that b = (b0, b1, b2, b3) is the input column to be transformed, dou8, 

dou4a and dou4b as a 32-bit temporary variables, and c = (c0, c1, c2, c3) is the 

result, the steps of the InvMixColumn transformation are given as follows, 

 

dou8   = {08} * (b0 ⊕  b1 ⊕ b2 ⊕ b3 ) 

dou4a = {04} * (b0 ⊕  b2 )          (4.4) 

dou4b = {04} * (b1 ⊕  b3 ) 

 

c0 = dou8 ⊕ dou4a ⊕ {02} * (b0 ⊕ b1 ) ⊕  b1 ⊕ b2 ⊕ b3 

c1 = dou8 ⊕ dou4b ⊕ {02} * (b1 ⊕ b2 ) ⊕  b0 ⊕ b2 ⊕ b3      (4.5) 

c2 = dou8 ⊕ dou4a ⊕ {02} * (b2 ⊕ b3 ) ⊕  b0 ⊕ b1 ⊕ b3 

c3 = dou8 ⊕ dou4b ⊕ {02} * (b0 ⊕ b3 ) ⊕  b0 ⊕ b1 ⊕ b2  

 

These optimizations can eliminate a number of shifts and rotates operations on 

the ARM architectures. Also, it enhances the performance of AES on all ARM 

cores. The new implementation is the most compact implementation, preserves 

the flexibility of Rijndael and exhibits the highest encryption performance on ARM 

processors, compared with similar implementations claiming low memory use. It 

exploits the ISA features of ARM by efficiently rearranging some operations and 

reducing their number. 
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5.1 RSA ALGORITHM 

 

The RSA scheme is a block cipher in which the plaintext and ciphertext are 

integers between 0 and n-1 for some n. The scheme developed by Rivest, 

Shamir, and Adleman makes use of an expression with exponentials. Plaintext is 

encrypted in blocks, with each block having a binary value less than some 

number n. That is, block size must be less than or equal to log2(n); generally, 

the block size is k bits, where 2k < n ≤ 2k+1 [17]. Encryption and decryption are 

of the following form, for some plaintext block M and ciphertext block C: 

C = Me mod n 

M = Cd mod n 

RSA gets its security from the difficulty of factoring large numbers. The public 

and private keys are functions of a pair of large (100 to 200 digits or even 

larger) prime numbers. Recovering the plaintext from the public key and the 

ciphertext is conjectured to be equivalent to factoring the product of the two 

primes. 

 

To generate the two keys, choose two random large prime numbers, p and q and 

two integers, n and m, such that 0 < m < n. For maximum security, choose p 

and q of equal length. Compute the product: 

n = pq 

For p, q prime, φ(pq) = (p-1)(q-1), where φ(n) is the Euler totient function, which 

is the number of positive integers less than n and relatively prime to n. Finally, 

use the extended Euclidean algorithm to compute the decryption key, d, such 

that, 

ed ≡ 1 mod φ(n) 

  d ≡ e-1 mod φ(n) 

That is, e and d are multiplicative inverses mod φ(n). According to the rules of 

modular arithmetic, this is true only if d (and therefore e) is relatively prime to 

φ(n). Equivalently, gcd(φ(n),d) = 1. 
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Note that d and n are also relatively prime. The numbers e and n is the public 

key and the number d and n is the private key. The two primes, p and q, are no 

longer needed. They should be discarded, but never revealed. 

 

To encrypt a message M, first divide it into numerical blocks smaller than n (with 

binary data, choose the largest power of 2 less than n). That is, if both p and q 

are 100-digit primes, then n will have just under 200 digits and each message 

block, Mi, should be just under 200 digits long. (If a fixed number of blocks are 

to be encrypted, one can pad them with a few zeros on the left to ensure that 

they will always be less than n.) The encrypted message Ci, will be made up of 

similarly sized message blocks. 

 

To decrypt a message, take each encrypted block ci and compute 

Mi = Ci
d mod n 

the formula recovers the message. This is summarized as follows, 

 

Public Key: 

n product of two primes, p and q (p and q must remain secret) 

e relatively prime to (p - 1)(q - 1) 

Private Key: 

d = e-1 mod ((p - 1)(q - 1)) 

Encrypting: 

c = me mod n 

Decrypting: 

m = cd mod n 

 

The message could just be easily encrypted with d and decrypted with e; the 

choice is arbitrary.  
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5.2 EFFICIENT ALGORITHMS FOR RSA IMPLEMENTATION 

 

5.2.1 Efficient Method for Primality Test 

 

In implementing RSA algorithm, the primality test is carried by introducing a 

very fast and efficient method instead of using the probabilistic test. The Miller- 

Rabin Test will merely determine that a given integer is probably prime and also 

which is a tedious procedure. The procedure for testing whether a given integer n 

is prime is to perform some calculations that involves n and a randomly chosen 

integer a. If n “fails” the test, then n is not a prime. If n “passes” the test, then n 

may be prime or nonprime.  

 

In the approach introduced here, it tests the prime number on the actual 

calculations performed. The number of test required to test the primality of a 

given number n is SquareRoot(n). Actually, because all the even numbers can be 

immediately rejected, the correct figure is SquareRoot(n)/2. Consider the 

following example,  

 

Suppose, n = 105, then according to Miller-Rabin Test it will take ln(n)/ 2 = 3 

test. While in this approach, it will take SquareRoot(n)/2 = 5 test, but will surely 

determine whether the given number n is prime or nonprime. 

 

5.2.2 Extended Euclid Algorithm 

 

Euclid’s algorithm can be extended so that, in addition to finding gcd (a, b), if the 

gcd is 1, the algorithm returns the multiplicative inverse of b [17]. 

 

Given a and b, the extended Euclid algorithm computes g, u, and v such that 

g = gcd(a, b) = u · a + v · b 

This algorithm is used to compute the modular inverse. If g = 1, then 

 

1 = u · a + v · b 

implies that, 

 41 



Chapter 5  RSA Algorithm 

1 = u · a (mod b) 

1 = v · b (mod a) 

and therefore, 

u = a-1 (mod b) 

v = b-1 (mod a) 

 

EXTENDED EUCLID ALGORITHM (a, b) 

begin 

(g0, g1) = (a, b) 

(u0, u1) = (1, 0) 

(v0, v1) = (0, 1) 

while g1 ≠ 0 do 

begin 

q = g0 div g1 

(g0, g1) = (g1, g0 - g1 · q) 

(u0, u1) = (u1, u0 - u1 · q) 

(v0, v1) = (v1, v0 - v1 · q) 

end 

g = g0 ; u = u0 ; v = v0 

end 

 

5.2.3 Left to Right Binary Exponentiation 

 

One of the most important arithmetic operations for public-key cryptography is 

exponentiation. 

 

The most naive way to compute ge is to do e - 1 multiplications in the group. But 

for cryptographic applications like RSA, the order of the group g typically exceeds 

2160 elements, and may exceed 21024. Most choices of e are large enough that it 

would be infeasible to compute ge using e - 1 successive multiplications by g. 

There are two ways to reduce the time required to do exponentiation. One way is 

to decrease the time to multiply two elements in the group and the other is to 

 42 



Chapter 5  RSA Algorithm 

reduce the number of multiplications used to compute ge. Ideally, one would do 

both. 

 

There are basically three types of exponentiation algorithms: 

 

1. Basic techniques for exponentiation: Arbitrary choices of the base g and 

exponent e are allowed. 

2. Fixed-exponent exponentiation algorithms: The exponent e is fixed and 

arbitrary choices of the base g are allowed. RSA encryption and decryption 

schemes benefit from such algorithms. 

3. Fixed-base exponentiation algorithms: The base g is fixed and arbitrary 

choices of the exponent e are allowed. ElGamal encryption and signatures 

schemes and Diffie-Hellman key agreement protocols benefit from such 

algorithms. 

 

The RSA implementation in this work uses the Left to Right Binary 

Exponentiation Algorithm for computing the exponentiation, as it reduces the 

number of multiplication for the computation of exponentiation [17]. The 

following pseudo-code explains the Left to Right Binary Method for the 

computation of exponent in the RSA implementation. 

 

LEFT TO RIGHT BINARY METHOD 

 

Input: M, e, n. 

Output: C := Me mod n. 

 

begin 

 

Step 1. if ek-1 = 1 then C := M else C := 1 

Step 2. for i = k - 2 downto 0 

            2a. C := C · C (mod n) 

             2b. if ei = 1 then C := C ·M (mod n) 

Step 3. return C 
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The binary method mentioned above requires, k – 1 squaring operation at step 

2a, the number of Multiplications operations at step 2b is equal to the number of 

1s in the binary expansion of e, excluding the MSB. 

 

Therefore, the total number of multiplications required for left to right binary 

exponentiation method is, 

 

Maximum: (k - 1) + (k - 1)     = 2(k - 1) 

Minimum : (k - 1) + 0            = k - 1 

Average  : (k - 1)+ 1/2(k - 1) = 1.5(k - 1) 

 

RSA encryption goes much faster if smart value of e is chosen. The three most 

common choices are 3, 17, and 65537 (216 + 1). Since, the binary 

representation of 65537 has only two ones, so it takes only 17 multiplications for 

exponentiation. There are no security problems with using any of these three 

values for, even if a whole group of users uses the same value for e. 
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6.1 INTRODUCTION 

 

The ARM is mature and the ANSI C compiler which is capable of producing high 

quality machine code. However, when writing source code, it is always 

worthwhile to use programming techniques, which work well on RISC processors 

such as ARM. This chapter describes some of the techniques that can be useful. 

It also explains how to use the C language efficiently. These techniques and 

knowledge will enable programmers to increase execution speed and/or lower 

code density. 

 

6.2 BASIC C VARIABLE TYPES 

 

ARM processors have 32-bit registers and 32-bit data processing operations. The 

ARM architecture is RISC load/store architecture. In other words you must load 

values from memory into registers before acting on them. There are no 

arithmetic or logical instructions that manipulate values in memory directly. The 

C compilers support the basic types char, short, int and long long (signed and 

unsigned), float and double. Using the most appropriate type for variables is 

important, as it can reduce code and/or data size and increase performance 

considerably. 

 

6.2.1 Local Variables Type 

 

Most ARM data processing operations are 32-bit only. For this reason, you should 

use a 32-bit datatype, int or long, for local variables wherever possible. Avoid 

using char and short as local variable types, even if you are manipulating an 8-

bit or 16-bit value. For the types char and short the compiler needs to reduce the 

size of the local variable to 8 or 16 bits after each assignment. This is called sign-

extending for signed variables and zero-extending for unsigned variables [23]. It 

is implemented by shifting the register left by 24 or 16 bits, followed by a signed 

or unsigned shift right by the same amount, taking two instructions (zero-

extension of an unsigned char takes one instruction). 
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These shifts can be avoided by using int and unsigned int for local variables. This 

is particularly important for calculations, which first load data into local variables 

and then process the data inside the local variables. Even if data is input and 

output as 8- or 16-bit quantities, it is worth considering processing them as 32-

bit quantities. 

 

For example, the following code checksums a data packet containing 64 words. 

 

int checksum(int *data) 

{ 

 char i; 

 int sum=0; 

 for( i=0; i<64; i++) 

 { 

 sum + = data[i]; 

 } 

return sum; 

} 

 

At first sight it looks as though declaring i as a char variable, is efficient, as char 

uses less register space or less space on the ARM stack than an int. But these 

assumptions are wrong for ARM, as ARM registers are 32-bit and all stack entries 

and at least 32-bit [22]. 

 

The compiler output for this function is as follows, 

 

checksum 

 MOV  r2, r0    ; r2 = data 

 MOV  r0, #0    ; sum = 0 

 MOV  r1, #0    ; i = 0 

checksum_loop 

 LDR   r3, [r2, r1, LSL, #2] ; r3 = data[i] 

 ADD   r1, r1, #1   ; r1 = i + 1 

 AND   r1, r1, #0xff  ; i = (char) r1 

 CMP   r1, #0x40   ; compare i, 64 
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 ADD  r0, r3, r0   ; sum + = r3 

 BCC  checksum_loop  ; if (i < 64) loop 

 MOV   pc, r14   ; return sum 

  

As the compiler inserts an extra AND instruction to reduce a char variable to the 

range 0 to 255 before the comparison with 64. Thus converting local variables 

from types char or short to type int increases performance and reduces code 

size. 

 

6.2.2 Space Occupied by Global Data 

 

When declaring global variables in source code to be compiled for ARM, three 

things are affected by the way the code is structured [24]: 

• How much space the variables occupy at run time. This determines the 

size of RAM required for a program to run. The ARM compilers may insert 

padding bytes between variables, to ensure that they are properly aligned. 

• How much space the variables occupy in the image. This is one of the 

factors determining the size of ROM needed to hold a program. Some 

global variables, which are not explicitly initialized in your program, may 

nevertheless have their initial value stored in the image. 

• The size of the code needed to access the variables. Some data 

organizations require more code to access the data. As an extreme 

example, the smallest data size would be achieved if all variables were 

stored in suitably sized bitfields, but the code required to access them 

would be much larger. 

 
Table 6.1: Required Alignment Table 

 

Type Required Alignment 

char, signed char, unsigned char 1 

short, unsigned short 2 

int, unsigned int, long, unsigned long 4 

float 4 

double 4 

long long 4 
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As with most RISC processors, ARM code can access data objects most efficiently 

if they are properly aligned for their type (on their natural size boundary). For 

simple types, Table 6.1 above determines the required alignment. 

 

To minimize padding, data use group variables of the same type together. This is 

the best way to ensure that as little padding data as possible is added by the 

compiler. For example, 

char a; 

short b; 

char c; 

int d; 

occupies 12 bytes, with 4 bytes of padding: 

    3   2      1        0 

 

 a  b pad 

 c pad pad pad 

 d 

To improve the memory usage, the elements should be reorder as shown below, 

where it occupies only 8 bytes, without any padding 

char a; 

char c; 

short b; 

int d; 

3   2      1         0 

 

 c  a  b 

 d 

 
6.2.3 Function Argument Types 

 

The char or short type function arguments and return values introduce extra 

casts. These increase code size and decrease performance. It is more efficient to 

use the int type for function arguments and return values, even if you are only 

passing an 8-bit value [22]. 
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6.3 C LOOPING STRUCTURES 

 

Loops are a common construct in most programs; a significant amount of the 

execution time is often spent in loops. It is therefore worthwhile to optimize 

time-critical loops. 

 

6.3.1 Loops With Fixed and Variable Number of Iterations 

 

Let’s consider the same checksum example studied in Section 6.2.1, which shows 

how the compiler treats a loop with incrementing count i++. 

 

It takes three instructions to implement for loop using up counter [22]: 

• An ADD to increment the counter i  

• A compare to check if i is less than 64 

• A conditional branch to continue the loop if i < 64 

 

This is not efficient method. On the ARM, a loop should only use two instructions: 

• A subtract to decrement the loop counter, which also sets the condition 

code flags on the result 

• A conditional branch instruction 

 

The following example shows the improvement of using decrementing loop rather 

than incrementing loop. 

 

 int checksum(int *data) 

{ 

 int i; 

 int sum=0; 

  

for( i=64; i!=0; i--) 

 { 

 sum + = data[i]; 

} 

 return sum; 

} 
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This compiles to, 

 

checksum 

 MOV  r2, r0    ; r2 = data 

 MOV  r0, #0    ; sum = 0 

 MOV  r1, #0    ; i = 0 

checksum_loop 

 LDR   r3, [r2, r1, LSL, #2] ; r3 = data[i] 

 SUBS   r1, r1, #1  ; r1 = i - 1 

 ADD  r0, r3, r0   ; sum + = r3 

 BNE  checksum_loop  ; if (i != 0) goto loop 

 MOV   pc, r14   ; return sum 

 

The SUBS and BNE instructions implement the loop. 

 

Use do-while loops rather than for loops when you know the loop will iterate at 

least once. This saves the compiler checking to see if the loop count is zero. 

 

6.3.2 Loop Unrolling 

 

Small loops can be unrolled for higher performance, with the disadvantage of 

increased code size. When a loop is unrolled, a loop counter needs to be updated 

less often and fewer branches are executed. If the loop iterates only a few times, 

it can be fully unrolled, so that the loop overhead completely disappears. The 

ARM compilers currently do not unroll loops automatically, so any unrolling 

should be done in the source code [22]. 

 

The following code unrolls the packet checksum loop by four times, studied in 

Section 6.2.1. The number of words in the packet N is assumed to be multiple of 

four. 

 

 

int checksum(int *data, unsigned int N) 

{ 

 int sum=0; 
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 do 

{ 

sum + = *(data++); 

sum + = *(data++); 

sum + = *(data++); 

sum + = *(data++); 

N -= 4; 

 } while (N!=0);  

 return sum; 

} 

 

This unrolling reduced the loop overhead from 4N cycles to (4N)/4 = N cycles. 

Only unroll important loops to reduce the loop overhead. Do not overunroll. If 

the loop overhead is small as a proportion of the total, then unrolling will 

increase code size and hurt the performance of the cache. Also, try to arrange 

that the numbers of elements in arrays are multiples of four and eight. You can 

then unroll loops easily by two, four, or eight times without worrying about the 

leftover array elements. 

 

6.4 REGISTER ALLOCATION 

 

The most important optimization supported by the ARM compilers is called 

register allocation. This is a process where the compiler allocates variables to 

ARM registers, rather than to memory. This has the advantage that those 

variables can be accessed quickly whenever needed, without needing instructions 

to transfer them from/to memory. As a result of register allocation, most 

variables are kept in registers, resulting in dramatic improvement in code size 

and performance.  

 

When there are more local variables than available registers, the compiler stores 

the excess variables on the processor stack. These variables are called spilled or 

swapped out variables since they are written out to memory [22]. Spilled 

variables are slow to access compared to variables allocated to registers. If the 

compiler does need to swap out variables, then it chooses which variables to 

swap out based on frequency of use. To implement a function efficiently, you 

 51 



Chapter 6  Efficient C Programming for ARM 

need to minimize the number of spilled variables and ensure that the most 

important and frequently accessed variables are stored in registers. 

 

The C compiler can assign 14 variables to registers without spillage. Some 

compilers use a fixed register such as r12 for intermediate scratch working and 

do not assign variables to this register. Therefore, try to limit the number of local 

variables in the internal loop of functions to 12. The compiler should be able to 

allocate these to ARM registers. 

 

6.5 FUNCTION CALLS 
 
The first four integer arguments are passed in the first four ARM registers: r0, r1, 

r2 and r3. Subsequent integer arguments are placed on the full descending 

stack, ascending in memory as shown in Figure 6.1. Function return integer 

values are passed in r0 [22]. 
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Argument 3 
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r2 
  

r1 
 

r0 
 

 

Figure 6.1: ARM Procedure Call Standard argument Passing 
 
Functions with four or fewer arguments are far more efficient to call than 

functions with five or more arguments. For functions with four or fewer 

arguments, the compiler can pass all the arguments in registers. For functions 
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with more arguments, both the caller and callee must access the stack for some 

arguments.  

 

Also, define small functions in the same source file and before the functions that 

call them. The compiler can then optimize the function call or inline the small 

function. 

 

6.6 DIVISION 

 

The ARM does not have a divide instruction in hardware. Instead the compiler 

implements divisions by calling software routines in the C library. Depending on 

the numerator and denominator, a 32-bit division takes 20-140 cycles. The 

division function takes a constant time plus a time for each bit to divide [23]: 

 

Time(numerator / denominator) 

= C0 + C1 * log2 (numerator / denominator) = 

= C0 + C1 * (log2 (numerator) - log2(denominator)). 

 

As division is an expensive operation, it is desirable to avoid it where possible. 

Sometimes expressions can be rewritten so that a division becomes a 

multiplication. For example, (x / y) > z can be rewritten as x > (z * y) if it is 

known that y is positive and y * z fits in an integer. 

 

If you can’t avoid a division, then try to arrange that the numerator and 

denominator as unsigned integers. Signed division routines are slower since they 

take the absolute values of the numerator and denominator and then call the 

unsigned division routine.  

 

Also, if the divisor in a division operation is a power of two, the compiler uses a 

shift to perform the division. Therefore try to always arrange, if possible, for 

scaling factors to be powers of two (for example, 128 rather than 100). 

 

Therefore, this chapter explains different optimization techniques that would be 

useful for writing efficient C programming for ARM processors. 
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In order to estimate the power dissipated by the software executed on the ARM 

processor, Sim-Panalyzer [4] is used, an augmentation to the SimpleScalar 

performance simulator [A.1]. ARM binaries were produced using an ARM-Linux 

cross-compiler [A.2, A.3]. 

 

7.1 SIMPLESCALAR TOOL SET 

 

The SimpleScalar tool set is a system software infrastructure used for program 

performance analysis, detailed micro-architectural modeling, and hardware-

software co-verification. Through SimpleScalar, applications can be built and 

simulated on a range of processors. The type of simulator varies from fast 

functional simulators to detailed processor model simulators that are able to 

simulate caches, branch predictors, and many other features of modern 

processors. Since SimpleScalar can emulate the ARM instruction set, and 

because its reliability is in very high levels (in 2000 more than one third of all 

papers published in top computer architecture conferences used the SimpleScalar 

tools to evaluate their designs), it appears ideal for emulating the ARM processor 

in our case. 

 

7.2 SIM-PANALYZER TOOL 

 

The Sim-Panalyzer tool on the other hand is an infrastructure for micro-

architectural power simulation. It is broken out into several components that 

model distinct parts of a computer: cache power models; datapath and execution 

unit power models; clock tree power models; and I/O power models. These 

power models can be configured into an augmented SimpleScalar simulator that 

will then produce power consumption figures. It is positioned above the “sim-

outorder” component of the SimpleScalar simulator. The Sim-Panalyzer program 

contains components that model specific parts of the ARM processor. Sim-

Panalyzer focuses efficiently on basic micro-architectural blocks and provides 

power information over a wide range of power dissipation sources, such as 

caches, clock trees, external I/O, on-chip memories and datapath and execution 
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blocks. For micro-architectural blocks, the basic method to calculate the power 

dissipation is by multiplying the appropriate switching capacitance by the number 

of micro-architectural accesses. For external I/O accesses, a transaction model 

counts the I/O pin switches in a cycle accurate way. Moreover, support for more 

sophisticated and accurate power models is provided through libraries, 

containing basic building blocks for the embedded logic simulator and ability to 

extract switching capacitance for CMOS gates. The logic simulator accumulates 

the switching capacitance of internal nodes into a switching capacitance 

estimation of each functional block’s node [25]. 

 

7.3 ARM-LINUX CROSS-COMPILER 

 

Since the target architecture for our experiments is the ARM architecture, the 

inputs to the Sim-Panalyzer tool for program emulation and power dissipation 

calculation must be ARM binaries. In this case, a cross-compiler kit targeting the 

ARM should be built on a Linux platform in order to acquire an ARM executable 

from C code. A cross compiler is a compiler capable of creating executable code 

for a platform other than the one on which the cross compiler runs. 

 

The Crosstool [A.3] is a collection of scripts to build and test several versions of 

gcc and glibc for most architecture supported by glibc. 

 

7.4 COMPILATION OF SIM-PANALYZER 

 

Untar “sim-panalyzer-2.0.3.tar.gz” into your install directory. The source code 

can be downloaded from the website http://www.eecs.umich.edu/~panalyzer.  

Sim-Panalyzer has currently been compiled using gcc 3.2. Other gcc versions 

have not been tested thoroughly. 

 

‘make sim-panalyzer’ generates a binary for the simulator. Go to the root 

directory for each version ‘./Implementations/targetmachine/sim-panalyzer2.0.3’ 

and execute this command. This should generate the executable file ‘sim-

panalyzer’.  
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7.5 HOW TO RUN THE SIMULATOR 

 

Sim-Panalyzer has created a separate script file that parses the cmd file. The 

format for a cmd file is similar to a Microsoft Windows ini file. The configuration 

variables are divided into sections and are parse through these sections to 

generate an appropriate configuration for our simulator. An example of a cmd file 

is shown in Figure 7.1. Power configurations can be given as follows below. 

 

[Component] 
AIO 
DIO 
IL1 Cache 
DL1 Cache 
IL2 Cache 
DL2 Cache 
ITLB 
DTLB 
IRF 
FPRF 
Random Logic 
Clock 
 
[Global] 
supply_voltage=1.8 
frequency=200 
 
[AIO] 
frequency=200 
IO_voltage=3.3 
numberofbufferstages=5 
microstrip length=10 
external load=1 
 
[DIO] 
frequency=200 
IO_voltage=3.3 
numberofbufferstages=5 
microstrip length=10 
external load=1 
 

Figure 7.1: Example of cmd file 
 
The [Component] section that is shown in the beginning of Figure 7.1 represents 

the components that are intended for power analysis. Currently the components 

that are supported are Caches, Branch Target Buffers, Branch Predictors, 

Register files, Clock Trees & Random Logic. Based on the chosen components in 
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the [Component] section, the configuration variables are defined in the following 

subsections. For example, the [AIO], which configures the address IO pads, has 

the parameters “frequency” for the bus frequency, “IO_voltage” to describe the 

supply voltage for the IO pad, “Buffer ratio” for buffer sizing, “microstrip length” 

for modeling the PCB, and finally “external load” to model the load that is 

connected to this IO. “test_arm.cmd” is located in the source code, is the 

template command files that can be used as a reference. 

 

It is important to note that in the cmd file, we assume capacitance to be in pF, 

time unit to be in ps, frequency to be in MHz, and voltage to be in V. 

 

The power configurations are then integrated with the architectural 

configurations and create a single configuration file. Power configuration 

templates are also provided for these microprocessors in the “./cmd_files/” 

directory. The typical method for executing Sim-Panalyzer would be executing 

the gen_cfg_<target_machine>.pl script and then using the generated output 

file as the configuration file for Sim-Panalyzer. 

 

$ gen_cfg_<target machine>.pl <architectural config filename> <PA cmd 

filename> 

$ sim-panalyzer -config <configuration filename> <executing program> 

<program parameters> 

 

7.6 ESTIMATION PROCEDURE  

 

This Section explains the estimation procedure for a Sample Source Code. After 

building the cross compiler, the command line argument required in order to 

compile a C application (for example hello.c) for the ARM is the following: 

 

$ arm-unknown-linux-gnu-g++ -static -o hello hello.c 

 

After building the Sim-Panalyzer tool, the following command is outputting the 

power dissipation report of the hello.cpp application: 

 

$ sim-panalyzer -config hello.cfg hello 
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The -config defines the name of the configuration file that contains architecture 

specific information for the ARM processor, such as the operating frequency, 

supply voltage etc. This configuration file is generated from a script provided by 

the Sim-Panalyzer tool, that parses a command file. The command file that we 

use in order to generate the configuration file is the default command file 

provided by Sim-Panalyzer. 
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8.1 EXPERIMENTAL RESULTS 

 

In this chapter, the results based on the so far discussed theory and 

methodology of Chapters 3, 4, 5 and 6 are introduced. The power dissipation 

values for the software implementation are presented. These values were 

derived using the estimation procedure described in Chapter 7.  

 

The average power consumed by a microprocessor while running a certain 

program is given by: P = I x Vcc , where P is the average power, I is the average 

current and Vcc is the supply voltage. Since power is the rate at which energy is 

consumed, the energy consumed by a program is given by: E = P x T, where T is 

the execution time of the program. This in turn is given by: T = N x ϒ, where N is 

the number of clock cycles taken by the program and ϒ is the clock period. In 

common usage, the terms power consumption and energy consumption are often 

interchanged. However, it is important to distinguish between the two when we 

talk of either of these in the context of programs running on wireless systems. 

Since wireless systems run on the limited energy available in a battery. 

Therefore, the energy consumed by the system or by the software running on it, 

determines the length of the battery life. Energy consumption is thus the focus of 

attention.  

 

The Sim-Panalyzer tool output gives the average power dissipation for the 

components listed in the cmd file. The components for which power dissipation is 

given as follows: 

 

Address Input-Output (AIO): AIO which configures the address IO pads, has 

the parameters “frequency” for the bus frequency, “IO_voltage” to describe the 

supply voltage for the IO pad, “Buffer ratio” for buffer sizing, “microstrip length” 

for modeling the PCB, and finally “external load” to model the load that is 

connected to this IO.  
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Data Input-Output (DIO): DIO, similar to AIO configures the data IO pads, 

has the parameters similar to AIO i.e. “frequency”, “IO_voltage”, “Buffer ratio”, 

“microstrip length” and “external load”.  

 

Instruction Register File (IRF): IRF configures the instruction register bank 

where the parameter “Capacitance” is used. 

 

Instruction Level 1 (IL1) Cache: IL1 cache configures the instruction level 1 

cache that has the parameters “numberofbitlines” for the bit lines, 

“numberofwordlines” for the word lines in the cache and “Capacitance” that 

consumes energy in IL1 cache. 

 

Data Level 1 (DL1) Cache: DL1 cache configures for data level 1 cache has 

parameters similar to IL1 cache i.e. “numberofbitlines”, “numberofwordlines” and 

“Capacitance”. 

 

Instruction Table Look-aside Buffer (ITLB): ITLB configures parameters 

“numberofbitlines”, “numberofwordlines” and “Capacitance”. 

 

Data Table Look-aside Buffer (DTLB): DTLB also configures parameters 

“numberofbitlines”, “numberofwordlines” and “Capacitance”. 

 
Following tables gives the power and energy consumed by different protocols for 

different ARM processors. For each processor and each protocol, the table gives 

the average power consumed by the protocol across different components of the 

processor, using Sim-Panalyzer tool and also gives the number of instruction 

executed, the cycle per instruction, the clock frequency of the processor and the 

energy consumed by the processor for that protocol. The following three Sections 

gives the power and energy consumed by all the four protocols implemented on 

different processors. 
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8.2 POWER AND ENERGY CONSUMPTION ON STRONGARM-1110 

 
Table 8.1: Average Power and Energy Consumption for DES on SA-1110 

 

Encryption Decryption Components 
Unoptimized Optimized Unoptimized Optimized 

AIO 0.2519 0.2496 0.2583 0.2483
DIO 1.0018 0.9926 0.9837 0.9980
IRF 0.0322 0.0319 0.0322 0.0319
IL1 Cache 0.3661 0.3723 0.3652 0.3715
DL1 Cache 0.2153 0.2138 0.2150 0.2137
ITLB 0.1487 0.1513 0.1484 0.1510
DTLB 0.0874 0.0867 0.0873 0.0867
Clock 0.2275 0.2275 0.2275 0.2275
ALU 0.0002 0.0002 0.0002 0.0002
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Micro-arch 0.6651 0.6624 0.6682 0.6676
Average Power (W) 2.9962 2.9883 2.9860 2.9964
Instruction Committed 171395 157737 171593 157833
Instruction Executed 283640 263840 284006 263800
Cycles Per Instruction 1.6711 1.7307 1.6506 1.7000
Clock Frequency (MHz) 206 206 206 206
Energy (mJ) 6.89 6.62 6.79  6.52

 
 

Table 8.1 gives the power and energy consumed by the DES protocol on Intel’s 

StrongARM-1110 processor. By using the optimization techniques discussed in 

Section 3.2 for DES, gives the one version of DES implementation. Again by 

using the methodology explained in Chapter 6 a small reduction in the power 

consumption is achieved, but a significant change is achieved in the number of 

instruction executed. The use of decrementing loop, reduction in number of local 

variables, and properly assigning the data types to the variable helped to reduce 

this large number of instruction. 

 

In both encryption and decryption, the power consumed at IL1 cache and ITLB 

power is increased. Also, in decryption power consumption is increased at DIO, 

while in all the other component power is decreased. The increase in power 

consumption in these components is due to repeated use of the some variables 

for data manipulation. With the use of optimization technique discussed the over 

all power and consumed by the protocol on this processor is reduced. 
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Table 8.2 gives the power and energy consumed by the 3DES protocol on SA-

1110 processor. It uses the same methodology and optimization techniques used 

for DES algorithm.  

 

In 3DES encryption, the power consumed is increased because the address and 

data input-output busses consumes more power, due to constant load and store 

instructions. However, there is a significant reduction in the number of 

instruction executed. This bottlenecks the ITLB performance and consumes more 

power. All over, the energy consumption is reduced which is the main focus. 

 

Table 8.2: Average Power and Energy Consumption for 3DES on SA-1110 
 

Encryption Decryption Components 
Unoptimized Optimized Unoptimized Optimized 

AIO 0.2431 0.2502 0.2427 0.2427
DIO 0.9930 1.0292 0.9958 1.0372
IRF 0.0325 0.0320 0.0325 0.0321
IL1 Cache 0.3600 0.3743 0.3598 0.3744
DL1 Cache 0.2226 0.2192 0.2224 0.2193
ITLB 0.1460 0.1518 0.1459 0.1518
DTLB 0.0902 0.0888 0.0901 0.0888
Clock 0.2275 0.2275 0.2275 0.2275
ALU 0.0003 0.0003 0.0003 0.0003
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Micro-arch 0.7239 0.7201 0.7240 0.7203
Average Power (W) 3.0391 3.0934 3.0410 3.0944
Instruction Committed 462685 426999 463066 427276
Instruction Executed 774028 713464 774779 714164
Cycles Per Instruction 1.3959 1.4184 1.3958 1.4178
Clock Frequency (MHz) 206 206 206 206
Energy (mJ) 15.94 15.19 15.96  15.20

 
The power and energy consumed by the AES protocol is given in Table 8.3. There 

is a significant reduction in power and energy consumed by the algorithm. There 

is a little increase in the DL1 cache and DTLB power consumption but the overall 

power consumption is reduced. It uses the optimization techniques explained in 

Sec. 4.4 and the methodology of Chapter 6. There is also, a significant reduction 

in the number of instruction executed due to the optimization of MixColumn 

function.  

 
As compared to DES and 3DES implementation on StrongARM-1110 processor, 

the AES takes less energy. 
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Table 8.3: Average Power and Energy Consumption for AES on SA-1110 
 

Encryption Decryption Components 
Unoptimized Optimized Unoptimized Optimized 

AIO 0.2511 0.2514 0.2476 0.2438
DIO 0.9790 0.9551 1.0368 0.9530
IRF 0.0315 0.0317 0.0313 0.0313
IL1 Cache 0.3906 0.3849 0.3932 0.3883
DL1 Cache 0.2053 0.2069 0.2065 0.2070
ITLB 0.1588 0.1567 0.1459 0.1580
DTLB 0.0834 0.0840 0.0838 0.0841
Clock 0.2275 0.2275 0.2275 0.2275
ALU 0.0002 0.0002 0.0002 0.0002
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Micro-arch 0.7195 0.6671 0.7673 0.6969
Average Power (W) 3.0469 2.9655 3.1401 2.9901
Instruction Committed 129659 92984 201698 112885
Instruction Executed 232507 167555 363983 203048
Cycles Per Instruction 1.7932 2.0595 1.6036 1.9188
Clock Frequency (MHz) 206 206 206 206
Energy (mJ) 6.16 4.96 8.89 5.65 

 
Table 8.4: Average Power and Energy Consumption for RSA on SA-1110 

 

Encryption Decryption Components 
Unoptimized Optimized Unoptimized Optimized 

AIO 0.2573 0.2473 0.2572 0.2495
DIO 1.1045 0.9690 1.1044 0.9809
IRF 0.0307 0.0313 0.0307 0.0311
IL1 Cache 0.3743 0.3816 0.3742 0.3787
DL1 Cache 0.2079 0.1993 0.2080 0.2023
ITLB 0.1517 0.1558 0.1517 0.1543
DTLB 0.0842 0.0811 0.0842 0.0822
Clock 0.2275 0.2275 0.2275 0.2275
ALU 0.0004 0.0002 0.0004 0.0002
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Micro-arch 0.7740 0.5800 0.7736 0.6069
Average Power (W) 3.2125 2.8731 3.2119 2.9136
Instruction Committed 3824728 54038 3849896 77966
Instruction Executed 4572342 78236 4603642 106744
Cycles Per Instruction 0.9792 2.4261 0.9802 1.9726
Clock Frequency (MHz) 206 206 206 206
Energy (mJ) 69.82 2.64 70.35 2.97

 
Table 8.4 gives the power and energy consumption of RSA algorithm on 

StrongARM-1110 processor. There is a significant reduction in power and energy 

of the algorithm due to the efficient implementation of primality test algorithm 

explained in Sec. 5.2.1. This algorithm reduces the number of test to find the 

prime number; in effect it reduces a large number of instructions. Also, the 

methodology explained in Chapter 6 helped to reduce the power. Thus, RSA 

takes the minimum energy consumption on SA-1110, but with less security. 
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8.3 POWER AND ENERGY CONSUMPTION ON ARM7 
 
Table 8.5 shows the power and energy consumption for DES on ARM7 processor. 

In DES encryption and decryption the power is reduced but the number of 

instruction executed for this processor is large as compared to SA-1110 because 

ARM7 is 3-stage pipeline architecture. So, the power consumption is less but the 

number of instructions to be executed is more and the clock frequency is less as 

compared to SA-1110 making it less attractive as compared to SA-1110. It also 

uses the optimization techniques explained in Sec. 3.2 and techniques of writing 

efficient C code, as discussed in Chapter 6. 

 
Table 8.5: Average Power and Energy Consumption for DES on ARM7 

 

Encryption Decryption Components 
Unoptimized Optimized Unoptimized Optimized 

AIO 0.2520 0.2523 0.2467 0.2439
DIO 0.9792 0.9799 0.9855 0.9852
IRF 0.0322 0.0318 0.0323 0.0318
IL1 Cache 0.3727 0.3743 0.3727 0.3740
DL1 Cache 0.2167 0.2138 0.2167 0.2142
ITLB 0.1514 0.1521 0.1514 0.1520
DTLB 0.0879 0.0867 0.0879 0.0869
Clock 0.2275 0.2275 0.2275 0.2275
ALU 0.0003 0.0002 0.0003 0.0003
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Micro-arch 0.6891 0.6793 0.6894 0.6831
Average Power (W) 3.0090 2.9979 3.0104 2.9989
Instruction Committed 195348 182185 195733 182281
Instruction Executed 312790 288559 313549 288885
Cycles Per Instruction 1.5527 1.5968 1.5512 1.5751
Clock Frequency (MHz) 133 133 133 133
Energy (mJ) 10.98 10.38 11.00 10.25

 
 

3DES algorithm increases the security by increasing the key length but with this 

it also increases the power and energy consumption, which is undesirable for 

embedded devices. Table 8.6 shows the power and energy consumption of 3DES 

algorithm on the ARM7 processor. In this algorithm, it takes three keys to 

encrypt or decrypt the data, which increases the power consumption of the DIO 

component. Also, constant load and store instructions are executed that leads to 

more power consumption. 
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Table 8.6: Average Power and Energy Consumption for 3DES on ARM7 
 

Encryption Decryption Components 
Unoptimized Optimized Unoptimized Optimized 

AIO 0.2436 0.2498 0.2465 0.2424
DIO 0.9929 1.0098 0.9922 1.0044
IRF 0.0324 0.0320 0.0324 0.0320
IL1 Cache 0.3706 0.3723 0.3705 0.3722
DL1 Cache 0.2221 0.2184 0.2220 0.2184
ITLB 0.1503 0.1510 0.1502 0.1510
DTLB 0.0900 0.0885 0.0900 0.0885
Clock 0.2275 0.2275 0.2275 0.2275
ALU 0.0003 0.0003 0.0003 0.0003
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Micro-arch 0.7408 0.7364 0.7409 0.7363
Average Power (W) 3.0705 3.0860 3.0725  3.0730
Instruction Committed 541819 500300 542200 500579
Instruction Executed 862494 788882 863234 789583
Cycles Per Instruction 1.3107 1.3223 1.3104 1.3228
Clock Frequency (MHz) 133 133 133 133
Energy (mJ) 26.09 24.20 26.13 24.13

 
AES implementation gives the significant reduction in power and energy 

consumption as shown in Table 8.7. It uses the optimization techniques for 

MixColumn operation explained in Sec. 4.4 and also the software methodologies 

discussed in Chapter 6. There is significant reduction in power in DIO and the 

other micro-architecture components. Overall this reduces the power 

consumption and thus the energy consumption of AES protocol. 

 
Table 8.7: Average Power and Energy Consumption for AES on ARM7 

 

Encryption Decryption Components 
Unoptimized Optimized Unoptimized Optimized 

AIO 0.2498 0.2526 0.2462 0.2464
DIO 0.9841 0.9669 1.0361 0.9590
IRF 0.0315 0.0317 0.0313 0.0313
IL1 Cache 0.3916 0.3858 0.3954 0.3896
DL1 Cache 0.2045 0.2056 0.2054 0.2056
ITLB 0.1592 0.1570 0.1605 0.1585
DTLB 0.0830 0.0837 0.0833 0.0836
Clock 0.2275 0.2275 0.2275 0.2275
ALU 0.0002 0.0002 0.0002 0.0002

A
ve

ra
ge

 P
ow

er
 

D
is
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pa

tio
n 

in
  

Micro-arch 0.7205 0.6681 0.7696 0.6983
Average Power (W) 3.0519 2.9791 3.1555 3.0000
Instruction Committed 130044 93070 202371 113079
Instruction Executed 234815 167393 364070 202886
Cycles Per Instruction 1.7880 2.0518 1.5984 1.9108
Clock Frequency (MHz) 133 133 133 133
Energy (mJ) 9.63 7.69 13.80 8.74
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Table 8.8: Average Power and Energy Consumption for RSA on ARM7 
 

Encryption Decryption Components 
Unoptimized Optimized Unoptimized Optimized 

AIO 0.2492 0.2550 0.2491 0.254
DIO 1.0649 0.9517 1.0651 0.9718
IRF 0.0307 0.0311 0.0308 0.0312
IL1 Cache 0.3743 0.3805 0.3742 0.3781
DL1 Cache 0.2079 0.2000 0.208 0.2027
ITLB 0.1517 0.1554 0.1517 0.1541
DTLB 0.0842 0.0811 0.0843 0.0822
Clock 0.2275 0.2275 0.2275 0.2275
ALU 0.0004 0.0002 0.0004 0.0002

A
ve

ra
ge

 P
ow

er
 

D
is

si
pa

tio
n 

in
  

Micro-arch 0.7740 0.5761 0.7736 0.6078
Average Power (W) 3.1648 2.8586 3.1647 2.9096
Instruction Committed 3825188 52733 3850831 78892
Instruction Executed 4573292 76033 4606241 109608
Cycles Per Instruction 0.9792 2.4380 0.9804 1.9695
Clock Frequency (MHz) 133 133 133 133
Energy (mJ) 106.56 3.98 107.45 4.72

 
Table 8.8 gives the power and energy consumed during execution of a 32-bit 

RSA algorithm on ARM7 processor. The optimization technique explained in Sec. 

5.2 reduces the power and energy consumption significantly on the processor. 

Further the use of methodology discussed in Chapter 6 helps to reduce energy. 

RSA takes the minimum energy on the ARM7 processor among the other 

implemented algorithms. 

 
8.4 Power and Energy Consumption on ARM9TDMI 
 

Table 8.9: Average Power and Energy Consumption for DES on ARM9TDMI 
 

Encryption Decryption Components 
Unoptimized Optimized Unoptimized Optimized 

AIO 0.2484 0.2423 0.2486 0.2404
DIO 0.9729 0.9793 0.9769 0.9750
IRF 0.0312 0.0308 0.0312 0.0308
IL1 Cache 0.3645 0.3740 0.3646 0.3736
DL1 Cache 0.2133 0.2102 0.2135 0.2105
ITLB 0.1482 0.1521 0.1482 0.1519
DTLB 0.0861 0.0851 0.0862 0.0852
Clock 0.2275 0.2275 0.2275 0.2275
ALU 0.0002 0.0002 0.0002 0.0002

A
ve

ra
ge
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er
 

D
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tio
n 

in
  

Micro-arch 0.6674 0.6538 0.6678 0.6617
Average Power (W) 2.9597 2.9553 2.9647 2.9568
Instruction Committed 168303 156989 168696 157084
Instruction Executed 285099 265065 285886 265428
Cycles Per Instruction 1.7084 1.7960 1.7058 1.7476
Clock Frequency (MHz) 150 200 150 200 150 200 150 200 
Energy (mJ) 9.61 7.20 9.37 7.03 9.63  7.22  9.14  6.85 
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This Section discuss the outcome of power and energy consumption on 

ARM9TDMI. This processor is having a 5-stage pipeline architecture, which 

reduces the average Cycle Per Instruction on the processor. Two ARM9TDMI 

processors with different clock frequency are used for performance evaluation.  

 
Table 8.9 and 8.10 gives the power and energy consumption on ARM9TDMI 

processor for DES and 3DES algorithm respectively. Both the implementation 

uses the same optimization technique explained in Sec. 3.2. It also uses the 

same coding methodology explains in the Chapter 6. In both the encryption the 

DIO, IL1 Cache and the ITLB component power is increased while in the both the 

decryption implementation IL1 Cache and ITLB component power is increased. 

This is due to the constant load and store instructions executed which leads to 

the bottleneck of the ITLB. But the important factor i.e. energy is reduced in both 

the cases. 

 
Table 8.10: Average Power and Energy Consumption for 3DES on ARM9TDMI 

 

Encryption Decryption Components 
Unoptimized Optimized Unoptimized Optimized 

AIO 0.2511 0.2464 0.2538 0.2415
DIO 0.9833 0.9964 0.9589 0.9798
IRF 0.0320 0.0315 0.0320 0.0315
IL1 Cache 0.3586 0.3698 0.3583 0.3696
DL1 Cache 0.2204 0.2140 0.2205 0.2141
ITLB 0.1455 0.1501 0.1454 0.1501
DTLB 0.0890 0.0866 0.0890 0.0867
Clock 0.2275 0.2275 0.2275 0.2275
ALU 0.0003 0.0003 0.0003 0.0003

A
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D
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si
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n 
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Micro-arch 0.7164 0.7131 0.7164 0.7131
Average Power (W) 3.0241 3.0357 3.0021 3.0142
Instruction Committed 461744 426017 462133 426300
Instruction Executed 775444 714445 776219 715177
Cycles Per Instruction 1.4223 1.4445 1.4222 1.4447
Clock Frequency (MHz) 150 200 150 200 150 200 150 200 
Energy (mJ) 22.23 16.67 20.88 15.66 22.09 16.57  20.76  15.57 

 
Table 8.11 gives the power and energy consumption on the AES protocol on the 

ARM9TDMI processor.  Here the power and energy are reduced significantly due 

to the MixColumn optimization and the C coding methodology for ARM as 

explained in Chapter 6. Since the number of instruction executed and the CPI is 

same for the two processors with different clock frequency, the one with low 

frequency consumes more energy as compared to other.  
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Table 8.11: Average Power and Energy Consumption for AES on ARM9TDMI 
 

Encryption Decryption Components 
Unoptimized Optimized Unoptimized Optimized 

AIO 0.2531 0.2531 0.2533 0.2466
DIO 0.9778 0.9922 1.0005 0.9791
IRF 0.0304 0.0303 0.0305 0.0302
IL1 Cache 0.3924 0.3871 0.3951 0.39
DL1 Cache 0.2027 0.2027 0.2044 0.2032
ITLB 0.1596 0.1574 0.1605 0.1586
DTLB 0.0819 0.082 0.0827 0.0822
Clock 0.2275 0.2275 0.2275 0.2275
ALU 0.0002 0.0002 0.0002 0.0002

A
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D
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n 
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Micro-arch 0.7159 0.6646 0.7663 0.6962
Average Power (W) 3.0415 2.9971 3.1210 3.0138
Instruction Committed 129353 92658 201008 112082
Instruction Executed 238320 170594 366768 205306
Cycles Per Instruction 1.8403 2.1325 1.6298 1.9705
Clock Frequency (MHz) 150 200 150 200 150 200 150 200 
Energy (mJ) 8.89 6.66 7.26 5.45 12.43  9.32  8.12  6.09 

 
Table 8.12: Average Power and Energy Consumption for RSA on ARM9TDMI 

 

Encryption Decryption Components 
Unoptimized Optimized Unoptimized Optimized 

AIO 0.2607 0.2549 0.2605 0.252
DIO 1.0168 0.9641 1.0169 0.9756
IRF 0.0307 0.0291 0.0307 0.0295
IL1 Cache 0.3744 0.3848 0.3744 0.3823
DL1 Cache 0.2077 0.1940 0.2078 0.1978
ITLB 0.1517 0.1571 0.1517 0.1559
DTLB 0.0841 0.0785 0.0842 0.08
Clock 0.2275 0.2275 0.2275 0.2275
ALU 0.0004 0.0002 0.0004 0.0002

A
ve

ra
ge

 P
ow
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D
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n 

in
  

Micro-arch 0.7737 0.5765 0.7731 0.6073
Average Power (W) 3.1277 2.8667 3.1272 2.9081
Instruction Committed 3824168 51773 3849274 77402
Instruction Executed 4574627 77355 4605980 109254
Cycles Per Instruction 0.9807 2.5649 0.9822 2.0470
Clock Frequency (MHz) 150 200 150 200 150 200 150 200 
Energy (mJ) 93.54 70.15 3.79 2.84 94.31  70.73  4.33  3.25 

 
The RSA algorithm implementation gives significant results for power and energy 

consumption as shown in Table 8.12. The algorithm used for primality test 

introduced in Sec. 5.2.1 reduces significantly large number of instructions, which 

also helps to reduce power and energy consumption.  

 
The RSA implementation takes the minimum energy among all other algorithm 

implemented on all the processor, but it has less security as compared to all 

other implementation. 
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The basic concepts, characteristics, and goals of various cryptographic algorithms 

are introduced in the thesis. The work have shown how embedded systems are 

essential parts of most communications systems and how this makes them 

especially attractive as a potential platform to implement cryptographic 

algorithms. In this work, a framework for analyzing the energy consumption of 

security protocols is presented. Asymmetric algorithms i.e. RSA have the lowest 

energy cost, and then come the symmetric algorithms. The energy cost of 

asymmetric algorithms is very much dependent on the key size, while that of 

symmetric algorithms is not affected to the same extent by the key size. The 

cost of symmetric algorithms mainly depends on key expansion and 

encryption/decryption cost. Here the RSA implemented is only 32-bit and 

therefore consumes less energy. There is a wide variation in the energy costs 

within the same family of cryptographic algorithms. 
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Figure 9.1: Power Consumption By Different Protocols on Different Processors 
 
Figure 9.1 shows the power consumed by different protocols on different 

processors. It shows, that if only power consumption is focused than the RSA 

implementation with the ARM7 processor would be the best-suited choice for 

security protocol implementation, as it has the lowest power consumption. But 

the RSA implementation is only 32-bit as compared to 64-bit DES, 192-bit 3DES 
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and the 128-bit AES implementation, which weakens the security if implemented 

with RSA. But, the focus is on the energy consumption as the target machine is 

wireless device. 
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Figure 9.2: Energy Consumption By Different Protocols on Different Processors 
 
Figure 9.2 shows the energy consumed by different protocols on different 

processors. The figure shows that RSA consumes very less energy among all the 

protocols implemented. The energy cost of StrongARM-1110 processor is very 

low with RSA protocol.  But the security, algorithm cannot be implemented with 

RSA algorithm, as it is only 32—bit implementation which is easily vulnerable by 

the attackers. Also, energy is consumed in key management i.e. transferring the 

public keys between the communicating devices. So the best choice for 

implementing security protocol in wireless embedded device is AES algorithm as 

it has 128-bit key length, which is a strong key and also process 128-bit of data. 

RSA can be used in combination with AES to implement security protocol where 

RSA can be used to transfer the symmetric keys between the devices. Future 

research needs to be done so that these protocol make be more optimized that 

can help in low energy cost. 
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A.3. CrossTool-0.43 [Online]. 

Available:http://kegel.com/crosstool/#download 
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