
Applications of Visual Identification &
Verification

Prepared By:

Lekha Agrawal

14MCEC15

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY
AHMEDABAD

May 2016

Applications of Visual Identification
& Verification

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science & Engineering

Submitted By:
Lekha Agrawal

14MCEC15

Guided By:
Prof. Vipul Chudasama

Mr. Harinarayanan K K

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY
AHMEDABAD

May 2016

i

Declaration

I, Lekha Agrawal, 14MCEC15, a student of semester IV, Master of Technology in
Computer Science & Engineering, Nirma University, Ahmedabad, hereby declare that the
project work Applications of Visual Identification & Verification has been carried out
by me under the guidance of Prof. Vipul Chudasama, Department of Computer Science
and Engineering, Nirma University, Ahmedabad. This Project has been submitted in the
partial fulllment of the requirements for the award of degree Master of Technology (M.Tech.)
in Computer Science & Engineering Information and Network Security, Nirma University,
Ahmedabad during the year 2014 - 2016.

I have not submitted this work in full or part to any other University or Institution for
the award of any other degree.

Date: Lekha Agrawal
16th May 2016 14MCEC15

ii

Certificate

This is to certify that the major project entitled ”Applications of Visual Identification
& Verification” submitted by Lekha Agrawal(14MCEC15), towards the partial fulfillment of
the requirements for the award of degree of Master of Technology in Computer Science &
Engineering of Institute of Technology, Nirma University, Ahmedabad, is the record of work
carried out by her under my supervision and guidance. In my opinion, the submitted work
has reached a level required for being accepted for examination. The results embodied in
this project, to the best of my knowledge, havent been submitted to any other university or
institution for award of any degree or diploma.

PROF. VIPUL CHUDASAMA MR. HARINARAYANAN K K
Guide External Guide
Institute of Technology Aindra Systems
Nirma University

DR. SANJAY GARG DR. PRIYANKA SHARMA
Head of Dept., CSE Coordinator, M.Tech (CSE)
Institute of Technology Institute of Technology
Nirma University Nirma University

DR. P. N. TEKWANI
Director
Institute of Technology
Nirma University

iii

iv

Acknowledgement

It gives me immense pleasure in expressing thanks and profound gratitude to Prof.
Vipul Chudasama, Computer Science Department, Institute of Technology, Nirma Uni-
versity, Ahmedabad for his valuable guidance and continual encouragement throughout this
work. The appreciation and continual support he has imparted has been a great motivation
to me in reaching a higher goal. His guidance has triggered and nourished my intellectual
maturity that I will benefit from, for a long time to come.

A special thank you is expressed wholeheartedly to Prof. Vijay Ukani & Prof. Priyank
Thakkar, Computer Science Department, Institute of Technology, Nirma University, Ahmed-
abad for their constant support & valuable guidance thoughout the post graduation program.

I would also like to thank Dr. Sanjay Garg, Honb́le Head of Computer Science and
Engineering Department, Institute of Technology, Nirma University, Ahmedabad for provid-
ing basic infrastructure and healthy research environment.

I would also like to thank Dr. P. N. Tekwani, Honb́le Director, Institute of Technol-
ogy, Nirma University, Ahmedabad for the motivation he has extended throughout course
of this work.

I would also like to thank Mr. Harinarayanan K K & Mr. Nirmal Jith, Aindra
Systems for the guidance and support provided in my internship & the project work.

I would like to thank my all faculty members for providing encouragement, exchanging
knowledge during my post-graduate program.

I also owe my family & classmates in the special thanks for helping & supporting me on
this path and for making project more enjoyable.

Lekha Agrawal
14MCEC15

v

Abstract

The objective of the project is to develop an application that can be used in organizations,
hospitals and educational institutions to keep record of daily attendances/security. The
application is based on Face Recognition & Verification techniques using computer vision
& machine learning. The algorithm learns using the faces captures daily in the system.
Another advantage is that face recognition works well for both: images of single person or a
group. There are three major components in this project: 1.Client Application (Desktop and
Mobile to capture/upload images), 2.Server (Cloud where actual face detection/recognition
algorithms reside) and 3.Web interface (to display result statuses). There is no need for
any external hardware installation. Only a device with a camera (laptop with webcam,
pc with webcam, smart phone) is required for capturing/uploading images to server. The
application’s newer version is going to be launched with the new architecture containing the
improved algorithm, APIs, and a new web interafce using the APIs. The new algorithm is
made using improved layers in the neural network, classifiers and verifiers. The APIs are
created to removed the tight coupling between database and server components which was
existing in the older architecture, as well as third party APIs will help to create custom
applications for enterprises.

vi

Abbreviations

ROC Receiver Operating Characteristic
AUC Area Under Curve
LFW Labelled Faces in Wild
DNN Deep Neural Network
HOG Histogram of Oriented Gradients
FR Face Recognition
ORM Object Relational Model
SVM Support Vector Machine
REST Representational State Transfer
SOAP Simple Object Access Protocols
XML Xtensible Markup Language
API Application Programming Interface
FRT Face Recognition Techniques

——————————————————————————————————————–

vii

Contents

Declaration ii

Certificate iii

Acknowledgement v

Abstract vi

Abbreviations vii

List of Figures xii

List of Tables xiii

List of Algorithms xiv

List of Listings xv

1 Introduction 1
1.1 Statement of Purpose . 1
1.2 Scope . 2
1.3 Comparison with Other Biometric Technologies 2
1.4 Organization of Thesis . 2

2 Background 4
2.1 Overview . 4
2.2 Methodology . 4

2.2.1 Components . 4
2.2.2 Processes . 5

2.3 Assumptions . 6
2.4 Limitations . 7

3 Literature Survey 8
3.1 Case Study: . 8

3.1.1 FaceNet: A Unified Embedding for Face Recognition and Clustering . 8
3.1.2 OpenFace Neural Network Models . 10

3.2 Advantages & Disadvantages . 12

viii

3.2.1 Weakness . 12
3.2.2 Effectiveness . 12
3.2.3 Privacy Issues . 13

4 Smart Verification 14
4.1 Overview . 14

4.1.1 Definition . 14
4.1.2 Problem Statement . 15
4.1.3 Use Cases . 15

4.2 System Architecture . 17
4.2.1 Methodology . 17
4.2.2 System Design . 18

4.3 Implementation . 22
4.3.1 OpenFace . 22
4.3.2 Workflow . 24
4.3.3 Algorithm . 26

4.4 Results . 29
4.4.1 OpenFace Experiment: Comparing Two Images 29
4.4.2 Accuracy . 29

4.5 Applications . 30

5 Smart Attendance 31
5.1 Overview . 31

5.1.1 Definition . 31
5.1.2 Problem Statement . 32
5.1.3 Use Cases . 32

5.2 System Architecture . 34
5.2.1 Methodology . 34
5.2.2 Old Architecture . 35
5.2.3 New Architecture . 35
5.2.4 System Components . 36
5.2.5 System Processes . 42

5.3 BlackBox . 44
5.3.1 Old Black Box . 44
5.3.2 New Black Box . 44

5.4 Implementation . 45
5.4.1 System Dependencies . 45
5.4.2 OpenFace . 45
5.4.3 Workflow . 46

5.5 Results . 49
5.5.1 Experiments . 49
5.5.2 Confusion Matrix . 51

ix

6 Third Party API Integeration With Web Interface 52
6.1 Overview . 52

6.1.1 RESTful API . 52
6.1.2 SOAP API . 53

6.2 Rest Client Creation . 54
6.3 Process flow . 56

6.3.1 API Calling Flow . 56
6.4 Hibernate . 57

6.4.1 Hibernate Configuration . 57
6.4.2 Hibernate Mapping Files . 57

6.5 Dynamicity of API Call . 59
6.5.1 Featuring APIs . 59

6.6 Dynamic User Interface . 61
6.6.1 Dependencies . 61
6.6.2 Design . 61

7 Cancer Cells Annotation UI 65
7.1 Requirement . 66
7.2 Design . 66

7.2.1 Dependencies . 66
7.2.2 Functionalities . 66

8 Conclusion & Future Work 70
8.1 Conclusion . 70
8.2 Future Work . 70
8.3 Challanges . 70

8.3.1 Smart Verification . 70
8.3.2 Smart Attendance . 71

Bibliography 72

x

List of Figures

2.1 System Components . 6

3.1 Illumination & Pose Variance . 9
3.2 ROC Curve for nn4.small.v1 . 12

4.1 Smart Verification Scenario 1: Enrollment Process 16
4.2 Smart Verification Scenario 2: Verification Process 17
4.3 Upload process . 20
4.4 Registration process . 21
4.5 Verification process . 21
4.6 OpenFace WorkFlow . 23
4.7 SmartVerification WorkFlow . 24
4.8 Face Detector . 25
4.9 Face Alignment . 25
4.10 Affine Transformation . 26
4.11 Smart Verification: GUI(Verified Case) . 28
4.12 Smart Verification: GUI(Failed Case) . 28
4.13 OpenFace Experiment: Comparing Two Images 29

5.1 Smart Attendance Scenario 1: Enrollment Process 33
5.2 Smart Attendance Scenario 2: Recognition Process 34
5.3 Comparison between Hierarchy Levels in New & Old Architecture 35
5.4 Multitier Architecture . 36
5.5 Enrollment . 38
5.6 Recognition . 39
5.7 Interaction with Server . 40
5.8 Upload process . 42
5.9 Training process . 43
5.10 Recognition process . 43
5.11 OpenFace WorkFlow . 46
5.12 Smart Attendance: Blackbox WorkFlow . 47
5.13 Result.csv Format . 50

6.1 API Calling Process Flow . 56
6.2 Smart Attendance: Login . 61
6.3 Smart Attendance: Attendance . 62

xi

6.4 Smart Attendance: Present Marked Image 62
6.5 Smart Attendance: Pool of Absent Images 63
6.6 Smart Attendance: Manual Tagging . 63
6.7 Smart Attendance: Tagging Review . 64

7.1 Cancer Annotation GUI: Viewing Regions 67
7.2 Cancer Annotation GUI: Canvas to Create Region 67
7.3 Cancer Annotation GUI: Drawing Boundary 68
7.4 Cancer Annotation GUI: Region Selection 69
7.5 Cancer Annotation GUI: Annotation Check 69

xii

List of Tables

3.1 OpenFace Models Definitions . 10
3.2 OpenFace Models Alignment Difference . 11
3.3 OpenFace Models Performance . 11
3.4 OpenFace Models Alignment Difference . 11

4.1 Smart Verification: Activities on Client . 19
4.2 Smart Verification: Group of Users . 20
4.3 OpenFace Experiment Results . 29

5.1 Activities on Client . 37
5.2 Group of Users . 41
5.3 Smart Attendance: New Blackbox Results Summary 50
5.4 Confusion Matrix . 51

6.1 Activities on Client . 54

xiii

List of Algorithms

1 Verification: Enrollment Job . 27
2 Verification: Verification Job . 27
3 Recognition: Enrollment Job . 48
4 Recognition: Recognition Job . 49

xiv

Listings

6.1 PHP Rest Client . 54
6.2 JAVA Rest Client . 55
6.3 POJO class example . 57
6.4 Hibernate Mapping XML . 58

xv

Chapter 1

Introduction

Smart Attendance, & Smart Verification are applications based on Artificial Intelli-
gence, which can be used in handheld devices with equipped with cameras like computers,
smartphones, tablets & provide the functionality to detect and identify/verify people. These
devices are used to campture images and which are sent to the cloud based servers & then
processed by the intelligent algorithms to detect and recognize/verify human face. As part
of the results, useful data visualizations are created for particular stakeholders in an organi-
zation.

The system is also able to collect demographic data & can generate the contextual data
which can be available for market consumption. These intelligent algorithms are capable to
use video streamings as well, which scales the degree of flexibility to leverage the existing
infrastructure.

1.1 Statement of Purpose

The objective of the project is to develop an application that can be used in organizations,
health care industry and educational institutions to keep record of attendances of individuals
in organization and is based on the concepts of computer vision and machine learning. It
aims to create smart attendance campus as well as smart attendance industries.

The applicable ares are:

• Enterprise: It can serve as a solution to track & monitor the employeesṕresence on-
field or off-field with storage of timestamps & location. This is capable of capturing
single person attendance or group attendance.

• Education: It can serve as a solution for biometric, proxy free attendance management
system to update the institute’s ERP system. This is capable of generate and store
digitaized data on servers.

• Health Care: In terms to verify referral doctors or remote doctors, to ensure only
intended person turns up at referral sites, as well as to serve as security purposes, to
ensure that only authorized person has access to resources.

1

• Security: In terms to verify the authenticate the validity of only the authorized
person in the organization where security is needed, to ensure the correct person gets
the access, verification can be used.

1.2 Scope

In organizations it would be useful for managers to supervise their employees attendance
and which is important in generating their monthly salary, monitor the activities etc. In
educational institutions it can be used to mark attendance for various sessions in a day and
which is crucial in determining the students eligibility to appear for exams. Another advan-
tage is that face recognition works well for both: images of single person or a group.

There is a wide scope in terms of security aspects as well. Any process, where the bio-
metric security is crucial for the system to ensure that correct person is autorized, or to
detect any individual to be searched for, this is a useful application.

For e.g., to verify that the correct person is giving exams, in the examination systems,
to verify that the authrized doctor has access to confidential areas or important machines in
the hospital, to verify the criminal faces with proof images etc. Hence, the scope of visual
identification & verification is very wide, given the accuracy of the system is high enough to
be trusted. The scope lies in authenticating the validity of the person.

1.3 Comparison with Other Biometric Technologies

Facial recognition may not be the most effective & reliable among the othe biometric meth-
ods available. But, one key advantage is that it allows mass identification of test subject.
Other tchniques such as, finger print recognition, speech recognition, iris scanning etc, need
individual cooperations.

Moreover, since the application can be used in government training courses or labors’ iden-
tification, the identifocation using the finger print recognition is not useful. As their fingers
and thumbs skin is quite damaeged because of the nature of the work done by them, the
finger prints can’t be reocrded accurately & hence can’t be vaildated. Such biometric tech-
nologies fail in these cases. Hence, facial identification & verification will be useful here.

Though, in case of mass identifications, questions are raised in case of security applica-
tions on public places as it may fail to reach accuracy where huge number of people are
roaming and recognition has to be made from video streaming.[1]

1.4 Organization of Thesis

Rest of the thesis is organized as follows:
Chapter 2 (Background) gives an overview of background for such technology and purposes

2

of use. It narrates the methodology of the system proposed. In methodology, the system
components & systems process are discussed. A brief overview of system architecture is
given. Further, the limitations & assumptions of the systems are discussed.

Chapter 3 (Literature Survey) deals with the studies made in process of the project flow. It
gives detailes of the case studies which have been made, i.e., basically on ”FaceNet” paper.
It also discusses OpenFace & the neural networks provided by it. The sizes, accuracies &
performance data is given. The disadvantage & advantages of the system are discussed.

Chapter 4 (Smart Verification) addresses the task of facial verification, done in the prdouct,
Smart Verification. It discusses the usecases and system methodoly of the product including
components, process, architecture. The system is built using OpenFace. It also explores the
implementation technologies used, proposed algorithms & the acquired results.

Chapter 5 (Smart Recognition) involves the complete description of Smart Recognition start-
ing from old architecture to new architeture. Smart Recognition’s new blackbox is built on
using OpenFace. The new algorithm is proposed. The results got with experiments using
new algorithm are presented. It also tells about the full architecture and applications of the
system.

Chapter 6 (Third Party API Integeration with Web Interface) summarizes the use of third
party API & the methodology used. The APIs are dynamic in nature. The web interface is
created as a rest client for the APIs & is also dynamic in nature.

Chapter 7 (Cancer Cells Annotation UI) address the new solution to cervical cancer de-
tection problem using artificail intelligence. In the whole process, the requirement to create
and annotate the cancerous regions in the cells was made by pathologist, to fulfill that, this
software has been created. It uses dynamic canvas operations.

Chapter 8 (Conclusions and Future Work): In this chapter, conclusions drawn from var-
ious implementations mentioned above are discussed. Future scope of work in this area is
also mentioned in the chapter.
The Bibliography section consists of related research work cited in the thesis work.

3

Chapter 2

Background

2.1 Overview

For initiation & promotion of a deep, powerful & positive practices in an organization, it’s
an imperative requirement to Identify and Recognize people who are the critical stakehold-
ers in the organization. They could be students, employees or customers. For attendance
or security purposes, the face recognition & verification based applications will make the
process automated & faster, generate digitized data, manage the data on servers and learn
with the data generated.

Thus, Face Detection, Face Verification and Face Recognition are utilized in extensive appli-
cations such as security in an organizaiton, marking attendance of the employees or students,
verifying and authenticating faces. Illumiantion, Heavy Computation, Image Quality, Image
Position are some important issue of such development.

2.2 Methodology

2.2.1 Components

There are three major components in this project namely:

1. Client Application (Desktop & Mobile)

2. Server

3. Web Interface

These components are further classified into categories of sub-components which are de-
scribed below.

Client

”Client” is the component of ”Smart Verification” which is installed on the machines of the

4

customers who are also the users of the product. There are two types of client applications
to sophisticate the users:

1. Desktop Application

2. Mobile Application

Any of the applications can be used to enroll in the system or to send the attendance.

Server

Server is the backbone for all the processes and activities. In fact, it is the critical com-
ponent of the product. Before getting into how things work on the server, lets first get
acquainted with the organization of files on the server. Basically, the server, is a linux
(Ubuntu) operating system. So, the file system and its organization would be the same as in
a typical Linux Operating System. The APapche server is installed on it. Apart from that,
we can categorize the file system into two from a product perspective: On the server side
there are programs having algorithms for facial detection/ verification. The OpenCV library
is used in server programs for image processing. The registered images will be matched
during verification to verify if they match. The php programs on server are the ones that
populate and query the database.

Web Interface

The web interface (http://aindra.in/attendance) is a User Interface which presents data
to the users in varying granular levels and it has been built using Django. In deed, Django
is a free and open source web application framework, written in Python, which follows the
model view controller architectural pattern. The new web interface going to be released
sooner, is being built using PHP and JavaScript.

2.2.2 Processes

Using the client application, there can be two types of processes:

• Training: This is a one time process and each employee has to be trained individually.
To say in a lucid manner, images containing faces of the employee to be enrolled are
captured in various different orientations based on which FR algorithms are run and
added to the dictionary.

• Recognition: This is a regular (mostly, daily basis) process. Employees have to
upload their image for recognition. Eventually, FR algorithms are run on those images
and matches are found with the help of the dictionary created during enrollment. The
results of recognition are populated on the web interface (GUI), where the employees,
managers and admin can view their attendance and generate reports, as and when
required.

5

• Verification: This is required at time process.. Employees have to upload their image
for verification. Eventually, FR algorithms are run on those images and matches are
found with the help of the source image given during enrollment. The results of verifi-
cation are populated on the web interface (GUI), where the employees, managers and
admin can view their verification status and generate reports, as and when required.

Figure 2.1: System Components

There is no need for any external hardware installation. Only a device with a camera
(laptop with webcam, pc with webcam, smart phone) is required for capturing/uploading
images to server. The actual process of face recognition happens on server, where algorithms
are written to do this. The client application invokes the server programs on the cloud. Once
the server programs nish execution, the results are displayed on the Web in terface. The
web interface is interactive and user friendly.

The status of each person for that day will be shown on the web interface. Along with
it, attendance data of the organization in various forms, reports will be provided for further
processes and calculative help in organization records.

2.3 Assumptions

The following assumptions have been made for this study:

6

• The stakeholders in an organization or students in an educational institute have to give
daily attendance & they are enabled/provided with a device which is equipped with a
camera. They will also be able to see their records given credentials for the application
web interface.

• The images they send for attendance and verification are taken in a particular format,
e.g., in particular orientation, distance from camera, direction etc.

2.4 Limitations

The limitation of this project is that it cannot be applied for a real time scenario where the
results are required immediately. This is because all the proessing has to be done on the
server side and hence not on the client machine itself. High Computation power for image
processing and generating result matrix reduces the speed of getting the results. Also, the
illumination & posing in the images are issues of such systems.

7

Chapter 3

Literature Survey

This chapter provides an overview of the research done in the eld of Face Recognition. The
rst section provides a brief overview of the FR techniques. The later part of this chapter
discusses the significance of intelligent FR algorithms, architetures used in the systems,
limitations of these and design issues.

3.1 Case Study:

3.1.1 FaceNet: A Unified Embedding for Face Recognition and
Clustering

This study has been made using the FaceNet paper written by Google developers in 2015.
In the area of face recognition implementing face verification and recognition, despite the
recent significant advanceds, efficiently at large scale presents important challenges to cur-
rent approaches being made. A system called FaceNet is presented in this study, which
directly make & learns a particular mapping from facial images to a general compact &
specific Euclidean spacing where the correspondance of distances is directly denoting to the
measure of face similarity.[2] After we have the Euclidean space produced, such tasks as face
verification, recognition and clustering may become easily available to implement with the
use of the standard available techniques which can be applied with FaceNet embeddings as
feature vectors.

The FaceNet method makes use of a deep convolutional network which is pretrained to
straightly optimize the current itself’s embedding, instead of having a intermediate bottle-
neck layer which was used in previous all such deep learning approaches. For trainig, they
are using triplets of the roughly aligned face patches which can be either matching or non
matching & are generated with the use of a triplet mining function. The major benefit of
FaceNet based approach is representing a better efficiency: they have achieved state-of-the-
art face recognition performance by making use of only 128-bytes per face detected.[2] On
the massively used Labelled Faces in the Wild (LFW) dataset, their model is achieving an
accuracy of 99.63 %, which is a new record. On YouTube Faces DB the accuracy achieved
by them is 95.12 %, their system cuts down the rate of error in direct comparison to the

8

results on both datasets by 30 % on which are best published yet.[3]

Figure 3.1: Illumination & Pose Variance

In face recognition, standard problems are pose and illumination. Here are shown the
distances in output of Fcenet between the pairs of facial images of a different and the same
person having various poses and illumination combinations. A distance saying 0.0 denotes
the faces are same, whereas 4.0 denotes to the opposite data spectrum, giving two distinct
identities. Here, a threshold of 1.1 is classifying every pair with correctness.

9

FaceNet Methodology

FaceNet is a system which is unified & is created for face verification (whether this is the cor-
rect person), recognition (finding who is the person) and clustering (to find similar persons
among a group of persons). This approach is based on making & generating a Euclidean
embedding of each image which is done by using a deep convolutional neural network. The
training of network is done in sucgh a way that the squared L2 distances in the Euclidean
embedding space are corresponding straightly to face similarity. The facial images of the
same person have smaller distances compariltvely & the facial images of different people have
larger distances.

After producing these embeddings, the task or techniques can be applied based on appli-
cations: for e.g., face verification involves the thresholding of the distance between the two
embeddings & recognition can be done by applying classification techniques, likewise, cluster-
ing can be done using techniques such as k-means or agglomerative method of clustering.[2]

3.1.2 OpenFace Neural Network Models

OpenFace is a Python and Torch implementation with deep neural networks for facial recog-
nition & verification, & is based on the CVPR 2015 paper FaceNet: A Unified Embedding
for Face Recognition and Clustering.[4] In OpenFace, the Models are created using param-
eters is some numbers.These parameters are with embeddings which are 128 dimensional.
Following table gives out a summary.

Model Number of Parameters

nn4.small2 3733968
nn4.small1 5579520

nn4 6959088
nn2 7472144

Table 3.1: OpenFace Models Definitions

Pre-trained Models

To train the models, different methods with different datasets can be used. The pre-trained
models released by openface are having versions and are relesed under relative model’s def-
inition. The currently existing models are given training with multiple conbinations of the
largest two datasets which are for face recognition & are publically available: FaceScrub and
CASIA-WebFace.[4]

The differences between alignment of models are given below:

10

Model Alignment (landmarkIndices)

nn4.v1 openface.AlignDlib.INNER EYES AND BOTTOM LIP
nn4.v2 openface.AlignDlib.OUTER EYES AND NOSE

nn4.small1.v1 openface.AlignDlib.OUTER EYES AND NOSE
nn4.small2.v1 openface.AlignDlib.OUTER EYES AND NOSE

Table 3.2: OpenFace Models Alignment Difference

Performance

The performance is measured using Tesla K40 GPU & an 8 core 3.70 GHz CPU using
OpenBLAS.[4]

The differences between alignment of models are given below:

Model Runtime (CPU) Runtime (GPU)

nn4.v1 75.67 ms 19.97 ms 21.96 ms 6.71 ms
nn4.v2 82.74 ms 19.96 ms 20.82 ms 6.03 ms

nn4.small1.v1 69.58 ms 16.17 ms 15.90 ms 5.18 ms
nn4.small2.v1 58.9 ms 15.36 ms 13.72 ms 4.64 ms

Table 3.3: OpenFace Models Performance

Accuracy on LFW Benchmark

Benchmarking the standard LFW dataset, the accuracy appears to be remarkably high.
They have used versions of deep funneled for 58 of total images in a number of 13233 as the
dlib was failing to detect[4]

The differences between alignment of models are given below:

Model Accuracy AUC

nn4.small2.v1 (Default) 0.9292 0.0134 0.973
nn4.small1.v1 0.9210 0.0160 0.973

nn4.v2 0.9157 0.0152 0.966
nn4.v1 0.7612 0.0189 0.853

FaceNet Paper (Reference) 0.9963 0.009 not provided

Table 3.4: OpenFace Models Alignment Difference

ROC Curves

The true positive rate of nn4.small1.v1 is higher compared to others like eigen faces, Deepface
Ensemble etc. The graph shows the AUC and true positive v/s true false positive rates for
different models.

11

Figure 3.2: ROC Curve for nn4.small.v1

3.2 Advantages & Disadvantages

3.2.1 Weakness

Facial recognition techniques struggle to perform under certain conditions and enviroments.
Such conditions which makes it harder to achieve success include facial accessories such
as sunglasses, poor lighting, low resolution of images, long hair, beards & other object
which may partially cover the face of subject. One more discovery concludes that facial
recognition systems lack accuracy when facial expressions vary. Hence, at many places,
neutral face expression is asked in passport photos. Some times, organization like Google,
Nikon, Flicker are criticised for the inability of their softwares to recognize faces which have
darker skin colors.The datasets which are being used by researchers also have inconsistency.
It is imoportant to have a standard dataset to be used universally.

3.2.2 Effectiveness

Case Study: Critics of the technology claim that such systems having face recognition could
be useful for implementation of procedures and ensure the discipline. For e.g., the London
Borough of Newham scheme, 2004 was made to recognize criminals, using a database of

12

hundreds of criminals living in Borough & the system was allowed to run for several years.
The Newhamś automatic facial recognition system, though spotted live target for a few
number of times, the system was credited for 34% reduction in crime. [1] The effectiveness
was due to the face detection & recognition of the live criminals as well as by the notion when
the common people were reguralry told that they are under consistent video surveillance
which is equipped with advanced face recognition technology. Thus, this fear along with
live spotting, both proved effective in reduction of crime rate. Thus, the technology & the
usersṕerception of the technology make it more effective.

3.2.3 Privacy Issues

The use of Facial Recognition is not limited to just identify an individual but is also capable
to unearth the other individual and personal data which is associated with her/him. Such
as the pictures which are featuring the person, social networking profiles, internet behavior,
their whreabouts and activities etc., which can be done through the facial features. More-
over, the people who have covered faces, these systems limites that ability and is crucial
to privacy. This is fundamental change in the daily privacy preservation, by enabling the
government, markets, agencies or any random person to secretly gather the indentities & the
adjoining personal information & data of captured by such systems.

This lead the social websites such as Facebook, have been gathering very large number
of pictures of people which are annonated by their names. Such big storage represents a
database which could be used potentially by government/agencies or market for different
purposes. Resulting, a hearng was held in July 2012 before the the Law of the Committee
on the Judiciary & Subcommittee on Privacy, Technology, United States Senate [1], aiming
to address issues which surround the meaning of this facial recognition technology for privacy
and civil right and liberties.

13

Chapter 4

Smart Verification

Smart Verification, is a product which uses computer vision & machine learning to verify
facial data to support particular applications.

4.1 Overview

Smart Verification is a unique way to ensure transparency between the registered and
actual person while in an ongoing process. Once the process is triggered, our solution starts
the verification of given image with the registered image. And the result is channelled to
the authorized person. By this way the illegal authoriztion in particular programs can be
prevented. Our solution plays major role in crusading such attempts by which nonvisual
method of invalid authorization are carried out.

In a hospital scenario for a regular patient in a hospital tracking the medical history at
right moment and minimum effort is tiresome. Our solution identifies and stacks the bio-
metric traits of the patient in a safe location. When the patient seek medical support for
the next time, he will be identified automatically and his medical history is briefed to the
doctor.

4.1.1 Definition

Smart Verification is a software to record & verify biometric facial data using Computer
Vision & Machine Learning. It works on one to one image mapping, i.e., it maps the actual
data to expected data with some probability. It needs the target and source image both to
create mapping. Generally, this software is to be used on requirement, not on routine basis
(daily).

• The stakeholders in an organization or students in an educational institute are provided
with handheld devices with inbuilt cameras like smartphones, tablets and laptops, the
ability to record & verify their images.

• Images that are captured using such devices are sent to our cloud based server.

• They are processed by intelligent algorithms to detect and verify faces.

14

4.1.2 Problem Statement

There can be number of area, where this product can serve as solutions. Few of such are
being discussed here:

• Government Training Courses:

– In government provided training courses, such as computers, machinery, stitching
etc., people do enroll to get certified but they do not attend the daily sessions.

– At the time of examination, a fake candidate can come instead pf the real candi-
date who had enrolled and take the exam to get passing certificate.

– To identify if the candidate was the same person who was enrolled, verification
can be used.

• Police or Security Organizations:

– In security organizations, there is data recorded for criminals in their databases.

– Anytime if they get any image of any suspect and they want to verify that he is
the same criminal.

– To verify the identity of the criminal, verification can be used.

• Healthcare Industry:

– In healthcare industry, the access to particular rooms and devices are given to
only authorzed doctors. Also in some treatments like telepathy and teleradiology
etc, only authorized doctors can give service.

– Similarly in some cases, it can be used to verify patients also, where the health
checkups are scheduled or where the doctor needs the history of patients.

– To verify the identity of the doctor or patients, verification can be used.

4.1.3 Use Cases

1. When a user enrolls in a course, he/she gives a number of pictures in different orien-
tations and are saved in folder on a daily/one time basis.

2. When the user comes to take exam for the respective course, his/her images are verified
against the enrollment images.

3. This is to make sure that the correct person is taking exams.

4. The application can be used to verify persons for different needs. E.g., For criminal
face verification.

15

Use Case 1: Enrollment Process

Enrollment Process, is a one time process when the user data is stored in the database.
The images of the user is take in different orientations (neraly 45 images) and are stored on
server.

In case of daily attendance in government certified courses or healthcare industry, daily
images are also added in this storage to increase the accuracy of verification. Such images
are stored in a folder dedicated to that particular person, called his/her source folder.

Figure 4.1: Smart Verification Scenario 1: Enrollment Process

Use Case 2: Verification Process

Verification Process, is a process when the user data has to be verified with the stored
data. The images of the actual person is taken & are compared to the expected data(stored
images).

16

Figure 4.2: Smart Verification Scenario 2: Verification Process

4.2 System Architecture

4.2.1 Methodology

• In our method, we use a deep convolutional neural network and then learn a Euclidean
embedding for each image.

• The network used are having pre-training such that the squared L2 distances given by
the Euclidean embedding space straightly denote to probability of face similarity.

• Smaller distances mean that the faces are of same person and the larger the distance,
higher the dissimilarity.

• In our verification system, the aim is to simply threshold the distance between the
given Euclidean embeddings.

17

4.2.2 System Design

Components

The system is built using various components for interaction with user. There are three
main system components are:

1. Client

2. Server

3. Web Interface

These components are further classified into categories of sub-components which are de-
scribed below.

Client

”Client” is the component of ”Smart Verification” which is installed on the machines of the
customers who are also the users of the product. There are two types of client applications
to sophisticate the users:

1. Desktop Application

2. Mobile Application

Any of the applications can be used to enroll in the system or to send the attendance.

Desktop Application: Client machine can be a computer system or a smart phone. The
desktop application is developed using java swing. The two main functions of client appli-
cation are to capture images of users and upload them to the server for new registration &
verification respectively.

Mobile Application: Mobile application can be used on smartphones of tablets. The
latest version of mobile application is built using android. The two main functions of client
application are to capture images of users and upload them to the server for new registration
& verification respectively. It also allows to record the latitiude & longitude of the user’s
location, which can be used to determine the location.

Server

Server is the backbone for all the processes and activities. In fact, it is the critical com-
ponent of the product. Before getting into how things work on the server, lets first get
acquainted with the organization of files on the server. Basically, the server, is a linux
(Ubuntu) operating system. So, the file system and its organization would be the same as in
a typical Linux Operating System. The APapche server is installed on it. Apart from that,
we can categorize the file system into two from a product perspective:

18

Activities
Activity Description

Login User has to get the password before the registration pro-
cess. This OTP is sent to the user via mail and verified
later during first time registration.

Configure When the app is configured to some other branch, lo-
cation or organization by mistake or if the user wants
to change the same for some reason, this activity will
update the config.xml file to reflect the changes.

Registration This is a one time or daily activity to register into system
with user’s images.

Verification This is an activity by which user send her/his images and
the algorithm verifies the face to validate the identity.

Table 4.1: Smart Verification: Activities on Client

1. Core Server Operations

2. Web Interface Operations

On the server side there are programs having algorithms for facial detection/ verification.
The OpenCV library is used in server programs for image processing. The registered images
will be matched during verification to verify if they match. The php programs on server are
the ones that populate and query the database.

Cron Jobs:
Cron jobs are time-based job scheduler in Unix-like computer operating systems. On the
server, there are cron jobs running which take database backups every day at midnight
(00:00:00).

Web Interface

The web interface (http://aindra.in/attendance) is a User Interface which presents data
to the users in varying granular levels and it has been built using Django. In deed, Django
is a free and open source web application framework, written in Python, which follows the
model view controller architectural pattern. The new web interface going to be released
sooner, is being built using PHP and JavaScript.

Processes

1. Upload

The upload process takes place for two cases: Registration & Verification. The ac-
tivities included in the process are:

19

Group of Users
User Description

Admin Admin is at the top of the hierarchy and he has all
the privileges. An admin can generate license key for
an organization, remove organizations, add/remove/edit
managers, users, accept/reject the manual tag requests,
if any etc.

Super User This is the super user of the organization. He can ad-
d/remove/update/assign managers or add/remove/up-
dat users in the organization at any level. He can also
add/remove/update the levels of the hierarchy.

Manager There can be managers at each level of the organization
hierarchy. He is next to the admin in the user hierarchy
and can Add or Remove employees under him apart from
Approve/ Reject tag requests.

User These users are normal employees (neither managers nor
admin) having least privileges. They can view their ver-
ification status.

Table 4.2: Smart Verification: Group of Users

• Creation of target folder: The target folder for the training images or verification
images are created.

• Uploading the images: The image for which this upload.php is called, is uploaded
and saved inside the respective target folder created on the server.

• Populating the web interface: Based on updated database, the web interface in
populted with information.

Figure 4.3: Upload process

20

2. Registration

Registration, as the name insists, is the image registering phase of the Smart Ver-
fiication system. It is a one time/daily process depneding on the application, whose
component wise sequence of actions are explained as follows.

Figure 4.4: Registration process

The activities included in the process are:

• Notify the admin by email: This mechanism is to notify the admin and a mail is
sent to ”XXXXX@aindra.in” with the organization, location and branch, session,
time etc., details.

• A source folder is created/updated for the particular person.

• The path of the folder is stored in DB for Verification process usage.

3. Verification

Verification is carried out whenever authorization validation has to be made. Like
Registration, this also has to be initiated from the Client. The following diagram gives
a broad picture of the interrelationship among the components during Verification.

Figure 4.5: Verification process

The activities included in the process are:

21

• Notify the admin by email: This mechanism is to notify the admin and a mail is
sent to ”XXXXX@aindra.in” with the organization, location and branch, session,
time etc., details.

• Take each image from source folder.

• Run verification process with each of the image & based on the threshold for
confidence, send result as ”verified” or ”failed”.

System Dependencies

Following system dependencies are there:

• OpenCV

• OpenFace

• dlib

• torch

• python

4.3 Implementation

4.3.1 OpenFace

OpenFace is a Python and Torch implementation of face recognition with deep neural net-
works and is based on the CVPR 2015 paper FaceNet: A Unified Embedding for Face
Recognition and Clustering by Florian Schroff, Dmitry Kalenichenko, and James Philbin
at Google.[4] Torch allows the network to be executed on a CPU or with CUDA.

This research was supported by the National Science Foundation (NSF) under grant number
CNS-1518865. Additional support was provided by the Intel Corporation, Google, Voda-
fone, NVIDIA, and the Conklin Kistler family fund.[4] Any opinions, findings, conclusions
or recommendations expressed in this material are those of the authors and should not be
attributed to their employers or funding sources.

Overview

Given is the overview of workflow using OpenFace for a single input image of Sylvestor
Stallone from the LFW dataset which is publically available. Processing of images using
OpenFace is similar to this.

1. Using the pre-trained models from dlib or OpenCV, detect the faces.

2. Transform the face for the neural network. This repository uses dlib’s real-time pose
estimation with OpenCV’s affine transformation to try to make the eyes and bottom
lip appear in the same location on each image.

22

3. Use a deep neural network to represent (or embed) the face on a 128-dimensional unit
hypersphere. The embedding is a generic representation for anybody’s face. Unlike
other face representations, this embedding has the nice property that a larger distance
between two face embeddings means that the faces are likely not of the same person.
This property makes clustering, similarity detection, and classification tasks easier than
other face recognition techniques where the Euclidean distance between features is not
meaningful.

4. Apply your favorite clustering or classification techniques to the features to complete
the recognition task.

Workflow

Figure 4.6: OpenFace WorkFlow

23

4.3.2 Workflow

System Workflow

Figure 4.7: SmartVerification WorkFlow

Face Detection Using Dlib

• Tool for creating histogram-of-oriented-gradient (HOG) based object detectors.

• Technique for detecting semi-rigid objects in images.

• Tool that makes training HOG detectors super fast and easy.

• Needs as input is a set of images and bounding boxes around faces.

24

Figure 4.8: Face Detector

• It takes about 6 seconds to do its training using the example face data provided with
dlib.

• Once finished it produces a HOG detector capable of detecting faces.

• Compare this to the time it takes to train OpenCV’s popular cascaded haar object
detector, which is generally reported to take hours or days to train and requires you
to fiddle with false negative rates and all kinds of spurious parameters. HOG training
is considerably simpler.

Picture alignment

• Dlib’s implementation of the paper: One Millisecond Face Alignment with an Ensemble
of Regression Trees.

Figure 4.9: Face Alignment

25

• If you give an image of someone’s face it will add this kind of annotation

• This is the output of dlib’s new face landmarking example program on one of the
images from the HELEN dataset.[5]

Affine Transformation

Affine transformations is any transformation that can be expressed in the form of a matrix
multiplication (linear transformation) followed by a vector addition (translation).

We can use an Affine Transformation to express:

• Rotations (linear transformation)

• Translations (vector addition)

• Scale operations (linear transformation)

Figure 4.10: Affine Transformation

4.3.3 Algorithm

For the complete process, two jobs are required: Enrollment Job & verification job.

26

Enrollment Job

The algorithm for enrollment job is as follows:

Algorithm 1 Verification: Enrollment Job

Create a directory on server with person name.
Add the source folder path next to the person’s source column in database.
for each file do

Upload the file to directory.
end for

Verification Job

The algorithm for verification job is as follows:

Algorithm 2 Verification: Verification Job

Get the largest face from target image using dlib’s face landmarks.
Transform and align the face extratcted.
Get the representation by passing that face to forwardImage()
Get the list of files from source directory
positive← 0
negative← 0
for file in list of files do

source image← file
Get the largest face from source image using dlib’s face landmarks.
Transform and align the face extratcted.
Get the representation by passing that face to forwardImage()
Computer dissimalirty between both representations using norm.
if dissimilarity >= 50 then

positive← positive+1
else

negative← negative+1
end if

end for
if positive >= ngative then return True
elsereturn False
end if

SmartVerification GUI

Following are the GUI examples for verified and failed cases.

27

Figure 4.11: Smart Verification: GUI(Verified Case)

Figure 4.12: Smart Verification: GUI(Failed Case)

28

4.4 Results

4.4.1 OpenFace Experiment: Comparing Two Images

In Openface, the result carried out by comparing two images for two persons, both hav-
ing slight variations are shown here. The distances between both show the similarity or
dissimilarity probability.

Figure 4.13: OpenFace Experiment: Comparing Two Images

Image 1 Image 2 Distance

Lenon1 Lennon 2 0.763
Lenon1 Clapton 1 1.132
Lenon1 Clapton 2 1.145

Lennon 2 Clapton 1 1.447
Lennon 2 Clapton 2 1.521
Clapton 1 Clapton 2 0.318

Table 4.3: OpenFace Experiment Results

4.4.2 Accuracy

The accuracy said in the FaceNet paper is remarkably high on the LFW datasets. Also, it
gives a big magnitude on the Youtube data sets. 3

Given are the results acquired on by FaceNet & our experiments, respectively:

• Ideal (FaceNet):

– On the widely used Labeled Faces in the Wild (LFW) dataset: 99.63%

– On YouTube Faces DB: 95.12%

• Smart Verification: On around 150 image pairs (both negative & positive cases):
89.63%

29

4.5 Applications

The applications can be all such areas where the access to a particular process or resource
needs authorization. It can handle fraud cases. For e.g.,

• Candidate authorization before exams

• Healthcare Industry

• Security organizations

• Prospective Industries

30

Chapter 5

Smart Attendance

By applying the Face Recognition Techniques (FRT), this cloud based people recognition
system will be developed which reduces the load on the client side while running the algo-
rithms on the server. The first step is to capture and store images locally using a camera.
Then upload these images to cloud using internet where image processing and face recogni-
tion happens on servers.

The final step is to display the results of recognition. This is our ultimate goal of face
recognition. The accuracy of results is determined by light illumination, data sets and poses
variation.

5.1 Overview

Smart Attendance is a unique way to ensure that the correct person was present at the
given time and location. Once the process is triggered, our solution starts the recognition
of given image with the pool of registered images. And the result is channelled to the au-
thorized person. By this way the illegal attendance in organizations can be prevented. Our
solution plays major role in crusading such attempts by which nonvisual method of invalid
attendance are carried out.

In any organization, tracking of correct attendance at right time and minimum effort is
tiresome. Our solution identifies and stacks the biometric traits of the person with loca-
tion. When the users give attendance, they are identified against their training images and
attendance is automatically marked, stored & briefed to the manager/teacher.

5.1.1 Definition

Smart Attendance is a software to record & identify biometric facial data using Computer
Vision & Machine Learning. It works on one to many image mapping, i.e., it maps the actual
data to available all the data with some probability. It needs only the target image to create
mapping with training image. Generally, this software is to be used on routine basis, for
attendance.

31

• The stakeholders in an organization or students in an educational institute are provided
with handheld devices with inbuilt cameras like smartphones, tablets and laptops, the
ability to record & verify their images.

• Images that are captured using such devices are sent to our cloud based server.

• They are processed by intelligent algorithms to detect and identify faces.

• Attendance is marked and stored in database, to populate web interface and briefed
to higher authority.

5.1.2 Problem Statement

A general statement of the problem of machine recognition of faces can be formulated as
follows: given still images of a scene, identify or verify one or more persons in the scene using
a stored database of faces. The solution to the problem involves segmentation of faces (face
detection) from cluttered scenes, feature extraction from the face regions, recognition, or
verification. In identification problems, the input to the system is an unknown face, and the
system reports back the determined identity from a database of known individuals, whereas
in verfication problems, the system needs to confim or reject the claimed identity of the
input face.

There can be number of area, where this product can serve as solutions. Few of such are
being discussed here:

• Educational Organiztions:

– To automate attendance of students and teachers.

– Aiming to create Smart Education System

• Industrial Organiztions:

– To automate attendance of employees.

– Aiming to create Smart Industries

• Healthcarel Organiztions:

– To automate attendance of patients and staff.

– Aiming to create Smart Healthcarel Industry

5.1.3 Use Cases

1. When a user enrolls in a class or company, he/she gives his/her training images to
system.

2. These training images are processed by blackbox for training.

3. On routine basis, user giver attendance images.

32

4. These images are processed by blackbox, the faces are detected and recognized using
the already trained system.

5. Attendance is marked on basis of recognized images and database is populated and
thus, is web interface.

Use Case 1: Enrollment Process

Enrollment Process, is a one time process when the user data is stored in the database.
The images of the user is take in different orientations (neraly 45 images) and are stored on
server.

In case of daily attendance in organization, system keeps learning using attendance im-
ages also. Such images are stored in a folder dedicated to that particular person, called
his/her source folder.

Figure 5.1: Smart Attendance Scenario 1: Enrollment Process

33

Use Case 2: Recognition Process

Recognition Process, is daily process of giving attendance. The images of the user are
processed to detect faces and once detected to recognize among all users in that branch.

Figure 5.2: Smart Attendance Scenario 2: Recognition Process

5.2 System Architecture

5.2.1 Methodology

• Our method is based on creating a classifier which is basically an SVM.

• Using training images of each person, representations are created. —item Using those
representations, an SVM is created.

• This SVM is used to classify the testing image. It takes representation of face and
makes a prediction with some probability and confidence.

34

5.2.2 Old Architecture

The system is currently using the old architecture and is very soon about to be relaunched
with the new architecture. The old architectre used django framework to be used as MVC.
The database was tightly coupled by the web interface by django and which was not able
to provide much felibility. Moreover, the market demand arised for standalone APIs so that
organizations could build their own web interface according to their requirements and usage.
The old architecture allowed only one web interface, in which the users of every organization
had to login and do the operations. To meet the requirements, the need to change the
django architecture arised. Currently, the last phase of old architecture is running. Earlier,
the hierarchy level of the organization was limited to three levels, (Organization-Location-
Branch), now thr new architecture consists of unlimited levels in hierarchy.

5.2.3 New Architecture

In the new architecture, the Java RESTful APIs are created to interact with database and
which are standalone. Hence, they can be used by the customers and they can utilize them
according to their needs, build their own interface, applications etc. The web interface
for ”Smart Attendance” is also rebuilt with PHP integerating the APIs to interact with
database. This new web interface is sooner to be launched. Since the hierarchy is unlimited
and undefined in this architecture, the APIs behaviour is dynamic in two dimensions.

Figure 5.3: Comparison between Hierarchy Levels in New & Old Architecture

Multitier Architecture

The multitier architecture using Application layer(Presentation Layer, Business Logic Layer
& Data Access Layer) & Data Store Layer is shown following:

35

Figure 5.4: Multitier Architecture

5.2.4 System Components

The system is built using various components for interaction with user. There are three
main system components are:

1. Client

2. Server

3. Web Interface

These components are futher classified into categories of sub components which are described
below.

Client

”Client” is the component of ”Smart Attendance” which is installed on the machines of the
customers who are also the users of the product. There are two types of client applications
to sophisticate the users:

1. Desktop Application

2. Mobile Application

Any of the applications can be used to enroll in the system or to send the attendance.

Desktop Application: Client machine can be a computer system or a smart phone. The

36

desktop application is developed using java swing . The two main functions of client appli-
cation are to capture images of users and upload them to the server for new enrollment or
recognition respectively.

Mobile Application: Mobile application can be used on smartphones of tablets. The
latest version of mobile application is built using android. The two main functions of client
application are to capture images of users and upload them to the server for new enrollment
or recognition respectively. It also allows to record the latitiude & longitude of the user’s
location, which can be used in onfield attendance.

Activities
Activity Description

Login User has to get the password before the enrollment pro-
cess. This OTP is sent to the user via mail and verified
later during enrollment.

Configure When the app is configured to some other branch, lo-
cation or organization by mistake or if the user wants
to change the same for some reason, this activity will
update the config.xml file to reflect the changes.

Enrollement This is a one time activity to train the algorithm with
user’s images.

Recognition This is a daily activity by which user send her/his images
and the trained algorithm recognizes the face to mark
the attendance.

Table 5.1: Activities on Client

The two main activities include Enrollment & Recognition.

1. Enrollement: Enrollement process consists following steps:

• Receive OTP (One Time Password)

• Verify Password

• Capture Images

• Store in apt directory

• Trigger upload.php for each image

• Trigger Train.php once]

• Dictionary created

37

Figure 5.5: Enrollment

2. Recognition: It is a daily activity to give attendance. The following figure depicts
the series of activities during the process of Recognition related to the Client machine.
Recognition process consists following steps:

• Login into application

• Select Hierarchy

• Select Session

• Capture Pictures

• Store in apt directory

• Trigger upload.php for each image

• Trigger Recognize.php once

38

Figure 5.6: Recognition

Server

Server is the backbone for all the processes and activities. In fact, it is the critical component
of the product. Before getting into how things work on the server, lets first get acquainted
with the organization of files on the server. Basically, the server, is a linux (Ubuntu) operating
system. So, the file system and its organization would be the same as in a typical Linux
Operating System. The APapche server is installed on it. Apart from that, we can categorize
the file system into two from a product perspective:

1. Core Server Operations

2. Web Interface Operations

On the server side there are programs having algorithms for facial detection/ recognition,
to train the images sent during enrolment for the rst time and recognize the images sent
during recognition against dictionary of images for a particular user for marking attendance
later. All of these vital data is stored in appropriate tables in the database as objects. The
OpenCV library is used in server programs for image processing. The training or enrolment
is a one-time process done initially to create a database with known faces. These images will
be matched during recognition to verify if they match, to mark their attendance. The php

39

programs on server are the ones that populate and query the database.

Cron Jobs:
Cron jobs are time-based job scheduler in Unix-like computer operating systems. On the
server, there are cron jobs running which take database backups every day at midnight
(00:00:00).

The following diagram will give an insight about the number and the sequence of file triggers
on the server.

Figure 5.7: Interaction with Server

Web Interface

The web interface (http://aindra.in/attendance) is a User Interface which presents data to
the users in varying granular levels and it has been built using Django. In deed, Django is a
free and open source web application framework, written in Python, which follows the model
view controller architectural pattern. The new web interface going to be released sooner, is
being built using PHP and JavaScript.

The activities on the web interface include:

40

Group of Users
User Description

Admin Admin is at the top of the hierarchy and he has all
the privileges. An admin can generate license key for
an organization, remove organizations, add/remove/edit
managers, users, accept/reject the manual tag requests,
if any etc.

Super User/Principal This is the super user of the organization. He can ad-
d/remove/update/assign managers or add/remove/up-
dat users in the organization at any level. He can also
add/remove/update the levels of the hierarchy.

Manager/Teacher There can be managers at each level of the organization
hierarchy. He is next to the admin in the user hierarchy
and can Add or Remove employees under him apart from
Approve/ Reject tag requests. Managers can view the
attendance in Self and Employee modes.

Employee/Student These users are normal employees (neither managers nor
admin) having least privileges. They can view their at-
tendance.

Table 5.2: Group of Users

• Login & Logout

• Select hierarchy level

• View attendance summary

• View individual attendance

• Select view type (Daily/Monthly/Yearly)

• Date navigation

• Generate reports

• Change enrollment image

• Generate tag request if required

• Add/update/remove user

• Add/update/remove/assign manager

• Add/update/remove hierarchy

41

5.2.5 System Processes

Upload

The upload process takes place for two cases: Training & Recognition. The activities included
in the process are:

• Creation of target folder: The target folder for the training images or recognition
images are created.

• Uploading the images: The image for which this upload.php is called, is uploaded and
saved inside the respective target folder created on the server.

• Creating/Opening text file: A text file is creates at the time of training to be used in
recognition process.

• Triggering process: Based on action, it triggers Train.php or Upload.php

• Populating the web interface: Based on updated database, the web interface in pop-
ulted with information.

Figure 5.8: Upload process

42

Train

Training, as the name insists, is the learning phase of the Face Recognition system. It is a
one time process whose component wise sequence of actions are explained as follows.

Figure 5.9: Training process

The activities included in the process are:

• Notify contact@aindra.in: This mechanism is to notify the admin and a mail is sent
to ”contact@aindra.in” with the organization, location and branch, session, time etc.,
details.

• Open dictionary file: The dictionary file is opened to be updated.

• Run ”Trainer.exe”: By passing the txt file (created by upload.php) and dictionary.xml
of the correspoding branch as arguments, ”./Trainer” is executed. In short, this dictio-
nary is updated with some values pertaining to the newly enrolled employee by running
Face Recognition (FR) Algorithms.

• Delete the txt file: The txt file created by upload.php is deleted.

Recognition

Recognition is a daily process. Like Training, this also has to be initiated from the Client.
The following diagram gives a broad picture of the interrelationship among the components
during Recognition.

Figure 5.10: Recognition process

43

The activities included in the process are:

• Notify contact@aindra.in: This mechanism is to notify the admin and a mail is sent
to ”contact@aindra.in” with the organization, location and branch, session, time etc.,
details.

• Open dictionary file: The dictionary file is opened to be used.

• Run ”Recognizer.exe”: By passing the txt file (created by upload.php) and dictio-
nary.xml of the correspoding branch as arguments, ”./Recognizer” is executed. In
short, this dictionary is used with some values pertaining to the enrolled employee by
running Face Recognition (FR) Algorithms.

Stubbing

A method [stub] or simply stub in software development is a piece of code used to stand
in for some other programming functionality. A stub may simulate the behavior of existing
code (such as a procedure on a remote machine) or be a temporary substitute for yet-to-be-
developed code.

Say, we have made some changes in the algorithm (FR algorithm either in training or in
recognition part). This change will be reflected only for the newly coming images in future.
But, what to do for those present on the server already? Will redoing training/recognition
manually be a solution? Here comes the job of the stubs to ease our job. In general, stubs
can be written for any purpose and in any desired programming language depending on
the need. Sometimes, they will be required for testing also (without waiting for the whole
process to complete, we can stub for the required portion alone).

5.3 BlackBox

Black Box is the name given to the system component which contains all the learning
algorithms. It’s the intelligent component of the system. First it’s trained with user images
while enrollment process and then leraning on daily basis through attendance takes place.
Black box’s older version had a limit to the accurcy. Thus, the new algorithm is created to
make it more accurate, efficient and faster.

5.3.1 Old Black Box

The old black box was fully written in C++. It had two features, training & recognition. It
used eigenfaces & fishefaces bases for computations.

5.3.2 New Black Box

The new black box is written using openface in python. Along with training & recognition,
it also has a verification feature. It trains a classifier which is basically an SVM & uses it to
classify the images. The implementation of new blackbox is given in the next section.

44

5.4 Implementation

5.4.1 System Dependencies

Following system dependencies are there:

• OpenCV

• OpenFace

• dlib

• torch

• python

OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision and
machine learning software library. OpenCV was built to provide a common infrastructure
for computer vision applications and to accelerate the use of machine perception in the
commercial products. Being a BSD-licensed product, OpenCV makes it easy for businesses
to utilize and modify the code.[6]

dlib

Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating
complex software in C++ to solve real world problems. It is open source software and
licensed under the Boost Software License.[7] We are using it for multiclass classification,
a multiclass SVM, a tool for solving the optimization problem associated with structural
support vector machines, structural SVM tools for sequence labeling, structural SVM tools
for object detection in images & SVM classification algorithm.

Torch

Torch is a scientific computing framework with wide support for machine learning algorithms
that puts GPUs first. It is easy to use and efficient, thanks to an easy and fast scripting
language, LuaJIT, and an underlying C/CUDA implementation.[8]

5.4.2 OpenFace

OpenFace is a Python and Torch implementation of face recognition with deep neural net-
works and is based on the CVPR 2015 paper FaceNet: A Unified Embedding for Face
Recognition and Clustering by Florian Schroff, Dmitry Kalenichenko, and James Philbin
at Google.[4] Torch allows the network to be executed on a CPU or with CUDA.

This research was supported by the National Science Foundation (NSF) under grant number

45

CNS-1518865. Additional support was provided by the Intel Corporation, Google, Voda-
fone, NVIDIA, and the Conklin Kistler family fund.[4] Any opinions, findings, conclusions
or recommendations expressed in this material are those of the authors and should not be
attributed to their employers or funding sources.
The detailed workflow for openface was shared in chapter 3. Here only the technique after
representation changes to classification.

Workflow

Figure 5.11: OpenFace WorkFlow

5.4.3 Workflow

Following diagram summarizes the workflow of the blackbox. The training images are given
in a folder, for a person. Similarly, testing images are also given using a folder and as a
result, result.csv file is generated.

46

Figure 5.12: Smart Attendance: Blackbox WorkFlow

Enrollment Job

During enrollment, the images are taken and faces are detected in them. The detected faces
are transformed into representations & these representations are stored into a csv file. Ac-
cordingly, a labels.csv file is generated in which a label is assigned to each representation.
Using these reps.csv and labels.csv, a python pickle is generated which is basically an SVM
classifier.

The algorithm for enrollment job is as follows:

47

Algorithm 3 Recognition: Enrollment Job

Get the file containing enrollment images paths for a person.
Go to the feature directory and search for ”reps.csv” & ”labels.csv”
if reps.csv & labels.csv already exist then

open & fetch the last label
else

Create the reps.csv & labels.csv
end if
for file in list of files do

Get the largest face from target image using dlib’s face landmarks.
Transform and align the face extratcted.
Get the representation by passing that face to forwardImage()
Append the representation into reps.csv and new label into labels.csv

end for
Run GridSearchCV to create an SVM classifier and train it by fitting reps.csv and la-
bels.csv as parameters
Dump the SVM as a python pickle and save it to the directory.

Recognition Job

In recognition, the testing images are taken one by one, and faces are detected into them.
These faces are transformed to representation. The earlier created python pickle is loaded
and the representation is passed to it. The pickle returns an array which is contaning prob-
abilities against each class which was trained. We take the highest probability from it and
using the highest probability’s index, we get the person name by inverse transformation.
At end, a result.csv file is generated which has the prediction and the confidence, which is
nothing but the respective probability.

pickle.load()
This method is used from python package ”pickle”. The python pickle generated in enroll-
ment process is used here to load.

• Read a string from the open file object file and interpret it as a pickle data stream,
reconstructing and returning the original object hierarchy. This is equivalent to Un-
pickler(file).load().

• The file must have two methods, a read() method that takes an integer argument,
and a readline() method that requires no arguments. Both methods should return a
string.[9]

sklearn.svm.libsvm.predict proba()
It computes probabilities for number of samples in X, for the all possible outcomes. The
requirement is to have the model containing probability information which is computed at
time of training: that means fit with the attribute probability is set to True.

• Parameters:

48

– X : array-like, shape (n samples, n features)

– For kernel=”precomputed”, the expected shape of X is [n samples test, n samples train]

• Returns:

– X : array-like, shape (n samples, n features)

– Returns the probability of the sample for each class in the model. The columns
correspond to the classes in sorted order, as they appear in the attribute classes.

The algorithm for recognition job is as follows:

Algorithm 4 Recognition: Recognition Job

Load the SVM from python pickle in the feature directory.
Create & open result.csv in feature directory.
for file in list of files do

Get the largest face from target image using dlib’s face landmarks.
Transform and align the face extratcted.
Get the representation by passing that face to forwardImage()
Start time calculation.
Pass the representation to already trained SVM’s predict proba() method.
Get the array of prediction against each class with which the SVM is trained.
Find the maximum prediction out of the array and get the index.
Using the Inverse Transform function, by passing the index to it.
Get the corresponding label or person’s name.
Get the prediction value from prediction array at the acquired index.
This is the confidence for prediction
Calculate current time & subtract start time from it to get the time duration in pre-

diction.
Append source image path, predicted person name, confidence & time duration into

result.csv
end for

5.5 Results

5.5.1 Experiments

Many experients have been carried out using different nn models and varying data to check
the accuracy of created blackbox. The blackbox gives predictions for each person with some
confidence. In our experiments, we found that nn4.v1.t7 gives better accuracy on our dataset
compared to nn4.small2.v1.t7 model.

For each test a nn model is used, number of persons, number of training imagesequal for
each person, number of testing images & result file is acquired.
The result.csv generated contains items in following order: source path of test image, pre-
diction, confidence, time taken in seconds, correct or incorrect(1 or 0)

49

Figure 5.13: Result.csv Format

Following table gives results for experiments done with new blackbox with various data.

No.
of
Ex-
per-
i-
ment

nn Model No.
of
per-
sons

No.
of
Train-
ing
Im-
ages

No.
of
Test-
ing
Im-
ages

Correct Pre-
dictions

Incorrect Pre-
dictions

Accuracy

1 nn4.v1.t7 5 150 5 4 (Confidence:
0.698879)

1 (Confidence:
0.395678)

90%

2 nn4.v1.t7 18 360 606 285 (Confidence:
0.759456)

321 (Confidence:
0.652345)

47%

3 nn4.v1.t7 2 200 100 93 (Confidence:
0.913458)

9 (Confidence:
0.512385)

93%

4 nn4.small2
.v1.t7

2 200 100 43 (Confidence:
0.567895)

57 (Confidence:
0.578954)

43%

5 nn4.v1.t7 2 200 100 99 (Confidence:
0.999879)

1 (Confidence:
0.687458)

99%

6 nn4.small2
.v1.t7

2 277 100 64 (Confidence:
0.785699)

36 (Confidence:
0.712563)

64%

7 nn4.v1.t7 3 300 120 104 (Confidence:
0.982456)

16 (Confidence:
0.672536)

86.66%

8 nn4.v1.t7 5 300 100 92 (Confidence:
0.975686)

8 (Confidence:
0.612536)

92%

Table 5.3: Smart Attendance: New Blackbox Results Summary

50

5.5.2 Confusion Matrix

A confusion matrix contains information about actual and predicted classifications done by
a classification system. Performance of such systems is commonly evaluated using the data
in the matrix.[10]
Following is the confusion matrix for test case 8:

Test Case 8:

• Model Used: nn4.v1.t7

• No. of persons:5

• Training Images: 5 X 60 each = 300

• Testing Images: 5 X 20 each = 100

• Results:

– Correct Predictions: 92 (Average Confidence: 0.975686)

– Incorrect Predictions: 8 (Average Confidence: 0.612536)

– Total Accuracy: 92%

Person A Person B Person C Person D Person E

Person A 9 0 0 0 0
Person B 0 10 0 0 0
Person C 0 0 7 0 0
Person D 0 0 0 8 0
Person E 0 0 0 0 8

Table 5.4: Confusion Matrix

51

Chapter 6

Third Party API Integeration With
Web Interface

The term API stands for Application programming interface (API), & is basically defined
as: The process which allows programmes to access, connect and more imporatantly, to
communicate with other programmes. Their APIs are their languages.[11]

6.1 Overview

A third party API integration is a document which is provided by the vendors to using
organization, this document contains all the instructions & technical details like input/out-
put data formats, API url etc., for programmers to itegrate the software into their custom
application. This API documentation supplied gives a chance to create a useful custom
application according to the requirements and avoiding all unnecessary features.

Representational State Transfer (REST) & Simple Object Access Protocol (SOAP) are so-
lutions to access web services. The choice between two may be difficult. Both of these are
having the similarities over HTTP protocols. In comparison to REST, SOAP is a more
rigid collection of patterns for messaging. Without following the rules in SOAP, the level
of standardization can’t be achieved. On the other hand, REST is naturally more flexible
and as an architectural style, it does not need much processing. However, both of these are
established on basis of rules which are used for exchanging the information. [12]

6.1.1 RESTful API

REST- Representational State Transfer

It is a simple method to send and receive the data in between client & server without many
standards defined for such method. The data to be sent and received could be anything,
XML, JSON or even plain text. Thus, in comparison to SOAP, it is considered ”Light
Weighted”. Instead os using the cumbersome XML structures, it relies on a simple URL.
The most of web services which use REST, rely completely on getting the required informa-
tion using the approach of URL. REST has options to use types of t HTTP 1.1 verbs (GET,

52

POST, PUT, DELETE) to do operations.

REST doesn’t need to exclusively use XML to provide the response. REST based web
services can give the output in various forms as, CSV (Comma Seperated Values), JSON
(Javascript Object Notion) & RSS (Really Simple syndication). Hence, basically, we can get
the output in a form which is easy to parse in the language used for the application. [12]
As an example to create with REST, we can create a URL for some service. The page for
API documentation shows a URL. We can use the browser to interact with the web service,
hence making it very easy to make the correct URL & verify the output which is needed to
be parsed with the application.

6.1.2 SOAP API

SOAP- Simple Object Access Protocol

It’s a way to send and receive data or small amount of information, over the internet. In
this, the data is formatted into XML, & generally are sent using HTTP(Hypertext Transfer
Protocol). This is made so, to be responsible for encoding the XML information such that,
it is collected by an operating system and is understood over any type of networking protocol.

To provide services for messaging, SOAP relies fully on XML. This XMl which is used
for making requests and in turn receive responses, can be extremely comples. Sometimes,
the requests have to be built manually. That can be tough as SOAP is intolerant of errors.
The other languages, however can use the easier ways, which are provided by SOAP; which
can reduce the efforts needed to make the request & to parse the received response. [12]
The main point says that, SOAP is very highly extensible, but we only use the parts which
are required for a particular task. E.g., while using a web service which is public, and freely
available, there is no need for WS-Security.

The most important SOAP feature is the built-in error handling. If any problem is there
with the request, the received response will bring the error information which can be used
to solve the problem. Such error reports also give the standardized codes to automate the
error handling processes and tasks in the code. One more interesting feature is that, we dont́
compulsarily need tp use it with HTTP transport. There is a specification for using SOAP
over SMTP(Simple mail Transfer Protocol).

Extremely few web service support both REST and SOAP.

In Smart Attendance System, we are using RESTful API, as we need the data to be
sent and received in various forms & cant rely exclusively on XML. As we are using JSON
format for input and output in mobile app and XML format for input and output in web in-
terface. Hence, to make it easier to create the client and use suaitable inout/output formats,
we selcted RESTful APIs.

53

SOAP REST

Independent of platform, language &
transport.

Rest requires use of HTTP.

In distributed enterprise environment,
it performs well.

REST makes assumption of direct
point to point communication.

Standardized Not fully standardized.
It has extensibility which is prebuilt
and significant by WS standards.

It doesn’t have such lists of standards.

Built in error handling. No robust built in error handling.
Tools needed to interact with web ser-
vices.

No such expensive tools required.

Uses XML for all messages. Capable of using smaller message for-
mats.

Slower, some enstensive processing re-
quired.

Faster, no such processing needed.

Table 6.1: Activities on Client

6.2 Rest Client Creation

To use these APIs into web interface & make request & receive response from them, we
created rest client using PHP and JavaScript in the web pages. These client access the web
services, receive output XML, parse it & use the data to show in the particular format on
web interface.

PHP REST Client

The PHP RESTClient looks like:

Listing 6.1: PHP Rest Client

$post xml = (s t r i n g) $ POST [’ xml ’] ;

$u r l = $ap ihost . ” updateorg ” ;

$ch = cur l in i t () ; // i n i t i a l i z e c u r l handle

curl setopt ($ch , CURLOPT VERBOSE, 1) ;

curl setopt ($ch , CURLOPT URL, $ur l) ; // s e t u r l to pos t to

curl setopt ($ch , CURLOPT RETURNTRANSFER, 1) ;

curl setopt ($ch , CURLOPT USERPWD, ”$username : $password”) ;

54

curl setopt ($ch , CURLOPT HTTPAUTH, CURLAUTH BASIC) ;

curl setopt ($ch , CURLOPT HTTPHEADER, Array (”Content−Type : a p p l i c a t i o n /xml”)) ;

curl setopt ($ch , CURLOPT HEADER, 1) ;

curl setopt ($ch , CURLOPT TIMEOUT, 1 5) ;

curl setopt ($ch , CURLOPT POST, 1) ;

curl setopt ($ch , CURLOPT POSTFIELDS, $post xml) ;

$data = curl exec ($ch) ;

$ h e a d e r s i z e = curl getinfo ($ch , CURLINFO HEADER SIZE) ;

$header = substr ($data , 0 , $ h e a d e r s i z e) ;

$body = substr ($data , $ h e a d e r s i z e) ;

curl close ($ch) ;

$doc = new DOMDocument () ;
$doc−>loadXML($body) ;

JavaScript REST Client

The REST Client in JavaScript is made using Ajax call. The e.g. in JavaScript is as follows:

Listing 6.2: JAVA Rest Client

$. a jax ({
u r l : ’ cu ra t e g e tab s en tpoo l . php ’ ,
async : false ,
type : ’POST ’ ,
data : {xml : s t r } ,
s u c c e s s : f unc t i on (data) {
conso l e . l og (data) ;
var send = data ;
par se r1 = new DOMParser () ;
xmlDoc1 = par s e r . parseFromString (send , ” t ext /xml”) ;
xmlLoader = new DOMParser () ;
var x1 = xmlDoc1 . documentElement ;
}

}) ;

55

6.3 Process flow

6.3.1 API Calling Flow

API calling process flow includes follwoing steps:

• Client Send the Request to call API with given URL and input xml.

• Jersey Servlet Receive API Request URL.

• Servlet URL Mapping.

• After that HttpGofer Class receives input xml and send output xml.

• API gofer function call.

• Main API will call.

• API Response goes to API gofer function.

• API gofer function make xml of API response.

• API gofer response goes to HttpGofer class.

• Final Response send to Client side(API Calling side) in form of xml.

Figure 6.1: API Calling Process Flow

56

6.4 Hibernate

6.4.1 Hibernate Configuration

Hibernate used for Object/Relationship mapping. Hibernate ORM enables developers to
more easily write applications whose data outlives the application process. As an Objec-
t/Relational Mapping (ORM) framework, Hibernate is concerned with data persistence as
it applies to relational databases (via JDBC).

6.4.2 Hibernate Mapping Files

POJO Class

POJO classes are just Java classes and it used for mapping the Hibernate XML file with
Database Tables. POJO class contains the all attributes that are available in Database
tables. All POJO class contains Setter or getter methods only. All POJO class are available
at src/..../java/entity package. For Every Table in the database that are used in our project
we create a POJO class. This is one sample POJO class apiList.

Listing 6.3: POJO class example

public class a p i L i s t
{

private I n t e g e r a p i i d ;
private St r ing api name ;

public I n t e g e r ge tAp i id ()
{

return a p i i d ;
}

public void s e t A p i i d (In t e g e r a p i i d)
{

this . a p i i d = a p i i d ;
}

public I n t e g e r getApi name ()
{

return api name ;
}

public void setApi name (I n t e g e r api name)
{

this . api name = api name ;
}

}

57

• The mapping document is an XML document having ¡hibernate-mapping¿ as the root
element which contains all the ¡class¿ elements.

• The ¡class¿ elements are used to define specific mappings from a Java classes to the
database tables.

• The Java class name is specified using the name attribute of the class element and the
database table name is specified using the table attribute.

• The ¡id¿ element maps the unique ID attribute in class to the primary key of the
database table.

• The name attribute of the id element refers to the property in the class and the column
attribute refers to the column in the database table.

• The type attribute holds the hibernate mapping type, this mapping types will convert
from Java to SQL data type.

• The ¡generator¿ element within the id element is used to automatically generate the
primary key values.

• The ¡property¿ element is used to map a Java class property to a column in the database
table.

• The name attribute of the element refers to the property in the class and the column
attribute refers to the column in the database table.

• The type attribute holds the hibernate mapping type, this mapping types will convert
from Java to SQL data type.

XML file

This is the Hibernate Mapping XML file that maps POJO class to Database.

Listing 6.4: Hibernate Mapping XML

<?xml version = ” 1 .0 ”?>
< !DOCTYPE hibernate−mapping PUBLIC ”=//Hibernate / Hibernate Mapping DtD 3.0//EN”
” ht tp : // h ibe rnate . org /dtd/ hibernate−mapping−3.0. dtd”>
<hibernate−mapping>

<c l a s s name = ”com . a indra . java . e n t i t y . a p i L i s t ” t ab l e=” a p i l i s t ”>
<id name = ” a p i i d ” type = ” i n t ”>

<column name = ” a p i i d ” />
<genera to r c l a s s = ” increment ” />

</ id>
<property name = ”api name” type = ” java . lang . S t r ing ”>

<column name = ”api name”></column>
</ property>

</ c l a s s>
</ hibernate−mapping>

58

6.5 Dynamicity of API Call

Since, the new architecture supports unlimited hierarchy on both dimensions, the APIs are
extremely dynamic in nature. The input & output XML structures, tags, attributes are
undefined and are created on the fly. Thus, the web interface is also built based on the
data fecthed from parsed output XML. The API itself is not dynamic. This dynamicity
comes through The actual behaviou represented by the system. What makes a Dynamic
API dynamic is expanding the scope of its contract to define an interaction-model between
the systems that is designed to cope with change. [13]

6.5.1 Featuring APIs

The APIs created as a part of this project work are for basically made for curation process.
(Manual tagging or Untagging) Hence, the APIs for curation process are discussed as below:

Get Present Pool

This API is called to get the present pool images for particular days attendance. By present
pool here, we mean by those images in which face are detected by the BlackBox & recognized
with someone. Thus, to approved the matches done by the blackbox, we need to get all those
images and persons with whom they are marked.

This is called with an input xml, which must contain the date for which present pool matches
are required. This API gives user details, & the images details which are maked with him.
Also, it gives rectangle parameters of the detect face on image which is marked with the
respective user.

Curate Present Pool

This API is called to curate the present pool images for particular days attendance. By
curating present pool here, we mean by approving the matches in those images in which face
are detected by the BlackBox & recognized with someone. Thus, to approved the matches
done by the black box, we need to get all those images and persons with whom they are
marked & call this API to approve the matches.

This is called with an input xml, which must contain the date, session number, status IDs &
hierarchy for which present pool matches are approved. This API status id of matches which
are marked with the image. Also, it gives ACKs based on successful or failure response.

Get Absent Pool

This API is called to get the absent pool images for particular days attendance. By absent
pool here, we mean by those images in which face are detected by the BlackBox & not rec-
ognized with anyone or those images in which face are not detected by the BlackBox. Thus,
to create the rectangles manually and mark it with someone or to mark already detected
rectangles with someone, we need to get all those images and rectangles if detected any.

59

This is called with an input xml, which must contain the date & hierarchy for which absent
pool matches are required. This API gives absent user details, & the images details. Also,
it gives rectangle parameters of the detect face on image if detected any.

Curate Absent Pool

This API is called to curate the absent pool images for particular days attendance. By
curating absent pool here, we mean by changing the curated status of all the unmarked
rectangles to YES or else you might want to use the same to tag it with the list absent users
corresponding to the absent pool. This is called with an input xml, which must contain the
date, session number & hierarchy for which absent pool is requested. Also, it gives ACKs
based on successful or failure response.

Curate Create Rectangle

This API is called to create a rectangle on an image. The recangle coordiantes are stored
and sent to API. This API needs data provided by Get Absent Pool API. This is called with
an input xml, which must contain the hierarchy where the respective image is. This API
gives success or failure ACK in response.

Curate Mark Rectangle

This API is called to mark a rectangle with a person. The recangle could be a manually
made rectangle or a rectangle detected by BlackBox. This API needs data provided by Get
Absent Pool API. This is called with an input xml, which must contain the hierarchy where
the respective person and images are. This API gives success or failure ACK in response.

Curate Unmark Rectangle

This API is called to unmark a rectangle with a person. The recangle could be a manually
made rectangle or a rectangle detected by BlackBox. This API needs data provided by Get
Attendance API. This is called with an input xml, which must contain the hierarchy where
the respective person and images are. This API gives success or failure ACK in response.

Get Reviews

This API is called to get reviews of the manual tagging done by the teacher or the manager.
The to be reviewed tags are stored in a table and populated on web interface. The API
send all the reviews with image and rectangle coordinates for the selected hierarchy and the
session.

Mark Reviews

This API is called to mark reviews of the manual tagging done by the teacher or the manager.
The to be reviewed tags are stored in a table and populated on web interface. The API

60

recieves all the reviews with image and rectangle coordinates for the selected hierarchy and
the session, with mark accpet or reject.

6.6 Dynamic User Interface

6.6.1 Dependencies

The Web interface for Smart Attendance is made using HTML, CSS, JAVSCRIPT, PHP.
The PHP pages serve as rest client to call the Java APIs to get and send the data. The
XML is created on UI based on user inputs and is sent to API. API in turn retrieve data
from database and send back in XML format to client. This XML is parsed and dynamically
web interface is poplulated based on the type of data. The web interface is highly dynamic
in nature.

6.6.2 Design

Authentication

User has to login in the system to view attendance and do other operations.

Figure 6.2: Smart Attendance: Login

Attendance

To view the attendance in daily, monthly and weekly format, attemdance page is created.
User at any level in hierarchy of users, can see it. On click of any green or red mark, user’s
present marked image or pool of absent image resepectively, can be seen.

61

Figure 6.3: Smart Attendance: Attendance

• Present Marked Image
The present marked images of that user in that session are shown. The time stamp
is also shown with the images. Also, if images were sent from mobile application, the
location with map (lattitude and longitude) is shown.

Figure 6.4: Smart Attendance: Present Marked Image

• Pool of Absent Images
If user is absent, then click on red mark will lead to pool of absent images which
containes all the images of that day and that session in that branch of organization.

62

Figure 6.5: Smart Attendance: Pool of Absent Images

Manual Tagging

On cases, when a person’s face is left undetected or unmarked with any user, the senior user
or manager can generate a manual tagging request. In this process, a rectangle is created
over the face of the person & marked with a user. This request goes to the admin at AIndra.

Figure 6.6: Smart Attendance: Manual Tagging

63

Tagging Reviews

When a manager at any organization generates a tag request for a user, admin at AIndra
has a right to accept or reject it.

Figure 6.7: Smart Attendance: Tagging Review

64

Chapter 7

Cancer Cells Annotation UI

The new product, Cancer Detection is going through the research phase right now. This
product is aiming to tackle the cervical cancer’s screening rates whihc are very low.

Typically, cervical cancer is unlike other cancers, not very agressive types, the gestation
period is quitre long, which is of atleast 10-15 years, & still in records, because of cervical
cancer, one woman dies in every seven and a half minutes in our country. One solution is to
automate the porocess for gargantuan problem which can be done by AI. In screening, when
a sample which is taken from a far flung area & then is sent to a tertiary oncology centre
for the further process of screening, the expected results take long time span of atleast five
to six weeks to be recieved.

Technically, the deviceis banked on the pap smear test. the pap smear test is a function
of cervical screening by which we can detect cancerous cells which are potential in nature.
To do this, the cells are smeared on a glass slide initially and the a chemical reagent is used
to stain it (pap stains) and the slide is kept under a digital microscope. A board computing
unit is there in setup, which is used to classify the sample whether they are normal or ab-
normal and then a pathologist receives it to cofirm the findings.

Pathologist can either accept or reject the view of the machine. This response is fed to
the system again which does re-inforced learning and next time used the learning for better
accuracy. The system is being built using artificial intelligence which will be trained by such
cancerous cells images. The system will be fed resoponses everytime the pathologist accept
or rejects a potential cancerous region. The initial data for the training of system is collected
from hospitals. On the testing data, the pathologist response will be served as answer. Thus,
this is an example of supervised learning. .

The whole process take very less time compared to the conventional tests. Hence, the
product is expected to reduce the death rate of women by cervical cancer.

65

7.1 Requirement

For the pathologist, to see the cell images and annotate the nucleus, a GUI is created. When
the cells are smeared on the glass slide and then are stained wirh a chemical reagent, they
are put under microscope and the image is taken with camera. When this image is stored,
an XML file is created for each image to collect data about the cells.

The fucnctional requirements in UI for the pathologist are:

• To view the marked regions.

• To view the annotated regions & view their nucleus names.

• To create regions on cell images.

• To annotate regions.

• To re-annotate regions.

7.2 Design

7.2.1 Dependencies

The system has been built using HTML, CSS, PHP, JAVASCRIPT. XML files are used
to store data of cancer images, including the region coordinates, nucleus names etc. The
system reads XML files and parses it to show the regions on the respective image on interface
and show the information if it’s annotated. After creating a new region on the image the
inofrmation is added to XML files stored on the server.

7.2.2 Functionalities

1. View the annotated and non-annotated regions on image:
When the user selects any category, he sees the images of four types:

• Fully Annotated: Images where all the regions are annotated.

• Partially Annotated: Images where some regions are annotated and rest are not
annotated.

• Non-annotated: Images where none of the regions are annotated.

• Not Marked: Images where no regions are marked.

After selecting an image, it shows all the regions, annotated with green boundaries
and non-annotated with red boundaries, based on XML’s coordinates data for regions.
Canvas drawing is used to darw the regions. On click on any green region, a pop up
shows the nucleus name for it.

66

Figure 7.1: Cancer Annotation GUI: Viewing Regions

2. Creation of new regions:
In this, the image will be used as a canvas background and no regions are drawn on it.
The original image with all regions is shown on the right side for refernece. On click
of any any annotated region there, will show the name.

Figure 7.2: Cancer Annotation GUI: Canvas to Create Region

67

To create a region, the user has to make points around the shape. the points will keep
connecting after each other, completing the boundary.

Figure 7.3: Cancer Annotation GUI: Drawing Boundary

If any wrong point is made, there is option to clear the canvas.

Once the boundary is drawn, the user can create the region and all the points’ x
& y coordinates are stored in the XML corresponding to the image with a new region
node. This region can be annotated by user in annotation functionality.

3. Annotation:
For annotation, user can select any numeber of regions. Multiple region selection is
provided, i.e., green and red both, can be selected. Everytime a region is selected,
the regions will be shown selected with a black rectangle around them. The potential
cancerouse regions inside them will be visible.

User can also deselect the regions. The black rectagles are removed and original green
and red boundaries are visible on deselection.

Once selection is done, user can select any name from the list of given names and
annotate them. The text value from the radio buttons list is taken sent to a php file
to add it into the XML file of the image. Along with it, the array containing list of
regions to be annotated is also sent. Hence, using this, non-annotated regions can be
annotated and already annotated regions’ annotations can be updated.

68

Figure 7.4: Cancer Annotation GUI: Region Selection

4. Check Annotation:
To check the nucleus name for any annotated region, user can click on a any green
region and a pop up will appear with the nucleus name for that region.

Figure 7.5: Cancer Annotation GUI: Annotation Check

69

Chapter 8

Conclusion & Future Work

8.1 Conclusion

Thus an intuitive Face Recognition System has been developed which makes use of the Face
Recognition Techniques (FRT) to train (learn) itself and uses it to recognize people from
the dictionary it created during learning process. Once Recognition is done, the result is
forwarded to the web interface where managers and employees can view the consolidated
attendance in various levels of granularity. When a person is wrongly marked absent, with
the help of manual tagging, reinforced learning is also made possible so that the machine can
recognize that person properly in the future. The new architecture is going to be implemented
with the new black box, APIs & new web interface.

8.2 Future Work

The new architecture is going to be implemented with the new black box, APIs & new web
interface. The illumination conditions and face postures are important factors impacting the
results. The eciency can be increased by improving the core algorithm which takes care of
the recognition process for a group of people. The future tasks include stablizing the core
learning algorithm, APIs & add verify option in the system along with train & recognize.

8.3 Challanges

8.3.1 Smart Verification

• If more than one person is captured in the target iamge, to handle this condition.

• For relatively blurr/lower quality images.

• Since detection happens on eyes first, if in any case, eyes are closed or due to eye glass
tint, not detected.

• For setting a benchmarked threshold for decision making.

70

• Use the results to make system learn for future purposes.

8.3.2 Smart Attendance

• If more than one person is captured in the target iamge, to handle this condition.

• For relatively blurr/lower quality images.

• Since detection happens on eyes first, if in any case, eyes are closed or due to eye glass
tint, not detected.

• Use the results to make system learn for future purposes.

The work in future will also focus on the detailed understanding of cases of errors, more-
over on improvement of the system, & reduction of the size of the model, as well to reduce
the CPU requirements. The requirement is to look into the ways for improvement of at
present longer time taken in training.

71

Bibliography

[1] “Facial recognition system.” https://en.wikipedia.org/wiki/Facial_

recognition_system/.

[2] J. P. G. I. Florian Schroff, Dmitry Kalenichenko, “Facenet: A unified embedding for
face recognition and clustering.” IEEE Xplore, Computer Vision Foundation http://

www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_089.pdf, 2015.

[3] X. W. Y. Sun and X. Tang, “Deeply learned face representations are sparse, selective
and robust.” CoRR, abs/1412.1265, 2014.

[4] “Openface, free and open source face recognition with deep neural networks.” http:

//cmusatyalab.github.io/openface/.

[5] D. K. Florian Schroff and J. P. at Google, “Real-time face pose estimation.” http:

//blog.dlib.net/2014/08/real-time-face-pose-estimation.html, 2014.

[6] “Opencv.” http://opencv.org/about.html.

[7] “Dlib, c++ library.” http://dlib.net/, 2015.

[8] “Torch, a scientific computing framework for luajit.” http://torch.ch/.

[9] P. S. Foundation, “pickle python object serialization.” https://docs.python.org/2/

library/pickle.html, 2016.

[10] “Confusion matrix.” http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion_

matrix/confusion_matrix.html.

[11] M. Welch, “What is api integration?.” https://support.sparkpay.com/hc/en-us/

articles/203285490-What-Is-API-Integration-, 2015.

[12] J. Mueller, “Understanding soap and rest basics and differences.” http://blog.

smartbear.com/apis/understanding-soap-and-rest-basics/, 2013.

[13] D. Duggal, “Dynamic apis: Negotiating change.” http://www.dataversity.net/

dynamic-apis-negotiating-change/, 2015.

72

