
Memory Flow Generation and Validation

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Kothari Aman Dilip

14MCEC12

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Memory Flow Generation and Validation

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Kothari Aman Dilip

(14MCEC12)

Guided By

Mr. Vivek Garg Prof. Jitali Patel

External Guide Internal Guide

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Certificate

This is to certify that the major project entitled ”Memory Flow Generation and

Validation” submitted by Kothari Aman Dilip (Roll No: 14MCEC12), towards

the partial fulfillment of the requirements for the award of degree of Master of Technology

in Computer Science and Engineering of Nirma University, Ahmedabad, is the record of

work carried out by him under my supervision and guidance. In my opinion, the sub-

mitted work has reached a level required for being accepted for examination. The results

embodied in this major project, to the best of my knowledge, haven’t been submitted to

any other university or institution for award of any degree or diploma.

Prof. Jitali Patel Dr. Priyanka Sharma

Guide & Assistant Professor, Professor,

CSE Department, Coordinator M.Tech - CSE

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Dr. Sanjay Garg Dr. P N Tekwani

Professor and Head, Director,

CSE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, Kothari Aman Dilip, Roll. No. 14MCEC12, give undertaking that the Major

Project entitled ”Memory Flow Generation and Validation” submitted by me, to-

wards the partial fulfillment of the requirements for the degree of Master of Technology

in Computer Science & Engineering of Institute of Technology, Nirma University,

Ahmedabad, contains no material that has been awarded for any degree or diploma in any

university or school in any territory to the best of my knowledge. It is the original work

carried out by me and I give assurance that no attempt of plagiarism has been made.It

contains no material that is previously published or written, except where reference has

been made. I understand that in the event of any similarity found subsequently with any

published work or any dissertation work elsewhere; it will result in severe disciplinary

action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof. Jitali Patel

v

Acknowledgements

First of all, I would like to wholeheartedly thank Mr. Vivek Garg, my mentor and

external guide, for his constant guidance and support. The experiences and knowledge

shared by him motivated me a lot to learn.

I would like to express my profound gratitude to Mr. Ashu Talwar, Section Man-

ager, who had regularly reviewed my work and encouraged me to perform better. His

valuable suggestions had helped me to improve.

It gives me immense pleasure in expressing gratitude to Prof. Jitali Patel, my

internal guide and Assistant Professor, Computer Science Department, Institute of Tech-

nology, Nirma University, Ahmedabad for her valuable guidance and continual encour-

agement throughout this work.

I am highly grateful to Mr. Rajamohan Varambally, Director, TR&D depart-

ment, STMicroelectronics and Dr. Sanjay Garg, Head of the Department, Computer

Science and Engineering, Institute of Technology, Nirma University, Ahmedabad and Dr.

Priyanka Sharma, PG Coordinator, M.Tech CSE for allowing me to carry out my disser-

tation work at STMicroelectronics and gain industrial experience as well.

I would also thank the members of review panel and all the teachers who had given

their valuable suggestions and guided me to improve.

A special thanks to all my friends especially Kunal, Ajinkya, Sandip, Manthan,

who were also my roommates, for keeping me in good mood and supporting me.

I dedicate this work to my parents. Their blessings always gave me inspiration and

strength to carry out this work and complete it.

- Kothari Aman Dilip

14MCEC12

vi

Abstract

SoC chips are designed using IC design cycle. And Memory Layout design is an im-

portant step in the design cycle. It aims to generate various representations of memory

cells, called views, which are used by different vendor tools for designing memory. Ear-

lier, it took around 10-15 months to generate memory layout with given specifications

and technology. To reduce this time, memory generators were developed which can eas-

ily generate layout for a given technology with different specifications. To generate any

layout, the generators need corresponding package of products and the layout thus gen-

erated needs to be validated. Further, layout validation is a resource-intensive process

and could not be carried out on local machines and thus require to be executed on cluster

of computers with availability of load balancing service. This dissertation report focuses

on automation of product compilation into package, monitoring generations launched on

cluster computers and generating job execution statistics to analyze their performance.

A scalable approach has been proposed for product compilation which overcomes the

limitations of previous approach. New scripts have been written for monitoring genera-

tions verified with sufficient test cases. Scripts for generating job statistics have also been

written and put to implementation.

vii

Abbreviations

BE Back End

FE Front End

IC Integrated Cicuit

CAD Computer Aided Design

EDA Electronic Design Automation

CDL Circuit Description Language

GDS Graphic Database System

RTL Register Transfer Level

LSF Load Sharing Facility

RAM Random Access Memory

ROM Read Only Memory

RTM Real Time Monitoring

SoC System on Chip

SGE Sun Grid Engine

viii

Contents

Certificate iii

Statement of Originality v

Acknowledgements vi

Abstract vii

Abbreviations viii

List of Figures xi

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Objective . 2
1.4 Scope of Work . 3
1.5 Project Work Flow . 3
1.6 Tools and Technology . 4
1.7 Thesis Organization . 4

2 Literature Survey 6
2.1 Standard Cell Libraries . 6
2.2 Semi-Custom Design Approach . 7
2.3 Compute Farm and LSF . 8
2.4 make and Makefile . 10

3 Product Compilation 11
3.1 stMake . 11

3.1.1 General Flow of stMake . 11
3.1.2 Existing approach for compiling products 12
3.1.3 Proposed approach for compiling products 13

4 Product Validation and Job Monitoring 16
4.1 Cut Generation . 16
4.2 Job Monitoring . 20
4.3 Implementation . 21

ix

5 Generation Stats 30
5.1 Purpose . 30
5.2 SGE Stats . 30
5.3 LSF Stats . 33

6 Investigation of a new approach in Steps Compilation 37
6.1 Problem Statement . 37
6.2 Proposed Solution . 39
6.3 Implementation Details . 39

7 Conclusion and Future Scope 44

Bibliography 45

x

List of Figures

1.1 Memory Design Cycle . 1
1.2 Project Workflow . 3

2.1 Classification of Views . 7
2.2 A Sample Library Structure . 7
2.3 Queues on a LSF cluster . 8

3.1 Flow depicting stMake call sequence . 12
3.2 Existing Directory Structure . 13
3.3 Product Directory View . 13
3.4 Proposed Directory Structure . 14
3.5 New Directory View . 14

4.1 GUI Window . 17
4.2 GUI Editor Window . 18
4.3 Flows Setup Window . 18
4.4 Operating Conditions Window . 19
4.5 Generator Parameters Window . 19
4.6 Cutgen Run Window . 20
4.7 Output: fetchWorkingDirectory . 22
4.8 Output: updateJobPriority . 23
4.9 Output: findSubJobs . 23
4.10 Output: findTankedJobs . 24
4.11 Output: findLatestGeneration . 24
4.12 Output: removeWorkingDir . 25
4.13 Output: dailyMailAlerts . 26
4.14 Output: findStatus . 27
4.15 Output: filterGenerations-obsolete . 28
4.16 Output: filterGenerations-cancelled . 28
4.17 Output: filterGenerations-failed . 28
4.18 Output: filterGenerations-workArea . 29

5.1 SGE Stats Working Mechanism . 31
5.2 SGE Stats Flow . 32
5.3 RTM dashboard . 33
5.4 Curl Query . 34
5.5 Stats Log file . 35
5.6 Stats CSV file . 35
5.7 Generated Libraries Lookup . 36

xi

6.1 Procedure call in Steps Flow . 37
6.2 Procedure connectDB . 40
6.3 Procedure fetchColumn . 40
6.4 Procedure addColumn . 41
6.5 Procedure insertData - Part1 . 42
6.6 Procedure insertData - Part2 . 42
6.7 Procedure deleteData and disconnectDB 43

xii

Chapter 1

Introduction

1.1 Background

System-on-Chips(SoCs) are widely used today in mobile phones, modems, DVD players,

television and many more consumer electronic products. It is generally an integrated

circuit(IC) which includes all the components of a computer like microprocessor, memory

blocks including peripherals, external interfaces like USB, Ethernet, power management

circuits.

Figure 1.1: Memory Design Cycle1

1

For designing SoCs, the typical IC design cycle is to be followed[1]. The design cycle is

shown in figure 1.1. We would focus on Physical Design Step. This step converts circuit

description (schematics) into geometrical representations(layout). The physical design

step is further split into: floorplanning, routing and placement, design optimization and

validation.

We are concerned with designing memories for SoC. Memories are classified as primary

memory like RAM and ROM, based on technology like 65nm, 45 nm, 32 nm, etc.

1.2 Motivation

The software team develops and delivers physical layout of memory as products. A

product is a set of documentation, files to be used with commercial tools, or tools written

in various programmable languages. Generally, the product specifications are stated by

a client according to its requirements.With the manual approach, it took around 10-15

months to develop a complete product with given specifications. So, if a product has been

designed with one set of parameters and a client comes with different set of parameters,

the whole design process has to be repeated. This would again take around 10-15 months.

In this way, the throughput using manual approach was less in terms of time compared

to client needs. Thus, an approach to automate the physical design process was needed

which could reduce overall product development time drastically.

A new design approach has been followed since then that is to develop memory gener-

ators. Memory generator is a set of scripts which when compiled and run would generate

memory layout with configurations specified by user. This means generators are dedi-

cated to memory. So, we save time on generating different configurations by developing

generators for different technologies and kinds of memory. Having developed generators,

we are further required to speed up the process of generating views and validate them.

[2]

1.3 Objective

The objective of this project is to optimize the process of product generation in terms of

execution time and scalability, support product generation infrastructure and implement

job monitoring tasks.

1Courtesy:en.wikipedia.org/wiki/Physical design (electronics)

2

1.4 Scope of Work

Different BE views are generated using dedicated memory generator which make use of in-

put specification files and EDA products provided by vendors. The views once developed

are validated by repetitive cut generations(configuration), where different parameters are

passed to them. These generations requires substantial resources in the form of process-

ing power and storage, so they are submitted to a computing facility in the form of jobs.

Further, the jobs need to be monitored and appropriate actions are to be initiated based

on their status.

1.5 Project Work Flow

Figure 1.2: Project Workflow

3

1.6 Tools and Technology

• Operating System

– RedHat Linux

• Languages

– TCL - TCL stands for Tool Command Language. It is a fast, dynamic, pow-

erful and easy to learn scripting language. It is capable of doing variety of

file handling and text processing tasks. It is useful in web applications and

desktop applications, simulation softwares, networking, testing and in many

other areas. It is also open source, cross platform, easily deployable and highly

extensible language.

– Bash - Bash stands for Bourne-again shell. Bash, as the name suggests, is a

replacement of shell(sh). Bash scripts usually run in Unix (or Linux) terminals

and carry out utility tasks.

• Tools

– VNC - VNC stands for Virtual Network Computer. Basically, VNC is desktop

sharing system. It is based on client server model. Therefore, many clients

can connect to main server simultaneously. VNC is widely used to provide

technical support remotely or when someone has to access some files at different

locations.

1.7 Thesis Organization

In chapter 1, an introduction is given about the project domain and motivation behind

the problem definition is discussed. We also state the objective of the project and the

scope of work along with general work-flow of the project.

In chapter 2, we have shown the literature survey done to gain knowledge about

various tools and setups used and concepts related to the project.

In chapter 3, we discuss product compilation and the limitations of its existing ap-

proach. We also propose a new scalable approach for the same.

4

In chapter 4, we see the cut generation process and discuss about launching gener-

ations on cluster computers. We see in detail the purpose of all the scripts written for

monitoring jobs.

In chapter 5, we see the accounting mechanism of two well known distributed resource

manager - Sun Grid Engine and Load Sharing Facility. And we also discuss the approach

for generating job statistics for both of these facilities.

In chapter 6, we investigate a new approach which is intended to replace existing

approach of Steps Compilation.

In chapter 7, we conclude about the work done and also discuss what would be the

future scope of work.

5

Chapter 2

Literature Survey

2.1 Standard Cell Libraries

Cells play an important role in chip designing. Cells are basic components which perform

logical functions like AND, OR, NOT, NAND, NOR, XOR. The collection of such basic

cells is called Standard Cell Library. A library may also contain complex functions

like Full-Adder, Comparator, Multiplexer,etc [3]. They are required by most of the CAD

tools for designing chips. The main purpose of such tools is to implement RTL-to-GDS

flow.

• RTL - The input to physical design in the form of circuit description language.

• GDS - The final output from physical design process is full chip layout and it is in

GDS2 format.

To produce a design which is functionally correct and meets all specifications, a com-

bination of CAD tools is required in design flow. These tools require some specific in-

formation but in different formats for each of the cell in library provided for designing.

Such different formats are made available in the form of Views.

A view is a particular representation of a cell. A standard cell is delivered as a set

of views. The classification of views is shown in figure 2.1. Of these, the BE views are

related to the physical design of a cell and in that we are concerned with the layout views.

The layout views are represented in GDS2 format.

6

Figure 2.1: Classification of Views

In figure 2.2, we see a sample library structure. It is shown that how a set of views

constitute a cell.

Figure 2.2: A Sample Library Structure

2.2 Semi-Custom Design Approach

This approach is preferred for automating the design process. The motive behind follow-

ing this approach is to reduce the design cost as well as design time by reusing standard

cells. If a cell is required repetitively, then rather than creating cell manually each time,

the logic of previous cell instance is reused. The only limitation here is reduced scope of

optimization as designer loses control of layout.It is rather advisable to manually create

our own optimized cells and further use them in a semi-custom layout manner. [3][4]

7

2.3 Compute Farm and LSF

Compute Farm is a network of distributed servers which delivers high performance com-

puting required for CAD design or software development.

A load balancing application by IBM, called Load Sharing Facility (Platform LSF),

aggregates many servers to optimize the run time of users’s jobs. LSF provides transpar-

ent access to all available resources, monitors activity, controls access and distributes the

job workload for optimal performances.[5]

The setup is such that multiple LSF clusters are used. To determine the current LSF

version number and cluster name, following command is used on UNIX terminal:

lsid

To see configuration information about the local cluster like number of LSF server

hosts, administrator’s account name, status of cluster , following command is used:

lsclusters

Jobs submitted to a LSF cluster are enqueued in 5 standard queues for depending on

job patterns.

Figure 2.3: Queues on a LSF cluster

The queues are categorized as interactive queue, batch queues and bigmem queue and

each have separated pool of servers. The standard queues are shown in figure 2.3.

8

• GUI queue - They are meant for interactive jobs that are neither CPU intensive

nor memory intensive.

• Short queues - They are meant for jobs which consume less than 30 minutes of CPU

time.

• Reg queues - They are meant for parallel jobs.

• Long queues - They are meant for jobs which consume more than 30 minutes of

CPU time and not many of them are parallel.

• Bigmem queues - They are meant for jobs which require more than 16GB of memory.

All the queues provided by an LSF cluster can be viewed by running the following

command on UNIX terminal:

bqueue

This command displays information like queue name, queue priority, queue status, and

statistics related to jobs state.

A similar distributed resource manager is Sun Grid Engine. It has following features[6]:

• Scalability - It is highly scalable. There are customers using SGE with thousands

of machines processing millions of jobs per month.

• Flexibility - It is customizable and fits to customer’s needs.

• Reliability - It requires minimal maintenance effort and there are less chances of

failures.

• Advanced scheduler - It provides variety of scheduling policies for fine-tuning job

distribution. Using these policies, an organization could configure SGE to make its

scheduling decisions match their business rules.

Few relevant use cases of these distributed computing facilities is as follows.

• Many EDA software vendors use these facilities to launch and manage large number

of regression tests. The tests are submitted as thousands of jobs to be run on cluster.

As soon as a test is completed on any of the machines, remaining tests are launched

on it. This way the machines are kept busy until all the tests are completed.

9

• These facilities are also used to manage software licenses. During software simula-

tions or tests, it is required to acquire license to use some external tools. The need

for licenses could be reflected through job submission and there will be assurance

that no more licenses are used than are available.

2.4 make and Makefile

When a large project is being developed with many of its modules dependent on each

other, compilation becomes time consuming. Even if slight changes are done in a mod-

ule, whole project needs to be recompiled. This causes the development of the project to

slowdown. To avoid such an issue, a UNIX utility command ’make’ is used. The make

utility automatically determines which modules of a large project need to be recompiled,

and issue the commands to recompile them.[5]

make searches for the information about dependency among modules. This informa-

tion is stored in a file called Makefile. Thus, each time when changes are done to one or

more module and project needs to be compiled, make would search Makefile first, extract

the dependencies and only compile those files which are affected by the change. This

helps in saving time for unnecessary compilation during development and debugging of

modules. Structure of Makefile is as follows:

Target : Dependencies ...

Commands

........

........

• Target is the dependent file which needs to be created if there is any change in

dependency or if it is an older file than the dependency. A target may have more

than one dependency.

• Dependency It is a file that used as input to create the target.

• Commands Set of actions carried out by make

10

Chapter 3

Product Compilation

In section 2.4, we discussed about the make utility in UNIX and how it uses Makefile to

compile large projects. We are using a similar utility, known as stMake, which has some

functionalities added over the traditional make command. stMake was created to provide

ease-of-use to developers while dealing with memory designing projects. We will now see

that how stMake is implemented and suggest improvements in its use.

3.1 stMake

stMake is used within UNIX systems and requires TCL 8.0 or higher versions. It is also

mandatory that it finds command gmake. stMake is fully compatible with gmake.

To have specific stMake actions enabled the Makefile must be constructed according

to an already defined template. stMake provides different set of functionalities depending

on the type of actions to be performed. Each set of actions is called a required library

and whichever libraries are strictly required must be mentioned in Makefile.

3.1.1 General Flow of stMake

Whenever we need to execute stMake command, we do not directly run the command on

terminal. Rather we have made a wrapper file which initiates the stMake flow. The flow

can be seen in 3.1.

• The wrapper file is named stMake.cmd. The reason behind using the wrapper is to

provide abstraction layer. The user will run the command stMake.cmd on terminal.

This which would invoke a call to stMake.Compile.

11

Figure 3.1: Flow depicting stMake call sequence

• In stMake.Compile, we check the path and existence of Makefiles and set all the

required environment variables. Finally, stMake is invoked.

3.1.2 Existing approach for compiling products

Th directory structure is shown in figure 3.2. There are three main directories used during

the entire compilation process:

1. source - It is the product source directory. It includes dedicated directories for all

main products. All the subproducts corresponding to a main product are kept in

dedicated directories, as shown in figure 3.3.

2. install - After compilation, the product is installed in this directory.

3. build - This directory stores log files and temporary files generated during compi-

lation.

The approach here is to compile each and every subproduct manually to build the

main product. That means user had to visit each subproduct directory and run the make

command. It has following limitations:

1. Time consuming as it is a manual approach and makes it more difficult if any

subproduct is added further.

2. The Makefile for same subproduct in different products were almost redundant.

So, to make change in the common code of Makefile, all the Makefiles had to be

modified. Thus, it did not support scalability.

12

Figure 3.2: Existing Directory Structure

Figure 3.3: Product Directory View

3.1.3 Proposed approach for compiling products

In the proposed architecture, we aim to automate the compilation process and also remove

redundancy of common code. The proposed directory structure is shown in figure 3.4.

A new directory named stCompilerTools has been added which will include all the

makefiles for different subproducts, as shown in figure 3.5. This means that for any

13

Figure 3.4: Proposed Directory Structure

number of products, there would only be one Makefile for their common subproducts.

Figure 3.5: New Directory View

The advantage is that:

1. Now, the Makefiles for common subproducts would not be duplicated.

2. New Makefiles would be added only when new subproducts need to be compiled.

14

3. User does not need to visit each and every subproduct directory. A single command

needs to be run with varying parameters for compilation.

4. Automatic generation of ’install’ and ’build’ area is also handled, in case they do

not already exist.

The proposed automation approach fares better in terms of scalability and time con-

sumption when compared to existing manual approach.

15

Chapter 4

Product Validation and Job

Monitoring

After product compilation, next step is to validate the product. Validation checks are

performed to check whether the product is properly generated i.e. no input files were

missing, whether it can generate various configurations or not. This step is also called

Cut Generation.

4.1 Cut Generation

The task of cut generation is carried out with help of memory generator. Another inbuilt

product named ValidKit provides commands to initiate cut generation.

The detailed steps for initiating cut generation are as follows:

1. The latest configuration file of the generator is downloaded for which we want to

run cut generation.

2. Generate prod and .prod files.

• .prod file contains list of all the products needed by the generator

• prod file contains detailed information such as full path of products and their

version.

3. Create new area where the products mentioned in .prod would be sourced.

4. Source all the products required by the generator from common product repository.

16

5. Run command createGenFile to generate temporary files needed for cut generation.

6. Finally, run command showGui which would display GUI for specifying parameters

and start cut generation as a background process.

The steps for cut generation with GUI are as follows:

1. On running the command showGui, the following window appears at first: As

Figure 4.1: GUI Window

shown in figure 4.1, we have the option of selecting which type of views have to be

generated - Front End, Back End or both. The name of available generators are

also mentioned, which will be used to generate the views.

2. After selecting type of views and generator, the following window appears, where

we see options to select various parameters and feed their values.

3. In figure 4.3 and 4.4, we see parameter window for Flows Setup and Operating

Conditions respectively.In Flows Setup, we provide path of the directory, where the

library would be created, along with library name. While in Operating Conditions,

we provide values for Temperature and Voltage. We also have the option of selecting

default values and check where the values are valid or not.

17

Figure 4.2: GUI Editor Window

Figure 4.3: Flows Setup Window

4. In figure 4.5, we see Generator Parameters window. Here we specify Cut name,

words, bits, mux and other parameters. We also have the option of generating

Cut name and further compute other parameters for it.

5. In the last step, we select desired cuts and click OK to run generation in background,

as shown in figure 4.6

18

Figure 4.4: Operating Conditions Window

Figure 4.5: Generator Parameters Window

After completion of generation, we get a library containing all the views intended for

product validation. All the views undergo validation checks like Design Rule Check and

Layout versus Schematic checks. If they pass the checks, then the libraries are sent to the

fabrication team for chip fabrication. But if any of the views are found incorrect, then

the whole process of cut generation would repeat after debugging and fixing the bugs in

the product.

19

Figure 4.6: Cutgen Run Window

4.2 Job Monitoring

Cut generation is a resource intensive process. It requires enough processing power as

various checks are performed. And when multiple cut generations are to be run simulta-

neously or otherwise, it is not feasible to run it on a single machine. Thus, cut generations

are submitted as jobs on LSF. This process is also known as launching generations. As

discussed in section 2.3, the jobs are en-queued in different queues depending on job

pattern. Most of the generations are submitted as interactive jobs but they may not

necessarily be en-queued in Interactive queue, depending on their requirement.

The following command is used to submit job on LSF in UNIX:

bsub

Here is an example of submitting a GUI job on LSF: bsub -q long -p misc -I genGui

• Option q denotes queue type, in this case it is long queue.

• Option p denotes name of project, in this case it is misc.

• Option I denotes that that it is an interactive job and takes the name of GUI

application.

To see all the jobs submitted to LSF, following command is used:

20

bjobs

For each job it will display details like:

• JOBID - a unique id assigned by LSF to each job

• USER - name of user who submitted the job

• STAT - status of job like RUN, PEND, DONE etc.

• JOB NAME - name of the job

• EXEC HOST - host where job is executed

• EXEC CWD - current working directory on EXEC HOST

• SUBMIT TIME - time of job submission

There are many more information headers provided by bjobs command which are useful

in extracting details about jobs and use them as required.

We will now see the implementation of various scripts written for job monitoring and

also performing tasks post cut generation.

4.3 Implementation

The following scripts are executed as terminal commands. Each of the scripts use bjobs

command and extract details about the jobs:

1. fetchWorkingDirectory

The options accepted by this script are:-

• -area (directory) - the main directory where all the generations directories are

kept

• -run - seek directories for currently running jobs

• -nrun - seek directories where no jobs are running

• -workdir (directory) - seek specified generation directory

• -trange (start date, end date) - seek generations from a specified time period

• -failed - seek directories for failed generations

21

• -user (text/pattern) - seek directories for jobs launched by specified user

• -lib (text/pattern)- seek directories which contain specified library pattern

• -config (text/pattern) - seek directories which contain specified config pattern

• -echoDir - only display list of resultant directories

The task of this script is to fetch generation directories depending on the param-

eters passed. A generation directory contains all the information about the input

specifications and cut generation. The resultant list of directories enable user to

take further desired actions. A sample output for this script is shown in figure 4.7

Figure 4.7: Output: fetchWorkingDirectory

2. updateJobPriority

The options accepted by this script are:-

• -priority (integer) - the new priority to be given to job

• -workdir (directory) - update priority for jobs found in specified generations

directory

• -user - update priority for jobs launched by specified user

22

The task of this script is to update priority of pending jobs depending on the

parameters passed. Higher number denotes higher the priority but maximum and

minimum priority values are 100 and 1 respectively. Default priority is 50. Output

is shown in figure 4.8.

Figure 4.8: Output: updateJobPriority

This script uses command bmod, available in LSF to change the priority. The com-

mand is run as follows: bmod JOBID -sp new priority value

e.g. bmod 755891 -sp 51

3. findSubJobs

The options accepted by this script are:-

• -area (directory) - find sub-jobs in the main directory

• -workdir (directory) - find sub-jobs in the specified generation directory

This script finds sub-jobs in the specified main directory. This script is also called

by other scripts to use its functionality. A sample output for this script is shown

in figure 4.9

Figure 4.9: Output: findSubJobs

4. findTankedJobs

The options accepted by this script are:-

• -cutoffTimeMain (integer) - cut-off time for main jobs

23

• -cutoffTimeSub (integer) - cut-off time for sub-jobs

• -cutoffTimePend (integer) - cut-off time for pending jobs

• -orphan - find sub-jobs which do not have any parent job running

This script displays jobs which are taking more time than the specified cut-off time.

In most of the cases, such jobs have to be killed. Output is shown in figure 4.10.

Figure 4.10: Output: findTankedJobs

5. findLatestGeneration

The options accepted by this script are:-

• -lt - enables search for latest generations

• -workdir (directory) - search specified directory for generations

This script checks and displays whether a generation is the latest one to be launched

or is an older one. Output is shown in figure 4.11.

Figure 4.11: Output: findLatestGeneration

6. findJobsWithoutWorkDir

The options accepted by this script are:-

• -area (directory) - work area where all the jobs are running

• -kill - enable job killing

This script finds those jobs whose current working directory has been deleted. If

the user has passed option -kill, all such jobs would be killed.

7. setObsolete

The options accepted by this script are:-

24

• -workdir (directory) - directory to be set as obsolete

This script allows to set the specified directory as obsolete so it that it does not

appear in mailing list of failed generations.

8. removeWorkingDir

The options accepted by this script are:-

• -workdir (directory) - generation directory to be removed.

This script checks whether in the specified directory any job is not running or it is

not be kept for debugging or it is obsolete, and deletes them. A sample output for

this script is shown in figure 4.12

Figure 4.12: Output: removeWorkingDir

9. dailyMailAlerts

The options accepted by this script are:-

• -mail - enable mail transfer, if disabled, result is displayed on console.

Display tanked jobs and failed customer generations to stakeholders on a daily ba-

sis, enabling them to take appropriate actions. This scripts serves the purpose of

daily reporting. It would run at specified time intervals, generating results and

sending it over mail. Its scheduling is done using Crontab. A software utility Cron

is a job scheduler available in Unix-based environments helpful for periodically run-

ning jobs. And Crontab (or Cron table) is a configuration file which specifies shell

commands to run periodically.

Internally, this script calls the following two scripts with filters:

(a) findTankedJobs

(b) fetchWorkingDirectory

A sample mail is shown in figure 4.13.

25

Figure 4.13: Output: dailyMailAlerts

26

10. findStatus

The options accepted by this script are:-

• -workdir (directory) - generation directory whose status is to be found.

This script finds the generation status of the input directory. The script is also

called by fetchWorkingDirectory. A sample output is shown in figure 4.14

Figure 4.14: Output: findStatus

11. filterGenerations

The options accepted by this script are:-

• -obs (yes/no) - filter obsolete generations

• -can (yes/no) - filter cancelled generations

• -fail - filter failed generations

• -workArea (directory) - generations dump area

• -echoDir - display generation names excluding other details

The task of this script is to report generation details based on various filters ap-

plied by the user. This script may run independently or may be called from another

script also.

In figure 4.15, we see an example of filtering obsolete generations. The genera-

tions which are older (present in dump directory for a long period of time) and not

relevant are marked obsolete. The figure displays all the obsolete generations only.

Some generations may be cancelled by the user after launching them on cluster.

Figure 4.16 shows an example for the same.

Figure 4.17 shows an example of failed generations. The generations which may

not complete due to some failures and need to be debugged are marked as failed.

27

Figure 4.15: Output: filterGenerations-obsolete

Figure 4.16: Output: filterGenerations-cancelled

Figure 4.17: Output: filterGenerations-failed

Figure 4.18 shows an example where user wants to exclude obsolete and cancelled

generations from the results. Also, until now the default dump diretory was used

to fetch results but in this case user has provided a different dump directory.

28

Figure 4.18: Output: filterGenerations-workArea

29

Chapter 5

Generation Stats

Statistics or Stats of a mechanism in operation are important with the perspective of

enabling stakeholders to analyze performance and take steps to improve it if required. In

this chapter, the algorithm and flow for generating statistics for all the relevant genera-

tions launched on the cluster computing facility - SGE and LSF are discussed.

5.1 Purpose

As the jobs are run on cluster of machines, it happens that they take longer time than

usual for completion. There could be many possible reasons for this delay such as machine

failure, heavy workload on clusters or low priority of jobs. The statistics generated provide

ample information to the administrator to identify such issues and take necessary actions,

for example kill the job, increase priority of desired jobs, or assign the job to a different

machine. One of the crucial factors for monitoring performance of jobs is their run time

and we will focus on calculating this time from avaiable values.

5.2 SGE Stats

Figure 5.1 depicts statistics generation mechanism for SGE. On completion of each job

fired over SunGrid, SGE makes a record in the accounting file. The size of an accounting

file is fixed and as soon as one file size limit is reached, SGE creates another file and starts

writing into it. Also, SGE has its own file naming structure. An accounting entry for a

job includes details like job id, job name, name of queue in which job has run, hostname,

submit time, finish time, project assigned to the job, cluster id and many other details.

Thus, SunGrid itself generates wide array of statistics for the jobs and maintains it over

30

Figure 5.1: SGE Stats Working Mechanism

a large duration.

Now, there could be lots of jobs running in SunGrid carrying out different tasks un-

der different projects. The task is to fetch records of all the relevant jobs i.e. those jobs

which carried out generation and which fall under desired set of projects. As seen in the

figure, this task is accomplished with the help of scripts with varying options in input

parameters. There are three types of input options which can be passed to the scripts:

1. SQL input - In this case, an sql query is made to local database and details of all

the generations are fetched. These details include project name, libraryId, submit

time, finish time, generation status and few more details excluding job details. For

querying, an sql template is used where all the fields to be fetched are already de-

fined. Administrator defines the period over which the statistics generated are to be

obtained in the form of start date and end date. For example, start date is specified

as 12/8/2015 and end date is 12/1/2016, then all the generations completed within

this duration are considered.

2. Working Directory - Here, path of the dump directory for generations is passed. All

the generations found in the directory are considered. Each generation will have

unique libraryId which helps to fetch corresponding job details from accounting

files.

31

3. Recent Hours - To get statistics about the generations completed in recent time this

option is used. Administrator specifies the duration in terms of hours, so that all

the generations completed in the recent given hours are considered. For example,

administrator wants to get statistics about generations completed in last 5 hours.

All the further implementation is done using SQL input.

Figure 5.2 shows the flow of fetching statistics data and filtering it before displaying it

to the administrator.

Figure 5.2: SGE Stats Flow

Let us see basic steps of the flow in detail:

• extractLibraryId - After running the sql query, the result generated is stored in a

log file. One of the columns of the result is libraryID and it is needed to map to the

corresponding jobs. Thus, in this step the libraryID is extracted from the result

and saved for future requirements.

• filterData - In this step , we filter out the required accounting files on the basis of

file modification time. The time range is obtained from the sql log file and all those

32

accounting files whose modification time falls under this range are considered. Now,

as a generation is launched, there could be single job or multiple jobs(one main job

along with multiple sub jobs) for it. But all the jobs corresponding to the generation

are identified by a single libraryId. libraryId is always unique for a generation. Also

the job details could span across multiple accounting files.

• getExecTime - After getting the set of accounting files, the next step is to calculate

the execution time for each job. For each generation, a new csv file is created which

stores all the job details and execution time is appended to it.

• saveCsvFile - The csv files are saved at a particular location according to their

naming convention.

• generateSummary - All the relevant fields necessary to be displayed are fetched and

summary is created.

5.3 LSF Stats

As SGE and LSF are different clustering facilities, their accounting mechanisms also dif-

fer. LSF uses Platform RTM to generate job statistics. RTM is an operational dashboard

provided by IBM for LSF environments which monitors workload and generates reports.

Data is fetched from RTM and saved in a CSV file with the help of curl command in

UNIX.The RTM dashboard is shown in figure 5.3.

Figure 5.3: RTM dashboard

The algorithm implemented for generating LSF stats is as follows:

33

Algorithm: getLSFStats

if workArea is valid directory then

set processingDir = workArea

else if workDir is valid directory then

set processingDir = workDir

else

terminate

foreach directory in processingDir:

if file directory/lsfLibraryId exists then

fetch libraryId from directory/lsfLibraryId

elseif libraryId not found in directory/lsfLibraryId then

fetch it from directory/libraryName

else

terminate

fetch generation type from directory/generation type

set start date = timestamp of file directory/started

set end date = timestamp of file directory/ended

fetch list of various webgen groups from RTM through curl query and set it as grpLst

foreach group in grpLst:

run the curl query

process the output and store the result in a csv file

concatenate all csv files into one csv file corresponding to directory

dump the csv file at csvDumpDir/libraryID/

End of algorithm

A curl query is shown in figure 5.4.

Figure 5.4: Curl Query

Figure 5.5 shows a snapshot of the logfile generated. Proper message generation and

34

error handling is done and a log file is maintained for this purpose. As seen in the figure,

an entry is made for each generation directory encountered and the final status for that

generation is noted. The result stored in csv file is shown in figure 5.6. The execution

Figure 5.5: Stats Log file

time for each job is seen in the results. It is calculated as the difference of start time

and end time of the jobs.The run-time or execution time indicates the time taken for

actual job execution and excludes the waiting time in queues. All these stats generated

also reflect on the Webgen portal in tabular format. This conversion from csv-to-table is

handled by Webgen team.

Figure 5.6: Stats CSV file

Figure 5.7 shows the library lookup form on portal. User could search for generated

libraries by giving any of the search parameters.

35

Figure 5.7: Generated Libraries Lookup

36

Chapter 6

Investigation of a new approach in

Steps Compilation

6.1 Problem Statement

A makefile representing compilation flow consists of various steps. A step denotes a target

and its dependencies. While compilation, all the steps call a common function. This is

depicted in figure 6.1.

Figure 6.1: Procedure call in Steps Flow

37

The algorithm for the procedure is as follows:

Procedure stepCall

store current process id in file pidList

loop:

read pid from pidList

if pid exists i.e. process is running then

break

end of loop

if pid = current process id then

//execution of internal logic

create target file and delete file step.failed

if failure in target file creation then

create step.failed file

append log messages in step.log file

delete file pidList

else

loop:

check if pid exists then

make current process sleep

else

break

end of loop

End of procedure

From the algorithm it can be inferred that each step creates a set of files when the

procedure is called. The files are created only for status indication and logging purpose.

But as the number of steps would increase, more space is consumed by the files. This

issue is one of the main reasons to look out for a better approach. The new approach is

intended to do the following:

1. It should replace existing approach but exhibit same functionality.

2. As can be seen in algorithm, multiple processes could execute the same script simul-

taneously. This property is called concurrency. The existing algorithm synchronizes

38

them to avoid any conflicts. In the same way the new approach must support mech-

anisms to handle concurrent access and maintain proper results.

3. The drawbacks of existing algorithm must be addressed properly.

6.2 Proposed Solution

• After rigorous discussion and analysis, it was decided to replace files with tables. A

suitable database must be used according to requirements. Databases could manage

concurrent access with locks. Also, managing data becomes easier as it provides

structured storage.

• Instead of creating files, creating a single table and using the services of database

seems a convenient method. Table columns would represent files and rows would

represent set of values corresponding to each process. Now, such a database was

needed which was lightweight and had negligible communication overhead along

with lesser consumption of space. The constraints were laid as it were not any high

end application.

• One of the suitable databases for such needs is SQLite. It has following important

features[7]:

1. Zero configuration - There is no setup process for configuration and initiation

of SQLite unlike other databases. Thus starting with SQLite is simple.

2. Serverless - There is no intermediate server and processes accessing database

read and write database fils directly on the disk.

3. Integration with TCL - It is designed to be used easily with TCL scripts. This

gives flexibility to user to embed sql code in TCL.

6.3 Implementation Details

Before proceeding with sql code replacement for steps compilation, some standard pro-

cedures using SQLite were created and tested. These procedures carried out tasks like

connecting and disconnecting with the database, creating a new table, adding columns

to an existing table, inserting and deleting data from the table.

39

Figure 6.2 depicts code for connecting with a database in TCL. A database name is

passed to the procedure. The sqlite3 command checks that if database exists then it will

connect with the database else it will create a new database and then connect with it.

”db” is a handle name which will now control the database.

Figure 6.2: Procedure connectDB

Figure 6.3 depicts code for fetching column names from an existing database. There is

a table named sqlite master which holds information about all the tables in the database.

One of the field names of sqlite master is table name which stores name of all the tables

created in that database. So while fetching column names, we initially check the existence

of table by querying sqlite master. The ”eval” method enables to run sql queries in TCL.

Figure 6.3: Procedure fetchColumn

Figure 6.4 depicts code for adding column to a table. Table name and list of columns

to be added to it are passed to the procedure. If the table exists then its existing columns

are fetched and compared to the column list. Any extra columns are added to the table.

And in case the table does not exist, new table is created. The default data type is ”text”.

There is no separate procedure for creating a new table as this procedure provides the

functionality for the same.

40

Figure 6.4: Procedure addColumn

Figure 6.5 and Figure 6.6 depict the code for inserting data into the table. Table

name and and an array consisting of column name-value pair is passed to the procedure.

It is divided into two parts. The first part checks if there is any mismatch in the number

of input columns and existing columns. And it also checks the validity of column names.

The second part checks if the same set of data already exists in the table. If it does not

exist then data is inserted into the table.

41

Figure 6.5: Procedure insertData - Part1

Figure 6.6: Procedure insertData - Part2

42

Figure 6.7 shows the code for deleting data from a table and disconnecting with the

database.

Figure 6.7: Procedure deleteData and disconnectDB

The procedures were tested and following are the conclusions:

• Sample databases and tables were created and all the operations were performed

successfully over them.

• They were also put to use in Steps Compilation for a single process but without

the internal logic. The results were achieved as inteded.

• Further, testing is to be done with multiple processes running simultaneously and

locking mechanisms are to be explored.

43

Chapter 7

Conclusion and Future Scope

We conclude that the work done till now conforms to the objective of the project. The

proposed approach for product compilation has been implemented and found preferable in

comparison to existing approach. The job monitoring scripts have also been implemented

and tested with various test cases. The scripts have been improved for optimization and

proper results were achieved.

Also the job statistics were successfully generated from LSF. Its verification was done

through internal web portal and statistics were properly reflecting over there.

The investigation of new approach for steps compilation is under progress. Basic

procedures have been created and tested for initiation and further the locking mechanisms

are to be explored in SQLite. Not limiting to a single solution, we intend to explore other

approaches also to get the best possible solution.

44

Bibliography

[1] Wikipedia, “Physical design (electronics) — wikipedia, the free encyclopedia,” 2015.

[Online; accessed 19-December-2015].

[2] A. C. Cabe, Z. Qi, W. Huang, Y. Zhang, M. R. Stan, and G. S. Rose, “A flexible,

technology adaptive memory generation tool,” University of Virginia, 2006.

[3] H. Poornima and K. Chethana, “Standard cell library design and characterization

using 45nm technology,” IOSR Journal of VLSI and Signal Processing (IOSR-JSVP),

vol. 4, pp. 29–33, Jan 2014.

[4] E. Jansson and T. Johansson, “Creation of standard cell libraries in sub-micron pro-

cesses,” 2005.

[5] STMicroelectronics, “Stmicroelectronics internal files and training manuals,” 2015.

[6] templedf(DanT’s Grid Blog-Oracle), “Sun grid engine for dummies,” 2009.

[7] sqlite.org, “Distinctive features of sqlite.” [Online; accessed 10-May-2016].

45

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Background
	Motivation
	Objective
	Scope of Work
	Project Work Flow
	Tools and Technology
	Thesis Organization

	Literature Survey
	Standard Cell Libraries
	Semi-Custom Design Approach
	Compute Farm and LSF
	make and Makefile

	Product Compilation
	stMake
	General Flow of stMake
	Existing approach for compiling products
	Proposed approach for compiling products

	Product Validation and Job Monitoring
	Cut Generation
	Job Monitoring
	Implementation

	Generation Stats
	Purpose
	SGE Stats
	LSF Stats

	Investigation of a new approach in Steps Compilation
	Problem Statement
	Proposed Solution
	Implementation Details

	Conclusion and Future Scope
	Bibliography

