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Abstract

Character recognition is a task of classifying character images into one of the many pre-

defined classes. The focus of this thesis is on handwritten Gujarati character recognition.

Specifically, thesis focuses on applying deep learning techniques for the task of handwrit-

ten Gujarati character recognition. Experiments are carried out on three datasets, out

of which two are Gujarati numeral datasets while one is a Gujarati character dataset.

LeNet - a well known deep neural network is used for the task. A significant contribution

of the thesis is ILeNet which is inspired from LeNet and fine-tuned for the requirement

of handwritten Gujarati character recognition. Experimental results demonstrate that

classification accuracy of LeNet on all three datasets is significant. ILeNet improves the

accuracy further and establishes the importance of ILeNet.
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Chapter 1

Introduction

1.1 Problem Definition

During last several years, Handwritten character recognition is the topic of interest under

the frame work of character recognition and pattern recognition.

Character recognition task is divided into online and offline character recognition. On-

line character recognition means recognition of character as soon as it is written from any

input device like a special digitizer or from PDA and offline character recognition means

recognition of character from static image of character or from any scanned document.

So, character recognition is a task of convert character from any character image,

printed document or from handwritten document to machine encoded text. Here, char-

acter recognition is performed on Gujarati language.

1.2 Motivation

Character recognition helps in many ways like for saving handwritten page or form data

to computer, reading bank cheque details, etc. Until now, there are many research done

on English language and on other foreign language and many standard database are

available for English language. For Indian language like Hindi, Gujarati, Bangla, etc.

less research is done compare to English. So, here handwritten character recognition is

done on Gujarati language which is official language of Gujarat.
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1.3 Outline of the thesis

Chapter 2 contains various database details. It includes English language databases like

MNIST, IAM Handwritten Dataset, NIST Dataset, etc. Gujarati language database

which is preparing is also describe here.

Chapter 3 contains survey of different papers for character recognition.

Chapter 4 contains detail of caffe which is deep learning framework. In this chapter,

installation steps and libraries of pycaffe are describe. Here, Caffe is use for implementa-

tion of various CNN models.

Chapter 5 contains implementation part. In this chapter, all CNN models are describe

which are used for generating results. And also describe all accuracy result for all three

Gujarati databases with different cases.

Chapter 6 contains conclusion part.
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Chapter 2

Available Datasets

2.1 Other languages

There are many standard datasets are available for English language like MNIST, IAM

handwritten dataset, NIST hand printed forms and characters dataset, UJI pencharacter

dataset.

2.1.1 MNIST

• MNIST is dataset of handwritten English numerals. The digits have been size-

normalized and centered in a fixed-size image[2].

• It contains 60,000 training examples and 10,000 testing examples.

• The original black and white (bilevel) images from NIST were size normalized to

fit in a 20x20 pixel box while preserving their aspect ratio. The resulting images

contain grey levels as a result of the anti-aliasing technique used by the normaliza-

tion algorithm. the images were centered in a 28x28 image by computing the center

of mass of the pixels, and translating the image so as to position this point at the

center of the 28x28 field[2].

2.1.2 IAM Handwritten Dataset

• It contains handwritten English text.

• It was first published in ICDAR 1999 (International Conference on Document Anal-

ysis and Recognition).
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• In version 3.0, 657 writers contributed samples of their handwriting.

• It contains 1,539 pages of scanned text, 5,685 isolated and labeled sentences, 13,353

isolated and labeled text lines and 1,15,320 isolated and labeled words.

2.1.3 NIST Hand printed Forms and Characters Database

• It contains English language hand printed characters.

• In includes hand printed sample forms from 3600 writers. From this forms 8,10,000

character images are collected.

2.1.4 UJI Pen Characters Data Set

• This database contains sample from 11 different writers.

• Each writer contribute with uppercase and lowercase letters and digits. And from

each writer they collect 2 sample. So, database contains total 1364 samples.

• The handwriting samples were collected on a Toshiba Portg M400 Tablet PC using

its cordless stylus.

2.2 Gujarati language

For Gujarati language databases are prepared. A numeral dataset and a character dataset

are prepared in addition to one more numeral dataset which is availed from external

sources. Numeral Database 1 contains 12000 images of Gujarati numerals and Database

2 contains 14000 images of Gujarati numerals. In database 1 for each numerals 1200

images are there and in database 2, there are 1400 images for each numerals. In both

database image size is 16x16 pixels. Sample database images are shown in figure 2.1.

Alphabet database contains 88751 images for different Gujarati alphabets. This database

contains around 2000 images for each alphabets. Sample images from alphabet database

is shown in figure 2.2. And table 2.1 shows images per alphabets in alphabet database.
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Alphabets Number of
images

Alphabets Number of
images

ka 2001 kha 2002
ga 2007 gha 2011
cha 2048 chha 2048
ja 2000 jha 2006
t 2004 th 2068
da 2002 dha 2003
ana 2024 ta 2005
tha 2033 da 2006
dha 2005 na 2002
pa 2020 pha 2012
ba 2002 bha 2104
ma 2002 ya 2014
ra 2005 la 2049
ala 2009 va 2005
sha 2007 sa 2005
ha 2027 ksha 2015
gna 2004 a 2016
e 2005 ee 2008
u 2003 uu 2102
roo 2012 am 2000

Table 2.1: Number of images per alphabet.
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Figure 2.1: Sample images for Gujarati numerals.

Figure 2.2: Sample images for Gujarati Alphabets.
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Chapter 3

Literature Survey

A lot of research work is done in the area of character recognition for various languages.

For English language lots of work is done in compare of any other language. For Gujarati

language less research work is done in compare of other Indian languages.

Character recognition can classify in two classes, character recognition for printed

character and character recognition for handwritten character.

Generally character recognition flow is like first from input images are preprocessed

and then from these preprocessed images features are extracted. This feature vector

is used for either train the classification model or to classify the image. This classical

technique flow of character recognition is shown in figure 3.2. Figure ?? shows character

recognition using deep learning / convolutional neural network. Here, in this no need

for hand crafted feature extraction. Convolutional neural network works for both feature

extraction and classification.

Image perprocessing is required because all scanned images may not be in same size

or format. In image preprocessing task, first images are scanned from any handwritten

or printed document. On that scanned image, preprocessing task like size normalization,

background noise removal and skeletonization are preformed.

For feature extraction, lots of techniques are available. Task of feature extraction is

divided in two main categories, structural and statistical feature[3]. Structural Feature

are like strokes and bays in various directions, end points, intersections of line segments,

loops and stroke relations, etc. Statistical features are derived from statistical distribution

of points like zoning, moments, n-tuples, etc. Form these feature a feature vector of size

124 is generated.
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Figure 3.1: Character recognition using classical techniques.

Figure 3.2: Character recognition using deep learning / Convolutional neural network.

Some can use direct image pixel values as feature means feature vector includes pixel

value as feature. For example if our image size is 16x16 pixel than our feature vector is

of size 256 and it contains pixel value.

For classification tasks, many techniques are available. Yann LeCun et al. [1] used

convolutional neural network and build LeNet-5 for document recognition on English

language. Also there is other classifier available like KNN, SVM and neural networks for

classification.

For Devnagri language, Sethi and Chatterjee [4] developed system to recognize Dev-

nagari hand printed character using binary decision tree classifier.

For Gujarati character recognition, Desai [5] applies neural network for classification,

8



for this numeral database of 610 images used for training and 2650 images used for

testing. With this they get accuracy of 81.66%. Other paper is for offline handwritten

character recognition of Gujarati Script using pattern matching[6]. In this paper they use

preprocessing technique like Inversion, Gray scaling, Thinning. For classification they use

Back propagation neural network and Template Matching Algorithm. With this, they

get accuracy of 71.66%.
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Chapter 4

Caffe - Deep Learning Framework

4.1 What is Caffe?

Caffe is a deep learning framework made with expression, speed, and modularity in mind.

It is developed by the Berkeley Vision and Learning Center (BVLC)[7].

It is pure C++ and CUDA based architecture for deep learning.

Caffe can run on Ubuntu, OS X, RHEL, CentOS, Fedora.

We can use caffe by three different interfaces:

• Command line

• Python

• MATLAB

4.2 Why Caffe?

To use caffe, we can configure our models without hard coding, this is because of its

expressive architecture. We can switch between its two available mode, CPU and GPU.

To switch between each other, we need to set a single flag to train[7].

Now a days, speed is more important for computing. Caffe provides that to us means

if we use caffe on NVIDIA K40 GPU, it processes 60M images per day, that proves caffe

is fastest available deep learning framework[7].
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4.3 Installation Step

4.3.1 Prerequisites

CUDA installation

CUDA is required for GPU mode. CUDA 7.0 and latest driver for GPU is required for

caffe. If CUDA 7.0 is not supported with your GPU than it will also work fine with 6.0

too.

To install CUDA to your GPU system, first you need to download CUDA from its

official site (prefer .deb file to install CUDA) then run following command in terminal.

$ sudo dpkg − i <path to . deb f i l e >

$ sudo apt−get update

$ sudo apt−get i n s t a l l cuda

After this we need to set following environment variable to .bashrc file of home direc-

tory.

$ export CUDA HOME = / usr / local /cuda−7.5

$ export LD LIBRARY PATH = ${CUDA HOME}/ l i b 6 4

$ PATH = ${CUDA HOME}/ bin : ${PATH}

$ export PATH

Now we can check installation by running command ”nvcc -V” or ”nvcc –version” to

check the version of CUDA.

Install libprotobuf, leveldb, blast, boost, lmdb and hdf5

$ sudo apt−get i n s t a l l l i bp ro tobu f−dev protobuf−compi le r

g f o r t r a n \ l i bboo s t−dev cmake l i b l e v e l d b−dev l ibsnappy−dev

\ l i bboo s t−thread−dev l i bboo s t−system−dev \ l i b a t l a s−base−dev

l ibhd f5−s e r i a l−dev l i b g f l a g s−dev \ l i b g o o g l e−glog−dev liblmdb−dev

gcc−4.7 g++−4.7

Install OpenCV

• install dependencies

$ sudo apt−get −y i n s t a l l l ibopencv−dev bui ld−e s s e n t i a l
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cmake g i t l i b g t k 2 .0−dev pkg−c o n f i g python−dev python−numpy

l ibdc1394−22 l ibdc1394−22−dev l i b j p e g−dev l ibpng12−dev

l i b t i f f 4 −dev l i b j a s p e r−dev l ibavcodec−dev l ibavformat−dev

l i b s w s c a l e−dev l i b x i n e−dev l i bg s t r eamer0 .10−dev

l ibgs t r eamer−plug ins−base0 .10−dev l i b v 4 l−dev l ibtbb−dev

l ibq t4−dev l i b f a a c−dev libmp3lame−dev l ibopencore−amrnb−dev

l ibopencore−amrwb−dev l i b theo ra−dev l i b v o r b i s−dev

l i b x v i d c o r e−dev x264 v4l−u t i l s unzip

• Download OpenCV

$ mkdir opencv

$ cd opencv

$ wget −O OpenCV−$ve r s i on . z ip http :// s o u r c e f o r g e . net / p r o j e c t s

/ opencv l ib ra ry / f i l e s /opencv−unix / $ve r s i on /opencv −3 . 0 . 0 . z ip

/download

$ unzip opencv −3 . 0 . 0 . z ip

• Install OpenCV

$ cd opencv−3.0.0− alpha

$ mkdir bu i ld

$ cd bu i ld

$ cmake −D CMAKE BUILD TYPE=RELEASE −D CMAKE INSTALL PREFIX=

/ usr / local −D WITH TBB=ON −D WITH V4L=ON −D WITH QT=ON −D

WITH OPENGL=ON . .

$ make j 2

$ sudo make i n s t a l l

• Finishing installation

$ sudo sh −c ’echo ”/ usr / l o c a l / l i b ” > / e tc / ld . so . conf . d/

opencv . conf ’

$ sudo l d c o n f i g
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Dependencies for pycaffe

Before ”make pycaffe”, we need to install following python dependencies.

• Install numpy

$ sudo apt−get i n s t a l l python−numpy

• Install scipy

$ sudo apt−get i n s t a l l python−s c ipy

• Install scikit-image

$ sudo apt−get i n s t a l l python−skimage

• Install matplotlib

$ sudo apt−get i n s t a l l python−matp lo t l i b

• Install ipython

$ sudo apt−get i n s t a l l ipython

• Install h5py

$ sudo apt−get i n s t a l l python−h5py

• Install networkx

$ sudo apt−get i n s t a l l python−networkx

• Install nose

$ sudo apt−get i n s t a l l python−nose

• Install pandas

$ sudo apt−get i n s t a l l python−pandas

• Install python-dateutil

$ sudo apt−get i n s t a l l python−d a t e u t i l

13



• Install protobuf

$ sudo pip i n s t a l l protobuf

• Install python-gflags

$ sudo apt−get i n s t a l l python−g f l a g s

• Install python-pyyaml

$ sudo apt−get i n s t a l l python−pyyaml

• Install python-pillow

$ sudo apt−get i n s t a l l python−p i l l o w

• Install python-six

$ sudo apt−get i n s t a l l python−s i x

4.3.2 Download and Install Caffe

Installation with CUDA

$ sudo apt−get i n s t a l l −y g i t g i t c l one https : // github . com

/BVLC/ c a f f e . g i t cd c a f f e && g i t checkout dev cp

Make f i l e . c o n f i g . example Make f i l e . c o n f i g sed − i ” s/# CU

STOM CXX := g++/CUSTOM CXX := g++−4.7/” Make f i l e . c o n f i g

$ cmake . .

$ make a l l

$ make p yc a f f e

$ make runte s t

Installation without CUDA

For CPU only caffe uncomment the ”CPU ONLY := 1” flag in ”makefile.config” to con-

figure and build the caffe and don’t need to install CUDA for this.

Installation with NVIDIA cuDNN

For fastest operation Caffe is accelerated by drop-in integration of NVIDIA cuDNN. To

speedup your Caffe models, install cuDNN then uncomment the ”USE CUDNN := 1”

flag in ”Makefile.config” when installing Caffe.
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4.4 Liberaries of pycaffe

For use of caffe with python, pycaffe interface is available. And all files and scripts are

available in caffe/python directory.

To use caffe in python ”import caffe” will provide access to all its liberaries. By this

we can handle models, do forward and backward, handle input and optputs and network

visulations.

4.4.1 caffe.Net

caffe.Net is the central interface for loading, configuring, and running models. caffe.Classsifier

and caffe.Detector provide convenience interfaces for common tasks[8].

caffe.Classifier

caffe.Classifier extends caffe.Net for image class prediction. For this prediction is done

by scaling, oversampling or center cropping.

• Parameters:

image dims : dimensions to scale input for cropping/sampling. Default is to scale

to net input size for whole-image crop. mean, input scale, raw scale, channel swap:

params for preprocessing options.

def predict(self, inputs, oversample=True):

Predict classification probabilities of inputs.

• inputs :

iterable of (H x W x K) input ndarrays.

• oversample :

boolean

average predictions across center, corners, and mirrors when True (default). Center-

only prediction when False.

• Returns:

predictions: (N x C) ndarray of class probabilities for N images and C
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caffe.Dectector :

Detector extends Net for windowed detection by a list of crops or selective search pro-

posals.

• Parameters:

mean, input scale, raw scale, channel swap : params for preprocessing options.

• context pad : amount of surrounding context to take s.t. a ‘context pad‘ sized bor-

der of pixels in the network input image is context, as in R-CNN feature extraction.

def detect windows(self, images windows):

Do windowed detection over given images and windows. Windows are extracted then

warped to the input dimensions of the net.

• Parameters:

images windows: (image filename, window list) iterable.

context crop: size of context border to crop in pixels.

• Returns:

detections: list of filename: image filename, window: crop coordinates,

predictions: prediction vector dicts.

def detect selective search(self, image fnames):

Do windowed detection over Selective Search proposals by extracting the crop and warp-

ing to the input dimensions of the net.

• Parameters:

image fnames: list

• Returns:

detections: list of filename: image filename, window: crop coordinates,

predictions: prediction vector dicts.

def crop(self, im, window):

Crop a window from the image for detection. Include surrounding context according to

the ‘context pad‘ configuration.
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• Parameters:

im: H x W x K image ndarray to crop.

window: bounding box coordinates as ymin, xmin, ymax, xmax.

• Returns: crop: cropped window.

def configure crop(self, context pad):

Configure crop dimensions and amount of context for cropping. If context is included,

make the special input mean for context padding.

• Parameters:

context pad : amount of context for cropping.

4.4.2 caffe.SGDSolver

caffe.SGDSolver exposes the solving interface[8].

4.4.3 caffe.io

caffe.io handles input / output with preprocessing and protocol buffers[8].

def blobproto to array(blob, return diff=False):

Convert a blob proto to an array. In default, we will just return the data, unless return diff

is True, in which case we will return the diff.

def array to blobproto(arr, diff=None):

Converts a 4-dimensional array to blob proto. If diff is given, also convert the diff. You

need to make sure that arr and diff have the same shape, and this function does not do

sanity check.

def arraylist to blobprotovecor str(arraylist):

Converts a list of arrays to a serialized blobprotovec, which could be then passed to a

network for processing.

def blobprotovector str to arraylist(str):

Converts a serialized blobprotovec to a list of arrays.

def array to datum(arr, label=0):

Converts a 3-dimensional array to datum. If the array has dtype uint8, 0the output data

will be encoded as a string. Otherwise, the output data will be stored in float format.
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def datum to array(datum):

Converts a datum to an array. Note that the label is not returned, as one can easily get

it by calling datum.label.

4.4.4 Class Transformer

Transform input for feeding into a Net. This is mostly for illustrative purposes and it is

likely better to define your own input preprocessing routine for your needs.

• Parameters:

net : a Net for which the input should be prepared

def preprocess(self, in , data):

• Format input for Caffe:

– convert to single

– resize to input dimensions (preserving number of channels)

– transpose dimensions to K x H x W

– reorder channels (for instance color to BGR)

– scale raw input (e.g. from [0, 1] to [0, 255] for ImageNet models)

– subtract mean

– scale feature

• Parameter:

in : name of input blob to preprocess for

data : (H’ x W’ x K) ndarray

• Returns:

caffe in : (K x H x W) ndarray for input to a Ne

def deprocess(self, in , data):

Invert Caffe formatting
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def set transpose(self, in , order):

Set the input channel order for e.g. RGB to BGR conversion as needed for the reference

ImageNet model.

• Parameters:

in : which input to assign this channel order

order : the order to transpose the dimensions

def set channel swap(self, in , order):

Set the input channel order for e.g. RGB to BGR conversion as needed for the refer-

ence ImageNet model. N.B. this assumes the channels are the first dimension AFTER

transpose.

• Parameters:

in : which input to assign this channel order order : the order to take the channels.

(2,1,0) maps RGB to BGR for example.

def set raw scale(self, in , scale):

Set the scale of raw features s.t. the input blob = input * scale. While Python represents

images in [0, 1], certain Caffe models like CaffeNet and AlexNet represent images in [0,

255] so the raw scale of these models must be 255.

• Parameters: in : which input to assign this scale factor scale : scale coefficient

def set mean(self, in , mean):

Set the mean to subtract for centering the data.

• Parameters:

in : which input to assign this mean. mean : mean ndarray (input dimensional or

broadcastable)

def set input scale(self, in , scale):

Set the scale of preprocessed inputs s.t. the blob = blob * scale. N.B. input scale is done

AFTER mean subtraction and other preprocessing while raw scale is done BEFORE.

• Parameters:

in : which input to assign this scale factor scale : scale coefficient
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def load image(filename, color=True):

Load an image converting from grayscale or alpha as needed.

• Parameters:

filename : string

color : boolean flag for color format. True (default) loads as RGB while False loads

as intensity (if image is already grayscale).

• Returns: image : an image with type np.float32 in range [0, 1] of size (H x W x 3)

in RGB or of size (H x W x 1) in grayscale.

def resize image(im, new dims, interp order=1):

Resize an image array with interpolation.

• Parameters:

im : (H x W x K) ndarray

new dims : (height, width) tuple of new dimensions.

interp order : interpolation order, default is linear.

• Returns:

im : resized ndarray with shape (new dims[0], new dims[1], K)

def oversample(images, crop dims):

Crop images into the four corners, center, and their mirrored versions.

• Parameters:

image : iterable of (H x W x K) ndarrays

crop dims : (height, width) tuple for the crops.

• Returns: crops : (10*N x H x W x K) ndarray of crops for number of inputs N.

4.4.5 caffe.draw

caffe.draw visualizes network architecture[8].

def get pooling types dict():

Get dictionary mapping pooling type number to type name
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def get edge label(layer):

Define edge label based on layer type.

def get layer label(layer, rankdir):

Define node label based on layer type.

• Parameters:

layer : ?

rankdir : ’LR’, ’TB’, ’BT’ : Direction of graph layout.

• Returns:

string : A label for the current layer

def choose color by layertype(layertype):

Define colors for nodes based on the layer type.

def get pydot graph(caffe net, rankdir, label edges=True):

Create a data structure which represents the ‘caffe net‘.

• Parameters:

caffe net : object

rankdir : ’LR’, ’TB’, ’BT’ : Direction of graph layout.

label edges : boolean, optional : Label the edges (default is True).

• Returns:

pydot graph object

def draw net(caffe net, rankdir, ext=’png’):

Draws a caffe net and returns the image string encoded using the given extension.

• Parameters:

caffe net : a caffe.proto.caffe pb2.NetParameter protocol buffer.

ext : string, optional

The image extension (the default is ’png’).

• Returns:

string : Postscript representation of the graph.
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def draw net to file(caffe net, filename, rankdir=’LR’):

Draws a caffe net, and saves it to file using the format given as the file extension. Use

’.raw’ to output raw text that you can manually feed to graphviz to draw graphs.

• Parameters:

caffe net : a caffe.proto.caffe pb2.NetParameter protocol buffer.

filename : string : The path to a file where the networks visualization will be stored.

rankdir : ’LR’, ’TB’, ’BT’ : Direction of graph layout.

4.4.6 caffe blob

Caffe blobs are exposed as numpy ndarrays for ease-of-use and efficiency[8]. Compile

pycaffe by make pycaffe. The module dir caffe/python/caffe should be installed in your

PYTHONPATH for import caffe. Pycaffe properties:

def Net blobs(self):

An OrderedDict (bottom to top, i.e., input to output) of network blobs indexed by name.

def Net blob loss weights(self):

An OrderedDict (bottom to top, i.e., input to output) of network blob loss weights indexed

by name

def Net params(self):

An OrderedDict (bottom to top, i.e., input to output) of network parameters indexed by

name; each is a list of multiple blobs (e.g.,weights and biases)

def Net forward(self, blobs=None, start=None, end=None, **kwargs):

Forward pass: prepare inputs and run the net forward.

• Parameters:

blobs : list of blobs to return in addition to output blobs.

kwargs : Keys are input blob names and values are blob ndarrays. For formatting

inputs for Caffe, see Net.preprocess(). If None, input is taken from data layers.

start : optional name of layer at which to begin the forward pass

end : optional name of layer at which to finish the forward pass (inclusive)

• Returns: outs : blob name: blob ndarray dict.
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def Net backward(self, diffs=None, start=None, end=None, **kwargs):

Backward pass: prepare diffs and run the net backward.

• Parameters:

diffs : list of diffs to return in addition to bottom diffs.

kwargs : Keys are output blob names and values are diff ndarrays. If None, top

diffs are taken from forward loss.

start : optional name of layer at which to begin the backward pass

end : optional name of layer at which to finish the backward pass (inclusive)

• Returns: outs: blob name: diff ndarray dict.

def Net forward all(self, blobs=None, **kwargs):

Run net forward in batches.

• Parameters:

blobs : list of blobs to extract as in forward()

kwargs : Keys are input blob names and values are blob ndarrays. Refer to for-

ward().

• Returns: all outs : blob name: list of blobs dict.

def Net forward backward all(self, blobs=None, diffs=None, **kwargs):

Run net forward + backward in batches.

• Parameters:

blobs: list of blobs to extract as in forward()

diffs: list of diffs to extract as in backward()

kwargs: Keys are input (for forward) and output (for backward) blob names and

values are ndarrays. Refer to forward() and backward(). Prefilled variants are

called for lack of input or output blobs.

• Returns:

all blobs: blob name: blob ndarray dict.

all diffs: blob name: diff ndarray dict.
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def Net set input arrays(self, data, labels):

Set input arrays of the in-memory MemoryDataLayer. (Note: this is only for networks

declared with the memory data layer.)

def Net batch(self, blobs):

Batch blob lists according to net’s batch size.

• Parameters:

blobs: Keys blob names and values are lists of blobs (of any length). Naturally, all

the lists should have the same length.

Yields:

batch: blob name: list of blobs dict for a single batch.
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Chapter 5

Gujarati Handwritten Numeral and

Character Recognition using Deep

Learning

Here in this work, convolutional neural network is used for character recognition. This

convolutional neural network is implemented using Caffe deep learning framework. This

networks are trained using two numerals and one alphabet database of Gujarati language

with different cases and also trained and tested using MNIST for comparison purpose.

5.1 Convolutional Neural Network

Here, experiment is done using 5 different architecture of CNN. From these five network

one is LeNet-5[1] which is used for English character recognition. And other four archi-

tecture are presented and used for purpose of obtaining higher accuracy.

This proposed CNNs consists of 6 layers except input layer with different value of

feature maps and trainable parameters. The input image size is 16x16 pixel. Here in all

this network architecture ”xavier” weight filler is used. Xavier weight filler make sure

that all weight in the network are just right, not too small or too large. In caffe weight

initialization is done from a distribution form a zero mean and specific variance. Here
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shows the xavier equation used for weight filler.

V ar(W ) =
1

nin
(5.1)

5.1.1 LeNet-5[1]

LeNet-5[1] is 7 layer CNN architecture except input layer. Figure 5.1 shows architecture

of LeNet-5[1]. In this CNN model, first layer is convolutional layer with 6 feature map

and 5x5 of weight matrix. So the size of each feature map is 12x12. Second layer is

subsampling layer with 6 feature maps of size 6x6 with stride of 2 and kernel size of

2. Third layer is convolutional layer with 16 feature map and 5x5 of weight matrix, so

feature map size is 2x2. Fourth layer is subsampling layer with 16 feature map of size 1x1

with stride of 2 and kernel size of 2. Fifth layer is fully connected layer contains 120 units

and is connected with fourth subsampling layer. sixth layer is full connection with fifth

layer with 84 connections. Last and seventh layer is output layer of size 10 for numerals

and of size 44 for alphabets.

Figure 5.1: Architecture of LeNet-5[1]

5.1.2 Model-1

In this CNN model, first layer is convolutional layer with 20 feature map and 5x5 of

weight matrix. So the size of each feature map is 12x12. Second layer is subsampling

layer with 20 feature maps of size 6x6 with stride of 2 and kernel size of 2. Third layer

is convolutional layer with 50 feature map and 5x5 of weight matrix, so feature map size

is 2x2. Fourth layer is subsampling layer with 50 feature map of size 1x1 with stride

of 2 and kernel size of 2. Fifth layer is fully connected layer contains 500 units and is
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connected with fourth subsampling layer. Last and sixth layer is output layer of size 10

for numerals and of size 44 for alphabets. Figure 5.2 shows architecture of Model-1 for

numerals means in this figure output layer shows 10 units.

Figure 5.2: Architecture of Model-1

5.1.3 Model-2

In this CNN model, first layer is convolutional layer with 20 feature map and 3x3 of

weight matrix. So the size of each feature map is 14x14. Second layer is subsampling

layer with 20 feature maps of size 7x7 with stride of 2 and kernel size of 2. Third layer

is convolutional layer with 50 feature map and 5x5 of weight matrix, so feature map size

is 5x5. Fourth layer is subsampling layer with 50 feature map of size 3x3 with stride

of 2 and kernel size of 2. Fifth layer is fully connected layer contains 500 units and is

connected with fourth subsampling layer. Last and sixth layer is output layer of size 10

for numerals and of size 44 for alphabets. Figure 5.3 shows architecture of Model-2 for

numerals means in this figure output layer shows 10 units.

Figure 5.3: Architecture of Model-2
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5.1.4 Model-3

In this CNN model, first layer is convolutional layer with 30 feature map and 5x5 of

weight matrix. So the size of each feature map is 12x12. Second layer is subsampling

layer with 30 feature maps of size 6x6 with stride of 2 and kernel size of 2. Third layer

is convolutional layer with 75 feature map and 5x5 of weight matrix, so feature map size

is 2x2. Fourth layer is subsampling layer with 75 feature map of size 1x1 with stride

of 2 and kernel size of 2. Fifth layer is fully connected layer contains 750 units and is

connected with fourth subsampling layer. Last and sixth layer is output layer of size 10

for numerals and of size 44 for alphabets. Figure 5.4 shows architecture of Model-3 for

numerals means in this figure output layer shows 10 units.

Figure 5.4: Architecture of Model-3

5.1.5 Model-4

In this CNN model, first layer is convolutional layer with 30 feature map and 3x3 of

weight matrix. So the size of each feature map is 14x14. Second layer is subsampling

layer with 30 feature maps of size 7x7 with stride of 2 and kernel size of 2. Third layer

is convolutional layer with 75 feature map and 3x3 of weight matrix, so feature map size

is 5x5. Fourth layer is subsampling layer with 75 feature map of size 3x3 with stride

of 2 and kernel size of 2. Fifth layer is fully connected layer contains 750 units and is

connected with fourth subsampling layer. Last and sixth layer is output layer of size 10

for numerals and of size 44 for alphabets. Figure 5.5 shows architecture of Model-1 for

numerals means in this figure output layer shows 10 units.
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Figure 5.5: Architecture of Model-4
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Chapter 6

Experimental Evaluation

All CNNs described in chapter 5 are trained and tested using two numerals and one

characters dataset. This training and testing is done in five different ways as describe

below.

• 5 fold cross validation - Numeral dataset 1

• 5 fold cross validation - Numeral dataset 2

• Numeral dataset 1 for training and dataset 2 for testing

• Numeral dataset 2 for training and dataset 1 for testing

• 5 fold cross validation - Character dataset

In case of single dataset for training and testing, 80% of images are used for train

the network and 20% images are used for testing the trained network and accuracy is

calculated using this tested images.

All this accuracy results are generated using 5 fold cross validation. And average

accuracy of these 5 fold is considered as average accuracy of that particular case. All

testing results for all proposed CNN and how those results are generated is described

below.

6.1 5 fold cross validation - Numeral dataset 1

As described earlier numeral dataset 1 contain 12000 images means for each numeral

there is 1200 images. Now this dataset is divided into five fold (Fold 1, Fold 2, Fold 3,
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LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 95.80% 97.10% 96.95% 96.89% 96.95%
Fold 2 95.75% 96.80% 97.50% 97.15% 97.15%
Fold 3 95.05% 96.80% 97.25% 97.10% 97.89%
Fold 4 95.85% 97.10% 97.55% 97.05% 97.60%
Fold 5 96.45% 96.30% 96.95% 97.00% 97.05%

Average Accuracy 95.78% 96.82% 97.24% 97.03% 97.32%

Table 6.1: Numeral dataset 1 : Accuracy result of five fold cross validation for fold 1
training images for all CNN models.

LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 95.95% 96.60% 97.30% 97.25% 97.70%
Fold 2 95.35% 96.20% 97.30% 96.70% 97.45%
Fold 3 95.45% 97.13% 97.39% 96.89% 97.20%
Fold 4 94.55% 96.39% 96.39% 96.30% 96.20%
Fold 5 94.89% 96.39% 97.20% 96.85% 97.25%

Average Accuracy 95.24% 96.53% 97.11% 96.79% 97.16%

Table 6.2: Numeral dataset 1 : Accuracy result of five fold cross validation for fold 2
training images for all CNN models.

Fold 4, Fold 5), from these folds five cases are generated, in first case Fold 1 is keep aside

for testing and with Fold 2, Fold 3, Fold 4 and Fold 5 network is trained, in second case

Fold 2 is keep aside for testing and with other four network is trained, in third case Fold

3 is keep aside for testing and other four are used for train the network and so on. In

each fold 9600 images for training and 2400 images for testing. Now to know which CNN

model performs better to train the folds, training set of all folds are further divided into

five fold, for example for Fold 1 if training images are divided into folds, in each case

7680 images for training and 1920 images for testing and the procedure is same as with

whole dataset for a particular fold case. And this folds are trained and tested for all five

CNN models, to get best model from all five and train with this model and get accuracy

for numeral dataset 1. These accuracy results are shown in table 6.1 to 6.5.

Here, from all this accuracy results, Model-4 works better than other models. So, now

this Model-4 is used for training five fold cases of numeral dataset 1 and average accuracy

is calculated. Also this test performs for LeNet-5 for comparison purpose and generated

results are shown in table 6.6. And confusion matrix for all cases are also shown in table

6.7 to 6.11.
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LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 96.15% 96.55% 97.15% 96.80% 97.35%
Fold 2 94.15% 96.50% 97.15% 96.75% 97.70%
Fold 3 95.70% 95.55% 97.30% 96.89% 97.50%
Fold 4 95.45% 96.89% 96.80% 96.45% 97.30%
Fold 5 95.30% 96.39% 96.89% 96.95% 97.10%

Average Accuracy 95.35% 96.57% 97.05% 96.76% 97.39%

Table 6.3: Numeral dataset 1 : Accuracy result of five fold cross validation for fold 3
training images for all CNN models.

LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 95.90% 97.05% 97.00% 97.50% 97.65%
Fold 2 96.25% 96.15% 97.15% 96.45% 97.45%
Fold 3 94.60% 96.70% 97.35% 96.85% 97.30%
Fold 4 96.00% 96.75% 97.20% 96.95% 97.45%
Fold 5 95.85% 96.20% 97.25% 96.55% 96.95%

Average Accuracy 95.72% 96.57% 97.19% 96.86% 97.56%

Table 6.4: Numeral dataset 1 : Accuracy result of five fold cross validation for fold 4
training images for all CNN models.

LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 95.45% 97.45% 98.05% 97.39% 97.80%
Fold 2 95.25% 96.15% 96.60% 95.89% 96.45%
Fold 3 95.89% 96.39% 97.15% 96.55% 97.50%
Fold 4 94.65% 96.30% 97.25% 96.55% 96.95%
Fold 5 96.05% 97.15% 97.39% 97.45% 97.45%

Average Accuracy 95.45% 96.68% 97.28% 96.76% 97.23%

Table 6.5: Numeral dataset 1 : Accuracy result of five fold cross validation for fold 5
training images for all CNN models.

LeNet-5 Model-4

Fold 1 95.62% 97.54%
Fold 2 97.12% 97.87%
Fold 3 96.25% 97.79%
Fold 4 94.95% 97.25%
Fold 5 95.04% 96.91%

Average Accuracy 95.79% 97.47%

Table 6.6: Numeral dataset 1 : Accuracy result of five fold cross validation for LeNet-5
and Model-4.
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0 1 2 3 4 5 6 7 8 9

0 236 0 0 0 0 0 0 1 3 0
1 0 232 1 0 1 5 1 0 0 0
2 0 4 229 1 0 0 1 1 2 2
3 1 0 0 236 0 1 1 1 0 0
4 0 0 0 3 234 0 0 0 1 2
5 1 0 0 0 2 234 1 2 0 0
6 0 0 0 0 0 0 239 0 0 1
7 4 3 3 0 0 1 4 224 0 1
8 1 0 0 0 1 0 0 0 238 0
9 0 0 1 0 0 0 0 0 0 239

Table 6.7: Numeral dataset 1 : Confusion matrix of fold 1 for Model-4.

0 1 2 3 4 5 6 7 8 9

0 237 0 0 0 0 0 0 3 0 0
1 0 231 2 0 1 3 0 2 1 0
2 0 3 235 0 1 0 1 0 0 0
3 0 0 0 238 0 0 0 2 0 0
4 0 0 0 0 240 0 0 0 0 0
5 0 1 2 0 3 234 0 0 0 0
6 0 1 0 4 1 1 231 2 0 0
7 4 0 0 4 0 1 2 229 0 0
8 0 0 0 1 0 0 0 0 238 1
9 1 0 0 1 1 1 0 0 1 235

Table 6.8: Numeral dataset 1 : Confusion matrix of fold 2 for Model-4.

0 1 2 3 4 5 6 7 8 9

0 237 1 0 0 0 0 0 2 0 0
1 0 236 0 0 0 3 0 0 1 0
2 0 4 232 1 0 0 0 2 1 0
3 0 0 2 232 0 0 3 3 0 0
4 0 1 0 0 238 1 0 0 0 0
5 0 0 0 1 3 235 0 1 0 0
6 0 1 1 1 0 2 229 5 1 0
7 1 2 0 1 0 0 0 234 1 1
8 1 0 0 0 0 0 0 0 238 1
9 0 0 0 0 1 1 0 0 2 236

Table 6.9: Numeral dataset 1 : Confusion matrix of fold 3 for Model-4.
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0 1 2 3 4 5 6 7 8 9

0 233 0 0 0 1 1 0 3 2 0
1 0 233 2 0 0 1 1 3 0 0
2 0 3 232 0 0 1 1 2 0 1
3 0 0 1 232 0 0 1 6 0 0
4 0 1 3 1 233 2 0 0 0 0
5 0 1 1 0 4 230 3 1 0 0
6 0 1 0 2 0 0 234 3 0 0
7 1 2 1 0 0 0 2 234 0 0
8 0 1 0 0 3 0 0 0 236 0
9 0 0 2 0 1 0 0 0 1 236

Table 6.10: Numeral dataset 1 : Confusion matrix of fold 4 for Model-4.

0 1 2 3 4 5 6 7 8 9

0 237 0 0 1 0 0 0 0 2 0
1 1 227 6 0 0 2 0 0 3 1
2 0 2 232 0 1 4 0 0 1 0
3 0 0 1 233 0 0 2 4 0 0
4 1 0 0 0 233 1 2 1 2 0
5 1 5 0 0 0 233 1 0 0 0
6 1 1 0 2 0 3 229 4 0 0
7 0 1 1 0 1 2 1 233 1 0
8 0 0 2 0 0 0 0 0 237 1
9 2 1 0 0 0 0 1 0 6 230

Table 6.11: Numeral dataset 1 : Confusion matrix of fold 5 for Model-4.
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LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 95.17% 96.73% 97.08% 96.47% 97.04%
Fold 2 95.69% 97.13% 97.52% 97.00% 97.65%
Fold 3 95.73% 97.13% 97.69% 97.34% 97.56%
Fold 4 96.78% 97.26% 97.60% 97.39% 97.56%
Fold 4 96.60% 97.30% 97.56% 97.52% 98.26%

Average Accuracy 95.99% 97.11% 97.49% 97.14% 97.61%

Table 6.12: Numeral dataset 2 : Accuracy result of five fold cross validation for fold 1
training images for all CNN models.

LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 96.26% 96.65% 97.21% 97.08% 97.43%
Fold 2 95.30% 96.34% 97.30% 96.60% 96.73%
Fold 3 95.86% 97.00% 97.69% 97.13% 97.47%
Fold 4 96.34% 96.68% 96.60% 97.17% 97.86%
Fold 5 96.43% 97.69% 97.69% 97.52% 97.69%

Average Accuracy 96.03% 96.90% 97.49% 97.10% 97.43%

Table 6.13: Numeral dataset 2 : Accuracy result of five fold cross validation for fold 2
training images for all CNN models.

6.2 5 fold cross validation - Numeral dataset 2

As described earlier numeral dataset 2 contain 14000 images means for each numeral

there is 1400 images. Folds and cases are generated as describe for numeral dataset 1. In

each fold 11200 images for training and 2800 images for testing. Now to know which CNN

model performs better to train the folds, training part of all folds are further divided into

five fold, for example for Fold 1 if training images are divided into folds, in each case

8960 images for training and 2240 images for testing and the procedure is same as with

whole dataset for a particular fold case. And this folds are trained and tested for all five

CNN models, to get best model from all five and train with this model and get accuracy

for numeral dataset 2. These accuracy results are shown in table 6.12 to 6.16.

Here, from all this accuracy results, Model-4 works better than other models. So, now

this Model-4 is used for training five fold cases of numeral dataset 1 and average accuracy

is calculated. Also this test performs for LeNet-5 for comparison purpose and generated

results are shown in table 6.17. And confusion matrix for all folds are also shown in table

6.18 to 6.22.
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LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 95.78% 97.00% 97.86% 97.13% 97.73%
Fold 2 95.95% 96.91% 97.21% 97.30% 97.56%
Fold 3 96.08% 97.04% 97.47% 97.26% 97.65%
Fold 4 95.56% 97.30% 97.69% 97.47% 97.82%
Fold 5 96.13% 96.30% 97.82% 97.43% 97.26%

Average Accuracy 95.90% 96.91% 97.61% 96.71% 97.60%

Table 6.14: Numeral dataset 2 : Accuracy result of five fold cross validation for fold 3
training images for all CNN models.

LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 96.26% 97.13% 97.56% 97.21% 97.60%
Fold 2 96.34% 97.17% 97.60% 96.69% 97.69%
Fold 3 96.78% 97.04% 97.43% 97.08% 97.73%
Fold 4 95.65% 96.82% 97.47% 97.26% 97.69%
Fold 5 95.73% 97.34% 98.43% 97.69% 98.43%

Average Accuracy 96.15% 97.10% 97.69% 97.18% 97.82%

Table 6.15: Numeral dataset 2 : Accuracy result of five fold cross validation for fold 4
training images for all CNN models.

LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 95.95% 97.08% 97.56% 97.17% 97.73%
Fold 2 95.65% 97.34% 96.60% 97.26% 97.73%
Fold 3 96.34% 97.26% 97.39% 97.17% 97.56%
Fold 4 96.65% 96.91% 97.26% 97.39% 98.00%
Fold 5 95.78% 97.56% 97.73% 97.52% 97.78%

Average Accuracy 96.07% 97.23% 97.50% 96.30% 97.76%

Table 6.16: Numeral dataset 2 : Accuracy result of five fold cross validation for fold 5
training images for all CNN models.

LeNet-5 Model-4

Fold 1 96.07% 97.75%
Fold 2 96.60% 97.89%
Fold 3 95.89% 97.75%
Fold 4 96.14% 97.60%

Fold+ 5 95.60% 97.71%

Average Accuracy 96.18% 97.74%

Table 6.17: Numeral dataset 2 : Accuracy result of five fold cross validation for LeNet-5
and Model-4.
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0 1 2 3 4 5 6 7 8 9

0 273 0 0 0 1 0 0 4 2 0
1 0 271 4 0 0 2 2 0 0 1
2 0 3 270 0 0 0 1 1 4 1
3 0 0 1 274 0 0 2 3 0 0
4 1 0 1 0 275 1 2 0 0 0
5 0 0 0 0 0 278 1 1 0 0
6 0 0 0 0 1 3 268 8 0 0
7 0 0 0 2 0 0 0 278 0 0
8 0 0 0 0 2 0 0 0 277 1
9 1 0 0 0 1 0 1 0 7 270

Table 6.18: Numeral dataset 2 : Confusion matrix of fold 5 for Model-4.

0 1 2 3 4 5 6 7 8 9

0 278 0 0 0 0 0 1 0 1 0
1 0 277 2 0 0 1 0 0 0 0
2 0 6 271 1 2 0 0 0 0 0
3 0 0 1 269 0 0 3 7 0 0
4 0 2 0 1 274 1 1 0 1 0
5 0 2 0 0 4 272 2 0 0 0
6 0 0 0 1 0 0 278 1 0 0
7 1 0 0 3 0 0 6 270 0 0
8 1 1 0 0 0 0 0 0 277 1
9 1 0 0 0 1 0 0 1 1 276

Table 6.19: Numeral dataset 2 : Confusion matrix of fold 5 for Model-4.

0 1 2 3 4 5 6 7 8 9

0 274 0 0 0 0 0 1 2 3 0
1 0 272 6 0 1 0 0 0 0 1
2 0 5 271 1 0 1 1 0 1 0
3 0 0 0 272 0 0 3 5 0 0
4 0 0 0 0 274 1 2 3 0 0
5 0 1 2 1 1 275 0 0 0 0
6 0 0 1 1 2 0 269 7 0 0
7 1 0 0 5 0 1 1 272 0 0
8 0 1 0 0 0 0 0 0 278 1
9 0 0 0 0 0 0 0 0 1 279

Table 6.20: Numeral dataset 2 : Confusion matrix of fold 5 for Model-4.

37



0 1 2 3 4 5 6 7 8 9

0 268 0 1 0 0 0 0 4 5 2
1 0 276 1 0 1 0 0 0 0 2
2 0 7 270 0 0 1 0 1 1 0
3 0 0 1 277 0 0 1 1 0 0
4 0 1 0 1 278 0 0 0 0 0
5 0 0 1 0 0 277 2 0 0 0
6 1 2 1 1 3 0 265 6 0 1
7 5 0 0 2 0 0 7 265 0 1
8 0 0 1 0 0 0 0 0 278 1
9 0 0 0 0 0 0 0 0 3 277

Table 6.21: Numeral dataset 2 : Confusion matrix of fold 5 for Model-4.

0 1 2 3 4 5 6 7 8 9

0 276 0 1 1 0 0 0 0 1 1
1 0 276 2 0 0 0 0 1 1 0
2 0 5 272 1 0 1 0 1 0 0
3 0 0 1 271 0 0 5 3 0 0
4 0 0 1 0 279 0 0 0 0 0
5 0 2 1 0 0 277 0 0 0 0
6 0 1 0 2 2 2 269 4 0 0
7 5 0 2 3 1 3 0 264 0 2
8 5 0 0 0 0 0 0 0 274 1
9 0 0 0 0 0 0 0 0 2 278

Table 6.22: Numeral dataset 2 : Confusion matrix of fold 5 for Model-4.
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LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 95.62% 96.58% 97.20% 96.70% 97.54%
Fold 2 97.12% 97.41% 97.05% 97.87% 97.87%
Fold 3 96.25% 96.70% 97.54% 97.16% 97.79%
Fold 4 94.95% 96.20% 97.12% 96.66% 97.25%
Fold 5 95.04% 96.66% 97.20% 97.20% 96.91%

Average Accuracy 95.79% 96.71% 97.22% 97.11% 97.47%

Table 6.23: Numeral dataset 1 : Accuracy result of five fold cross validation for all CNN
models.

0 1 2 3 4 5 6 7 8 9

0 1378 0 3 1 0 0 0 5 7 6
1 0 1366 10 1 5 4 2 0 6 6
2 0 55 1296 1 9 11 1 2 21 4
3 0 0 7 1329 5 3 24 32 0 0
4 3 7 0 2 1377 3 2 0 6 0
5 0 5 7 0 5 1378 4 0 0 1
6 1 12 0 9 13 12 1234 116 0 3
7 17 4 2 22 2 6 20 1325 0 2
8 5 3 0 0 2 0 0 0 1383 7
9 0 3 0 0 0 0 1 2 28 1366

Table 6.24: Confusion matrix of numeral dataset 2 tested on trained Model-4 with nu-
meral dataset 1.

6.3 Numeral dataset 1 for training and dataset 2 for

testing

In this case whole numeral dataset 1 of 12000 is used for training and dataset 2 of 14000

images is used for testing. Here, in this case model is trained with whole dataset 1, thus

first it is divided into five folds and with these folds all five models are trained and tested,

generated results are shown in table 6.23. Model-4 gives best accuracy compared to other

model, so it is used for train with whole dataset 1. And this trained model is tested using

dataset 2. Accuracy obtained with this experiment is 95.94% with Model-2 and 93.36%

with LeNet-5. Confusion matrix for this result is shown in table 6.24.
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LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 96.07% 96.71% 97.64% 97.07% 97.75%
Fold 2 96.60% 97.35% 97.92% 97.89% 97.89%
Fold 3 95.89% 97.50% 97.92% 97.39% 97.75%
Fold 4 96.14% 97.07% 97.67% 97.57% 97.60%
Fold 5 95.60% 97.25% 97.67% 97.03% 96.71%

Average Accuracy 96.18% 97.17% 97.76% 97.39% 97.74%

Table 6.25: Numeral dataset 2 : Accuracy result of five fold cross validation for all CNN
models.

0 1 2 3 4 5 6 7 8 9

0 1174 0 0 2 1 0 0 13 7 3
1 0 1151 17 1 2 12 8 4 5 0
2 0 25 1157 2 1 5 1 6 1 2
3 0 1 6 1162 0 1 16 14 0 0
4 2 5 12 4 1129 27 13 1 5 2
5 2 29 9 1 8 1143 4 2 0 2
6 1 6 3 33 1 5 1128 14 3 6
7 12 10 8 4 0 5 24 1131 5 1
8 3 2 3 2 4 0 0 0 1182 4
9 5 0 5 1 6 3 3 4 20 1153

Table 6.26: Confusion matrix of numeral dataset 1 tested on trained Model-2 with nu-
meral dataset 2.

6.4 Numeral dataset 2 for training and dataset 1 for

testing

In this case whole numeral dataset 2 of 14000 is used for training and dataset 1 of 12000

images is used for testing. Here, in this case model is trained with whole dataset 2, thus

first it is divided into five folds and with these folds all five models are trained and tested,

generated results are shown in table 6.25. Model-2 gives best accuracy compared to other

model, so it is used for train with whole dataset 2. And this trained model is tested using

dataset 1. Accuracy obtained with this experiment is 95.91% with Model-4 and 93.72%

with LeNet-5. Confusion matrix for this result is shown in table 6.26.

6.5 5 fold cross validation - Character dataset

As described earlier character dataset contain 88751 images. Folds and cases are gener-

ated as describe for numeral dataset 1. Now to know which CNN model performs better
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LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 92.31% 95.66% 96.47% 96.21% 96.86%
Fold 2 92.23% 95.43% 96.54% 95.95% 96.74%
Fold 3 92.12% 95.64% 96.52% 95.73% 96.65%
Fold 4 92.09% 95.42% 96.54% 95.85% 96.75%
Fold 5 92.31% 95.46% 96.43% 95.89% 96.71%

Average Accuracy 92.21% 95.52% 96.50% 95.92% 96.74%

Table 6.27: character dataset : Accuracy result of five fold cross validation for fold 1
training images for all CNN models.

LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 92.19% 95.33% 96.69% 95.80% 96.78%
Fold 2 92.53% 95.45% 96.53% 95.76% 95.71%
Fold 3 92.47% 95.44% 95.60% 96.05% 96.54%
Fold 4 92.48% 95.57% 96.56% 95.97% 96.93%
Fold 5 92.35% 95.60% 96.45% 95.97% 96.60%

Average Accuracy 92.40% 95.47% 96.56% 95.91% 96.71%

Table 6.28: character dataset : Accuracy result of five fold cross validation for fold 2
training images for all CNN models.

to train the folds, training part of all folds are further divided into five fold, for example

for Fold 1 if training images are divided into folds, and the procedure is same as with

whole dataset for a particular fold case. And this folds are trained and tested for all five

CNN models, to get best model from all five and train with this model and get accuracy

for character dataset. Model-4 gives more accuracy than other models. This model is

used for five fold cross validation and accuracy obtained from this is 97.09%. And it is

also train and tested using LeNet-5 for comparision and its accuracy is 92.73%.

Here, from all this accuracy results, Model-4 works better than other models. So, now

LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 92.82% 95.56% 96.64% 95.83% 96.65%
Fold 2 92.44% 95.51% 96.75% 95.97% 96.78%
Fold 3 92.54% 95.54% 96.73% 95.95% 96.71%
Fold 4 92.15% 95.54% 96.59% 96.03% 96.66%
Fold 5 92.16% 95.43% 96.49% 95.52% 96.48%

Average Accuracy 92.42% 95.51% 96.64% 95.86% 96.65%

Table 6.29: character dataset : Accuracy result of five fold cross validation for fold 3
training images for all CNN models.
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LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 92.30% 95.76% 96.76% 96.14% 96.86%
Fold 2 92.61% 95.78% 96.55% 96.09% 96.68%
Fold 3 91.89% 95.38% 96.39% 95.75% 96.62%
Fold 4 92.64% 95.55% 96.47% 95.65% 96.89%
Fold 5 92.64% 95.86% 96.73% 95.59% 96.81%

Average Accuracy 92.41% 95.67% 96.58% 95.84% 97.82%

Table 6.30: character dataset : Accuracy result of five fold cross validation for fold 4
training images for all CNN models.

LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 91.74% 95.35% 96.18% 95.73% 96.64%
Fold 2 92.44% 95.43% 96.53% 96.04% 96.88%
Fold 3 91.78% 95.34% 96.52% 95.88% 96.78%
Fold 4 92.50% 95.72% 96.58% 95.80% 96.58%
Fold 5 92.59% 95.74% 96.70% 96.18% 96.85%

Average Accuracy 92.21% 95.51% 96.50% 95.92% 96.74%

Table 6.31: character dataset : Accuracy result of five fold cross validation for fold 5
training images for all CNN models.

this Model-4 is used for training five fold cases of character dataset and average accuracy

is calculated. Also this test performs for LeNet-5 for comparison purpose and generated

results are shown in table 6.32.

6.6 MNIST dataset for training and testing

MNIST contains 60000 images for training and 10000 images for testing. Now for compar-

ison purpose, all five models are trained and tested using MNIST. First training images of

dataset is divided into five fold and with this folds, five fold cross validation is performed

LeNet-5 Model-4

Fold 1 92.87% 97.09%
Fold 2 93.11% 97.07%
Fold 3 92.43% 97.10%
Fold 4 92.50% 96.97%
Fold 5 92.78% 97.24%

Average Accuracy 92.73% 97.09%

Table 6.32: character dataset : Accuracy result of five fold cross validation for LeNet-5
and Model-4.
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LeNet-5 Model-1 Model-2 Model-3 Model-4

Fold 1 98.91% 98.90% 98.96% 98.98% 98.99%
Fold 2 98.77% 98.89% 99.09% 99.10% 99.11%
Fold 3 98.92% 99.07% 99.01% 99.14% 98.99%
Fold 4 98.79% 98.91% 98.90% 98.98% 98.87%
Fold 5 98.94% 99.18% 99.09% 99.15% 99.13%

Average Accuracy 98.86% 98.99% 99.01% 99.07% 99.01%

Table 6.33: MNIST dataset : Accuracy result of five fold cross validation for all CNN
models.

for all models. For this dataset model-3 gives accuracy in five fold cross validation of

training set. So, with Model-3 and LeNet-5 are used for training and accuracy results are

generated with test set of MNIST. Accuracy obtained with Model-3 is 99.25% and with

LeNet-5 is 99.14%.
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Chapter 7

Conclusion

The thesis addresses the problem of handwritten Gujarati character recognition through

deep learning techniques. Experiments are carried out on two large numeral datasets and

one character dataset. LeNet5 and 4 other deep neural networks are employed for the

task. All the models perform well but the best performance is achieved through ILeNet.
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