
Upgrading the Graphical User Interface of a
Commercial Software used for Low Power

Chip Design

Submitted By

Anshul Dadhich

14mcec02

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Upgrading the Graphical User Interface of a
Commercial Software used for Low Power

Chip Design

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Anshul Dadhich

(14mcec02)

Guided By

Prof. Dhaval S Jha

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Certificate

This is to certify that the major project entitled ”Upgrading the Graphical User

Interface of a Commercial Software used for Low Power Chip Design” submit-

ted by Anshul Dadhich (Roll No: 14mcec02), towards the partial fulfillment of the

requirements for the award of degree of Master of Technology in Computer Science and

Engineering of Nirma University, Ahmedabad, is the record of work carried out by him

under my supervision and guidance. In my opinion, the submitted work has reached a

level required for being accepted for examination. The results embodied in this major

project part-I, to the best of my knowledge, haven’t been submitted to any other univer-

sity or institution for award of any degree or diploma.

Internal Guide: External Guide:

Prof. Dhaval S Jha Manish Kumar

Assistant Professor, Senior Engineering Manager,

CSE Department, Power Pro R&D Team,

Institute of Technology, Calypto Systems Division,

Nirma University, Mentor Graphics Corporation,

Ahmedabad Noida

Dr. Sanjay Garg Dr. P. N. Tekwani

Professor and Head, (I/c) Director,

CSE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Certificate

This is to certify that the two major projects entitled ”Upgrading The Graphical

User Interface Of A Commercial Software Used For Low Power Chip Design”

submitted by Anshul Dadhich (Roll No: 14MCEC02), towards the fulfillment of

the requirements for the award of degree of Master of Technology in Computer Science &

Engineering (CSE) of Nirma University, Ahmedabad, is the record of work carried out by

him under my supervision and guidance. In my opinion, the submitted work has reached

a level required for being accepted for examination.

Date:

Mr. Manish Kumar

Senior Engineering Manager

PowerPro R&D Department

Calypto Systems Division

Mentor Graphics Corporation

Noida

iv

Statement of Originality
———————————————————————————————————————

I, Anshul Dadhich, Roll. No. 14mcec02, give undertaking that the Major Project

entitled ”Upgrading the Graphical User Interface of a Commercial Software

used for Low Power Chip Design” submitted by me, towards the partial fulfillment

of the requirements for the degree of Master of Technology in Computer Science &

Engineering of Institute of Technology, Nirma University, Ahmedabad, contains no ma-

terial that has been awarded for any degree or diploma in any university or school in any

territory to the best of my knowledge. It is the original work carried out by me and I

give assurance that no attempt of plagiarism has been made.It contains no material that

is previously published or written, except where reference has been made. I understand

that in the event of any similarity found subsequently with any published work or any

dissertation work elsewhere; it will result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof. Dhaval S Jha

(Signature of Guide)

v

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Prof.

Dhaval S Jha, Assistant Professor, Computer Science Department, Institute of Tech-

nology, Nirma University, Ahmedabad for his valuable guidance and continual encour-

agement throughout this work. The appreciation and continual support he has imparted

has been a great motivation to me in reaching a higher goal. His guidance has triggered

and nourished my intellectual maturity that I will benefit from, for a long time to come.

I would also like to mention my gratitude towards Mr. Manish Kumar, Senior

Engg Manager, Calypto Systems Division, Mentor Graphics Corporation, Noida for his

motivation and guidance in completing the project.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Science and Engineering Department, Institute of Technology, Nirma University,

Ahmedabad for his kind support and providing basic infrastructure and healthy research

environment.

A special thank you is expressed wholeheartedly to Dr. P. N. Tekwani, Hon’ble

(I/c) Director, Institute of Technology, Nirma University, Ahmedabad for the unmen-

tionable motivation he has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- Anshul Dadhich

14mcec02

vi

Abstract

The Graphical User Interface or GUI [1], is a type of interface that allows users to

interact with electronics devices through graphical icons and visual indicators such as

secondary notation, as opposed to text-based interfaces, typed command labels or text

navigation.

Electronic design automation (EDA) is the category of tools for designing and produc-

ing electronic systems ranging from printed circuit boards (PCBs) to integrated circuits.

As device sizes are shrinking and chip capacity is increasing, designing these 100 million

transistors SoC is becoming a challenge. This is causing a paradigm shift in the EDA

design flow causing the designers to move up in the abstraction level. This has warranted

new EDA tools in the system-level design and verification arena. The goal of Calypto

is to provide a suite of system-level tools. All these tools will be built on a robust and

common infrastructure.

Calyptos tool PowerPro is being used for the project. It automates power reduction in

RTL designs. Power consumption is a design requirement for all electronic applications.

PowerPro is an automated RTL power optimization solution that dynamically reduces

power with little or no impact on timing or area. In this project we propose a transfor-

mation so that the circuit can be represented in a format where a single object would be

able to represent information about different bits.

The GUI of PowerPro is developed using Qt which is a cross-platform application

framework and C++ GUI toolkit created and maintained byTrolltech. It provides ap-

plication developers with all the functionality needed to build applications with state-of-

the-art graphical user interfaces. Qt is fully object-oriented, easily extensible, and allows

true component programming.

The main objective of doing this project is to make the GUI of PowerPro available

in the latest available version of Qt. We are trying to migrate from the older version of

Qt to the latest one so that we can fulfill the contemporary requirements of the industry.

The newer available version of Qt has some new libraries that provides the software a

much faster runtime and makes it able to solve the complex problems in a much lesser

span of time. This migration was indeed required for the companys upcoming releases of

the software.

vii

Project Area: Development

Keywords: Graphical User Interface, Qt, Power Optimization, cross-platform, appli-

cation framework.

viii

Contents

Certificate iii

Certificate iv

Statement of Originality v

Acknowledgements vi

Abstract vii

List of Figures xi

1 Introduction 1
1.1 General Introduction to the Topic . 1
1.2 Organisation . 1
1.3 Products . 2

1.3.1 PowerPro . 2
1.3.2 SLEC . 3
1.3.3 Catapult . 4

1.4 Area of Computer Science . 4
1.5 Partners and Customers . 5

2 Problem Definition 6

3 Objectives 7

4 Electronic Design Automation 8
4.1 Introduction . 8

5 Basics of Power Optimization 11
5.1 Introduction . 11
5.2 Introduction to Clock Gating . 12
5.3 Combinational Clock-Gating . 12
5.4 Sequential Clock Gating . 13
5.5 Clock Gating Efficiency . 14
5.6 Memory Gating Efficiency . 15
5.7 Power Analysis . 17
5.8 Calypto DataBase . 17

ix

6 PowerPro 18
6.1 Introduction . 18
6.2 Basic Concepts Used . 19
6.3 Running PowerPro . 20

7 Methodology 22
7.1 Ramp up Session . 22
7.2 Development . 22
7.3 Status . 23

8 Implementation Details 24
8.1 PreRequisites . 24

8.1.1 Qt . 24
8.1.2 SPEF- The Standard Parasitic Exchange Format 30
8.1.3 Inverter Chain . 35
8.1.4 User Characteristics . 38
8.1.5 System Requirements . 38
8.1.6 Build/Debug Environment of the Tool 39
8.1.7 Bugzilla . 40
8.1.8 Software Requirements . 41
8.1.9 Tools Used . 46

8.2 Project Work . 47

9 Conclusion 49
9.1 Path Followed . 49
9.2 Work Completed . 50

10 References 51

Bibliography 53

x

List of Figures

1.1 PowerPro Basic Flow . 2
1.2 Slec Working Flow . 3
1.3 Catapult Flow . 4
1.4 Partners and Customers . 5

4.1 EDA STages . 9

5.1 Example:-Combinational Clock Gating 12
5.2 Example of Sequential Clock Gating . 13
5.3 Clock Gating Efficiency . 14
5.4 Clock Gated Registers/Duration . 15
5.5 Dynamic Power And Leakage Power . 16
5.6 Light Sleep Memory Gating . 17

6.1 PowerPro flow . 18
6.2 Running PowerPro . 21

8.1 Integration Overview . 29
8.2 SPEF Header . 33
8.3 Name Map Section . 33

xi

Chapter 1

Introduction

1.1 General Introduction to the Topic

Electronic Design Automation categorises software tool for the design of electronic sys-

tems such PCBs and ICs. The tools work together in a design flow that chip designers use

to design and analyze entire semiconductor chips. In designing digital circuits various

design parameter are considered for both high-performance and portable applications.

The main design parameters are:-

• Power

• Area

• Timing

Here power and area are inter-related to each other, if area is less that means few

components are used to design an application then it will take less power. The circuit

description is transformed and manipulated on different levels of abstraction to optimize

power.

1.2 Organisation

Calypto Design Systems, headquartered in Santa Clara, California, was founded in 2002

by an experienced group of EDA technologists who recognized a need for improvement

in Integrated circuit (IC) design and verification. Calypto Design Systems leads the

industry in technologies for ESL hardware design and RTL (Register-transfer level) power

1

optimization. These technologies empower designers to create high quality and low power

electronic systems for todays most innovative electronic products.

1.3 Products

1.3.1 PowerPro

The PowerPro product family is the industrys most comprehensive RTL power optimiza-

tion platform and includes PowerPro CG, PowerPro MG, PowerPro Analyzer and the

new Power Advisor Flow. Using PowerPro, designers can significantly lower power across

a SoC design while reducing overall design time.

Figure 1.1: PowerPro Basic Flow

Figure 1.1 shows the basic flow of PowerPro tool. It takes RTL as input and desired

optimization is run and optimized RTL is produced. PowerPro CG is an automated RTL

power optimization tool that reduces power by up to 60 percent with little or no impact

to timing or area.

PowerPro MG is an automated memory power optimization solution that takes advantage

of the low-power control options available in todays on-chip memories to reduce both

dynamic and leakage memory power with little or no impact to timing or area.

PowerPro Analyzer is the industrys most accurate register-transfer level (RTL) power

analysis tool. PowerPro Analyzer also provides complete visualization of PowerPro CG

and PowerPro MG optimizations, allowing users to view power optimizations in the

context of RTL source code, schematic display, storable reports (ASCII, HTML, CSV,

XML), and design hierarchy.

2

1.3.1.1 Benefits of Powerpro

• Reduces dynamic power at the RTL level

• Automatically identifies sequential clock gating opportunities

• Reduces dynamic power without impacting timing or area

• Allows users to make power, area and timing trade-offs

1.3.2 SLEC

It provides comprehensive RTL verification. Calypto delivers software products, based

on unique Sequential Analysis technology, that enable designers to efficiently produce the

highest quality electronic systems using automated and optimized design and verification

methodologies. Unlike simulation test benches, SLEC SYSTEM verifies functionality in

spite of design differences in throughput, latency and I/O. SLEC SYSTEM is ideal for

verifying RTL implementations derived from system-level specifications through manual

re-coding or by using behavioral synthesis.

Figure 1.2: Slec Working Flow

1.3.2.1 Benefits of SLEC

• Verifies RTL blocks without the need for the entire assembled design

• Provides comprehensive functional verification without requiring additional test-

benches or properties

3

• Shortens verification cycle by dramatically reducing the need for block level RTL

simulation

1.3.3 Catapult

Catapult C Synthesis empowers designers to use industry standard ANSI C++ and Sys-

tem C to describe functional intent and move up to a more productive abstraction level.

From these high-level descriptions, Catapult C Synthesis generates production quality

RTL.

Fig 1.3 shows the flow of Catapult.

Figure 1.3: Catapult Flow

1.4 Area of Computer Science

• Electronic design automation (EDA):-

Computer-aided design (CAD) is the use of computer systems to assist in the cre-

ation, modification, analysis, or optimization of a design. Computer-aided design

is used in many fields. Its use in designing electronic systems is known as electronic

design automation, or EDA.

• Memory leakage and run time

• Testing

• GUI Design and Development

• Development

4

• Power Analysis

1.5 Partners and Customers

Figure ?? shows all the partners and customers.

Figure 1.4: Partners and Customers

5

Chapter 2

Problem Definition

The field of Electronic Design Automation has a strong dependency over the tools and

technologies used in it. The better and upgraded the technologies used, faster the results

will be, whether it is the Graphical User Interface or the Power Analysis tools.

If we talk about GUI, it is the only way to transfer information to and from the

system. The more efficient the GUI is, more reliable and faster the results will be shown

and more user friendly the GUI will be.

The problem definition is therefore as follows:

The Graphical User Interface of a Commercial Software (Power Pro), used for Low

Power Consuming Chip Designing is to be upgraded from the current version of applica-

tion framework (Qt[2]) to a newer and better one available.

Qt is a cross platform application framework. Qt has all the functionality needed to

build applications with some amazing state-of-the-art graphical user interfaces. It fully

object-oriented, can be extended easily, and allows true component programming.

6

Chapter 3

Objectives

• The main objectives are:-

– Main objective is to Upgrade the Graphical User Interface of PowerPro.

– This will affect the visualization, performance, appearance, as well as the

working of Graphical User Interface of PowerPro.

– We are upgrading from Qt3 to Qt4. And the reason why we decided to upgrade

the GUI from the older version of Qt to the latest one is so that we can fulfill

the contemporary requirements of the industry. The newer available version

of Qt has some new libraries that provides the software a much faster runtime

and makes it able to solve the complex problems in a much lesser span of time.

This migration was indeed required for the companys upcoming releases of the

software.

7

Chapter 4

Electronic Design Automation

4.1 Introduction

This chapter gives a detailed description of EDA (Electronic Design Automation) .i.e.

the domain in which Calypto is working.

Electronic Design Automation categories the software tools for design and production

of electronic systems starting from PCBs to ICs. This is sometimes referred to as ECAD

(electronic computer-aided design) or just CAD. (Printed circuit boards and wire wrap

both contain specialized discussions of the EDA used for those)

It is the process of automation of steps in electronic circuit design. Traditionally,

designers have relied on customized methods to design circuits. However, over past few

decades the number of transistors that can be put on a single chip has increased by leaps

and bounds. Hence the need for automating complex steps of circuit design.

To understand the rapidly growing, almost four billion dollar EDA industry, we need

to define the words behind those three letters, ”EDA”:

• Electronic:

Anything electronic from computer chips, cellular phones, pacemakers, controls for

automobiles and satellites to the servers, routers and switches that run the Internet.

As electronics become even more complex and pervasive, the EDA industry is more

vital to the continued success of the global economy.

• Design:

The part of the production cycle where creativity, new ideas, ingenuity and inspi-

8

ration comes to the fore. This is also where designers try to model the behavior of

their designs and analyze the complex interactions of millions of constituent parts

in their designs to ensure completeness, correctness and manufacturability of the

final product.

• Automation:

Imagine the difference between designing a small house versus designing a mile-high

skyscraper. For the skyscraper you need to design sophisticated structural, electri-

cal, plumbing, security and environmental systems, communications and computer

networks, elevators, etc. all working together. This is analogous to the dramatic

increase in complexity that designers must tackle in electronics today.

Figure ?? shows different stages of Chip Fabrication

Figure 4.1: EDA STages

The electronic design process involves describing the behavioral, architectural, func-

tional, and structural attributes of an IC or electronic system. The process is one of

successive refinement where the design team adds a level of detail to the design and ver-

ifies the results of the addition before proceeding to add each next level of detail. Design

9

teams begin with very abstract behavioral models of their system and end with a physical

description of millions of transistors and their interconnections. Semiconductor foundries

use the physical description to create the masks and test programs needed to manufacture

the ICs. EDA tools aid the design team in capturing its design intent, creating the next

level of detail, and verifying the results. Problems are often found at one level that can

only be resolved by revising a previous level of description. These iterations introduce

delay and risk into the design process.

10

Chapter 5

Basics of Power Optimization

This chapter gives a brief idea of some concepts used for power optimization in PowerPro-

CG.

5.1 Introduction

As a first order approximation, the power consumed in a CMOS gate can be approximated

as:

P = 0.5CLV 2f + V I (5.1)

Where, V is the supply voltage, CL is the load capacitance, f is the switching frequency

(or toggle rate), and I represents the static current drawn from the power supply.

The first term of this equation describes the dynamic power of the design and the

second term describes the static power. To reduce the total power, it is important to

reduce both components of this equation, or at least make sure that there is a cumulative

reduction. To optimize for power, it is important to make sure every stage of the design

(right from algorithm to transistor level) is optimized to the extent possible, at the same

time keeping any negative impact on the subsequent stage to a minimum. Even at

process geometries of 32 nm or below, dynamic power still constitutes a majority of the

total power dissipation.

A designs dynamic power consumption is a function of the switching activity of its

transistors. Power optimizations at the higher levels of design abstraction have the great-

est impact. Even though every design stage offers opportunities to save power, designers

have a lot more freedom at higher levels of abstraction to make design changes, in terms

11

of design intent and constraint, without compromising on target performance or area.

Clock gating is a popular design technique used to optimize dynamic power. The gran-

ularity of clock gating and the impact it has on overall power consumption depends on

the phase of the design cycle.

5.2 Introduction to Clock Gating

Most clock gating is done at the Register Transfer Level (RTL). RTL clock gating algo-

rithms can be grouped into three categories: system-level, sequential and combinational.

System-level clock gating stops the clock for an entire block, effectively disabling all func-

tionality. On the contrary, combinational and sequential clock gating selectively suspends

clocking while the block continues to produce output. Clearly, not all of these are equal

when it comes to reducing switching activity.

5.3 Combinational Clock-Gating

Combinational clock gating identifies the condition when the data is held in a register and

shuts off the clock to the register during that period. This leads to reduction of dynamic

power consumed by the register and the clock network driving the register. Consider the

following example.

Figure 5.1: Example:-Combinational Clock Gating

In this example, the netlist generated by the RTL synthesis tool from the Verilog

code snippet is shown in top right. Register Q loads new data when EN signal is HIGH;

otherwise, it holds the data. Opportunities to insert combinational clock gating can be

12

found by looking for conditional assignments in the code. Clock gating logic is substituted

when code like if (cond) out ¡= in is present. Power aware logic synthesis tools identify

RTL coding patterns and make the appropriate substitution. This is shown in the circuit

in the bottom right of Figure 4.1.

5.4 Sequential Clock Gating

Clock gating based on sequential analysis involves identifying new enable conditions and

then using them to gate the clock. These enable conditions can be generated to hold the

data if new data is not required in the downstream logic or when data is stable or invalid.

We will be referring to this transformation as sequential clock gating transformation.

Consider the example of such a transformation.

Figure 5.2: Example of Sequential Clock Gating

In the RTL code snippet on the top left corner in Figure 1-2, registers q0 and q1

are latching a new data value every cycle. Hence, when taken through low-power RTL

synthesis tools, they would not have clock gating. If we observe carefully, we notice that if

en is HIGH, then the data latched into q1 in the previous cycle is not used. Thus, we can

hold the previous data on q1 during that cycle. By performing this sequential reasoning,

we can identify SEL as the new enable condition for register q1. Similar sequential

analysis will identify SEL as the new enable condition for register q0 and essentially

translates to the RTL code snippet in the bottom left. When this code is taken through

13

low-power synthesis tool, it will insert appropriate clock gating logic for register q0 and

q1.

System and sequential clock gating offer higher power saving potential as they tend

to be more global in nature. Moreover, sequential clock-gating is the most effective way

of reducing peak power. Historically, this is mainly achieved by making such changes

manually. This process is often difficult and error-prone, partly due to the difficulty

in recognizing such opportunities, and partly due to the difficulty in implementing the

gating logic without introducing functional errors.

5.5 Clock Gating Efficiency

A typical metric used to measure the effectiveness of clock gating is the percentage of

registers in the design that are clock gated. While this gives designers an indication of

the clock gating in the design, it has poor correlation to power savings. Dynamic power

consumption depends on the switching activity of a given node over a simulation test-

bench. Clock gating efficiency, on the other hand, takes this aspect into account, making

it a more telling indicator of actual dynamic power consumption.

Figure 5.3: Clock Gating Efficiency

Above Fig. shows a block with a single register. Since the only register in the block

is clock gated, the block is 100% clock gated. However, since the enable signal is gating

the clock input to the register and the clock is inactive for 3 of the 10 cycles, the clock

gating efficiency is 30% of the time. The percent of clock gated registers is not as good

an indicator of power savings as is the clock gating efficiency. Estimating power depends

on representative switching activity. A simulator can generate a switching activity file

14

based on a given test-bench. This is only as representative as the test-bench itself, so

selection of a representative test-bench is critical to good power estimation. Clock gating

efficiency is defined as the percentage of time a register is gated for a given switching

activity. When looking at an entire design, the average clock gating efficiency can be

computed as the average of clock gating efficiencies for all registers in the design for a

given simulation test bench.

Figure 5.4: Clock Gated Registers/Duration

Above figure shows the average clock gating efficiency for the entire design over a

simulation trace. Improving the clock gating efficiency in turn means reduced switching,

which can save dynamic power. A designers goal is to improve the average clock gating

efficiency as much as possible. It is not practical to achieve 100

5.6 Memory Gating Efficiency

The extent to which a memory has been optimized can be measured by the efficiency of

the memory enables of the memory and the effectiveness of the signals controlling the

sleep modes available in the memory. Since PowerPro reduces dynamic memory power

via memory enable gating (hereafter referred to as memory gating) and memory leakage

power via light sleep gating, the metrics of interest in the context of PowerPro are mem-

ory gating efficiency and light sleep efficiency.

Memory gating efficiency is defined as the percentage of time the memory is gated for

a given switching activity. When looking at an entire design, the average memory gating

efficiency can be computed as the average of memory gating efficiencies for all memories

in the design for a given simulation test bench. Figure 1-5 shows a design block with a

single port (1p) memory. If the original memory enable (ME) is low for 1 of the 10 cycles,

15

Figure 5.5: Dynamic Power And Leakage Power

the memory gating efficiency is 10%. The first bar in the power chart shows the dynamic

and leakage power consumption of the design when memory enable is low for 10% of the

simulation time.

PowerPro extends the amount of time the memory is inactive (ME=0), thereby saving

dynamic power. Figure 1-6 shows PowerPro memory gating. The new memory enable

(ME+MG ME1) is now low for 50% of the simulation duration thus reducing the dynamic

power of the memory by 43%. Further extension in the amount of time the memory is

inactive correspondingly reduces the dynamic power of the memory.

Light sleep efficiency is defined as the percentage of time the light sleep control pin

for a memory is active. For a design, the light sleep efficiency of the design is a weighted

average of the light sleep efficiencies of the individual memories in the design, weighted

by the number of bits in the memories. PowerPro implements Light Sleep Memory Gat-

ing (Figure 1-7) by extending the amount of time the memories are inactive, Light Sleep

mode can then be invoked more frequently and for longer periods of time (extend the

16

Figure 5.6: Light Sleep Memory Gating

time LS=1). Light Sleep Memory Gating can be used to reduce the leakage power con-

sumption in the memories as depicted in the power chart below.

5.7 Power Analysis

To meet budget constraints, SoC designers need to be able to estimate power consump-

tion in the early stages of the design cycle. However, given the lack of information about

simulation vectors, technology libraries and decisions taken for synthesis and routing,

inferring power consumption becomes a complex task. PowerPros Power Analysis gives

a user insight into power consumption early on in the design cycle.

5.8 Calypto DataBase

As device sizes are shrinking and chip capacity is increasing, designing these 100 million

transistor SoC is becoming a challenge. This is causing a paradigm shift in the EDA

design flow causing the designers to move up in the abstraction level. This has warranted

new EDA tools in the system-level design and verification arena. The goal of Calypto is

to provide a suite of system-level tools. The first tool will be a system-level equivalence

checker. The next will be the tool for the system-level virtual prototyping. All these

tools will be build on a robust and common infrastructure. Figure 1 gives a top-level

overview of the Calypto technologies. The front-end engine will read in the designs at

the System Level (SL) or register transfer level (RTL), extract the hardware content from

the description and populate the central database called Calypto DataBase(CDB).

17

Chapter 6

PowerPro

This chapter will provide the detailed information about PowerPro product designed by

Calypto Design Systems. PowerPro is an automated RTL power optimization solution

that dynamically reduces power with little or no impact on timing or area.

6.1 Introduction

PowerPro CG (for PowerPro Clock Gating) is an Automated RTL Power Optimization

Solution. PowerPro CG has reduced power by up to 60% in customers RTL designs.

By working at higher levels of abstraction PowerPro has increased opportunities to save

power. Power savings from PowerPro are complimentary and cumulative to downstream

tools that operate at the combinational gate level.

The following figure highlights the design flow with PowerProCG:

Figure 6.1: PowerPro flow

18

Following are the inputs to the tool:

1. A Design file.PowerPro currently supports design descriptions written in Verilog or

VHDL.

2. SAIF (Switching Activity Interchange Format) which contains switching activity

information.

3. SDC (Synopsys Design Constraints) which contains timing information.

4. Liberty files which contains the information about cell library.

6.2 Basic Concepts Used

PowerPro aims to gate (or shut off) activity where a clock enables data to be latched into

a register or latch. By disabling clock to registers selectively, the output of the registers

remain at the same logical value, and hence toggle activity is temporarily suspended.

This reduces power dissipation in devices for the duration for which clock is gated not

only in the registers but also in the combinational logic driven by the register outputs.

PowerPro uses clock gating efficiency to guide designers towards a lower power imple-

mentation. It ranks design registers by clock gating efficiency and accepts those trans-

formations that result in significant improvement in clock-gating efficiency. Having such

some knowledge of the design will point to areas where greater power savings maybe

possible. A good example of this is low efficiency data-path registers. The intrinsic limit

for improving clock gating efficiency is a function of each design block. A high-speed Eth-

ernet IPv6 interface block for example, may have little opportunity to for clock gating.

An efficiency of 10-15% may be near optimal under typical traffic scenarios. The actual

power saved by clock gating is also dependent on the implementation of the logic. The

power reduction is directly effected by the size of the combinational logic following the

clock-gated register. The greater the logic fanning-out, the larger is the power savings.

PowerPro generates the enable signal by automatically analyzing the design for se-

quential clock gating opportunities. It creates the related logic (enable logic) for the

concerned enable signal generated, thereby eliminating the effort required by the de-

signer in manually identifying sequential clock gating opportunities and also reducing

the possibility of introducing functional errors. The sequential enable signals along with

19

the corresponding enable logic can be automatically patched into the original RTL by

PowerPro, thereby reducing the manual effort needed in patching them into the original

RTL. The functional correctness of the PowerPro optimized RTL can be verified using

SLEC which verifies the sequential optimizations by comparing the clock gated RTL to

the corresponding original designs.

PowerPro CG delivers functionally correct power optimized RTL using a flow which

needs minimal effort and intervention from the user. Further, PowerPro CG fits into a

synthesis based design flow easily, thereby providing maximum dynamic power reduction

with minimum pain for the user.

6.3 Running PowerPro

PowerPro is controlled through a Tcl setup file, typically run from the command line:

powerpro run.tcl

Running PowerPro with no setup file places PowerPro in to interactive mode, where

commands may be entered within the tcl shell. Within PowerPro, the help command

can be used to get detailed help on any of the commands or globals. In PowerPro,

the term globals is used to refer to the global Tcl variables used to control PowerPro

operation: help globals list all global, get global 〈 name〉 returns the value of the global

called 〈 name〉 and report global lists the value of all globals. Both exit and quit can be

used to end the PowerPro session. A complete list of PowerPro options is displayed when

PowerPro is invoked with the help option.

Figure ?? tells the different running help options of PowerPro.

20

Figure 6.2: Running PowerPro

21

Chapter 7

Methodology

7.1 Ramp up Session

• Ramp up Session:

– Overview of PowerPro tool.

– Tutorials for:

∗ Perl

∗ Verilog

∗ C++

∗ TCL

∗ Vim and

∗ Sed/Awk

– Introduction to CVS.

• QT

• Makefile

• hell scripting

7.2 Development

• This phase comprises of all the work that is done to upgrade the PowerPro GUI.

– Building the source code of Qt4.

22

– Altering the source code to make it Qt4 compatible.

– Using the GNU debugger to find out the reason behind the error.

• Building the third party libraries which are needed to add some functionalities.

• Building the GUI source code again to see whether it is working or not.

• Similar kind of procedure was followed for the second project.

7.3 Status

• Daily stand up meeting is conducted for the progress report for 15-20min.

• Weekly status meeting of entire PowerPro team is held where everybody provide

the status of work done for the week.

23

Chapter 8

Implementation Details

8.1 PreRequisites

8.1.1 Qt

Qt is a cross platform application framework. Qt has all the functionality needed to

build applications with some amazing state-of-the-art graphical user interfaces. It fully

object-oriented, can be extended easily, and allows true component programming. [5]

1996 marks the commercial introduction of Qt, from that point of time, it is the basis

of many thousands of successful applications worldwide. The popular KDE Linux based

desktop environment is also based on Qt .[5]

Qt is supported on the following platforms:

• MS/Windows – 95, 98, NT 4.0, ME, 2000, and XP

• Unix/X11 – Linux, Sun Solaris, HP-UX, Compaq Tru64 UNIX, IBM

• AIX, SGI IRIX and a wide range of others.

• Macintosh – Mac OS X

• Embedded – Linux platforms with framebuffer support. [5]

Qt is released in two editions:

Qt Enterprise Edition and the Qt Professional Edition are provided for commercial soft-

ware development. They permit traditional commercial software distribution and include

24

free upgrades and Technical Support. The Enterprise Edition offers additional modules

compared to the Professional Edition. [5]

The Qt Free Edition is available for Unix/X11, Macintosh and Embedded Linux. The

Free Edition is for the development of Free and Open Source software only. It is provided

free of charge under the terms of both the Q Public License and the GNU General Public

License.

Different classes of QT used are

• QString:

The QString class provides an abstraction of Unicode text and the classic C ”-

terminated char array.

In all of the QString methods that take const char * parameters, the const char

* is interpreted as a classic C-style ”terminated ASCII string. It is legal for the

const char * parameter to be 0. If the const char * is not ”terminated, the re-

sults are undefined. Functions that copy classic C strings into a QString will not

copy the terminating ” character. The QChar array of the QString (as returned by

unicode()) is generally not terminated by a ”. If you need to pass a QString to a

function that requires a C ”-terminated string use latin1().

A QString that has not been assigned to anything is null, i.e. both the length and

data pointer is 0. A QString that references the empty string (””, a single ” char) is

empty. Both null and empty QStrings are legal parameters to the methods. Assign-

ing (const char *) 0 to QString gives a null QString. For convenience, QString::null

is a null QString. When sorting, empty strings come first, followed by non-empty

strings, followed by null strings. We recommend using if (!str.isNull()) to check for

a non-null string rather than if (!str); see operator!() for an explanation. [5]

• QMessageBox:

The QMessageBox class provides a modal dialog with a short message, an icon, and

some buttons. Message boxes are used to provide informative messages and to ask

simple questions.

25

QMessageBox provides a range of different messages, arranged roughly along two

axes: severity and complexity.

For message boxes that ask a question as part of normal operation. Some style

guides recommend using Information for this purpose.

• Information:

For message boxes that are part of normal operation.

• Warning:

For message boxes that tell the user about unusual errors.

• Critical:

For message boxes that tell the user about critical errors. The message box has a

different icon for each of the severity levels.

• QPushButton:

The QPushButton widget provides a command button.

The push button, or command button, is perhaps the most commonly used widget

in any graphical user interface. Push (click) a button to command the computer

to perform some action, or to answer a question. Typical buttons are OK, Apply,

Cancel, Close, Yes, No and Help.

A command button is rectangular and typically displays a text label describing

its action. An underlined character in the label (signified by preceding it with an

ampersand in the text) indicates an accelerator key, e.g.

QPushButton ∗ pb = newQPushButton(”&Download”, this); (8.1)

In this example the accelerator is Alt+D, and the label text will be displayed as

Download. [5]

• QRadioButton:

26

The QRadioButton widget provides a radio button with a text or pixmap label.

QRadioButton and QCheckBox are both option buttons. That is, they can be

switched on (checked) or off (unchecked). The classes differ in how the choices for

the user are restricted. Check boxes define ”many of many” choices, whereas radio

buttons provide a ”one of many” choice. In a group of radio buttons only one radio

button at a time can be checked; if the user selects another button, the previously

selected button is switched off.

The easiest way to implement a ”one of many” choice is simply to put the radio

buttons into QButtonGroup.

Whenever a button is switched on or off it emits the signal toggled(). Connect

to this signal if you want to trigger an action each time the button changes state.

Otherwise, use isChecked() to see if a particular button is selected.

Just like QPushButton, a radio button can display text or a pixmap. The text can

be set in the constructor or with setText(); the pixmap is set with setPixmap(). [5]

• QCheckBox:

The QCheckBox widget provides a checkbox with a text label.

QCheckBox and QRadioButton are both option buttons. That is, they can be

switched on (checked) or off (unchecked). The classes differ in how the choices

for the user are restricted. Radio buttons define a ”one of many” choice, whereas

checkboxes provide ”many of many” choices.

A QButtonGroup can be used to group check buttons visually.

Whenever a checkbox is checked or cleared it emits the signal toggled(). Connect

to this signal if you want to trigger an action each time the checkbox changes state.

27

You can use isChecked() to query whether or not a checkbox is checked.

Warning: The toggled() signal can not be trusted for tristate checkboxes.

In addition to the usual checked and unchecked states, QCheckBox optionally pro-

vides a third state to indicate ”no change”. This is useful whenever you need to

give the user the option of neither checking nor unchecking a checkbox. If you need

this third state, enable it with setTristate() and use state() to query the current

toggle state. When a tristate checkbox changes state, it emits the stateChanged()

signal.

Just like QPushButton, a checkbox can display text or a pixmap. The text can be

set in the constructor or with setText(); the pixmap is set with setPixmap(). [5]

• QWidget:

The QWidget class is the base class of all user interface objects.

The widget is the atom of the user interface: it receives mouse, keyboard and other

events from the window system, and paints a representation of itself on the screen.

Every widget is rectangular, and they are sorted in a Z-order. A widget is clipped

by its parent and by the widgets in front of it.

A widget that isn’t embedded in a parent widget is called a top-level widget. Usu-

ally, top-level widgets are windows with a frame and a title bar (although it is also

possible to create top-level widgets without such decoration if suitable widget flags

are used). In Qt, QMainWindow and the various subclasses of QDialog are the

most common top-level windows.

A widget without a parent widget is always a top-level widget.

Non-top-level widgets are child widgets. These are child windows in their parent

28

widgets. You cannot usually distinguish a child widget from its parent visually.

Most other widgets in Qt are useful only as child widgets. (It is possible to make,

say, a button into a top-level widget, but most people prefer to put their buttons

inside other widgets, e.g. QDialog). [5]

8.1.1.1 Nlview

The Nlview widget is a GUI building block that generates and displays schematics. The

input data is a netlist-level description of the connectivity and optional engineering data

like critical paths, time or signal values, etc. [6]

The Interface is a C-interface.

If you want to use Nlview, you need to write some ”glue code” that implements all

the functions declared in the interface between database and schematic. This manual

explains to do steps.

Figure 8.1: Integration Overview

The picture shows interface’s part in the call chain: The GUI controls the Nlview

widget by sending set of tcl commands, like more ..., less ..., loadmodule, etc. This will

trigger certain interface C functions to be called, because Nlview must query the connec-

tivity of the underlying Database. The interface implementation must respond to all the

C functions defined in the interface implementation. After Nlview has finished querying

the Database, it will respond to the tcl command by loading/unloading the requested

components into/from the Nlview widget automatically.[6]

29

8.1.1.2 QScintilla

QScintilla is a port to Qt. With the features found in standard text editing components,

QScintilla has features especially useful when editing and debugging source code. These

features include support for syntax styling call tips, error indicators, code completion

as well as syntax styling. The selection margin can contain markers like those used in

debuggers to indicate breakpoints and the current line. Styling choices are more open

than with many editors, allowing the use of proportional fonts, bold and italics, multiple

foreground and background colors and multiple fonts.

8.1.1.3 Qwt

Qwt is library accessible for Qt. It gadgets for the Technical Applications and is an

arrangement of custom Qt gadgets, GUI Components and utility classes which are basi-

cally helpful for projects with a specialized foundation. Adjacent to a 2D plot gadget it

gives scales, sliders, dials, compasses, thermometers, haggles to control or show values,

exhibits, or scopes of sort twofold.

8.1.2 SPEF- The Standard Parasitic Exchange Format

This chapter briefly discusses the project and the various domains in which work has been

done. Detailed description of the work done in each of the domain follows in subsequent

chapters.

8.1.2.1 Overview Of Project

The Title of the second project is: Reduced Parasitics Model from SPEF. Power man-

agement has emerged as a major design challenge in chip design today. The new im-

portance of power consumption is not only coming from the increased proliferation of

mobile devices, where extending battery life offers a huge competitive edge, but also

from databanks and servers, where the infrastructure for providing power, cooling, and

heat dissipation is getting very costly and outright prohibitive. Traditional chip design

methodologies where power optimization is usually performed during physical design

are not acceptable anymore, as they result in only a 10 15 percent improvement in power

consumption.

30

Early power analysis/estimation is essential for meeting the project requirements and

schedule. Below 28nm Liberty files, we have seen that there is no WLM (Wire-load)

defined in the library. In that case PowerPro Gate level accuracy struggles. To meet this

expectation, we need to support the physical design process node information to extract

the required data to get correct CAPACITANCE .

Standard Parasitic Exchange Format (SPEF) is one of the key inputs to RTL level

Power Analysis tool to maintain better Gate level Correlation. Resistance, capacitance

and inductance of wires in a chip are known as parasitic data. SPEF is used for delay

calculation and ensuring signal integrity of a chip which eventually determines its speed

of operation.

SPEF files are usually very large and reading in large SPEF file can have considerable

runtime/memory penalty. Reading large SPEF file to extract information about creating

SPEF model is thus not desirable One way to solve this problem is to read SPEF file once

and extract all information required by PowerPro and store it as a file. In subsequent runs

PowerPro can read in the file representing extracted information instead of large SPEF

file.The file representing extracted information from SPEF file would be an encrypted file

so that nobody can know from the file about its content.

The platform used is Linux with C++ as the programming language. The tool has a

Tcl interface.

In addition to this project Reporting of indented Hierarchies using the Tree Data

Structure from the SPEF,FSDB and SAIF Files was also accomplished.

8.1.2.2 Introduction to Parasitics Data

Resistance, inductance and capacitance of wires in a chip are known as parasitic data.

It is used for delay calculation and ensuring signal integrity of a chip which eventually

determines its speed of operation.

8.1.2.2.1 Different Formats of Parasitics Data

8.1.2.2.1.1 SPF–Standard Parasitic Format SPF is a Cadence Design Sys-

tems standard for defining net list parasitic data. DSPF and RSPF are the two forms of

SPF; the term SPF itself is sometimes used (or misused) to represent parasitic data in

general. DSPF and RSPF both represent parasitic information as an RC network.

31

8.1.2.2.1.2 RSPF–Reduced Standard Parasitic Format RSPF represents

each net as an RC ”pi” model, which consists of an equivalent near” capacitance at

the driver of the net, an equivalent ”far” capacitance for the net, and an equivalent re-

sistance connecting these two capacitance’s. Each net has a single ”pi” network for the

network, regardless of how many pins are on the net. In addition to the pi network, RSPF

causes the Prime Time tool to calculate Elmo re delay for every pin-to-pin interconnect

delay.

8.1.2.2.1.3 SPEF–Standard Parasitic Exchange Format SPEF is an Open

Verilog Initiative (OVI)–and now IEEE–format for defining net list parasitic. SPEF is

NOT identical to the SPF format, although it is used in a similar manner. Like the

SPF format, SPEF includes resistance and capacitance parasitic. Also like the SPF

format, SPEF can represent parasitic in detailed or reduced (pi-model) forms, with the

reduced form probably being more commonly used. SPEF also has a syntax that allows

the modeling of capacitance between different nets, so it is used by the Prime Time SI

(crosstalk) analysis tool. SPEF is smaller than SPF and DSPF because the names are

mapped to integers to reduce file size.

8.1.2.2.1.4 SBPF – Synopsis Binary Parasitic Format SBPF is a Synopsis

binary format supported by Prime Time. Parasitic data converted to this format occupies

less disk space and can be read much faster than the same data stored in SPEF format.

You can convert parasitic to SBPF, by reading them in and then writing them out with

the write parasitic -format SBPF command.

8.1.2.2.2 Introduction About SPEF Syntax General Syntax A typical SPEF file

will have 4 main sections: a header section, a name map section, a top level port section

and the main parasitic description section. Generally, SPEF keywords are preceded with

a *. For example, *R UNIT, *NAME MAP and *D NET. Comments start anywhere on

a line with // and run to the end of the line. Each line in a block of comments must

start with //.

8.1.2.2.2.1 Header Information The header section is 14 lines containing in-

formation about: the design name, the parasitic extraction tool, naming styles and units.

When reading SPEF, it is important to check the header for units as they vary across

tools. By default, SPEF from Astor will be in pf and k Ohm while SPEF from Star-RCXT

32

Figure 8.2: SPEF Header

will be in ff and Ohm.

Figure 8.3: Name Map Section

8.1.2.2.2.2 Name Map Section To reduce file size, SPEF allows long names to

be mapped to shorter numbers preceded by a *. This mapping is defined in the name

map section. For example:

• *NAME MAP

• *509 F C EP2

• *510 F C EP3

• *511 F C EP4

• *512 F C EP5

• *513 TOP/BUF ZCLK 2 pin Z 1

33

• *514 TOP/BUF ZCLK 3 pin Z 1

• *515 TOP/BUF ZCLK 4 pin Z 1

Later in the file, F C EP2 can be referred to by its name or by *509. Name mapping

in SPEF is not required. Also, mapped and non-mapped names can appear in the same

file. Typically, short names such as a pin named A will not be mapped as mapping would

not reduce file size. You can write a script will map the numbers back into names. This

will make SPEF easier to read, but greatly increase file size.

8.1.2.2.2.3 Port Section The port section is simply a list of the top level ports

in a design. They are also annotated as input, output or bi-direct with an I, O or B. For

example:

• *PORTS

• *1 I

• *2 I

• *3 O

• *4 O

• *5 O

• *6 O

• *7 O

• *8 B

• *9 B

8.1.2.2.2.4 Internal Section Each extracted net will have a *D NET section.

This will usually consist of a *D NET line, a *CONN section, a *CAP section, *RES

section and a *END line. Single pin nets will not have a *RES section. Nets connected

by abutting pins will not have a *CAP section.

*D NET reg control top/GRC/n13345 1.94482

*CONN

34

*I reg control top/GRC/U9743:E I *C 537.855 9150.11 *L 3.70000

*I reg control top/GRC/U9409:A I *C 540.735 9146.02 *L 5.40000

*I reg control top/GRC/U9407:Z O *C 549.370 9149.88 *D OR2M1P

*CAP

1 reg control top/GRC/U9743:E 0.936057

2 reg control top/GRC/U9409:A reg control top/GRC/U10716:Z 0.622675

3 reg control top/GRC/U9407:Z 0.386093

*RES

1 reg control top/GRC/U9743:E reg control top/GRC/U9407:Z 10.7916

2 reg control top/GRC/U9743:E reg control top/GRC/U9409:A 8.07710

3 reg control top/GRC/U9409:A reg control top/GRC/U9407:Z 11.9156

*END

The *D NET line tells the net name and the net’s total capacitance. This capacitance

will be the sum of all the capacitance s in the *CAP section.

8.1.2.2.2.5 Internal Section Values The above examples show a single parasitic

value for each capacitor or resistor. It is up to the parasitic extraction and delay calcula-

tion flow to decide which corner this value represents. SPEF also allows for min:typ:max

values to be reported:

1 reg control top/GRC/U9743:E 0.936057:1.02342:1.31343

The IEEE standard requires either 1 or 3 values to be reported. However, some

tools will report min:max pairs and it is expected that tools may report many corners

(corner1:corner2:corner3:corner4) in the future.

8.1.3 Inverter Chain

The net list might have series of inverters. The goal is to get rid of inverter pairs. Since

goal is to generate smallest functionally correct net list, buffers and inverter pairs are

redundant.

35

Example:

In this example all the four inverters are redundant. Because in1 and out1 are same.

So removing all the four inverters will save the power. RTL above is equivalent to:

So the purpose of inverter chain tutorial is find all the redundant buffers and inverters

and remove them.

8.1.3.1 Need

• To have understanding of database, its implementation and its application inter-

faces. It is for internal use by the R&D of Calypto only.

• To have understanding of traversals of database (DFS,BFS).

36

• To have knowledge of different APIs which can be used to retrieve data from

database.

• To have basic understanding of port, edge, instance ,nodes and different APIs re-

lated to them and relationship among them.

• To have knowledge about node types.

• To have knowledge about callbacks.

8.1.3.2 Steps

1. Analysis

(a) Perform DFS on nodes.

(b) While doing DFS check type of each node.

If(inverter node)

Create and set attribute of node.

(c) Again perform DFS on ports

If(input Port)

If(attribute of owning node is set)

If(previous input port is not marked)

Create and set the attribute for port.

2. Transformation

(a) for each input port in view

37

3. Cleanup

(a) Remove attribute which are created for nodes and ports.

(b) Remove the deadcode.

testbench

testbench.dut

testbench.dut.ct

testbench.read input file

testbench.simulate

testbench.fopen

8.1.4 User Characteristics

The end user is expected to be Linux/Unix literate and be able to use Linux commands.

The user is expected to be aware of Object Oriented Programming language C++ so that

he is able to write the code and can run the tool and can verify the results. The user is

expected to be aware of integrated circuits and power optimization.

8.1.5 System Requirements

Supported Platforms and Operating Systems

• Support Classifications: =========

”Certified” means that the platform is extensively tested by Calypto for each and

every release. ”Binary-compatible” means that the platform satisfies the operating

requirements.

• Operating Systems: =========

– Red Hat Linux 9 Binary-compatible

– Red Hat Enterprise Linux 3 Certified

– Red Hat Enterprise Linux 5 Binary-compatible

38

• Platforms: =========

– Intel Pentium III Binary-compatible

– Intel Centrino Binary-compatible

– Intel Xeon (32-bit) Certified

– Intel Xeon (64-bit) Certified

– Other XBG(IA32) Binary-compatible

– AMD Athlon/Duron Binary-compatible

– AMD Opteron (32-bit) Binary-compatible

– AMD Opteron (64-bit) Binary-compatible.

8.1.6 Build/Debug Environment of the Tool

8.1.6.1 Concurrent Version Systems

CVS is a version control system. It is used to record the history of the source files. Bugs

can creep in when software is modified, and may not be detected until a long time after

the modification is made. With CVS, you can retrieve older versions to find which change

caused the bug.

CVS can also help when a project is being worked on by multiple people, where

overwriting each others changes is easy to do. CVS solves this problem by having each

developer work in his/her own directory and then instructing CVS to merge the work

when each developer is done.

While CVS stores individual file history in the same format as RCS, it offers the

following significant advantages over RCS:

• It can run scripts which you can supply to log CVS operations or enforce site-specific

policies.

• Client/server CVS enables developers scattered geographically or slow modems to

function as a single team. The version history is stored on a single central server

and the client machines have a copy of all the files that the developers are work-

ing on. Therefore, the network between the client and the server must be up, to

39

perform CVS operations (such as check-ins or updates) but need not be up to edit

or manipulate the current versions of the files. Clients can perform all the same

operations which are available locally.

• In cases where several developers or teams want to maintain their own versions of

the files due to geographical locations and/or policies, CVSs vendor branches can

import a version from another team (even if they don’t use CVS), and then CVS

can merge the changes from the vendor branch with the latest files if that is what

is desired.

• Unreserved checkouts, allowing more than one developer to work on the same files

at the same time.

• CVS provides a flexible module database that provides a symbolic mapping of names

to components of a larger software distribution. It applies names to collections of

directories and files. A single command can manipulate the entire collection.

• CVS servers run on most UNIX variants, and clients for Windows NT/95, OS/2

and VMS are also available. CVS will also operate in what is sometimes called

server mode against local repositories on Windows 95/NT [3]

8.1.7 Bugzilla

It is an open source, commercial ”Bug-Tracking System” which allows an individual or

groups of developers to keep track of bugs in the products code they are developing.

Generally, commercially available defect-tracking software vendors charge enormous li-

censing fees. But, Bugzilla is free of cost. Bugzilla system is used to track the issues

with the external customer products. This is also used to track the internal products and

processes e.g. licensing, training courses, cds tools. Doc tools, etc.

This is a repository for filing the product change requests. The product change re-

quests can be of two types:

• Bug tracking

• Enhancement request

40

8.1.8 Software Requirements

8.1.8.1 Object Oriented Concepts

• Objects:

Objects are the basic run-time entities in an object-oriented system. Programming

problem is analyzed in terms of objects and nature of communication between them.

When a program is executed, objects interact with each other by sending messages.

Different objects can also interact with each other without knowing the details of

their data or code.[4]

• Classes:

A class is a collection of objects of similar type. Once a class is defined, any number

of objects can be created which belong to that class.[4]

• Data Abstraction:

Abstraction refers to the act of representing essential features without including the

background details or explanations. Classes use the concept of abstraction and are

defined as a list of abstract attributes.[4]

• Encapsulation:

Storing data and functions in a single unit (class) is encapsulation. Data cannot

be accessible to the outside world and only those functions which are stored in the

class can access it.[4]

• Polymorphism:

It is the ability of objects belonging to different types to respond to method calls of

the same name, each one according to an appropriate type-specific behavior. The

programmer (and the program) does not have to know the exact type of the object

in advance, so this behavior can be implemented at run time. This is called late

binding or dynamic binding.[4]

• Inheritance:

Inheritance is the process by which objects can acquire the properties of objects

of other class. In OOP, inheritance provides reusability, like, adding additional

41

features to an existing class without modifying it. This is achieved by deriving a

new class from the existing one. The new class will have combined features of both

the classes.[4]

8.1.8.2 Makefile

It is simply a way of associating short names (called targets) with a series of commands to

execute when the action is requested. For instance, a common makefile target is ”clean,”

which generally performs actions that clean up after the compiler–removing object files

and the resulting executable.

Make, when invoked from the command line, reads a makefile for its configuration. If

not specified by the user, make will default to reading the file ”Makefile” in the current

directory. Generally, make is either invoked alone, which results in the default target,

or with an explicit target. (In all of the below examples, % will be used to indicate the

prompt.)

To execute the default target:

% make

To execute a particular target, such as clean:

% make clean

Besides giving you short build commands, make can check the timestamps on files

and determine which ones need to be recompiled; we’ll look at this in more detail in

the section on targets and dependencies. Just be aware that by using make, you can

considerably reduce the number of times you recompile.

8.1.8.3 Tcl

Tcl (originally ”Tool Command Language”, but nonetheless conventionally rendered as

”Tcl” rather than ”TCL”; and pronounced ”tickle”) is a scripting language created by

John Ousterhout.Tcl provides generic programming facilities, such as variables and loops

and procedures that are useful in a variety of applications. Furthermore, Tcl is embed-

42

dable. Its interpreter is a library of C procedures that can easily be incorporated into

applications, and each application can extend the core Tcl features with additional com-

mands for that application.

Some important features of Tcl are:

• Everything is a command, including language structures.

• Everything can be dynamically redefined and overridden.

• All data types can be manipulated as strings, including code.

• Extremely simple syntactic rules.

• Simple exception handling using exception code returned by all command execu-

tions.

• Readily extensible, via C, C++, Java, and Tcl.

• Close integration with windowing (GUI) interface.

• Easy to maintain code. Tcl scripts are often more compact and readable than func-

tionally equivalent code in other languages. [8] Functional programming can easily

be done in Tcl, as higher-order functions or functional abstractions are built into

the language, though it is not widely used for this purpose. [8]

The most important advantages of using Tcl include the following:

• Fast Development:

Tcl makes the applications to be implemented 5-10x faster than with other lan-

guages, specifically if the application involves graphical user interfaces, integration

or integration. If an application is built in Tcl, it can be easily evolved rapidly to

meet changing needs.

• Graphical User Interfaces:

43

Tcl provides facilities for creating graphical user interfaces which are incredibly

simple as well as remarkably powerful with its Tk toolkit. For example, Tk canvas

widget keeps it easy to make displays with graphics, also, it provides facilities which

are powerful such as bindings and tags. Tk has been designed from the ground up

for the rapid development inherent in dynamic programming languages like Tcl.

• Easy to Learn:

Being a simple language, it is very simple to learn. Programmers can learn Tcl

and produce some interesting applications in just couple of few hours or days. For

casual programmers also, Tcl is quick to learn.

• Deployment:

Dynamic languages make deployment hard as the need is to get both the applica-

tion scripts and interpreter onto the target machine. Many dynamic languages do

provide tools to ”compile” every line into a single executable (which Tcl is already

having from 1993).

• Testing:

Being an ideal language to use for automated software and hardware testing, it is

the dominant language used for the purpose. Using Tcl, we can easily make connec-

tion to internal APIs of an application or testing hardware, invoking test functions,

checking the results, and reporting errors. Using Tcl’s interpreted implementation,

creation of testscan be done very rapidly, and these tests can be saved easily as Tcl

script files that can be reused for testing regression.

8.1.8.4 SED/AWK

SED” stands for Stream EDitor. Sed is a non-interactive editor, written by the late

Lee E. McMahon in 1973 or 1974.[9]

Instead of altering a file interactively by moving the cursor on the screen (as with

44

a word processor), the user sends a script of editing instructions to sed, plus the

name of the file to edit (or the text to be edited may come as output from a pipe).

In this sense, sed works like a filter – deleting, inserting and changing characters,

words, and lines of text. Its range of activity goes from small, simple changes to

very complex ones.[9]

However, SED lacks relative addressing (the ability to specify a line number to work

on relative to the current line number) because it processes a file one line at a time

and never backs up. Also, sed gives you no immediate verification that a command

has altered your text in the way you actually intended.

AWKis an interpreted programming language that is included in most versions of

UNIX. The name is derived from the initials of its creators – Alfred Aho, Peter

Weinberger, and Brian Kernighan – who developed the language in 1977 and 1978.

The language is

particularly designed for filtering and manipulating textual data.

It was developed from grep, C, and sed syntax, a combination that allows complex

programs to be developed quickly. awk is frequently used for prototyping. [9]

awk (also written as Awk and AWK) is a utility that enables a programmer to write

tiny but effective programs in the form of statements that define text patterns that

are to be searched for in each line of a document and the action that is to be taken

when a match is found within a line. awk comes with most Unix-based operating

systems such as Linux, and also with some other operating systems, such as Win-

dows 95/98/NT. [9]

An awk program is made up of patterns and actions to be performed when a pat-

tern match is found. awk scans input lines sequentially and examines each one to

determine whether it contains a pattern matching one specified by the user. When

the matching pattern is found, awk carries out the instructions in the program. For

example, awk could scan text for a critical portion and reformat the text contained

45

in it according to the user’s command. If no pattern is specified, the program will

carry out the command on all of the input data.[9]

8.1.9 Tools Used

8.1.9.1 GDB

GDB is a debugger. A debugger is a tool which can help you find bugs in your code.

It will allow you to follow your program as it executes to see what happens at each

step. The program can be stopped on any line or at the start of any function and

various types of information can be displayed, such as the values of variables and

the sequence of function calls that got you where you are. If your program causes

a segmentation fault, GDB will show you where it happened. Advanced users can

alter the values of variables to experiment with temporary bug fixes and view the

contents of the stack. [10]

The greatest advantage to using GDB within Emacs is that it will work with source

code (.c file). Whenever execution of the program is stopped (by a breakpoint, a

segmentation fault, or some other signal), Emacs will display the source code in a

window and will mark the line on which it has stopped with a = 〉 symbol.

We can also use Emacs to cut and paste commands, scan through GDB output and save

it as a text file.[10]

It is a source-level debugger, capable of breaking programs at any specific line, displaying

variable values, and determining where errors occurred. Currently, it works for C, C++,

Fortran Modula 2 and Java programs. It allows you to see what is going on ‘inside’

another program while it executes – or what another program was doing at the moment

it crashed. [10]

GDB can thus do four main kinds of things (plus other things in support of these) to help

you catch bugs in the act: Start your program, specifying anything that might affect its

behavior.

– Make your program stop on specified conditions.

46

– Examine what has happened, when your program has stopped.

– Change things in your program, so you can experiment with correcting the

effects of one bug and go on to learn about another.

The program being debugged can be written in Ada, C, C++, Objective-C, Pascal (and

many other languages). Those programs might be executing on the same machine as

gdb (native) or on another machine (remote). gdb can run on most popular UNIX and

Microsoft Windows variants. [10]

8.2 Project Work

This project can be divided into several stages:

– Setting up the environment: cshrc, aliases, CVS, creating the sandbox.

– Compiling the GUI source code with Qt4 and make changes required in the

code.

– Compile the third parties to integrate them with the GUI source code.

– Add the binaries of third party libraries after compilation.

– Try to achieve the new schematic, reports and remaining parts of GUI one by

one.

Following steps are used to accomplish these stages:

– Used the utility qt3to4 to make changes needed in the PowerPro GUI source

code.

– Compiled the source code of PowerPro GUI using Qt4.7.4 which was written

for Qt3.3.6

– Found the errors in the source code and made the changes in the code according

to the needs in Qt4.

– Used GNU debugger to sort out the issues in building.

– Repeated all the same methodology for 64 bit compilation.

47

PowerPros GUI is developed using Qt. So, there is a need of building the source code of

Qt first.

When Qt is compiled successfully, we try to compile the GUI source code using the qmake

entity which is available in the directory qtbase of the directory in which qt is built.

If the source code of GUI is built successfully, it will make the binary libdesignview.so

available in work1derived objreleaseplatformlinuxlib.

There are some third party libraries that provide some functionalities and are needed to

be built.

Use GNU debugger to debug the error.

When we make changes in the GUI source code, it gives some undefined symbols while

we try to build the GUI source code.

C++filt is the utility that gives the information about the undefined symbol in the code.

It gives the function as well as the file where the problem exists.

48

Chapter 9

Conclusion

This project helped me in having a better understanding of the various Object Oriented

concepts and practically implementing them in code. This project also helped me un-

derstand why there is necessity of following several coding guidelines in the organization.

These several coding guidelines helps organization to achieve better performance of prod-

ucts and also help developers to learn and develop new standards. I also got a chance to

work in scripting languages like Perl and TCL.

I learnt the practical usage of LEX and YACC in parsing of a SAIF file. I also learnt

the usages of gdb (debugger) and RTL Compiler. This project helped me to improve my

technical skills and also helped me to gain an on-hand experience on a live project.

After working on the tool during the product release I have realized practical importance

of how quality must be ensured by following the Software Development Life Cycle. I also

understand the importance of Documentation for the product.

9.1 Path Followed

– Tutorials on Linux shell, VIM, Tcl commands, sed, awk and Verilog.

– Setting up eclipse and workspace. Also getting familiar with the concepts of

CVS (Concurrent Versions System).

– Understanding technologies involved in Calyptos products e.g. Power Analysis,

Power optimization, etc.

– Understanding concepts of PowerPro using tutorials on PowerPro

49

– Compilation of GUI source code with the Qt4.

– Making changes in the code to make it comply with Qt4.

– Html Help Pages are now available in the reports available with PowerPro as

well as PowerPro Designer.

The work of the two projects which had been assigned to me is complete.

9.2 Work Completed

– The Qt miggration has been successfully completed which resulted in better

Usability of the GUI.

– The second project on SPEF has also been successfully completed.

50

Chapter 10

References

1. Wikipedia for Graphical User Interface, QT, QT for Windows, SPEF.

2. OOP Concepts: Tutorials Point

3. NLView Tutorial: www.concept.de/nlview.html

4. TCl Tutorial: www.tcl.tk

5. SED Tutorial: www.grymoire.com/Unix/Sed.html

6. GDB Tutorial: www.gnu.org/s/gdb/

7. Calypto :: http://calypto.com/en/

8. Qt Website :: http://www.qt.io/

9. Migrating Qt :: http://doc.qt.io/qt-4.8/porting4.html

10. The Qt Blog :: https://blog.qt.io/blog/2015/09/08/qt-5-6-alpha-released/

11. Makefile Tutorial http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

12. Verilog tutorial :: www.asic-world.com/verilog/veritut.html

13. Vim Tutorial :: http://www.openvim.com/

14. Tcl Tutorial :: https://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

15. Html, Java Script and J Query tutorial: https://www.codecademy.com/

16. SPEF Files Explaination: http://vlsi.pro/readingspeffiles/

17. Reading a SPEF File: http://www.vlsi-expert.com/2010/08/howtoread-spef.html

18. Knowledge -based User Interface Migration by Melody Moore, Spencer Ru-

gaber, and Phil Seaver.

51

19. Cross-Platform Development: Software that Lasts by Judith Bishop, Nigel

Horspool.

52

Bibliography

53

	Certificate
	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	List of Figures
	Introduction
	General Introduction to the Topic
	Organisation
	Products
	PowerPro
	SLEC
	Catapult

	Area of Computer Science
	Partners and Customers

	Problem Definition
	Objectives
	Electronic Design Automation
	Introduction

	Basics of Power Optimization
	Introduction
	Introduction to Clock Gating
	Combinational Clock-Gating
	Sequential Clock Gating
	Clock Gating Efficiency
	Memory Gating Efficiency
	Power Analysis
	Calypto DataBase

	PowerPro
	Introduction
	Basic Concepts Used
	Running PowerPro

	Methodology
	Ramp up Session
	Development
	Status

	Implementation Details
	PreRequisites
	Qt
	SPEF- The Standard Parasitic Exchange Format
	Inverter Chain
	User Characteristics
	System Requirements
	Build/Debug Environment of the Tool
	Bugzilla
	Software Requirements
	Tools Used

	Project Work

	Conclusion
	Path Followed
	Work Completed

	References
	Bibliography

