
MR Platform 2.0

By

Mrudul Y Doshit

14MCEC07

Guided By

(Internal)

Prof. Jaladhi Vyas

Assistant Professor, CSE Department

(External)

Abinash Ojha

Senior Technical Specialist, MR Imaging, Philips Healthcare India

Sajith Satheesan

Senior Project Manager, MR Imaging, Philips Healthcare India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

MR Platform 2.0

Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer science & Engineering

By

Mrudul Y Doshit

14MCEC07

Guided By

Prof. Jaladhi Vyas

Department Of Computer Science & Engineering

Abinash Ojha

Senior Technical Specialist, MR Imaging, Philips Healthcare India

Sajith Satheesan

Senior Project Manager, MR Imaging, Philips Healthcare India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

AHMEDABAD-382481

iii

Certificate

This is to certify that the Project entitled ”MR Platform 2.0” submitted by Mrudul Y

Doshit (14MCEC07), towards the partial fulfillment of the requirements for the degree

of Master of Technology in Computer Science & Engineering of Nirma University,

Ahmedabad is the record of work carried out by him under my supervision and

guidance. In my opinion, the submitted work has reached a level required for being

accepted for examination. The results embodied in this Project, to the best of my

knowledge, haven’t been submitted to any other university or institution for award

of any degree or diploma.

Prof. Jaladhi Vyas Dr. Priyanka Sharma

Guide & Assistant Professor, Professor & Coordinator (M.Tech - CSE),

Department of Computer Science & Engg, Department of Computer Science & Engg,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr. Sanjay Garg Dr. P.N Tekwani

Professor and Head, Director,

Department of Computer Science & Engg, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad

iv

Certificate

This to certify that Mrudul Y Doshit (14MCEC07), a student of M.Tech in Computer

Science & Engineering, Institute of Technology, Nirma University, Ahmedabad has

been working in this organization since the 2nd of July, 2015 and has carried out

his project work titled ”MR Platform 2.0”. He is working as an intern under the

supervision of Abinash Ojha (Mentor), and Sajith Satheesan (Manager). He has

successfully completed the assigned work and is allowed to submit his project report.

The results embodied in this project, to the best of our knowledge, havent been

submitted to any other university or institution for award of any degree or diploma.

Abinash Ojha Sajith Satheesan

Senior Technical Specialist, Senior Project Manager,

Magnetic Resonance Imaging , Magnetic Resonance Imaging,

Philips Healthcare Philips Healthcare

Bangalore Bangalore

v

Statement of Originality

I, Doshit Mrudul Yogeshbhai, Roll. No. 14MCEC07, give undertaking that the

Major Project entitled ”MR Platform 2.0” submitted by me, towards the partial

fulfillment of the requirements for the degree of Master of Technology in Computer

Science & Engineering of Institute of Technology, Nirma University, Ahmedabad,

contains no material that has been awarded for any degree or diploma in any university

or school in any territory to the best of my knowledge. It is the original work carried

out by me and I give assurance that no attempt of plagiarism has been made. It

contains no material that is previously published or written, except where reference

has been made. I understand that in the event of any similarity found subsequently

with any published work or any dissertation work elsewhere; it will result in severe

disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof. Jaladhi Vyas

(Signature of Guide)

vi

Acknowledgements

First and foremost, sincere thanks to my mentor, Abinash Ojha, (Technical Special-

ist, MR Imaging). I enjoyed his valuable guidance and inputs and owe him lots of

gratitude for having a profound impact on this report. I would like to thank my

teammates Azhar Khan and Rabindranath Mishra for their vast knowledge, without

which, this project work would never have been completed. It gives me immense plea-

sure in expressing thanks and profound gratitude to Prof. Jaladhi Vyas for giving

me an opportunity to work under his guidance. I would also like to thank my man-

ager Sajith Satheesan for his immense support and encouragement. It gives me an

immense pleasure to thank Dr. Sanjay Garg, Honble Head of Computer Science and

Engineering Department, Institute of Technology, Nirma University, Ahmedabad for

his kind support and providing basic infrastructure and healthy research environment.

A special thank you is expressed wholeheartedly to Dr P.N Tekwani, Honble Direc-

tor, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation he has extended throughout course of this work. I also owe my friends

and colleagues at MR Department, Philips Innovation Campus, special thanks for

helping me on this path and for making this internship more enjoyable. I would like

to thank the Institution, all faculty members of Computer Engineering Department,

Nirma University, Ahmedabad for their special attention and suggestions towards the

project work. At last I would like to thank Nirma University and Philips Healthcare

for providing resources and quality environment for research and development.

- Mrudul Y Doshit

14MCEC07

vii

Abstract

Magnetic Resonance Imaging (MRI) Systems are complex medical diagnostic ma-

chines having components such as the magnet, gradient coils, shim coils, etc. These

components are managed by a computer, which also hosts the applications and ser-

vices required to use the system. These applications and services should reliable,

accurate and should work in real-time, as a small mistake may have life-threatening

implications. This project report describes the development of a distributed mes-

saging framework to be used by MR applications to communicate on a distributed

platform, as well as a set of tools used to improve the efficiency, reliability, and pre-

dictability of the system.

A typical MRI system contains a wide array of processes and services, which re-

quire inter-communication. The distributed messaging framework is a middleware

that enables message-based communication among different platforms (Linux-based,

Windows, VSWorks) and technologies(C++/C# Applications, Web Applications). It

provides a an efficient, reliable and error-resilient solution and provides REQUEST-

RESPONSE, ROUTER-DEALER (Asynchronous) and PUBLISH-SUBSCRIBE com-

munication modes.

Philips has a huge portfolio of MRI systems, which include 40+ releases supporting

800+ configurations. Philips currently provides support for around 34 releases, has

around 12 products in production and around 5 products are under development.

Maintaining such a huge number of releases and configurations is an uphill task. This

project report also describes a set of tools created to simplify and automate certain

aspects of installation and updation, and configuration, as well as to perform system

analysis and generate reports indicating vital system parameters and gauge the health

of system components and resources, with the basic aim to ameliorate the current

arduous and time consuming systems in place.

viii

Acronyms

• MQ : Messaging Queue

• WebMQ : Web-Based Messaging Queue

• MRI : Magnetic Resonance Imaging

• SP : Service Pack

• RSI : Remote Software Installation

• CTA : Configuration Test Automation

• FSE : Field Service Engineer

Contents

Certificate iii

Certificate iv

Statement of Originality v

Acknowledgements vi

Abstract vii

Acronym viii

1 Introduction 1

1.1 Company Profile . 1

1.1.1 Magnetic Resonance Imaging (MRI) 3

1.2 Team Profile . 4

1.3 Problem Statement . 5

1.4 Project Purpose And Scope . 6

2 Literature Survey 8

2.1 Magnetic Resonance Imaging . 8

2.1.1 History . 9

2.1.2 Concept . 10

2.1.3 Advantages . 11

ix

CONTENTS x

2.1.4 Drawbacks . 14

2.2 Message Queues . 16

2.2.1 Message Queues Classification 19

3 Implementation Methodology 21

3.1 Messaging Framework . 21

3.1.1 Comparison of Available Message Queue Implementations . . 22

3.1.2 Implementation . 36

3.1.3 Performance . 43

3.2 Automation Tools . 45

3.2.1 Common UI . 45

3.2.2 Service Pack Framework Automation & Health Reporting Tool 51

3.2.3 Configuration Framework Automation 54

4 Conclusion & Future Work 58

4.1 Conclusion . 58

4.2 Future Work . 59

List of Figures

1.1 An Overview Of The Work Planned During The Internship 6

2.1 Brain Scan For Ingenia 3.0 Tesla MR Machine 13

2.2 Brain Scan Samples For Ingenia 3.0 Tesla MR Machine 14

2.3 The Messaging Queue Concept . 17

3.1 Bitmap mappings for the above example [2] 41

3.2 Performance for Different Message Size & Number of Message 43

3.3 Performance for Different Message Size & Number of Message 44

3.4 Common UI - Package Diagram . 45

3.5 Common UI - Main View . 47

3.6 Common UI - Duplicate Instance Alert 47

3.7 Common UI - Process Execution View 48

3.8 Common UI - File Selection View . 48

3.9 Common UI - Attribute Selection View 49

3.10 Common UI - Results View (Success) 49

3.11 Common UI - Results View (Failure) 50

3.12 Service Pack Framework Automation Execution Flow 53

3.13 Tree-based Validation . 55

3.14 Configuration Framework Automation 56

xi

Chapter 1

Introduction

1.1 Company Profile

Koninklijke Philips N.V. (Royal Philips) is a Dutch company founded in 1891, pri-

mary listed on the Euronext Amsterdam stock exchange. Currently headquartered

in Amsterdam, the capital city of the Kingdom of the Netherlands, Philips consists

of three divisions/Holding Companies:

• Philips Healthcare

• Philips Lighting

• Philips Consumer Lifestyle

Philips Healthcare is a company committed to providing meaningful innovations that

aim to improve the quality of care, enhance patients lives and enable the delivery of

better outcomes at a lower cost. Philips Healthcare is a Philips Healthcare is a global

leader in patient monitoring, cardiac care, home healthcare solutions, and related cus-

tomer services, headquartered in Best, Eindhoven, Netherlands. Philips Healthcare is

a global leader in medical imaging equipments that include MR (magnetic resonance),

and CT (computed tomography), X-ray and ultrasound scanners. A comprehensive

list of Philips Healthcare products is given below:

1

CHAPTER 1. INTRODUCTION 2

• Magnetic Resonance

• Ultrasound

• Radiography

• Mammography

• Fluoroscopy

• Diagnostic ECG

• Hospital Respiratory Care

• Emergency Care & Resuscitation

• Interventional X-Ray

• Clinical Informatics

• Computed Tomography

• Advanced Molecular Imaging

• Home Healthcare

Philips has a presence in over 100 countries, spanning 6 continents; and has research

facilities in India, The Netherlands, USA, UK, Germany, France and China. The

R&D Facility in India is located in Bangalore, and is known as the ”Philips Inno-

vation Campus”. Established in 2000, PIC employs over 2000 medical professionals,

engineers and researchers; developing intelligent connected products, services and

apps, that offer richer experiences for consumers. The Magnetic Resonance Imaging

(MRI) is the largest department at PIC, with a team of about 150 people, which owns

and develops most of the MR software at Philips.

CHAPTER 1. INTRODUCTION 3

1.1.1 Magnetic Resonance Imaging (MRI)

Philips MRI product line includes more than 15 machines having a power range of

1.5 Tesla, 3 Tesla and 7 Tesla, supporting applications such as hospital diagnostics,

therapy, clinical research, etc. It also provides mobile MR units.

Magnetic Resonance Imaging (MRI) is a technique for generating images of body

parts/organs by placing the body in a strong magnetic field and measuring the re-

sponse of the atomic nuclei of body tissues to high-frequency waves (radio) applied

to the specific area of the body. An MRI scan provides as much information about

the body part/organ as a CT Scan, an Ultrasound and an X-Ray combined. An MR

scan also shows some aspects than cannot be seen by using other imaging methods.

Some of the problems detected by an MR scan include injuries, identifying flow of

blood and diseases/blockades to blood vessels, tumors, etc. An MRI can provide a

comprehensive image about the brain, which cannot be matched my any of the other

scanning methods available. Some of its advantages include:

• The ability to perform multiple imaging concurrently.

• The ability to scanning any part of the imaging plane without having to physi-

cally move the patient.

• A wide range of available soft tissue contrasts, thus leading to a detailed anomaly

detection. In case of brain, this property can be used to sensitively identify

specific abnormalities within the brain.

• MRI allows the evaluation of structures that may be obscured by artifacts from

bone in other imaging methods like the CT Scan.

• MRI contrast agents have a considerably smaller risk of causing potentially

lethal allergic reaction.

• MRI does not use ionizing radiation, and is thus preferred over a CT scan in

children.

CHAPTER 1. INTRODUCTION 4

In addition to diagnostics, MR is also used for therapy. MR Therapy can be used to

kick-start reparative processes in the cells and tissues in a specific region. It can also

be used to treat diseases like cancer, and may be used in place of the painful process

of chemotherapy in the future. The magnetic field strength used in MR Therapy is

approximately 10 times weaker than that used in diagnostic MRI.

1.2 Team Profile

The MRI SW-Infra Team is a part of MR Imaging at Philips Healthcare. The team

acts as an interface between the hardware layer (Platform Team) and the application

layer (Console, Recon, PatAdmin, etc). The team’s core tasks include handling the

kernel-level tasks, managing various processes running on the system and provide

interfaces that can be used by other Applications/Processes. The major components

of infra include:

• OS And Interfaces : Philips uses a customized striped-down version of Windows

Operating System as the core, and MR applications run on the top of it. Infra

is responsible for managing the OS and providing interfaces to the upper layer

applications/processes so as to ensure platform independence. Interfaces also

provide a layer of abstraction for the MR system processes.

• MR Process Management : Process management (including managing when to

invoke, their lifetime, resource management, etc) is the responsibility of infra

team, a fraction of which which is managed by the OS itself.

• Logging framework : The Logging Framework provides a centralized logging

mechanism for all the applications/processes running on the system.

• Messaging Framework : The Messaging Framework provides a centralized envi-

ronment for MR processes to communicate with each other.

CHAPTER 1. INTRODUCTION 5

• Configuration Framework : The Configuration Framework manages the com-

ponents and the configurations of an MR machine, based on the type of the

system, the hardware configuration and the licensing details. It also manages

the authentication and licensing aspects of the system.

• Service Pack Framework : The Service Pack Framework is used to push patches,

updates and new functionality to the older and newer releases in the form of

Service Packs.

1.3 Problem Statement

One part of the problem statement is the need of a modern high performance mes-

saging framework. The current system in place is old, archaic and doesn’t provide

advanced communication modes. Moreover, it uses windows-native sockets for com-

munication, which makes it unsuitable to be used on multiple platforms. It also

doesn’t support web applications. Hence the need for a new messaging framework

that s modern, uses the message-queue concept for better performance, and supports

multiple platforms and languages. The other part consists of building automation

tools used to improve the efficiency of Philips MRI systems and its related processes.

Philips has been building MRI systems since 1980. Over the years, it has had a

number of releases (40+ releases), supporting a large variety of configurations (800+

configurations). Of these, Philips still provides support for around 34 releases, has

around 12 products in its production portfolio and around 5 products are in the devel-

opment phase. Maintaining such a huge number of variants is an incredibly complex

task. Owing to such a huge pool of releases and configurations, even a small change

requires a complex set of tasks to be performed, and involves a lot of repetition. Thus,

the need for a set of tools that provide the improvements and automation and which

can be used for any release, for any configuration on any MR machine that Philips

provides support for.

CHAPTER 1. INTRODUCTION 6

Figure 1.1: An Overview Of The Work Planned During The Internship

1.4 Project Purpose And Scope

One part of the project objective is to provide a distributed messaging framework

to be used by MR applications to communicate on a distributed platform. the

framework should have low latency, high performance, error-resilience and should

have a generic interface that supports multiple technologies (C++/C# Applications,

Web Applications, etc) and provides REQUEST-RESPONSE, ROUTER-DEALER

(Asynchronous) and PUBLISH-SUBSCRIBE communication modes. It should also

be platform-agnostic (Should be able to work with Linux-based, Windows-based and

VSWorks-based systems).

The other part of the project objective is to develop a set of automation tools to

automate the following tasks that are currently handled by the MRI SW-Infra Team,

CHAPTER 1. INTRODUCTION 7

such that it resolves the fragmentation prevalent in the current system, and would

require minimal user interaction so that it can be used by any person. The first task is

Service Pack Framework Automation. Service Packs normally comprise of bug-fixes,

code improvements and/or new functionality to an existing release. Currently, the

process of Service Pack creation is a non-automatic process, involving a sequence of

manual steps which can take an entire day to complete. Also, these steps have to

be followed separately for each release that the Service Pack is intended for. The

new system should be able to automatically generate a Service Pack after performing

certain checks and obtaining the required version information from the user. it should

take not more than a few hours to complete, and should not be require any user

interaction except for providing version information at the beginning. It should also

be able to build an existing service pack, as well as generate a report depicting the

health and other vital statistics about the Service Pack. The second task involves

automating the configuration tests, currently done by Field Service Engineers (FSEs).

Typically, MR systems are provided support for at least 10 years, during which some

components (For Eg: Coils) may wear out and would need replacement(s), or some

new feature may not support one or more components of the MR Machine, and thus

may need to be upgraded. Sometimes, the replacement component may conflict with

some other system component(s), and thus may lead to system failure. Currently,

this problem is overcome by performing regression testing, which may take anywhere

from 6 to 8 weeks. This poses serious challenges and is vulnerable to human errors.

MR supports more than 800 configurations, while a typical MR system would have

around 81 attribute having a range of 215 values and 51 intertwined validation rules.

Regression through these many configurations is challenging, lengthy and there is a

risk that some values may be skipped. The new system should be able to speed up

this process to few hours from the 4-6 weeks it currently takes. It should generate all

combination possible for a given set of attribute value range, and then validate them

against the validation rules obtained from the validation rules XML file.

Chapter 2

Literature Survey

2.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging is a 3-dimensional imaging technique used to visualize

parts of or the whole body and its structure, without penetrating the body or us-

ing any kind of radiation. MRI provides high quality images that are rich in detail

and can show even the minute changes that occur over a period of time. It is very

useful in detecting the structural abnormalities that develop over time due to a dis-

ease/disorder, that can prove to be extremely helpful to identify different aspects of

the disease/disorder.

Tissue that contains a large amount of hydrogen, which occurs abundantly in the

human body in the form of water, produces a bright image, whereas tissue that

contains little or no hydrogen (e.g., bone) appears black. The brightness of an MRI

image is facilitated by the use of a contrast agent such as gadodiamide, which patients

ingest or are injected with prior to the procedure. These agents can improve the

quality of images from MRI. For improving the sensitivity, techniques have been

developed, such as the use of para-hydrogen, a form of hydrogen with unique molecular

spin properties that are highly sensitive to magnetic fields.

8

CHAPTER 2. LITERATURE SURVEY 9

2.1.1 History

Magnetic Resonance Imaging or MRI is used to produce detailed anatomical images

of the human body (or any other body for that matter). It is a non-invasive (as it

makes no contact with the body) imaging technology, and unlike other technologies

like X-Rays, it doesn’t produce radiation. Apart from imaging (MRI images are used

extensively to detect/diagnose diseases, injuries, tissue damage, blood flow detection,

cancerous cells/tumor, etc), it can also be used for MR therapy (For eg: MR therapy

can be used to treat tumors, in place of harmful and painful chemotherapy).

In 1946, a researcher by the name Felix Bloch, in his Nobel Prize winning paper,

proposed rather new properties for the nucleus. He stated that the nucleus behaves

like a positively charged magnet, due to the presence of protons. He also showed

that charged particles like protons spin around its own axis has a magnetic field (The

magnetic momentum). This is known as the Bloch Equations. During the 1950s,

this equation was verified experimentally, and in 1960 Nuclear Magnetic Resonance

(NMR) spectrometers were developed to analyze the molecular configuration of ma-

terials based on their NMR spectrum. During the late 1960s, Raymond Damadian

discovered that malignant tissue had different NMR parameters than normal tissue

and thus tissue characterization is possible; and in 1974, he produced the first ever

NMR image of a rat tumor on the basis of this theory. The first super-conducting

NMR Scanner called ”The Indomitable” was constructed in 1977, which took almost

5 hours to produce the first ever image of the human body. The name Nuclear Mag-

netic Resonance (NMR) was changed into Magnetic Resonance Imaging (MRI) as the

word ”nuclear” would not have gone down well with the normal public. Modern MRI

machines are capable of a wide range of applications, such as Functional Imaging,

Perfusion Diffusion Scanning, MR Angiography, etc.

R&D over the years in Magnetic Resonance Imaging has brought about great ad-

vancements in the field. Sensitive imaging techniques have been developed that can

image specific portions of tissues and can identify specific properties based on the

CHAPTER 2. LITERATURE SURVEY 10

field strength, contrast agent, its quality, frequency of RF coil, etc. Techniques such

as Diffusion MRI and Functional MRI have been developed. MR Angiography can

be used to image the blood flow blood inside a part or the whole body.

2.1.2 Concept

Basically, MRI uses the phenomenon of excitation and directional change of rota-

tional axis in protons when manipulated by magnetic fields. Basically, MRI machines

contain a very strong magnet (With strengths ranging from 1.5 Tesla to even 7 Tesla),

to which the body is exposed. As we know, a water molecule contains two hydrogen

atoms, which are positively charged. As our body contains more than 70% water;

when exposed to the strong magnetic field, these atoms (or protons) align themselves

to the direction of the strong magnetic field. let us consider this direction as the

Z-axis. Depending on the part of the body to scan, magnetic field is also applied

along the X and Y axis. This secondary magnetic field’s strength and orientation

depends on the type of element whose presence has to be detected. A radio frequency

signal is then pulsed through the RF coil, wrapped around the part of the body to

be scanned, and the protons are thus stimulated, an they spin out of equilibrium, the

direction depending on the strength of the RF signal. When the RF field is turned

off, protons realign themselves to their original position, an emit the excess energy as

radiation (Photons). This is then captured by the MRI sensors. The time taken by

the protons to realign back to the magnetic field and the amount of energy emitted

depends on the strength of the signal applied as well as the type of molecule. Thus,

different compositions of the body are identified. Often, some contrast agent(s) (for

eg : Gadolinium) is/are given to the patient to change the behaviour of the protons,

so as to generate different kinds of images.

Typically, during an MRI scan, the patient is made to lie inside a hollow cylindrical

magnet (as shown in the figure). This magnet is made using superconducting coils,

through which electric current is passed. Due to Faraday’s law, a magnetic field is

CHAPTER 2. LITERATURE SURVEY 11

generated around the coil in the perpendicular direction. This superconductivity is

obtained by lowering the temperature of the coil to an extremely low temperature

(depends on the superconducting material) by keeping the machine submerged in

liquid helium. Helium is used for supercooling as it is inert so causes no interference

to the electric current flowing inside the coil. The machine is places inside a cage

(Faraday’s cage) so that no signal escapes outside or no outer signal cones inside to

produce noise. Thus, the patient is exposed to a very powerful magnetic field (1.5

Tesla, 3 Tesla or even 7 Tesla). As each element (nucleus) contains different charge,

their resonating frequency for the steady magnetic field is different. Taking advantage

of this, another magnetic field is applied on the body at a different angle (orientation),

and is turned on and off repeatedly at different frequencies. The atoms that resonate

at that applied frequency line up to the second magnetic field and when it is turned

off, they go back to the original alignment, and in the process emit the signals, which

are then picked up and recorded. Finally, these values are used to construct an image.

MR scanners work especially well for non-bony parts or soft tissues of the body. In

contrast to Computed Tomography (CT), MR scanners don’t use any ionizing radi-

ation (Like X-Rays do). This, they are better suited to scan brain, nervous systems,

blood veins, spinal cord, muscles and ligaments, etc than CT Scanners r X-Rays. In

case of brain, no other method produces as detailed images as MR scanners.For eg:

MRI can be used to determine which areas of the brain are active (by identifying

Oxygen consumption) while performing various cognitive tasks. MRI is thus widely

used for advanced brain research and to assess neurological status/risks. Since MRI

images lack in visualizing bone structures (due to scarce amount of bones there),

intracranial and intraspinal scan images are found to be of excellent quality.

2.1.3 Advantages

• It is a non-invasive (as it makes no contact with the body) imaging technol-

ogy, and unlike other technologies like X-Rays, it doesn’t produce any kind of

CHAPTER 2. LITERATURE SURVEY 12

radiation.

• MR image qualities are far superior to that of the other imaging methodologies:

– X-Ray images are flat and gray in structure. Moreover, they have a very

poor resolution, which can be improved only by administering some ”con-

trast medium” to the patient. the contrast mediums are usually based

on barium or iodine, but they have side effects on the body, and thus for

multiple imaging they are not feasible.

– CT Scanners produce images having a lot more contrast, but still cannot

match the quality and diversity of MR Images.

• In addition to having an excellent contrast resolution, which provide the abil-

ity to detect minute contrast differences in soft tissues, MRI Images provide

the possibility the generate multiple images in any plane/section, which is not

possible using X-Ray or CT.

• However, spatial resolution of X-Ray images is better as compared to MRI.

Thus, in general, X-Ray and CT Scans are useful when bone structures are to

be imaged, whereas MRI is useful for soft tissue lesions, blood stream detection,

tumor detection, etc.

• In recent years, use of MR for therapy is being researched. MR is being increas-

ingly used in therapy for treatment of cancer, uterine fibroids, etc.

• MR is being increasingly used for tumors. Instead of chemotherapy, which is

too painful and has a lot of side effects, MR is rather safe, painless and has

almost no side effects (though that depends on the patient).

CHAPTER 2. LITERATURE SURVEY 13

Figure 2.1: Brain Scan For Ingenia 3.0 Tesla MR Machine

CHAPTER 2. LITERATURE SURVEY 14

Figure 2.2: Brain Scan Samples For Ingenia 3.0 Tesla MR Machine

2.1.4 Drawbacks

• The biggest drawback of MR systems is the strong Magnetic Field. MR it

employs a strong magnetic field, which is capable of flinging an entire wheelchair

across the room. Thus a lot of caution and safety measures should be followed

while using an MRI machine. There have been cases of death due to negligence

on the part of the machine operator in taking precautionary measures or failing

to make sure the patient has removed everything from his clothes/body that

can be affected by the magnetic field (For eg: Coins, Keys, etc).

CHAPTER 2. LITERATURE SURVEY 15

• Sometimes implants may stop working due to the impact of the magnetic field.

There has been an instance of a pacemaker stopping due to the impact of the

string magnetic field of an MRI Machine. Thus, patients with implants, partic-

ularly the ones containing iron or ferromagnetic materials (For eg : pacemak-

ers, deep brain simulators, cochlear implants, capsule endoscopy capsules,etc)

should not enter any MRI machine.

• MRI machines normally make loud noise while scanning generated due to the

residual signals. Its intensity can sometimes go up to as much as 120 Decibels.

• People with claustrophobia cannot to tolerate the long scan times inside the

machine.

• Some patients may experience a twitching sensation sometimes due to the

rapidly changing magnetic fields inside the machine.

• Some patients experiencing renal failure and who require dialysis are susceptible

to Nephrogenic Systemic Fibrosis, which is thought to be caused by some of the

gadolinium-containing materials used as contrasting agents, like gadodiamide,

though is has not been fully proven to cause the disease.

• Pregnant women are advised to avoid MRI scans as the contrasting agents used

may enter the still-forming and delicate bloodstream of the foetus.

CHAPTER 2. LITERATURE SURVEY 16

2.2 Message Queues

Communication between processes / applications can be carried out using sev-

eral approaches, as listed below. All the methods described above have their

own advantages and disadvantages, depending on when and where they are

used.

a. Semaphores

Includes the use of one (mutex) or more bits (semaphore) to indicate

a state or permissions. Typically used by Operating Systems’ internal

communication.

b. Shared Memory

Includes the use of a shared memory location between nodes. It has

concurrency and scalability issues.

c. Pipes / Named Pipes

Piping is a process where one the output of a process is connected to the

input of another. Again, has scalability issues.

d. Message Passing

Message Passing is a system where a separate process(es) handles the

communication. The process is responsible to connect to the recipient

and deliver the message / data.

e. Files / Memory Mapped Files

Here a file stored locally or on the network or a file mapped to the RAM

/ virtual memory is used for communication. It has concurrency issues.

f. Sockets

Here, sockets are used to send data as streams. The problem here is

that message boundaries are not defined, and data is sent as a continuous

stream.

CHAPTER 2. LITERATURE SURVEY 17

g. Message Queues

Message Queues send data with well-defined message boundaries, and

provide functions above just the sending of data.

Figure 2.3: The Messaging Queue Concept

We require a message-oriented middleware that caters to a distributed network

of MRI systems, which has to be fast, fault-tolerant, highly scalable and capable

of tolerating sudden spurts of data.

Messaging Queues, as the name suggests, provide a way for communication be-

tween processes, applications or between threads. This communication is char-

acterised by the use of queues for storing outbound/inbound messages, and the

use of asynchronous communication protocol for sending/receiving messages.

CHAPTER 2. LITERATURE SURVEY 18

Message Queues have several advantages over other methods for carrying out

communication between processes and/or applications, including the ability to

be deployed over a distributed environment. They are typically more robust,

fault-tolerant and scalable than other methods, for eg. the client-server archi-

tecture.

The main advantage of a messaging queue lies in the use of queues to store

messages at the sender’s as well as the receiver’s end. This ensures that the

message(s) can wait for some time if the recipient is not ready, is busy or is

unable to cope up with the sender’s speed. Again, the use of persistent storage

for queues means that the sender and receiver do not need to connect to the

network at the same time to communicate, thus avoiding the problems that

arise with the use of intermittent connectivity. This also provides a mechanism

to recover if the receiver fails, with no data loss, as the receiver can consume

the messages once it restarts.

Messaging Queue Systems are distributed applications which take a request to

send data from an application / process and send it thorough the corresponding

socket, while the receiver, which is listening to the same socket, receives it. Over

and above this basic functionality, various features such as routing, support for

arbitrary messaging patterns, support for arbitrary language bindings, etc can

be implemented on it.

Message Queues may also provide the following characteristics, depending on

its architecture and use:

a. Persistence

b. Transaction Support / Distributed Transaction Support

c. Delivery Semantics (once and only once / at most one / at least one)

d. Multiple Retry Policies (linear delay, exponential back-off, etc.)

e. Administration Capabilities

CHAPTER 2. LITERATURE SURVEY 19

f. Message Retention / Expiration Policy

g. Message Sequencing / Priority Policy

2.2.1 Message Queues Classification

Message Queues can be broadly classified as the ones using a separate broker

(Brokered MQs), the ones working without a dedicated broker (Brokerless MQs)

and the ones that distribute several brokers across the network (Distributed

Brokered MQs).

Brokered Message Queues

Brokered Message Queues use a dedicated broker to perform its tasks. The

broker can also be used to perform other tasks such as routing, load-balancing,

support for complex message patterns, centralized management, etc.

Brokers allow the system to be more tunable and powerful as more advanced fea-

tures can be incorporated into the system. Also, the system would be centrally

manageable and highly resistant to failure at the receiver’s side. They also have

a uniform latency behavior, thus the ratio of sender-latency to receiver-latency

is almost near to 1.

The drawback of this kind of messaging system is that it introduces a lot of

non-message traffic into the network, slowing it down. Also, as each of the

features introduce their own latency onto the system, they increase the latency

thus degrading the performance. Also, as all messages have to pass through the

broker, it creates a bottleneck onto the system at the broker’s node, and also

introduces a single point of failure.

CHAPTER 2. LITERATURE SURVEY 20

Broker-less Message Queues

Here, a dedicated broker is not used. Broker-less Message Queues rely on peer-

to-peer communication and the underlying network to deliver the messages.

As there is no extra processing on the messages, the throughput is high, as delay

is minimal. Along with being lightweight and less complex to implement, these

systems provide high performance. Ideal for systems requiring low-latency and

high transactional rate.

The drawback is that these are simple implementations, with no advanced fea-

tures, no predefined message structures, nor any reliability features. These

is also a visible difference between sender-latency and receiver-latency (non-

uniform latency behavior). Another drawback is the worsened manageability of

the system.

Distributed Broker Message Queues

Here, multiple brokers are used at different points in the network. It tries to

include the advantages of the single-brokered messaging queues and mitigate

their drawbacks.

There is better processing of messages, the option to use advances features like

messaging patterns, while having multiple points of failures and a reduced bot-

tleneck (If one broker is busy, another one can take up its work).

The drawback is that they still introduce a lot of non-message traffic into the

network, and the latency associated with each of the advanced features incor-

porated into these brokers.

Chapter 3

Implementation Methodology

This chapter contains the implementation methodology, divided into two sec-

tions. The first section contains the implementation details of the Messaging

Framework, while the section described the implementation methodology for

the tools developed.

3.1 Messaging Framework

The basic aim of the ”Messaging Framework” is to provide a distributed middle-

ware for MR applications to communicate with each other. This communication

may occur within the system as well as with other systems / servers over the

network. For developing the messaging framework, various current implemen-

tations were studied, samples were made and their performance was analyzed

to come up with a model for the new system.

Current System

The existing system in place for communication between processes is an archaic

system for message passing and IPC, which uses native windows sockets to

21

CHAPTER 3. IMPLEMENTATION METHODOLOGY 22

communicate via TCP protocol. It has a certain set of disadvantages. The first

one is that by using native windows sockets, it is not platform-independent,

and cannot support other platforms typically used in MRI such as VxWorks

or Linux. Also, it provides limited support for synchronous communication,

and no publish-subscribe mechanism. Thus, the need for a more modern, algo-

rithmically efficient and highly scalable system which also provides support for

different communication modes.

3.1.1 Comparison of Available Message Queue Imple-

mentations

In this section, available message queues are compared based on the following

characteristics:

a. Important Observations

b. Licensing Details

c. Brokered / Non-brokered

d. Persistent / Non-persistent

e. Throughput characteristics

f. Delay / Latency characteristics

g. Durability / Clustering / Transaction characteristics

h. Failure recovery characteristics

i. External dependencies

j. Development language

k. Noteworthy In-built Functionality Provided

CHAPTER 3. IMPLEMENTATION METHODOLOGY 23

l. Advantages

m. Disadvantages

CHAPTER 3. IMPLEMENTATION METHODOLOGY 24

MSMQ [Microsoft Message Queuing]

a. Bare-basic, simple store-and-forward, so only send-receive functionality

Onus of implementing everything else is on the developer

Arbitrary hard limitations (For eg. Maximum message size is just 4MB)

Can be used with MassTransit or NServiceBus layer to get better func-

tionality performance

Implemented by Microsoft itself since 1999 (latest release for Windows

Server 2012 R2)

b. Comes but bundled with Microsoft OS

c. Brokered

d. Persistent, but not by default

e. Decent performance

f. Decent performance

g. No, but can be implemented (For eg. Queue-Transaction can be enabled

using SQL-DTS along with MSMQ)

h. Not Available

i. Nothing

j. Microsoft Native Implementation

k. Durable (i.e. Order (of messages) retained), but has to be configured

l. Advantages:

– Bare-basic functionality, easy-to-deploy and durable

– No external runtime-support required (because it comes bundled

with windows OS)

CHAPTER 3. IMPLEMENTATION METHODOLOGY 25

m. Disadvantages:

– Only send-receive, everything else has to be implemented by the user;

this practical use is challenging

– Arbitrary hard limitations like maximum message size (4MB)

CHAPTER 3. IMPLEMENTATION METHODOLOGY 26

ZeroMQ

a. Broker-less, non-persistent, high concurrency and highly scalable

Mature implementation of broker-less Message Queue, has a large com-

munity (thus can receive timely fixes, is more stable)

ZeroMQ considered the perfect message-dispatcher

C++ code (lots of STL libraries re-implemented here)

Concurrency achieved through Message-passing, so threads dont inter-

fere with each other (one-to-one relationship between the object and the

thread). Thus mutex/semaphores not required

b. Open Source (LGPLv3)

c. Borkerless

d. Non-Persistent

e. High throughput (Better sender throughput, relatively less receiver through-

put in comparison with nanomsg)

f. Low latency, high efficiency

g. High concurrency, sequencing (optional)

h. Optional

i. No additional Dependency

j. C++

k. N/A

l. Advantages:

– Speed, Concurrency, Scalability, High Throughput, Low Latency

– Open Source, has an active community and is widely used

CHAPTER 3. IMPLEMENTATION METHODOLOGY 27

– A mature product

m. Disadvantages:

– Non-persistent

– No message structure

– No advanced features

– Disconnects slow clients

CHAPTER 3. IMPLEMENTATION METHODOLOGY 28

NANOMSG

a. A socket library, can work on a wide range of Operating Systems without

extra dependencies

A fork of ZeroMQ, an improved version

Incorporates several optimizations over ZeroMQ

Interactions are modelled as a set of State-Machines, making it Thread-

Safe

NanoCat: Send/Receive data via nanomsg sockets

ZeroCopy: Zero CPU utilization during copy operation

Is still young though, not mature enough

b. Open Source (MIT/X11)

c. Borkerless

d. Non-Persistent

e. High throughput (Average in comparison to ZeroMQ, but more uniform)

f. Higher latency (steep curve for lesser number of messages, becomes more

uniform as number of packets increase) when compared to ZeroMQ

g. Preservation of message order, several optimizations over ZeroMQ

h. Not Available

i. No additional Dependency

j. C

k. N/A

l. Advantages:

CHAPTER 3. IMPLEMENTATION METHODOLOGY 29

– Almost the same as ZeroMQ, except the high-latency behavior

– POSIX Compliant, cleaner and more optimized code, better error-

handling

– Pluggable interface for Transport and Message protocols, so support

can be easily added. For eg. Web Sockets

– Interoperable at API and Protocol level, allowing it to be a drop-in

replacement

– Other internal optimizations like being Thread-Safe, the use of Radix

Tree, ZeroCopy, NanoCat, etc.

m. Disadvantages:

– Same disadvantages as ZeroMQ

– Not Mature enough, not much active community support

CHAPTER 3. IMPLEMENTATION METHODOLOGY 30

RabbitMQ

a. Supports open AMQP specifications

Is robust, has enterprise resilience and durability, high availability, etc

Supports a wide array of features such as persistence, routing, sophisti-

cated messaging patterns, load balancing, negative acknowledgement, etc

Can be coupled with Celery

b. Open Source (Mozilla Public License)

c. Borkered

d. Persistent

e. Average throughput (High throughput when compared to other AMQP

MQs)

f. In the AMQP group, has the least latency; but when compared to others

(even brokered-ones like NATS), its latency is several orders of magnitude

higher

g. Durable, clustering support, AQMP guarantees atomicity when a trans-

action involves a single queue

h. Resilient, clustering ensures that it survives hardware failure

i. Erlang runtime required

j. Erlang

k. Routing, sophisticated messaging patterns, load balancing, negative ac-

knowledgement, etc

l. Advantages:

CHAPTER 3. IMPLEMENTATION METHODOLOGY 31

– Decent performance

– Lots of useful advanced message-handling features

– Persistent, robust, scalable, durable, high availability, fault tolerant,

has in-built crash/failure-recovery mechanisms

m. Disadvantages:

– Message broker needs maintenance and add its overhead (if enabled),

overhead of persistence (if enabled)

– AMQP considered Over-Engineered, several features added which

are not required

– Average throughput and latency performance

– Cannot handle network partitions well, behaves unexpectedly

CHAPTER 3. IMPLEMENTATION METHODOLOGY 32

ActiveMQ

a. Supports open AMQP specifications

Java-based, cross-platform compatibility, has a long service and ubiqui-

tous (i.e. widely used)

MSMQ, RabbitMQ perform better than ActiveMQ in several performance

metrics

Very powerful, has a lot of advanced features (more than RabbitMQ)

b. Open Source (Apache 2.0 License)

c. Borkered

d. Persistent (Pluggable)

e. Average throughput (slightly better than RabbitMQ)

f. High latency (Even higher than RabbitMQ)

g. Durable, clustering support, AQMP guarantees atomicity when a trans-

action involves a single queue

h. Resilient, clustering ensures that it survives hardware failure

i. Java runtime required

j. Java

k. Highly configurable, Powerful, Routing, sophisticated messaging patterns,

load balancing, negative acknowledgement, etc

l. Advantages:

– Very Powerful

– Highly configurable (you can configure almost everything)

– Lots of useful features (more than RabbitMQ)

CHAPTER 3. IMPLEMENTATION METHODOLOGY 33

– Persistent, robust, scalable, durable, high availability, fault tolerant,

has in-built crash/failure-recovery mechanisms

m. Disadvantages:

– High Complexity

– Message broker needs maintenance and add its overhead (if enabled),

overhead of persistence (if enabled)

– AMQP considered Over-Engineered, several features added which

are not required

– Average throughput and latency performance (latency even worse

than RabbitMQ)

CHAPTER 3. IMPLEMENTATION METHODOLOGY 34

Apache QPID

a. Supports open AMQP specifications

Multiple language options available (See the table at the end)

Highly configurable, supports message priorities

b. Open Source (Apache 2.0 License)

c. Brokered (For C++ & Java both)

d. Persistent (Using a pluggable layer e.g. Apache Derby)

e. Decent Performance

f. Decent Performance

g. Clustering, Transactions supported, Durable

h. Retry logic present in client node

i. No special requirements (Depends on the implementation used)

j. Pure-Java as well as Native-Code (C++) Implementations

k. Routing, sophisticated messaging patterns, load balancing, negative ac-

knowledgement, etc.

l. Advantages:

– Available in multiple languages / platforms

– Advantages of AQMP

m. Disadvantages:

– Disadvantages of AQMP

– Message loss when broker crashes (no failure mechanism here)

CHAPTER 3. IMPLEMENTATION METHODOLOGY 35

– AMQP considered Over-Engineered, several features added which

are not required

– Can be considered a scaled-down multi-language version of ActiveMQ

CHAPTER 3. IMPLEMENTATION METHODOLOGY 36

3.1.2 Implementation

The messaging framework developed is an efficient, highly scalable and high per-

forming system that supports multiple platforms such as Windows, VxWorks

and Linux (as it uses the ZeroMQ socket implementation which has imple-

mentations in multiple platforms) and multiple development languages. The

messaging framework uses messages queues which, as described in the chapter

”Literature Survey”, use queues for communication. The messaging framework

is a broker-less service (on the lines of ZeroMQ). The reason for not using a

broker lies in the fact that a broker introduces a performance bottleneck and a

single (or multiple, depending on the number of brokers) point of failure, and

the benefits of a brokered MQ are not of much use in the MRI context, as the

nodes (MR Systems in our context) are homogeneous, have high availability,

most of them have high speed Internet connectivity and they can always be

modified to suit our requirements. Thus stuff like advanced message pattern

support, persistence, etc are not required. Brokerless systems mean low latency

and high performance. Although they pose a risk of message loss, the probabil-

ity of message loss in the current context is very low, and there are mechanisms

to deal with it.

Queues provide several benefits, as they provide the possibility for retries. When

a message has to be sent, the sending node polls for the availability of the re-

ceiver node. If the node is available (i.e. there is a socket connection to that

node), the message is sent through the corresponding socket. Else, the mes-

sage shall remain in the queue for that particular socket, and the sending is

retried after the user-defined time-interval. Another aspect of message queues

is its asynchronous nature, which is very important in the MR Context. The

receiving process may not be available or may be busy when the sender wants

to communicate, and queues provide a way to work in that environment.

Based on the above analysis, ZeroMQ was chosen as the message queue because

CHAPTER 3. IMPLEMENTATION METHODOLOGY 37

of certain advantages it has over conventional queues. First, it has a simple

bare-basic message queue implementation which provides no overhead and uses

efficient algorithms for its tasks. The second point is that it natively sends data

as a byte stream, so it can be used to support multiple languages and plat-

forms easily. Another advantage is that it natively provides support for three

communication modes, namely REQUEST-REPLY, ROUTER-DEALER and

PUBLISH-SUBSCRIBE which are important for our use-case. Thus, the mes-

saging framework is built upon ZeroMQ. MR systems have applications written

in C++, C# and Web Applications. ZeroMQ is implemented in C++, and an

implementation in C# was built based on its C++ source code. The messaging

framework developed also has a web implementation, which uses the HTML5

WebSockets for communication, and supports the three message patterns as

described above. The web implementation consists of a server in C#, which

provides a layer of abstraction between the message queue and the WebSocket

communication. The server uses an open source C# websocket implementation

called fleck to communicate with the client. On the other hand, modules are

written in AngularJS to handle communication on client side. Currently, the

client-side implementation provides only basic REQUEST-RESPONSE, while

the 3 communication patterns as described below have to be implemented.

For our messaging framework, the messages are structures into 3 parts, the first

part indicates the length of the message, the second part indicates the message

type and the third part is the actual message. When messages are to be sent,

they are divided into frames, and certain flags aer added to it based on the

messaging pattern used. One of them is the ”sendmore” flag, which is used to

indicate if more frames are arriving. If that flag is set, the messaging framework

waits for other frames. When it receives a frame with that flag reset, it combines

the frames to reconstruct the original message. The messaging framework pro-

vides support for three communication modes as described below. These modes

are implemented as a wrapper on the top of the message queue implementation.

CHAPTER 3. IMPLEMENTATION METHODOLOGY 38

REQUEST-REPLY

The Request-Reply mechanism works as it is named. Basically, we can say that

it maps to Remote Procedure Call and the classic client/server model. One

node sends a request to another node requesting for communication, and the

other node sends an acknowledgement, thus implicitly accepting the communi-

cation. This form of communication requires synchronisation, which is achieved

by introducing a handshaking mechanism and a keep-alive mechanism (using

heartbeat messages). Consider a client that wants to communicate with the

server, which is listening to the port 5556. For that, the client firsts calls the

messaging framework and asks for a connection to the said port. If the port is

available (i.e. no other process is using it to communicate with the said server),

the client is provided that port to communicate and the client sends its RE-

QUEST through that port, else it shall have to wait for the port to be released.

On the other side, the server is listening on the said port for any messages,

by binding its REPLY socket to the port 5556. The server waits for a request

message in a loop, and responds to it with a REPLY if it wants to establish

a connection. The client sends a request and reads the REPLY back from the

server. Here, if the server fails, the client won’t recover properly. If the server

fails while processing a request from the client, the client obviously won’t get an

answer back. For that matter, if something like this happens, a timeout is set,

after which the client shall wait for sometime and try again, or try to connect

to another server, if available.

ROUTER-DEALER

The Router-Dealer mechanism is an asynchronous communication pattern which

is intended to work for distributed systems. A typical distributed system con-

sists of multiple layers spread over a huge number of systems, and include

intermediate aggregation points which route the messages to other components

CHAPTER 3. IMPLEMENTATION METHODOLOGY 39

which in turn may route them again until eventually they reach their desti-

nation. In order for a response to make it back to its originating node after

hopping through multiple intermediates, the message must contain the address

of every hop along the route. Thus, from source to destination, each interme-

diate ROUTER socket in this ROUTER prepends the sender’s identity to the

message (this is an optimization to save on bandwidth). When the message is

received by the destination, it now has a complete record of every socket that

touched the packet on its way to the destination. When the ROUTER socket

writes a response, it must prepend all of that routing information to the re-

sponse so each intermediate node knows how to route the message to the next

hop. Each intermediate ROUTER node pops the top routing message part off

and uses the new top of the stack to route the message. This model is highly

resistant to failures, because if the receiver is down when the client has sent the

message, the messages wait in the buffer (queue) and the receiver will be able

to consume those messages when it comes up.

PUBLISH-SUBSCRIBE

PUBLISH-SUBSCRIBE is a complicated communication pattern, wherein the

publisher is able to send multicast messages, which should be received only by

the subscribers to the said publisher. The PUBLISH-SUBSCRIBE communica-

tion is an asynchronous form of communication, wherein starting the publisher

and the subscriber are independent of each other, thus even if there are no sub-

scribers to it or one or more subscribers have failed, the publisher should go on

publishing without having the knowledge of its subscribers. Also, a subscriber

should be able to connect to multiple publishers, and the messages received by

it shall be interleaved, so as to avoid a single publisher drowning out the others.

Here, the recipients of messages (subscribers) don’t talk back to the senders,

thus reducing ”back-chatter”, making it more lightweight. This also means

CHAPTER 3. IMPLEMENTATION METHODOLOGY 40

that the messages are queued and the filtering occurs at the subscriber’s end

and messages can be lost if it’s queue overflows. Here, Message Matching is used

identify the publisher-subscriber mapping (i.e. if a publisher publishes some-

thing, the messaging framework should know the corresponding subscribers).

Matching messages to the corresponding subscribers is a typical bottleneck in

a message-oriented middleware (our message queue here). For that purpose,

the Inverted Bitmap algorithm is used. The inverted bitmap technique thus

works by pre-indexing a set of searchable items so that a search request can

be resolved with a minimal number of operations. It is efficient if and only if

the set of searchable items is relatively stable with respect to the number of

search requests. Otherwise the cost of re-indexing is excessive. In our case,

When we apply the inverted bitmap technique to message matching, we may be

confused into thinking that the message is the ”searchable item”. This seems

logical except that message matching requests are relatively stable with respect

to messages. So, the roles are inverted such that the ”searchable item” (i.e. the

”subscription”) instead is the matching request, while the ”search request” is

the message published. The indexing process thus should work as follows:

– We number each match request from 0 upwards

– We analyse each match request to give a set of criteria tuples

– We store the criteria tuples in a table indexed by name and value

– For each criteria tuple, we store a long bitmap representing each match

request that asks for it

The message matching process works as follows:

– We analyse the message to give a set of criteria tuples

– We look up each tuple in the table, giving a set of bitmaps

CHAPTER 3. IMPLEMENTATION METHODOLOGY 41

– We accumulate the bitmaps to give a final result bitmap

– Each 1 bit in the result bitmap represents a matching subscription

For example, consider the following topics:

forex, forex.gbp, forex.eur, forex.usd, trade, trade.usd, trade.jpy

And the following subscriptions:

0 = ”forex.*” : matches forex, forex.gbp, forex.eur, forex.usd

1 = ”*.usd” : matches forex.usd, trade.usd

2 = ”*.eur” : matches forex.eur

3 = ”*” : matches forex, trade

Thus, when we index the matches for each subscription we get these bitmaps:

Figure 3.1: Bitmap mappings for the above example [2]

Thus, for the following messages, the scenario is explained below:

Message A - ”forex.eur” : 1 0 1 0 = Subscriptions 0, 2

Message B - ”forex” : 1001 = Subscriptions0, 3

MessageC − ”trade.jpy” : 0000 = Nosubscription

The Inverted Bitmap Algorithm is highly efficient as compared to the traditional

”trie” used by ZeroMQ. A ”trie” is basically a radix tree, and for each message

CHAPTER 3. IMPLEMENTATION METHODOLOGY 42

matching, the tree is parsed to get the subscription information. While when using

inverted bitmap, the cost is reduced considerably as just the bits have to be matched.

On the other hand, when a new publisher or subscriber joins or if there is any change

in the bitmap table, the cost of re-populating the bitmap is high as compared to

the cost of just moving around nodes in a ”trie”. For our case, the inverted bitmap

system proves to be far more efficient than the trie system.

CHAPTER 3. IMPLEMENTATION METHODOLOGY 43

3.1.3 Performance

Figure 3.2: Performance for Different Message Size & Number of Message

CHAPTER 3. IMPLEMENTATION METHODOLOGY 44

Figure 3.3: Performance for Different Message Size & Number of Message

CHAPTER 3. IMPLEMENTATION METHODOLOGY 45

3.2 Automation Tools

3.2.1 Common UI

As described in the problem statement, the implementation consists of a common

framework, that can performed the required tasks. A common UI has been created

using Windows Presentation Foundation (WPF). Its package diagram is shown in

Figure 3.2.1. It has been developed to be as generic as possible, so that future tools can

be easily integrated into the same UI. It provides interfaces for the tool/applications

to implement. Through these interfaces, the structure of the UI is maintained, and

their DLLs are easily identified through ”Reflection”.

Figure 3.4: Common UI - Package Diagram

The CommonUI has the following characteristics:

– When the UI is launched, it shall scan the ”source path” (the path where

the required DLLs are present) and, through reflection, shall load the

tasks ending with ” task.dll”. Is another instance is running from the

same stream, a warning is displayed and the UI exits. These are shown

in As shown in Figure 3.2.1 and Figure 3.2.1 respectively.

CHAPTER 3. IMPLEMENTATION METHODOLOGY 46

– The UI consists of an interface dll, which contains interfaces for the Pages

as well as Tasks to be included in the UI, and a commonUI interface, which

consists of definitions for common UI elements such as Radio Buttons,

Check Boxes, etc.

– Each task is build as a library (thus generating a dll) and it inherits from

the interfaces class. The workflow of each task would typically include

taking inputs, specifying file paths, execution page and results page, al-

though it varies from task to task. Snapshots of some pages are shown in

Figure 3.2.1 through to Figure 3.2.1.

– The interfaces dll contains an ”ISession” interface, which is implemented

to get a session up and running for the application instance. The starting

pages take the required input from the user in the form of RadioButtons,

CheckBoxes, TextFields, etc. These values are added to the session.K

– The most important part is the execution page. Here, the C++ pro-

gram(s) and the Perl script(s) that is/are to be executed are started as

background threads, and the required arguments are passed by taking

values from the session. The Standard Input, Output and Error are redi-

rected to the main thread through the ”EventDispatcher”, i.e. whenever

the output or error buffer change, an event is generated, which updates the

output string. This string is bind-ed to the TextBlock through ”DataBind-

ing”, and thus the output ”TextBlock” is updated. This ensures that the

execution viewof these programs is replicated inside the UI.

– At the end, the output page displays the summary of the execution. If the

execution was successful, it would also show hyperlinks for the output file

generated. For SP Framework, it shall be an RSI, for Health Reporting

it shall be an HTML, etc.

CHAPTER 3. IMPLEMENTATION METHODOLOGY 47

Figure 3.5: Common UI - Main View

Figure 3.6: Common UI - Duplicate Instance Alert

CHAPTER 3. IMPLEMENTATION METHODOLOGY 48

Figure 3.7: Common UI - Process Execution View

Figure 3.8: Common UI - File Selection View

CHAPTER 3. IMPLEMENTATION METHODOLOGY 49

Figure 3.9: Common UI - Attribute Selection View

Figure 3.10: Common UI - Results View (Success)

CHAPTER 3. IMPLEMENTATION METHODOLOGY 50

Figure 3.11: Common UI - Results View (Failure)

The UI implementation for each workflow (implemented as a Class Library, i.e. DLL)

is described below:

– Generate Service Pack Framework : This generates a new Service Pack

Framework. The input consists of only the version information.

– Build An Existing Service Pack : It builds the current system and creates

the RSI for an existing Service Pack which has been already deployed.

Again, the input consists of only the version information.

– Generate Health Report : It examines and generates a report consisting

of vital statistics for the selected release.

– Generate Combinations : For the Configuration Automation, this tool

generates the combinations in-memory and then validates the combina-

tions generated.

CHAPTER 3. IMPLEMENTATION METHODOLOGY 51

3.2.2 Service Pack Framework Automation & Health Re-

porting Tool

The Service Pack Framework, as the name suggests, is used to generate Service Packs,

targeted to specific version(s) of specific release(s). In contrast to patches, which pro-

vide required minor improvements, bug-fixes and/or system-critical upgrades, Service

Packs are created when there are major modifications in software, new features are

introduced and/or a major upgrade is required. Service Packs are more generic, and

usually target more than one version.

Current Way of Working

The current way of working of SP Framework creation is to perform the following set

tasks manually. These tasks are mundane, repetitive and time-consuming. Moreover,

it requires a lot of user interaction. The set of tasks vary from release-to-release, and

thus have to be repeated for each release. An overview of the steps taken for Service

Pack Framework creation is described below:

– The source consists of dedicated building blocks. These blocks contain

the source files that are required to be deployed/updated on the machine

(DLLs, EXEs, PDBs, etc).

– Whenever a change is made to file(s) in a building block, or new file(s)

are added, corresponding targeting is done.

– During Service Pack creation, the configuration file(s) is/are parsed and

all the target files are identified. These files are then parsed to get a list

of all files along with their current and target paths.

– The GUID, Product Version other values are calculated, current version

information is populated and updated to reflect the changes, correspond-

CHAPTER 3. IMPLEMENTATION METHODOLOGY 52

ing system configuration files are checked and updated to reflect the new

changes.

– The ISM file is manually updated.

– The Service Pack files are cleared prior to the generation of a new Service

Pack Framework.

– The User Documents are generated based upon the list of files and their

specified target directories.

– The Service Pack is then built and an MSI is generated.

– The MSI along with the User Documents and other standard files are

packed into an RSI.

These steps are performed manually for each release, which is mundane, repetitive

and time-consuming. Moreover, it is prone to human error. Thus, the need of a

system that can automate the tool.

Implementation

The entire process of Service Pack creation as described above is automated through

a set of Perl scripts, which are then called by the Common UI. The inputs to the

main automation script would be the starting and ending version information. For

example, if my starting version is 5.1.0.1 and ending version is 5.1.0.2, then the Service

Pack shall be applicable to these versions as well as to all the versions in between.

Another aspect of this system is the health reporting tool. The Service Pack Health

Reporting Tool scans the entire Service Pack and generates HTML reports depicting

the health of the Service Pack. The tool actually reads the configuration file and

based in the information in it, it scans all files related to the Service Pack and scans

all the targeting done. Based on this information, it checks the actual files to be

CHAPTER 3. IMPLEMENTATION METHODOLOGY 53

included in the SP, their path information, their size, their integrity, etc. The final

report is generated as an HTML.

Figure 3.2.2 shows the execution flow of the system.

Figure 3.12: Service Pack Framework Automation Execution Flow

The Service Pack Framework creation tool also supports generation of an existing

Service Pack. Here, the Service Pack is directly built by looking at the targeting

information, and RSI is generated.

Benefits Of The New System

– The new system described above is fully automated, and thus requires no

human assistance and has no scope for any error.

– It provides a concise logging of the tasks performed for future reference

and for troubleshooting,if needed.

CHAPTER 3. IMPLEMENTATION METHODOLOGY 54

– The health report gives information about configuration file errors, ac-

tual file or their path errors, version errors, incorrect targeting, duplicate

targeting, etc.

– Finally, it takes a little more than an hour to create a new Service Pack

Framework, and just 5-10 minutes to build an existing one. This is a huge

gain in efficiency, as the legacy way-of-working would take around 8-10

hours minimum for creating a new Service Pack Framework.

3.2.3 Configuration Framework Automation

An MR machine consists of a lot of component(s) and configuration(s) (For eg:

Coil Type, Magnet Type, etc), having complex inter-dependencies.Sometimes, these

need to be changed/replaced, which may result into conflicts with other compo-

nent(s)/configuration(s), and thus may lead to unexpected system behaviour or com-

ponent/system failure. Hence, there is a list of validation rules, which need to be

conformed to in order to change the particular component/configuration.

Current Way of Working

Currently, this problem is managed by performing regression testing, which may take

anywhere from 6 to 8 weeks. This poses serious challenges and is vulnerable to human

errors. MR supports more than 800 configurations, while a typical MR system would

have around 81 attribute having a range of 215 values and 51 intertwined validation

rules. Regression through these many configurations is challenging, lengthy and there

is a risk that some values may be skipped (the scope for human error). Thus, the need

of a tool that can support an automated test suite intended for fast and comprehensive

testing of all the supported system configurations.

CHAPTER 3. IMPLEMENTATION METHODOLOGY 55

Implementation

One of the major problems of CTA is the bulky size of combinations. Because the

number of combinations generated can be in millions, they would not fit into the main

memory. Thus, the program may crash in some instances. Saving to memory is not

preferred, hence a tree-based structure has been created (Figure 3.2.3).

Figure 3.13: Tree-based Validation

The set of values that, while parsing through the tree, reach the leaf node, are valid,

the others are not. This has been implemented in C++, and the attribute range as

well as the validation rules are read from their respective xml files, whose files are

passed as arguments to the C++ application. This is then hosted into the WPF UI.

The execution steps are:

– The configuration generation tool takes the Configuration Model as input.

– Extracts the information regarding attributes, range and validation rules.

– The combination generation algorithm produces all the configurations that

are possible.

– Configurations are the combinations of attribute values that are allowed

by the validation rules. These are stores as a CSV file.

CHAPTER 3. IMPLEMENTATION METHODOLOGY 56

– Typically, 237 Billion random combinations are generated, out of which a

few are correct combinations.

– The Configuration Validation tool then the Configurations CSV file as

input and puts each configuration in the configuration framework under

test and checks if they are valid (i.e. the combination of attribute that

reached the leaf nodes while parsing).

– Finally, it an HTML report is generated, indicating Pass/Fail against each

combination.

Figure 3.2.3 shows the execution flow of the system.

Figure 3.14: Configuration Framework Automation

CHAPTER 3. IMPLEMENTATION METHODOLOGY 57

Benefits Of The New System

– Reduces the testing efforts from 6-8weeks to a mere 15 minutes.

– The optimized configuration generation algorithm creates minimal com-

binations for maximum coverage.

Chapter 4

Conclusion & Future Work

4.1 Conclusion

The messaging platform, which is being developed is a modern fail-safe and efficient

system, which shall improve the response time of various MR process that use it for

internal communication. This would have a positive impact on the overall scan time

of an MRI machine. For the second part, the system of operations for certain tasks

was largely manual, time-consuming, and involved a lot of repetition and was prone

to human error. The new systems/tools developed (SP Framework and the CTA

Framework) not only fully automates these procedures, but also saves considerable

efforts and time. Also, as these systems/tools can be used by any person having basic

system knowledge, it considerably reduces the workload of MRI SW-Infra Team.

One major factor is that these tools mitigate the scope for human error, while saving

human efforts.

58

CHAPTER 4. CONCLUSION & FUTURE WORK 59

4.2 Future Work

The future work for messaging framework includes optimizing the current code so as

to improve the performance to the required standards, as well as adding support for

the three communication modes, explained in the above chapters, to the web-client

as AngularJS modules.

References

[1] Anne Bright. Planning and positioning in mri, 2011.

[2] Pieter Hintjens. ZeroMQ whitepapers, 2016.

[3] Philips. Philips Healthcare systems, 2015.

[4] Marc Schaffrath. Service pack user manual, 2011.

[5] Peter van der Muelen. Introduction to magnetic resonance imaging, 2015.

60

	Certificate
	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Acronym
	Introduction
	Company Profile
	Magnetic Resonance Imaging (MRI)

	Team Profile
	Problem Statement
	Project Purpose And Scope

	Literature Survey
	Magnetic Resonance Imaging
	History
	Concept
	Advantages
	Drawbacks

	Message Queues
	Message Queues Classification

	Implementation Methodology
	Messaging Framework
	Comparison of Available Message Queue Implementations
	Implementation
	Performance

	Automation Tools
	Common UI
	Service Pack Framework Automation & Health Reporting Tool
	Configuration Framework Automation

	Conclusion & Future Work
	Conclusion
	Future Work

