
Development of CAD Checks for Validation
of Library Views

Submitted By

Ankitkumar Narsinhbhai Chaudhari
14MCEC04

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Development of CAD Checks for Validation
of Library Views

Major Project

Submitted in fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Ankitkumar Narsinhbhai Chaudhari
(14MCEC04)

Guided By

Prof. Rupal A Kapdi

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Certificate

This is to certify that the major project entitled ”Development of CAD Checks for

Validation of Library Views” submitted by Ankitkumar Narsinhbhai Chaudhari

(Roll No: 14MCEC04), towards the fulfillment of the requirements for the award of

degree of Master of Technology in Computer Science and Engineering of Institute of Tech-

nology, Nirma University, Ahmedabad, is the record of work carried out by him under

my supervision and guidance. In my opinion, the submitted work has reached a level

required for being accepted for examination. The results embodied in this project, to the

best of my knowledge, haven’t been submitted to any other university or institution for

award of any degree or diploma.

Dr. Sanjay Garg Prof.P. N. Tekwani

Professor and Head, Director,

CSE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

Dr.Priyanka Sharma Prof. Rupal Kapdi

Coordinator M.Tech-CSE, Assistant Professor,

Computer Science Engineering, Computer Science Engineering,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

iii

CERTIFICATE

This is to Certify that the Major Project Report Development of CAD Checks for

Validation of Library Views submitted by Chaudhari Ankitkumar (14MCEC04)

as the fulfillment of the requirements for the degree of Master of Technology in Computer

Science and Engineering from Institute of Technology, Nirma University is the record of

work carried out by him under my supervision. The work submitted in our opinion has

reached a level required for being accepted for the examination and it is pure research

based as this project is related to the enhancement and development.

Date:

Project Manager

Mrs. Jyoti Kumar

TR&D Department

STMicroelectronics, India

iv

Statement of Originality
———————————————————————————————————————

I, Ankitkumar Narsinhbhai Chaudhari, Roll. No. 14MCEC04, give undertak-

ing that the Major Project entitled ”Development of CAD Checks for Validation

of Library Views” submitted by me, towards the fulfillment of the requirements for

the degree of Master of Technology in Computer Science & Engineering of Insti-

tute of Technology, Nirma University, Ahmedabad, contains no material that has been

awarded for any degree or diploma in any university or school in any territory to the

best of my knowledge. It is the original work carried out by me and I give assurance

that no attempt of plagiarism has been made. It contains no material that is previously

published or written, except where reference has been made. I understand that in the

event of any similarity found subsequently with any published work or any dissertation

work elsewhere; it will result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof. Rupal A Kapdi

(Signature of Guide)

v

Acknowledgements

It gives me tremendous joy in communicating thanks and significant appreciation to my

guide Prof. Rupal kapdi, Associate Professor, Computer Science Department, Institute

of Technology, Nirma University, Ahmedabad for her significant direction and nonstop

support all through this work. The gratefulness and nonstop bolster she has granted has

been an extraordinary inspiration to me in coming to a higher objective. Her direction

has activated and sustained my scholarly development that I will profit by, for quite a

while to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Science and Engineering Department, Institute of Technology, Nirma University,

Ahmedabad for his kind support and providing basic infrastructure and healthy research

environment.

A special thank you is expressed wholeheartedly to Prof.P. N. Tekwani, Hon’ble

Director, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation he has extended throughout course of this work.

It gives me an immense pleasure to thank Mrs Jyoti Kumar Manager, ST Micro-

electroniocs, Greater Noida. I exploiting her vast information and great future vision and

owe her heaps of appreciation for essentially affecting this report.

I would like to thank my Mentor, Mr. Rishabh Bansal , ST Microelectroniocs,

Greater Noida for her valuable guidance. Throughout the training, he has given me

valuable advice on project work. he has given me all kind of support to handle complex

situation.

I would like to thank you to my Institution, all faculty members of Computer Engi-

neering Department, Nirma University, Ahmedabad for their special attention and sug-

gestions towards the project work.

- Ankitkumar Narsinhbhai Chaudhari

14MCEC04

vi

Abstract

Electronic gadgets that we are utilizing as a part of our everyday life are made out of

several chips, which is fixed inside these gadgets for their appropriate working. This chip is

a combination of different programmable programmable logic gates, memories , registers

and latches.Library is an accumulation of cells and Logic gates that are fabricated onto

the chip.

The project is related to automation of validation of libraries which are the Intellectual

Property. These libraries represent design data of cells, transistor level design and timing

information, actual mask level design that will be integrated and fabricated on a chip.

The automation requires plugins to validate different views of a library under test. These

plugin check different views of library. The plugins are in TCL, C Shell.

vii

Abbreviations
CDL Circuit Design Language.

GDS Graphical Design Stream.

LVS Layout Vs Schematic.

DRC Design Rule Check

LEF Library Exchange Format

TCL Tool Command Language

VLSI Very Large Scale Integration

CAD Computer-aided Design

V Verilog
——————————————————————————————————————

–

viii

Contents

Certificate iii

Certificate iv

Statement of Originality v

Acknowledgements vi

Abstract vii

Abbreviations viii

List of Figures xi

1 Introduction 1
1.1 General . 1
1.2 Objective of Study . 1
1.3 Motivation . 2

2 Literature Survey 3
2.1 Introduction of Library IP . 3
2.2 Types of Library . 3

2.2.1 Core Library . 3
2.2.2 Input/Output Library . 4
2.2.3 Memory Library . 4
2.2.4 Analog and Mixed Cell Library 4

2.3 What are Views . 4
2.3.1 Symbolic View . 5
2.3.2 Circuit Description Language(CDL) 6
2.3.3 Lef View (Library Exchange format) 6

2.4 Structure of Library . 7
2.5 IC Design Flow . 7

3 Validation Methodology 9
3.1 Conventional Validation Approach . 9
3.2 Hybrid Validation Approach . 9
3.3 Creating A Validation Environment . 10

3.3.1 Requirement Analysis . 11
3.3.2 Validation Environment Specification 12
3.3.3 Validation Environment Implementation 12

ix

3.4 Validation Environment Architecture . 12
3.5 Validation Process Flow . 13
3.6 Reduction In Cycle Time . 15

4 Older Ipscreen Architecture 17
4.1 Existing Approach . 17
4.2 Inputs to IPScreen . 18
4.3 Information Dumped by IPScreen on parsing an IP 18
4.4 Final Output of Plugin Run on IpScreen 19
4.5 CrossCheck Plugin . 19

4.5.1 Tasks performed in crosscheck . 19
4.6 Modelization Plugin . 21
4.7 SyntaxCheck Plugin . 22
4.8 New Approach Vs Older Approach . 22

5 New Architecture Implementation 24
5.1 Development Flow . 24

5.1.1 Initialize . 24
5.1.2 ProcessInputs . 24
5.1.3 GenerateSetup . 24
5.1.4 ExecuteChecks . 24
5.1.5 GenerateReport . 25

5.2 Technology and Tools in New Architecture 26
5.2.1 OOTCL . 26
5.2.2 C Shell . 26
5.2.3 Tool Command Language(TCL) 27

5.3 CrossCheck Plugin . 27
5.3.1 Implementation . 28
5.3.2 Advantages over Previous crosscheck 28

6 Conclusion and Future Scope 30
6.1 Conclusion and Future Scope . 30

Bibliography 31

x

List of Figures

2.1 Library View Block Diagram . 5
2.2 Symbolic View Of a Inverter . 5
2.3 Schematic View of a Inverter as in Virtuso 6
2.4 Layout View . 7
2.5 IC Design Flow . 8

3.1 The Conventional Validation Approach 9
3.2 The New Hybrid Validation Approach 10
3.3 Validation environment requirement composition 11
3.4 Validation environment chain of knowledge 11
3.5 Mapping between Check Taxonomy and Plug-in Taxonomy 12
3.6 Mapping between Check Taxonomy and Plug-in Taxonomy 14
3.7 Mapping between Check Taxonomy and Plug-in Taxonomy 15
3.8 Mapping between Check Taxonomy and Plug-in Taxonomy 16

4.1 IPScreen and Plugins Block Diagram . 17
4.2 Load library in Ipscreen . 20
4.3 Load library Path . 20
4.4 Load plugin . 21
4.5 Ipscreen run of CrossCheck Plugin . 21
4.6 Modelization Checks Flow . 22
4.7 Ipscreen run of Modelization plugin . 22
4.8 Ipscreen run of Syntax Check Plugin . 23

5.1 Process Inputs . 25
5.2 User Input Command . 25
5.3 Report Generation . 25
5.4 Report Of New Architecture . 26
5.5 CrossCheck Command . 28
5.6 CrossCheck Folders . 28
5.7 CrossCheck Output . 29

xi

Chapter 1

Introduction

1.1 General
Design team developes IP.System on chip designers combine all the Ips on the single

chip.One of the demanding jobs for IP providers is related to IP models or representation

needed in the design are targeted for the System on Chip(SOC) development.[1] The

main issue for IP developers are[?]

• Coherency between different Library Views.

• Accuracy between IP models and IP available in market or developed by design

team.

This project aims at providing a validation solution which reports mismatches or

modelling errors for Libraries and IP that can seriously delay an IC design project[]

This project has two phases previously the libraries were validated using software

called Ipscreen . New Enhancement phase is now going on in which instead of validating

whole library one can validate individual views of the library.

1.2 Objective of Study
The increasing number of components from different suppliers and the amount of process

corners that need to be covered lead to an explosion in both data-volume and data-variety.

This project aims at providing a validation solution which reports mismatches or

modelling errors for Libraries and IP that can seriously delay an IC design project.

1

This validation solution can help in achieving a working design within a predictable

flow by ensuring that every design step is validated and every imported IP-component is

qualified.Also helps CAD teams and IC designers achieving a high quality of design data

in a short time.

1.3 Motivation
These plugins bundle collection of checks. Prior to automation, there were two ways in

which the validation was done

• Some checks required the user to manually check all the relationship between various

different views.

• By giving input to EDA tool through command line or GUI, the results had to

be collected, and analyzed for each cell. This would take weeks and the results of

validation may still be prone to human errors.

2

Chapter 2

Literature Survey

2.1 Introduction of Library IP
Library is characterized as an arrangement of all outline information accessible for an

IP.[2] The configuration information

comprises of transistor level configuration of the IP, timing data that will be fabri-

cated on chip. We can likewise say that library is an accumulation of cells, involving of

different perspectives which are helpful for outlining a chip. Cell is a segment performing

an essential capacity and a perspective is a specific representation of a cell. Because

of expanded unpredictability of circuit and shorter time to market SoC planners can’t

generally focus on outline of essential building pieces. This database can be reused in

outlining different Framework on Chip(SOC).[3]

2.2 Types of Library
The distinctive sorts of Library are as per the following:

2.2.1 Core Library

It comprises of a gathering of cells called Standard Cells. They execute essential ratio-

nale capacities like Inverter, hooks and ip operations and so on. Advanced outlines are

assemble from fundamental parts like gate, register, counters, viper, sub-tractors, RAM,

ROM. Center Library is accumulation of such building squares. Physical/logical/timing

models are made for these cells.[4]

3

2.2.2 Input/Output Library

It comprises of a group of cells called I/O buffers. I/O buffers are intended to interface of

chip design to inside chip environment and vice-versa . I/Os are placed on the periphery

of the chip. Any signal which originates from chip environment (outer voltages are at a

run of voltage of 2.5V, 3.3V or 5V) into the chip, must be checked by I/O for any error

in its conduct other than characterized by the center for that specific sign. In the event

that I/O finds any signal challenging the normal conduct from it, it alters the signal so

as to guarantee appropriate working of chip.

2.2.3 Memory Library

These library contain memory of diverse structural planning. Samples are SRAM, DRAM,

ROM. As there can be number of memory sizes, we execute fundamental building square

of memory and design the era of diverse memory sizes.

2.2.4 Analog and Mixed Cell Library

These library are executed in a full custom or semi custom way utilizing the CORE

library. Illustration of Analog and Mixed Signal Library are Digital to Analog Convertor,

U.S.B, Phase Locked Loop(PLL).

2.3 What are Views
Specific representation of a cell might have a layout view, schematic view, symbolic view

, Abstract view.It can be classified as

• Front End Views

• Backend Views

These views are required at different stages in RTL to GDSII flow. The information

these views have is been converted into the respective ASCII or Binary format which

is the more abstract and precise information that is used by the CAD tools.

As examined beforehand, Library is a collection of cells and every cell has views which

are the representation of the cell. Every one of the cells have Layout view, Abstract

perspective, Schematic perspective, Symbolic perspective, Timing perspective and so

forth. A cell is conveyed as an arrangement of perspective and every perspective is

4

Figure 2.1: Library View Block Diagram

utilized by distinctive instrument as a part of a given electronic outline etc.The essential

Library perspectives are as:

2.3.1 Symbolic View

Figure 2.2: Symbolic View Of a Inverter

It is the pictorial representation of cell. It incorporates pins, image, names, choice

box. Pins speak to the information and yield of the cells. The state of cells demonstrate

its capacity. Names are mapped to some documentation of outline, determination box

select the complete range for the cells. Typical Views permits the client to digest a mind

boggling Schematic View and supplant it by a Symbolic perspective that can be utilized

as a part of further plans. An image view for a NOT entryway is demonstrated as follows:

5

2.3.2 Circuit Description Language(CDL)

It is the literary representation of Schematic View at Transistor level. Making a subcircuit

permits you to reuse the circuit different times in an outline and in future designs.

Figure 2.3: Schematic View of a Inverter as in Virtuso

Sub-circuits are like subroutines in programming. It is representation of circuit at

transistor level.It is consequently produced from schematic perspective. It is utilized as

a part of Design versus Schematic Check and Electronic Circuit Simulation.

2.3.3 Lef View (Library Exchange format)

An ASCII information design document, to portray physical format of an Integrated

circuit. It incorporates outline governs and conceptual data about cells.

LEF has just the essential data required by the CAD device. It gives just a theoretical

view and devours less capacity overhead. A LEF document contains the accompanying

segments:

• Technology section: layer, Placement and Design Rules, Via definitions, metal ca-

pacitance.

• Macros Cell definitions: cell descriptions, cell dimensions, layout of pins and block-

ages, capacitances. These two sections can be stored in two different file if the size

of file becomes large. While reading the lef view the technology file must be read

first before reading Macro Cell definitions.

6

Figure 2.4: Layout View

2.4 Structure of Library
The library is kept up by a list document .The structure of record document incorporates

different subsections that all together list the library documents in view of different

conditions.

• Header: This section includes the library name, product name, process like 65nm,

45nm, 40nm etc, type of library example memory, standard cell, input-output etc.

• Cell: This section includes various cells.

• Conditions Section: This section includes conditions based on parameters like Pro-

cess Variation(PV), Voltage(V), Temperature(T).

• Index Section: The index section includes paths to various cells based on different

conditions. IPScreen parses this section to access the different views of the library.

2.5 IC Design Flow
The steps involved in IC design are as follows:

• Design Specification: It is the first step in IC design, here the design functionality

is stated. All the requirements are clearly stated in terms of performance, speed,

power, functionality. All the architectural part is stated clearly.

7

Figure 2.5: IC Design Flow

• Design Implementation using HDL: Hardware description Language allow to im-

plement a design without going into much architecture, simulate and verify the

output.For example Rather than building a MUX in hardware, Verilog code allows

us to verify the functionality.

• Synthesis: A Register Transfer Language(RTL) is transformed into design imple-

mentation in terms of logic gates, using program called as synthesis tool. Examples

of synthesis tool are Synopsys’s Design Compiler and Candence’s Ambit. At the

end of this stage we have logic circuit in terms of gates and memories. The output

of Synthesis is netlist. Netlist indicates all the devices and interconnection between

them.

• Simulation: This netlist is simulated to verify the functionality of gate level im-

plementation of design.

8

Chapter 3

Validation Methodology

Validation is one of the major step that certifies the quality of the product being provided

to the user. Conventional validation approach has high cycle time and also requires high

man resources so there came a need to go for Hybrid validation approach.

3.1 Conventional Validation Approach
First of all start with introducing the conventional approach where complete RTL to GDS

flow is required to validate an IP. This is a very tedious task requiring a large utilization

man power resources as well.

Figure 3.1: The Conventional Validation Approach

3.2 Hybrid Validation Approach
The new hybrid approach has various benefits over the conventional one such as

9

• Easy to debug

• Increased usability

• Increased coverage

• Covers different types of IP milestone

• New views with new CAD features can be implemented

Figure 3.2: The New Hybrid Validation Approach

——————————————————–

3.3 Creating A Validation Environment
Increased complexities of the design has forced to opt an efficient design methodology and

effective IP validation techniques. For effective validation we need to create a validation

environment which have following requirements

• Checks for each of the view.

• Validation process definitions.

• Validation environment tools.

• General tools.

10

Figure 3.3: Validation environment requirement composition

Knowledge of the Library under Test (LUT) that needs to be tested from validation

Environment includes structure information, modelling information and several other

attributes. The knowledge mentioned is explained through the figure as knowledge chain

for validation Environment designing. The concept of chain of knowledge refers to a

network where the knowledge flows. Similar concept is applied to validation environment

and three network nodes are defined

Figure 3.4: Validation environment chain of knowledge

3.3.1 Requirement Analysis

The first step is to extract the information that is relevant from the listed below sources

• Pareto analysis of bugs that are found in IP.

• Design methodologies that are dependent on EDA tools Flow requirements (view/at-

tributes).

• User requirements.

11

——————————————-

3.3.2 Validation Environment Specification

As per the taxonomy checks were implemented in the plugins from the requirements.

Validation environment specs says requirements should be converted into specifications

and algorithms should be defined for modelling the checks so is the implementation

—————————————————–

3.3.3 Validation Environment Implementation

This actually refers the implementation/modelling of the checks in the plugins for vali-

dating the IP. Based on the present taxonomies specs derived from the requirements were

categorised among various plugins that is Modelization, Crosscheck, Syntax, Tag Checker

.

Figure 3.5: Mapping between Check Taxonomy and Plug-in Taxonomy

——————————————

3.4 Validation Environment Architecture
This is three layer architecture within a framework which provides the interface to the

user. Three layers are

12

• Plugins

• Rules for checks that are static

• Tools and kits such as EDA tools, Techno Kits, Parser Kits and Design Kits

There exists a bidirectional interaction between the first layer and plugin layer as

well as between third layer and plugin layer. This bidirectional communication allows

the validation environment to use various kits and EDA tools for Adaptive Methodology

flow keeping in mind that rules applied are specific to standard technology and Design

Platform. Communication of plugins and third layer has an additional advantage of

instantiating the kits and EDA tools for every specific view present in the IP library.

Database of IPs which needs to be validated is given as input to this framework

where some pre-processing is done based on the IP style to create a desired environment

specific to that particular IP. After the environment is ready different views present in the

package are analysed by the analysers which are responsible for parsing and dumping the

view contents in a standard format. These parsers have been implemented in Tclsh, Perl

and csh scripting languages. Now the static checks are being performed on the dumped

standard format files following the rules or specifications ensuring the correctness as well.

As an output a status report is being produced for each of the checks performed in the

plugin for a particular IP

—————————————————–

3.5 Validation Process Flow
The validation flow ensures the user that the IP under test is correctly validated. To

make things simple to understand lets discuss on a single view

• In the first step, presence of particular view in the package is checked. Another

thing that is being checked is that indexation of the view is properly done in the

file named vc.bbview or not. If this file is not populated correctly like the view is

not indexed correctly then as a resultant that particular view cannot be taken by

the EDA tools in RTL to GDS flow. This is the check performed by Mat10bbview

plugin

• In the second step, syntax checking is done where the view is being read by the

respective EDA tool. In case of any incorrectness in the view the tool will not be

13

Figure 3.6: Mapping between Check Taxonomy and Plug-in Taxonomy

able to process that particular view in the RTL to GDS flow. This check is done

by syntaxCheck plugin

• Once the view is checked syntactically the next step is to check that the view is

having the necessary attributes which are required in RTL to GDS flow by the EDA

tool. If they are found in the view then their values are being cross verified so that

they are modelled according to the design rules mentioned in the kits of third layer

(Validation Architecture). These two checks are being performed by Modelization

plugin.int

• In the fourth step, it is ensured that information is consistent between various views

thatâĂŹs what the check is called as cross view Consistency. Using RTL to GDS

tools of all the different vendors the view contents are verified in terms of data

consistency. This is done by CrossCheck plugin

• It is also being ensured that the tags mentioned in the layout are compliant with

the convention. This check is done by a plugin named TagChecker

• Mat10Comp plugin is responsible for checking out the difference between the pre-

14

vious versions and the existing version of the IPs

Figure 3.7: Mapping between Check Taxonomy and Plug-in Taxonomy

——————————————

3.6 Reduction In Cycle Time
This validation environment has made it possible to reduce the cycle time to a large

extent. Talking about any specific IP which generally takes 7-8 man days for validation

following the conventional approach now can be validated only in a single man day. So

this alternate approach has made a gain of 86 percentage in run time for validating

15

Figure 3.8: Mapping between Check Taxonomy and Plug-in Taxonomy

16

Chapter 4

Older Ipscreen Architecture

4.1 Existing Approach
Currently the library views are developed using software called IPSCREEN.

Figure 4.1: IPScreen and Plugins Block Diagram

IPScreen is a framework built using TCl and Tk on which library are loaded for

validation. Multiple libraries of different technology can be loaded at the same time.

Plugins are loaded after the library are loaded on IPScreen. Each tuple of library, plugin

corresponds to a new tab in IPScreen window. The IPScreen can be run in GUI mode

or else in Batch mode, in GUI mode the user has to click on each task that they want

to run. To run in batch mode all the commands are given in a file as input. Depending

17

upon the availability of license for tools, the execution time of the check may vary. Also

the time of execution varies on the number of cells in the library and size of each cell.[5]

4.2 Inputs to IPScreen
• Command File: All the check(s) that are to be performed are given in this file

along with libraries. The contents of command file are: command to load library,

command to load auxiliary library, command to run specific task.

• Tools, Plugin record: Depending upon the techno of library(65nm, 32 nm etc) the

tools version may change, so correct tools are to be ensured for each validation of

library. These tools are Electronic Design Automation Tools (EDA tools). All the

plugins that are to be used, are specified in a seperate file along with their path.

• Setup: The setup script sets the environment in order to execute tasks on load

sharing facility and other environment variables required.

4.3 Information Dumped by IPScreen on parsing an

IP
After an IP is loaded and parsed by IPScreen framework,the information dumped by

IPScreen is used by plugin for its specific check. The developer of plugin may use this

information as per his choice. The structure of the dumped information is plugin inde-

pendent.

• Status of Tools : It tells ftool name, status of toolg, where status of tool is missing/

present.

• Library Information : For all the libraries loaded following information are dumped,

fName, Version,Type, path,path till index file ,product name, iptype.g

• Status of all Collection having collection name, Statusg , where Collection status is

failed, warning, Done correctly.

• Status of Task: It has plugin name, task name, tool status, task status.

• List of all cells present in a specific library.

18

• Path of each view for each cell, condition, plugin, type of library (main or supporting

library).

• Pairs of all plugin and library that are to be used.

On running, aborting, rerunning a task the Status of Task table is updated. On

loading, reloading a tool Status of tools table is updated. Initially when Library is loaded

Library table is created. On running and re running a collection, Collection status table

is updated.All the tables are initially dumped by IpScreen, and are later modified during

task run.

4.4 Final Output of Plugin Run on IpScreen
The primary level report shows ”No Error / Warnings found” if execution is correct and

input library is correctly validated, a green tick is shown on IPScreen GUI along with

”Done”. If during the execution of script, if the scripts aborts due to abnormal program

execution, then the task fails and primary report is not prepared, so FAILED is shown

on the IpScreen GUI along with Red Cross. If there are errors present in library then

the report shows ”FAILED” message, and IPscreen GUI shows ”Done” along with Red

Cross. If there are no errors but warnings like ”.v file not present in library” then ”Warn”

message is shown in report, along with Done on IpScreen GUI, and brown colour Tick

indicating warning. The final xls reports are hierarchical and tell status of each check.

4.5 CrossCheck Plugin
This Plugin is designed to ensure view consistency. The aspects of this plugin are Similar

view consistency and different view consistency

• View Consistency: Ensure that the same type of views are consistent among them

self.

• Different View Consistency: Ensure that all the different type of views are consistent

among each other example:(.lef vs lib, .lef vs .v). [6]

4.5.1 Tasks performed in crosscheck

• Data Extraction: During this step the layout view are dumped into .lef format and

from the .lef a common tree format is built, the tree format includes inforamation

19

like cell name, cell area, pin name, pin direction. Also, the abstract view is dumped

in a common tree format using ST internal tools, and information like cell name,

cell area, Pin name, Antenna Information, Pin direction, Pin type are dumped into

a textual format. Similarly, Verilog Views, Apache views are extracted and dumped

into a common tree format.[5]

Figure 4.2: Load library in Ipscreen

Figure 4.3: Load library Path

• Reference Preparation: During this step, the reference trees are prepared and are

then compared among themselves to ensure consistency among themselves. Here,

.lef, .lib and layout are compared among themselves. Out of all the reference views

one view is choosen as reference further consistency check.

• Consistency Check: The consistency between all the trees dumped in Tree For-

mation steps checked with respect to reference views.

20

Figure 4.4: Load plugin

Figure 4.5: Ipscreen run of CrossCheck Plugin

• Liberty Comparator: This check check the consistency between .lib and .db respec-

tively.Also it checks the consistency between .lib and reference choosen.

4.6 Modelization Plugin
The Following tasks are performed in Modelization Plug-in.

• After checking that the view is readable by the EDA tools, it is checked that whether

the given view has necessary attributes present which is required by the EDA tools.

• If the necessary attributes are present, then it is checked that whether their value

is modeled correctly or not according to the Design Rules

21

Figure 4.6: Modelization Checks Flow

Figure 4.7: Ipscreen run of Modelization plugin

4.7 SyntaxCheck Plugin
The Following tasks are performed in Syntax Check Plug-in.

• View is checked syntactically by reading that view in its respective tool

• If the view is syntactically incorrect, the EDA tool will not be able to process the

view .

4.8 New Approach Vs Older Approach
As mentioned in the implementation part about Ipscreen software was validating the

whole library. Ipscreen is just the gui that was being used to validate the libraries. The

22

Figure 4.8: Ipscreen run of Syntax Check Plugin

plug-in which consists of developed scripts that were being loaded in the Ipscreen.

Using older Approach logs were tough to understand. In newer architecture develop-

ment is using command line interface not by Gui through ipscreen.Single view validation

is possible Also view level and check level checks are possible.

23

Chapter 5

New Architecture Implementation

5.1 Development Flow

5.1.1 Initialize

In the initialization process all the inputs are initialized with their default values. It

generates the valid values for the command line input paramaters.

5.1.2 ProcessInputs

There are two ways in which user can provide inputs . One is in the command line and

other is in the file . It contains parameters like library , view ,checkname , subcheckname,

techno , ipstyle etc . Library name is to be given as an argument , with this name view

i.e lef,stf,verilog , checkname and subcheckname is the core check script on which the

check must run , techno is the techno file.

5.1.3 GenerateSetup

Based on the user inputs the setup is automatically generated and the processed files are

placed under it. There are folders like Report , check , Logs and run folder .User can see

the status of subcheck and reports from these directories.

5.1.4 ExecuteChecks

After generating the setup the task is to execute main check script . All the checks run

in parallel. The checks dumpes their status i.e success full or unsuccessful.

24

Figure 5.1: Process Inputs

Figure 5.2: User Input Command

5.1.5 GenerateReport

In the end the report generation is carried out . It generates reports for all the subchecks.

Figure 5.3: Report Generation

25

Figure 5.4: Report Of New Architecture

———————————————

5.2 Technology and Tools in New Architecture
Scripting Languages like Perl,Shell Script,Bash,Korn Shell,Python are utilized for com-

puterizing little tasks.These dialects are deciphered and not incorporated. They are

progressively written, that is sort checking is done at run time and not at gather time.

Scripting Dialects are utilized for quick application advancement. Scripting Languages are

great at string handling. Scripting dialects permit bunch occupations that would be en-

tered physically entered on the order line to be executed naturally in a steady progression

utilizing scripts. Additionally, composing the shell script is more quick than comparable

code in other programming dialect. The primary favorable position of scripting dialects

is that the orders and punctuation are precisely same when utilized at terminal. Ad-

ditionally, intuitive debugging,easy document choice, brisk begin are different favorable

circumstances. The plugins are developed in C Shell and TCL.

5.2.1 OOTCL

Object oriented tcl is used to extend the functionalities of tcl . Its is available as an built

in package in tcl 8.6. It provides all the functionalities as oop. The new architecture is

developed using ootcl and cshell.[7]

5.2.2 C Shell

C Shell provides Control statements like if, while , foreach , switch etc. It also provides

SubShell, in which a child copy of current shell is created inheriting the current state,

26

without affecting the parent. Shell script provide -x option for debugging by displaying

commands as they are executed, -v option to display all lines as they are read.[8]

5.2.3 Tool Command Language(TCL)

TCL is commonly used for rapid prototyping,scripted applications, GUIs and testing.

The main features of TCL are:

• The TCL uses tclsh command line interpreter. Other ways of starting TCL are

using Wish or Windowing Shell.

• All data types can be manipulated as strings.

• TCL interpreter performs run time compilation of script into byte code. Running

compiled code allows TCL script to run faster than Perl.

• TCL supports most of modern programming constructs like subroutines, standard

programming flow constructs, rich set of variable type like lists, associative ar-

ray,float, integer, string etc.

• TCL provides powerful string manipulation commands for searching and replacing,

extracting portion s of string, converting strings to list.

• Extensibility: TCL extension add a few new commands to extend interpreter into

new application domain

• Provides GUI interface Tk.

• All commands of TCL generate error message on incorrect usage.

————————————————

5.3 CrossCheck Plugin
Crosscheck means cross verifying the views and report matching or miss matching.

As shown in the older approach of crosscheck plugin , the checks developed are different

for all the views . The reports are also not aligned with each other .

The goal is to develop the check scripts which could be generic for all the views.Previously

whole plugin was there for cross-check. Now the idea is to develop generic scripts which

27

should work for all the views.i.e if one wants to verify lef(library exchange format) view

and stf(synopses technology file) view then it should report matching and mismatching

off common attributes of those views and also each attribute value is to be compared.

5.3.1 Implementation

• Csh - c shell

• Tcl - tool command language

• Namespaces in tcl

• Wrapper classes are created for this purpose because fetching of attributes of dif-

ferent views are different

• Dynamic Arrays and configuration files and Parsers for lef , fram ,stf.

Figure 5.5: CrossCheck Command

Figure 5.6: CrossCheck Folders

5.3.2 Advantages over Previous crosscheck

• The current script is generic for all the views. previously manual developed parsers

were there and code was different for all the views. In current approach through

name-spaces and dynamic data structures and the wrapper classes code is generic

for all the views .

28

Figure 5.7: CrossCheck Output

• Debugging is much faster

• Log is consistent for all the views

• Code is divided in modules so readability is much more

• Run time is much faster than previous approach

29

Chapter 6

Conclusion and Future Scope

6.1 Conclusion and Future Scope
Providing a validation solution which reports mismatches or modelling errors for Libraries

and IP that can seriously delay an IC design project .Some checks required the user to

manually check all the relationship between various different views.Giving input to EDA

tool through command line or GUI, the results had to be collected, and analyzed for each

cell. This would take weeks and the results of validation may still be prone to human

errors. like using older approach the whole library was being validated. One cannot

validate the single view in the older approach. but using the newer approach one can

individually validate the different views of the library by giving some specific files like lef

file or cdl file.

• Manual testing requires much efforts and time.

• Automation reduces the efforts and time.

• So reducing effort leads to minimal cost.

Old Approach New Approach

Inputs are only library Input can be anything

Development is Complex development is simple

Single view validation not possible Single view validation possible

validation result lOG is complex lOG is common and simple to understand

Currently new Architecture is going on for validating the checks as mentioned above.

Command line validating of checks instead of using gui.

30

References

[1] STMicroelectronics, “Stmicroelectronics internal document on library and views,”

[2] W. Agatstein, K. McFaul, and P. Themins, “Validating an asic standard cell library,”

pp. P12–6, 1990.

[3] STMicroelectronics, “Stmicroelectronics internal document on plugins,”

[4] M. J. S. Smith, “Application specific integrated circuits,”

[5] STMicroelectronics, “Stmicroelectronics internal document on ipscreen,”

[6] SYNOPSYS, “Astro user manual,”

[7] https://en.wikipedia.org/wiki/OTcl.

[8] https://en.wikipedia.org/wiki/C_shell.

31

https://en.wikipedia.org/wiki/OTcl
https://en.wikipedia.org/wiki/C_shell

	Certificate
	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	General
	Objective of Study
	Motivation

	Literature Survey
	Introduction of Library IP
	Types of Library
	Core Library
	Input/Output Library
	Memory Library
	Analog and Mixed Cell Library

	What are Views
	Symbolic View
	Circuit Description Language(CDL)
	Lef View (Library Exchange format)

	Structure of Library
	IC Design Flow

	Validation Methodology
	Conventional Validation Approach
	Hybrid Validation Approach
	Creating A Validation Environment
	Requirement Analysis
	Validation Environment Specification
	Validation Environment Implementation

	Validation Environment Architecture
	Validation Process Flow
	Reduction In Cycle Time

	Older Ipscreen Architecture
	Existing Approach
	Inputs to IPScreen
	Information Dumped by IPScreen on parsing an IP
	Final Output of Plugin Run on IpScreen
	CrossCheck Plugin
	Tasks performed in crosscheck

	Modelization Plugin
	SyntaxCheck Plugin
	New Approach Vs Older Approach

	New Architecture Implementation
	Development Flow
	Initialize
	ProcessInputs
	GenerateSetup
	ExecuteChecks
	GenerateReport

	Technology and Tools in New Architecture
	OOTCL
	C Shell
	Tool Command Language(TCL)

	CrossCheck Plugin
	Implementation
	Advantages over Previous crosscheck

	Conclusion and Future Scope
	Conclusion and Future Scope

	Bibliography

