
Developing Transaction Level Visualization
Features For Accelerating pre-Silicon debug

Submitted By

Mrugeshkumar Janakbhai Sabalpara

14MCEC22

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Developing Transaction Level Visualization
Features For Accelerating pre-Silicon debug

Major Project

Submitted in fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Mrugeshkumar Janakbhai Sabalpara

(14MCEC22)

Guided By

Dr. Ankit Thakkar

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Certificate

This is to certify that the major project entitled ”Developing Transaction Level Vi-

sualization Features For Accelerating pre-Silicon debug” submitted by

Mrugeshkumar Janakbhai Sabalpara (Roll No: 14MCEC22), towards the par-

tial fulfillment of the requirements for the award of degree of Master of Technology in

Computer Science and Engineering of Nirma University, Ahmedabad, is the record of

work carried out by him under my supervision and guidance. In my opinion, the sub-

mitted work has reached a level required for being accepted for examination. The results

embodied in this major project, to the best of my knowledge, haven’t been submitted to

any other university or institution for award of any degree or diploma.

Dr. Ankit Thakkar Mr. Sasidhar Sunkari

Guide & Associate Professor, DTS Group,

CSE Department, Intel Technology India Pvt Ltd,

Institute of Technology, Bengaluru, Karnataka.

Nirma University, Ahmedabad.

Dr. Sanjay Garg Prof. Dr. P. N. Tekwani

Professor and Head, Director,

CSE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, Mrugeshkumar Janakbhai Sabalpara, Roll. No. 14MCEC22, give undertak-

ing that the Major Project entitled ”Developing Transaction Level Visualization

Features For Accelerating pre-Silicon debug” submitted by me, towards the fulfill-

ment of the requirements for the degree of Master of Technology in Computer Science

& Engineering of Institute of Technology, Nirma University, Ahmedabad, contains no

material that has been awarded for any degree or diploma in any university or school in

any territory to the best of my knowledge. It is the original work carried out by me and I

give assurance that no attempt of plagiarism has been made.It contains no material that

is previously published or written, except where reference has been made. I understand

that in the event of any similarity found subsequently with any published work or any

dissertation work elsewhere; it will result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Dr. Ankit Thakkar

(Signature of Guide)

iv

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Dr. Ankit

Thakkar, Associate Professor, Computer Science Department, Institute of Technology,

Nirma University, Ahmedabad for his valuable guidance and continual encouragement

throughout this work. The appreciation and continual support he has imparted has been

a great motivation to me in reaching a higher goal. His guidance has triggered and nour-

ished my intellectual maturity that I will benefit from, for a long time to come.

I would sincerely like to thank my manager, Mr. Sasidhar Sunkari for granting me

the opportunity to work at Intel Technology India Pvt Ltd, Bengaluru for my internship.

I would also thank my whole team, who spent his valuable time to explain me the entire

process and made me feel a part of the company. Also I would like to thank my entire

team for the continuous guidance and support and for teaching me to learn beyond the

scope of project.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Science and Engineering Department, Institute of Technology, Nirma University,

Ahmedabad for his kind support and providing basic infrastructure and healthy research

environment.

A special thank you is expressed wholeheartedly to Prof. Dr. P. N. Tekwani,

Hon’ble Director, Institute of Technology, Nirma University, Ahmedabad for the unmen-

tionable motivation he has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- Mrugeshkumar Janakbhai Sabalpara

14MCEC22

v

Abstract

SoC are large designs made by combining other large designs. A typical SoC has many

communication pathways and a large amount of parallel activity. In order to debug these

kinds of designs effectively new approaches must be taken. We discusses the require-

ments for effective debug in the face of today’s large SoCs, outlining real world example

and making some recommendations for easier solutions. This includes transaction based

debug, with ”connected” transactions. While designing SoC’s it also required to view

details in depth of part. Zoom Network Diagram viewer is the application which will do

this for us.

vi

Abbreviations

MOC Meta Object Compiler

TLD Transaction Level Debug

ZNDV Zoom Network Diagram Viewer.

SoC System On Chip

JNI Java Native Interface

IDE Integrated Development Environment

PDE Plugin Development Environment

HDL Hardware Description Language

RTL Register Transfer Level

IP Intellectual Property

TLM Transaction Level Modeling

DEMON Debug Monitor
——————————————————————————————————————

–

vii

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

Abbreviations vii

List of Figures x

1 Introduction 1
1.1 Company Profile . 1
1.2 Team Profile . 2
1.3 What We Do . 2

2 General Overview 3
2.1 Technology Used . 5

2.1.1 QT Framework . 5
2.1.2 Eclipse . 7
2.1.3 Java Native Interface - JNI . 8

3 Transaction Level Debug 9
3.1 General . 9
3.2 Overview of System On Chip Level Debug 9

3.2.1 Debug Paradigms . 10
3.3 Debug Process through Transaction . 14
3.4 Experiment and Development of Drag N Drop 15

3.4.1 Approach - For Drag N Drop . 16
3.4.2 Custom editor - Notepad view . 22
3.4.3 Email capability to send scratchpad records 23

3.5 Transaction Level Debug Details . 25

4 Zoom Network Diagram Viewer 32
4.1 General . 32
4.2 Detail Of Zoom Level Network Diagram Viewer 33
4.3 Zoom Network Diagram Viewer Details 34
4.4 Development Task - Zoom Network Diagram Viewer 37

4.4.1 Exploration on how external Qt application to be part of eclipse 37

viii

4.4.2 Conclusion . 43

5 Conclusion and Future Work 44
5.1 Conclusion . 44
5.2 Future Work . 46

Bibliography 47

ix

List of Figures

2.1 Model-View-Delegate(MVC structure) 6

3.1 Simplied view of an SoC interface communication 14
3.2 Initially before dragging data rows from source view to scratchpad view . 17
3.3 After dragging data rows from source view to scratchpad view 17
3.4 Example of color & text options . 18
3.5 Example of color & text options with overlapping headers 18
3.6 Initially before dragging data rows from log view to proxy view 19
3.7 After dragging data rows from log view to proxy view 19
3.8 Initially before dragging data rows from tree view to proxy view 20
3.9 After dragging data rows from tree view to proxy View 21
3.10 Extending simple text-area to rich text editor 22
3.11 Email functionality for scratchpad records 24
3.12 TLD main window . 25
3.13 TLD table view format file display with options 26
3.14 TLD tree view format file display with options 26
3.15 TLD raw log format file display with options 27
3.16 Main window for scratchpad . 27
3.17 Scratchpad consisting different views with records 28
3.18 Scratchpad notepad options . 29
3.19 Email functionality for scratchpad records to send debugger/engineer . . 30
3.20 Email records in editable format to debugger/engineer to email box . . . 31

4.1 UML Model for Zoom Network Diagram Viewer 33
4.2 Zoom Network Diagram Viewer Visualization 34
4.3 Zoom Network Diagram Viewer Links and Blocks Connection 35
4.4 Zoom Network Diagram Viewer options available with blocks/svg 35

x

Chapter 1

Introduction

This chapter explains about the company profile and team profile, and the work we

do.

1.1 Company Profile

Intel Corporation is an American multinational technology company. It has head-

quarter in Santa Clara, California, which is started on July 18, 1968 by two dedicated

scientists, Robert Noyce and Gordon Moore. They founded Intel with and idea and

a vision products build for semiconductor memory. Intel is one of the world’s largest

and highest valued semiconductor SoC makers.By 1971, Intel had introduced the worlds

first microprocessor. Which is pioneer of the x86 series of microprocessors,which can be

easily found in most personal computers. Aslo presented 4-bit to 64-bit microprocessor

like Celeron,Pentium, Core, Xeon and Atom series, Intel has established a heritage of

innovation that continues to expand the reach to the humans.

1

1.2 Team Profile

Team under which I worked is responsible for delivers, design and technology solutions

that ensure Intel’s leadership in product development and silicon technology.We Simplify

the system by improving customer satisfaction by providing an interface that is minimal,

obvious and clean.

Our department carries several activities :-

• Reactive

– Support/Bugs Tracking - Provides all kind of support for systems, we develop

for use. And take care that all functionality works fine.

• Proactive

– Path-finding, Research, Development - Higher level always encourage for in-

novation. Also we carry out development activities for problems and deliver.

1.3 What We Do

We provide solutions for transaction verification in Pre-Si domain. Cost for doing

re-engineering after post-Si is much higher than Pre-Si. Which means to do verification

before Post-Si, is cost effective.

2

Chapter 2

General Overview

A system-on-a-chip (SoC) is a microchip which has necessary electronic circuits and

parts for a system, to work properly such as one can find in a smart phone gadgets/wearable

computer, on a single integrated circuit.

System-on-a-chip technology is used in increasingly complex consumer electronic de-

vices, which are comparatively small in size . Some devices have more processing power

capabilities than old desktop computers, so one can imagine. For upcoming time, one can

think about SoC-equipped nano robots robots of microscopic dimensions in size might

act as programmable antibodies to cure diseases, which are previously incurable . SoC

video devices might be embedded in the brains of blind people, which allows them to see

and SoC audio devices might allow deaf people to hear.With rapid development in SoC

chips, Hand held computers with small whip antennas may someday get enough capable

of browsing the Internet at Mbps speeds from any destination of the earth.

Semiconductor industrial growth advancement provided designers to make the most of

from increased silicon real estate, to able to get system on a single chip. Such system-on-

chip (SoC) designs are made up of many complex functional units,connected via standard

bus system or customized one. Functional verification of large SoC designs presents new

and interesting challenges to chip development teams. More preciously, simulation at the

register transfer level (RTL) now generates tremendous amounts of signal-level data that

must be tracked and analysed, for debugging of transactions, which occurs in complex

structure of SoC for verification and debug process. Design validation and verification

engineers can achieve significant amount of increase in their productivity by analysing

3

trackers generated from complex functional units.

A System On A Chip: typically uses 70 to 140 mm2, of silicon. It is a complete system

on a chip. A system consists of memory component, peripherals and microprocessor.

Processor can be a customized/assembled or standard microprocessor, or it can be a

only made as media processor for sound, modem or video applications. Processors are

interconnected using different mechanized techniques, inclusively with shared memories

and message-passing hardware components like dedicated channels such as data buses

and address buses and mailbox for system messaging. It also possible to have multiple

processors and which are accompanied by other generators of bus cycles, such as DMA -

direct memory access controllers. DMA controllers can be arbitrarily complex, and are

really only distinguished from processors by their complete or partial lack of instruction

fetching. SoCs can be easily found-able in every consumer product, like it ranges from

modems to mobile phones, DVD players to iPODs and so on as you think!

4

2.1 Technology Used

2.1.1 QT Framework

Qt is usually a cross-platform request progress composition pertaining to computer,

set in addition to mobile. Helped Systems consist of Linux, OS X, Windows, VxWorks,

QNX, Google android, iOS, Rim, Sailfish OS while others.

Qt isn’t a coding dialect by means of a. It is a platform prepared inside C++. A

new preprocessor, the actual MOC (Meta-Object Compiler), is utilized to increase the

actual C++ dialect having characteristics similar to signals and also slot machine games

[1]. Before the collection phase, the actual MOC parses the original source records pre-

pared inside Qt-extended C++ and also creates normal compliant C++ sources from

their store. Hence the actual platform by itself and also applications/libraries making

use of it could be compiled by just about any normal compliant C++ compiler similar

to Clang, GCC, ICC, MinGW and also MSVC.

Model/View Architecture - QT

MVC[2] consists of three separations or partitioning into three different objects more

preciously.

• The Model - application object

• The View - screen presentation

• The Controller - user interface reacts to user input

This object decoupling enable to reuse and provides ease to programmer as don’t need

to lump all things into just one component and only needed changes are needed to be

done.

5

As you can see model and view are works very closely. Here, in between there is

separation done as Model/view architecture, such that combination of objects of view

and controller results in MVC architecture. Here data is separated, as how it is rendered

and displayed to the end user, but concept is same as for MVC framework. By this

separation one can display same data in different views and without any modification to

underlying data structures.But here user can modify data as per convinces and to handle

that Qt introduces the concept called delegate, Which allows to modify data when user

want at anytime, user make changes to view. Here, delegate raise the signal to contacting

model and telling model to change the data as per edited in view, which again displayed

back to view. SO, user can able to see changes at same time.Thus, rendering of data gets

easier.

Figure 2.1: Model-View-Delegate(MVC structure)

6

• Models, views, and delegates are getting connected by signals and slots mechanism:

– Signals generated from model initiates and view get to know about changes to

the data done by the data source.

– Signals generated from view provide information about the user’s interaction

with the items which are displayed on different views.

– Signals generated from the delegate are get initiated when some editing done,

so it generates signal and model get to know and view gets change accordingly.

2.1.2 Eclipse

The Eclipse provides the integrated plug-in development environments (IDEs) Plat-

form and arbitrary tools. Here I provide some details to the Eclipse Platform, where it

is used and from where it originated.

• Eclipse is an Open Source IDE :-

– It is used as general purpose open platform which provides and leverage us

for development of third party plug-ins, which might be written in other pro-

gramming language.

– It is well know as an Integrated Development Environment(IDE)

• It Provides tools which are useful for building, debugging, running and coding

applications

• Originally Eclipse designed for Java only , but later on it added support to other

languages also such as

– C, C++, which are native languages

– Ruby, PHP, Python, etc, which are scripting language

• In our project, I need to explore the different ways, that how Qt based application

can be integrated to eclipse as a perspective, or by providing it as a plugin, so it

can be installed and used as a part of eclipse environment.

7

• To achieve purpose of providing application as an plugin for eclipse, I need to

learn about plugin development using the plug-in development environment (PDE)

provides tools to build, develop, test, deploy, create and debug eclipse plug-ins and

features.

2.1.3 Java Native Interface - JNI

JNI enables us like programmers to write native methods/functions to handle many

situations such as when an application not written entirely in the Java programming

language, means it happens that many standard Java classes are not supported. It is

also used to change an existing application written in native language which need to get

extension to Java to be accessible to Java applications. Many of the standard library

classes relies on java native interfaces(JNI) which provide functionality to able to use

those libraries in application to developers/programmers, e.g. memory organization, file

I/O [3]. JNI Involves performance- and platform-sensitive API implementations in the

standard collection, that allows java applications to access that operation in the safe and

platform-independent manner, developed within various other dialects.

The JNI framework provides us basic method to use Java objects in the similar kind

way that Java code uses these objects. A native method can create Java objects and then

checks and using these objects it performs tasks. A native method can also check and

use objects created by Java application program.

8

Chapter 3

Transaction Level Debug

3.1 General

When a large SoC is being tested, the communication on the SoC can be modeled

using transactions. Communication between two points can be modeled a transaction.

The collection of related transactions that make up a ”complete transaction” or data

transfer across the entire SoC is a transaction. In a simulation there may be hundreds of

thousands or millions of transactions. This is a large dataset to use for debug. It is hard

to find the transactions that are deemed ”interesting”.

3.2 Overview of System On Chip Level Debug

Traditional register transfer level (RTL) [4] debugging is based on effective simulation

results on structural informative connectivity of the Hardware Description Language

(HDL) source. It’s seems to be very effective process and helpful though it is not that

much helpful to reasoning about how and why questions of designer.So forth designer

also already have its mirror image as how it going to be propagate in simulation and it

should be work as it is defined.But when designs get more and more complex, there is a

need emerges to have some automatic way for debugging.

Debugging is generally a serious undertaking for the designer along with large in

addition to intricate models since these include commonly:[5]

• Heterogeneous: constructed from assorted parts maybe intellectual property (IP)[4]

blocks by several major player in industry.

9

• Mixed: consisting of portions described at unique abstraction quantities behavior

and also structural along with.

• Diverse: consists of several working out domains that will product real life connec-

tion, because sensors, transducers, digital-to-analog and/or vice-verse converters.

This incitement as well as response info utilized to work out as well as view layout

behavior is additionally a big as well as various info set. Manipulating, mastering, as well

as considering this specific info and it is connection along with anticipated or even desired

behavior, and the designs setup (i.e., actual) behavior is usually a horrific starting. The

method regarding debugging requires picking out the logic that is linked to an error,

identifying the particular relevant lead to as well as result effective relationships, as well

as being familiar with the way in which the planning is supposed in order to behave as

well as the reason it is not conducting like that.[6]

3.2.1 Debug Paradigms

1. Signal level Debug[7]

• In signal activity need to identify the proper signal handshaking for said mem-

ory read or write operation.

• Simulation at the register transfer level (RTL)[4] generates tremendous amounts

of signal-level data that must be tracked and analyzed, which drastically in-

creases the complexity of the verification and debug process of SoC.

10

The basic paradigm is to capture the signal generated while simulating. The user

configures signal probe network selects the number of signals to be simultaneously

recorded in a trace buffer to analyze which further delivers to selected group - both

a tracer and a debug monitor which analyzes a group of signals.Debug monitors

output lines are directly connected with tracer. The debug monitor is configured

to implement triggers, which enable us to start or stop recording by the tracer. A

tracer can be written such a way that it gets stop or sleep mode when it gets full,

or it continuously record until it gets triggered and signaled as stop. There is flag

called full for trace buffer, Which is checked by debug tracer simultaneously.

2. Assertion level debug[7]

Assertion-based debug is a very popular paradigm and very tempting apporach,

which used successfully in pre-silicon verification. To do manual analysis of seized

waveforms needs extensive efforts to check misbehavior in between of signals, where

as by using assertions, it do all things automatically. Apart from assertions if we

go with traditional approach,than identification of internal misbehavior takes thou-

sands of cycles, which makes backtracking even difficult and tedious to identify root

cause. In opposite of it, when an assertion gets triggered, we we gets much closer to

actual error causing action, which leads to less time and circuit space also,so that

by using this technique there is significant amount of reduction in space utilization

can be seen. Thus assertions are shows its usefulness because they improve the

serviceability of internal errors. Since most of assertions checks connections in be-

tween signals and do not rely on expected values, as in checks provides with exact

match values, where it happens as generally don’t know expected values in debug

environment.

11

Assertions implemented in a local DEMON are driven by the same functional clock

of the clock domain where the inputs analyzed by the assertion reside. An assertion

implemented in a global DEMON works at a clock frequency higher than or equal

to the frequency of the fastest clock domain providing inputs to the DEMON. All

the enabled assertions can work concurrently.[7]

Because assertions are dynamically created in reconfigurable logic, many different

assertions may be configured in the same infrastructure logic at different times

during operation. While hundreds of assertions can be used in simulation, the

number of assertions that can be configured concurrently in the fabric is limited

by the fabric capacity and by the resources required to implement each assertion.

However, we can take advantage of the re-usability of the re-configurable logic by

partitioning the set of desired assertions into groups, and downloading one group

at a time. In a system processing a non-repetitive continuous stream of data (such

as music or video), this process can be automated so that each group runs in turn

for a predetermined time period. Such an assertion loop provides a powerful silicon

debug mechanism.

3. Transaction level Debug

• Transactions enable cross-team collaboration between hardware and software.

• They form a system design level at which many concerns can be analyzed in

a fruitful and efficient manner.

• Provides the abstraction over the signal level generated data.

Cpu computer software is normally debugged from either the origin signal, or this

processor instruction levels. The last option is the least expensive levels that’s even

now important for that programmer. Cpu instructions be construed as an all nat-

ural abstraction levels relating to the computer software along with the processor

electronics. Yet (software) threads also communicate jointly by means of this inter-

connect, transactions. Transactions includes the reaction to processor instructions

(such since load in addition to store) that result in activity on the interconnect as

well as other IP blocks such since memories. Transactions for that reason really

are a healthy software concerning calculation in addition to conversation. The in-

struction abstraction is significant for integrated hardware/software debug, while

12

the technique of some sort of transaction will be basic for method levels debug (i.

e. numerous IP cores). This can be confirmed with the by using transaction-level

modeling (TLM)[8] for interconnects in addition to SOC’s.

From software engineers view , transaction level is the lowest level at which the

embedded processors can be programmed by issuing read and/or write instructions.

Now those read and write instructions causes transactions on the on-chip where

communication infrastructure is established and, through translation to transaction

commands using the appropriate communication protocol. The communication

architecture transports these commands to one or more targets, which implement

the actual write and/or read operation. As such, there is a natural correspondence

between read and write instructions in software, and transactions within the systems

communication infrastructure.

A hard-wired target is designed to respond to read and write commands on its

communication interface that is connected to the systems communication infras-

tructure. When a read or write command is delivered to the target, the hardware

designer knows how this target should react to this command. For example, when

the target in question is a memory core, and the command is a write command,

then the appropriate reaction of the target to the delivery of this write command

is to store the commands data at the commands address.

13

3.3 Debug Process through Transaction

Figure 3.1: Simplied view of an SoC interface communication

• By doing debug at signal level, we need to keep track of all the signals which are

generated at pin level and needs to find the connection in between them.Which is

quite tedious task to do.

• While doing same thing at interface level we can capture the transaction which is

initiated to perform the required operation and by getting response for the request

we can say it is successful or not.

• Using higher level of abstraction by means of transactions, we can identified, whether

the operation is successfully completed or not.

• Transaction logs, which are got are in row form at initial stage, and the amount of

logs are also huge.Though it is lesser than, what in actual system generated. But

helpful to analyze the system.

• We need to parse these logs and get required data from it. After refinement, we

need to store it to database, for simplify and easy to visualizations.

• Transaction Level Debug is a perspective, which integrated into the main debug

system and simplifies and automates log and trace file analysis.

14

• Traced data is shown in Tabular form , Tree View and Log View form inside

the system. Which have several functionality like searching, filtering, coloring,

shortcuts etc.

• We can open multiple views of different type to visualize the tracker log.

• We can also centralize the system as it can combined with different aids like

verdi(Automated Debug System is an advanced open platform for debugging).

3.4 Experiment and Development of Drag N Drop

• Log files are large in size and contains several operations performed on data when re-

quest for it raise. These operations may not be logged in continuous form.Operations

are Scattered in log file.

For example Any Read request is raised and request for it sent to CPU by periph-

eral. Before it gets completed other request also generated by other peripherals.

Thus, logs for all this request will be generated as soon as they requested and stores

all logs until gets completed. But due to several operations at a time it may not be

show order of completion stages for an request.

• Thus, If User needs to check for specific instructions that if it is completed success-

fully or not than he/she needs to scroll and check operations performed on specific

data, which is hectic when user needs to match some parameters for complete trans-

action of operation.

• For this, Need to experiment that whether a drag-gable view can created and user

can drag needed rows from the log which is stored in either table or tree format in

system.

15

3.4.1 Approach - For Drag N Drop

• Here, used Model/View Architecture as prior explained for Qt framework.

• Previous approach consists of :-

– Two views

∗ Source View - Contains original data rows from table.

∗ Proxy view - Contains dragged rows from Source View.

– Single Model

• Single model will consists of whole data, which will be applied under required rules

and after getting the result, while dragging to proxy view, it will transfer only those

rows which are selected from source view.

• In this approach, I used QSortFilterProxyModel, by using this model I show only

those data, which are dragged to my proxy view.

• Current implementation approach consists of :-

– Single view

– Single Model

• Single model will consists of whole data, which will be applied under required rules

and after getting the result, while dragging to scratch pad view, it will transfer only

those rows which are selected from source view. But here I don’t need to add any

extra view as creating scratch pad view, only same view from where source view is

getting displayed is used.

16

• Case:1 - Table View

– Before dragging the content to proxy view.

Figure 3.2: Initially before dragging data rows from source view to scratchpad view

– After dragging the content to proxy view.

Figure 3.3: After dragging data rows from source view to scratchpad view

17

Here, features like coloring, bold also works in scratch pad view and you can go to

the same data record by clicking in scratch pad view to actual view.

• Coloring and overlapping headers option as shown in figure 3.4 and figure 3.5.

– Coloring options with bold, italic text options.

Figure 3.4: Example of color & text options

– Coloring options with bold, italic text options with demonstration of overlap-

ping headers.

Figure 3.5: Example of color & text options with overlapping headers

18

• Case:2 - Log View

– Before dragging the content to proxy view.

Figure 3.6: Initially before dragging data rows from log view to proxy view

– After dragging the content to proxy view.

Figure 3.7: After dragging data rows from log view to proxy view

19

• Case:3 - Tree View

– Before dragging the content to proxy view.

Figure 3.8: Initially before dragging data rows from tree view to proxy view

– As user can see there are some selected rows from Source tree model, wanted

to be dragged to proxy tree model.

– Here, data is manipulated using QAbstractItemModel, which allows us to re-

implement the tree model/view from scratch and give much-more handling

power.

20

– After dragging the content to proxy view.

Figure 3.9: After dragging data rows from tree view to proxy View

– In proxy tree model, data is not loaded in initial stage and have blank view.

– When user drag data to proxy model, it matches the rows and columns with

actual data and display it on view.

– But using proxy model it takes too much time, if records are more in number.

– To remove this performance issues, I used internal pointer concept from tree

modeling in Qt(cute) and regenerate tree only for dragged data on proxy

model.

– Thus, user see it as dragging data and dropping data for tree view, where as

in actual tree is restructured in proxy tree model.

21

3.4.2 Custom editor - Notepad view

• Notepad view for individual scratchpad view like Table/Tree/Log view(s).

• Here user can provide details about Table/Tree/Log view(s) content, which gener-

ally consist about different transactions.

• User can highlight very important part of text provided by him in notepad view.

• User have different options same as like a rich text editor have.

• For each view it creates separate view of notepad, so you can simply distinguish

notes about respective use.

• Here content of notepad view, respectively with view(s) is sent via email.

Figure 3.10: Extending simple text-area to rich text editor

22

3.4.3 Email capability to send scratchpad records

• Now we have email functionality to send records from scratchpad records

• Here, user can open as many views for table view, tree view, log view record.

• User can also have capabilities to do coloring, sorting, searching, define different

roles also.

• Different type of roles are:-

– Display Role

– Decoration Role

– Edit Role

– Tool-tip Role

– Status-tip Role

– Background Role

– Foreground Role

– Font Role

• In email user can provide as many email id(’s), as he wants by comma separated

values.

• On successful email sent user will also notified by pop up box.

• If provided email Id(’s) is/are improper than user get an notification to change it

to correct one.

23

• Simple structure for email functionality is as show as below :-

• User need to configure SMTP server and needs to provided required details as shown

in figure 3.6 .

Figure 3.11: Email functionality for scratchpad records

24

3.5 Transaction Level Debug Details

• In this section will describe about TLD and show graphically about the solution.

• As shown in figure 3.12,when user open up TLD its looks like. In center space,

where user can load different views like table/tree/log format style view which are

shown in next figures.

• To load views views there are several options given in toolbar.

• To open required view format file, user needs to first go respective directory file

from the provided options and select the correct file.Why?

• Because for different formats, we have different headers file and user needs to pick

one correctly to load required view.

Figure 3.12: TLD main window

• Table/Tree view can show overlapping/non-overlapping headers, which changes

with respect to status of the macro instructions.

• Log View is just raw text format with various functionality, thus don’t have any

headers.

25

• Below listed figures for views available and supported by TLD:-

– Pre-loaded table view - figure 3.13

Figure 3.13: TLD table view format file display with options

– Pre-loaded Tree View - figure 3.14

Figure 3.14: TLD tree view format file display with options

26

– Pre-loaded Log View - figure 3.15

Figure 3.15: TLD raw log format file display with options

• For Each view mentioned above have context menu, which get opens on right click

options.

• Here, user have option for scratchpad option called ”Open Scratchpad”. On

clicking this menu there will open another window opens called ”scratchpad”.

Figure 3.16: Main window for scratchpad

• Initially view doesn’t consist any records but have headers form the respective view,

means related to particular view from where it is get opened as shown in figure 3.16.

27

• As explained in various experiments about drag and drop functionality for views,

user can drag small chunk of data to scratchpad view.

• Here dragging the data is allows not only in simple texture but with all styles

applied to records.

• As user can see that some of the data is dragged which are not in simple text

and have applied background/foreground colors by given functionality, as shown in

figure 3.17.

Figure 3.17: Scratchpad consisting different views with records

• In figure 3.17 user finds more option in scratchpad view to provide some additional

information for respective dragged view.

• This ”Notepad” option is available on the right side of each scratchpad view for

each layout view (means for each table/tree/log view, opened inside scratchpad).

28

• When user clicks on arrow provided on right side, it gets opened as shown in figure

3.18. Here, user can add extra details required to related layout view, regarding

errors, bugs, which needed to be report to debugger/engineers.

• In experiment part, where I implemented one sample editor, where functionality

like:

– Bold text

– Italic text

– Underline text

– Increase/Decrease font size text

– Color selected text

– Clear all style of text

– Copy text

– Paste text

– Select All

are captured and used in scratchpad view’s notepad part as user can see in figure

3.18

Figure 3.18: Scratchpad notepad options

29

• As shown and in experiment part about email functionality, here used the same

concept in very generic way, where user just need to provide email id(s) to whom

this email needs to be sent, which consist of information for new change require-

ments/enhancement/bugs.

• When user clicks on ”Send Mail”, email sent directly and pop up comes up which

verifies the validity of email id(s) and show accordingly message on Send Mail

Successful or Please, Provide Correct Details

Figure 3.19: Email functionality for scratchpad records to send debugger/engineer

30

• As in figure 3.20 shown, user will get email in their email box with all rendering,

which applied in scratchpad.

• Here user can also make edit of the received data records and forward it further.

Figure 3.20: Email records in editable format to debugger/engineer to email box

• To send records from table/tree/log views, I had written recursive functions,from

where it gets data from each view and iterate up-to its last occurring child record,

which is complex part in just showing records with all options and in proper format

in email.

31

Chapter 4

Zoom Network Diagram Viewer

4.1 General

• Zoom Network Diagram Viewer Definition:-

– Multi-level vector-based block diagrams of the micro architecture, implemented

as an integral part of Debug perspective.

• Zoom Network Diagram Viewer perspective is an easy-to-use Transaction Level

Debug-Based tool that allows:-

– navigation

– visualization

• Interactive Map of the design Block description and excerpts at the click of the

mouse.

32

4.2 Detail Of Zoom Level Network Diagram Viewer

Figure 4.1: UML Model for Zoom Network Diagram Viewer

• Zoom Network Diagram Viewer provides Interactive Map of the design, as customer

can see block wise structure.

• Every Block has its own description which is displayed when you click the block, it

shows details.

• It can be Integrated with other familiar debug tools like Transaction Level Debug.

Which Shown in figure 4.1 as at top most level it is a part of TLD.

33

• It helps to understand the complexity of high level architecture in easier way through

visualization, thus it reduces the time and improve debug efficiency in manner.

• All the blocks in ZNDV is connected by buses as they will in physical entity, so

provides better clarity about traffic flow.

4.3 Zoom Network Diagram Viewer Details

• Today ZNDV is standalone application, where as its also available with TLD per-

spective.

• Here, ZNDV which is a part of TLD is based on UNIX based environment, and

standalone ZNDV application is windows based, which comes as a different package.

• As earlier mentioned ZNDV is used as a visualization solution for system on chip(SoC).

• Diagrams can have more than one level in-depth.Parent SoC contains blocks, and

with those block another Soc can be connected. It is shown in tree hierarchy

structure, so when any block is clicked and it has another svg file connected with ,

than it will redirected to child svg.

• Its shows the flow for SoC, that what happens on providing inputs or rather saying

is showing the whole architecture for provided SoC.

Figure 4.2: Zoom Network Diagram Viewer Visualization

34

• User can go-through tree structure and have searching option, so user can find

related files or svg diagrams.

• It is easy to jump from one svg to another svg. same goes for block structure as

user can click on particular block and it jumps to that block with respect to its svg

file/structure.

Figure 4.3: Zoom Network Diagram Viewer Links and Blocks Connection

• Each block has many options to add file like:-

Figure 4.4: Zoom Network Diagram Viewer options available with blocks/svg

35

– Log file

– Documentation

– Links

– Block Info

– Register Transaction Language files etc.

• Usefulness and contribution for understanding:-

– Interactively explore multi-level block diagrams of the design.

– Enable everyone to debug like an expert using contributed content.

– Experts getting fewer interrupts/requests for debug help

– Non-experts are less reliant on experts to make progress

– Providing motivation to experts to develop debug solutions/collateral

36

4.4 Development Task - Zoom Network Diagram Viewer

• In system previously, it was not taking command line arguments. For this I need

to write command line parser and allow user to pass command line arguments to

open the svg files in Zoom Network Diagram Viewer perspective.

• Previously settings file is created on root directory, which needs to move to users

temp directory.

• Implementation of utility, which allows user to know priory about not functional

areas of diagram and easy to use on single click action by his/her.

• User can easily understand and correct it.

• Adding feature for searching in tree structure, thus diagrams will be shown as

hierarchy and user can search related blocks.

• Previously there were ambiguities related to links as user sometimes confuses in

between link(s) connect to which block(s).

• Enhanced the solution by allowing user to jump from any link to its respective

blocks and also, visualize the all elements per blocks, so user easily understand the

relation between blocks and document.

4.4.1 Exploration on how external Qt application to be part of

eclipse

Explored Ways:-

1. The Eclipse framework is written in Java and the its plugin infrastructure is

also built around java only, which is basically implies that if you want to write

plugin than you need to use Java. There is also possibility to have plugin written

in C++(or other languages native languages) and then,it can be bridged to Java

by using C++ interface and avail as plugin by use of JNI (Java Native Interface).

37

Steps to follow:- To call Library written in C++ from Java, I Need to follow below

steps:

(a) Identification of C++ classes and methods that I want to make available from

those in the library’s API, form where I can make meaning full funtionality to

be worked

(b) Next I need to write appropriate or more precisely equivalent Java classes, in

which methods that will be implemented by the library are declared using the

native keyword and left unimplemented in the Java code.

(c) Generate stub function declarations for the JNI wrapper.This JNI wrapper

contains special names given to the functions, which are implemented in both

side, and these names given by generator.

(d) Write the body of the JNI wrapper, implementing each function by converting

its Java type arguments into appropriate C or C++ types, calling the native

library, and converting the results back again;

(e) Now, we are almost ready, just need to write small Java program to test it.

(f) Build everything means Java, C++ code and get it run.

Conclusion:- Here, I need to write Java classes for equivalent C++ classes, which

method declaration. So for ZNDV, we need to write equivalent Java classes and

generate JNI interfaces for it.

2. Qt Jambi: - Qt Jambi is a Java binding of the cross-platform application frame-

work Qt. It allows Java developers to use Qt applications in Java programming

domain. Also, Qt Jambi generator can be used to create Java bindings for other

Qt libraries and future versions of Qt.

Qt Jambi generator:- It is a Qt application which used to map C++ APIs into

equivalent Java APIs, enables C++ programmers to easily integrate their c++

based Qt application into Java environment. The generator supports a selected

subset of C++, which covers common constructs. Which generates equivalent Java

API’s for those common constructs, so we don’t need to write extra code to convert

those C++ classes . It also generates code which bridges the Java classes to the

C++ classes. Based on the Java Native Interface (JNI), it ensures that method

38

called from Java are redirected to the corresponding functions in the C++ library.

Conclusion:-

(a) Installation details: (Currently support get Ended. Found installation de-

tails but many links are broken) https://doc.qt.io/archives/qtjambi-4.5.2 01/com

/trolltech/qt/qtjambi-installation.html Didnt get how to integrate Qt Jambi

into eclipse.

(b) Qt Jambi Generator: http://qtjambi.org/doc/generator Here, automat-

ically converts C++ function calls to Java Classs and function declaration

using JNI. For Qt Jambi Generator, need to write specification xmls.

(c) Qt Jambi Generator Example: https://doc.qt.io/archives/qtjambi-4.5.2 01

/com/trolltech/qt/qtjambi-generatorexample.html

3. JNI Approach: - More often than not, it’s important to use indigenous rules

(C/C++) to defeat your recollection management /memory in addition to function-

ality constraints in Java. Because, java helps indigenous rules calling performance

making use of java native interface (JNI). JNI is difficult, the way it involves two

dialects in addition to runtimes..[3]

Required knowledge of:

(a) Java

(b) C/C++ - the GCC Compiler

(c) Gygwin or MinGW based on Linux or Windows

(d) Eclipse C/C++ Development Tool (CDT)

39

Example:-

• Step 1: Write a Java Class which using native langauge - Hel-

loWorldJNICpp.java

public class HelloWorldJNICpp {

static {

System.loadLibrary("hello"); //dll or so

}

// Native method declaration

private native void sayHelloWorld();

// Test Driver

public static void main(String[] args) {

new HelloWorldJNICpp().sayHelloWorld(); // Invocation

}

}

– Compile the HelloWorldJNICpp.java into HelloWorldJNICpp.class.

∗ javac HelloWorldJNICpp.java

• Step 2: Auto Create C/C++ Header file - HelloWorldJNICpp.h

JNIEXPORT void JNICALL Java_HelloWorldJNICpp_sayHelloWorld(JNIEnv *, jobject);

– To get these generated files

∗ javac HelloWorldJNICpp.java

40

• Step 3: Write C/C++ functionality - HelloWorldJNICppImpl.h,

HelloWorldJNICppImpl.cpp, and HelloWorldJNICpp.c

– C++ Header - ”HelloWorldJNICppImpl.h”

#ifndef _HELLOWORLD_JNI_CPP_IMPL_H

#define _HELLOWORLD_JNI_CPP_IMPL_H

#ifdef __cplusplus

extern "C++" {

#endif

void sayHelloWorld ();

#ifdef __cplusplus

}

#endif

#endif

– C++ functionality - ”HelloWorldJNICppImpl.cpp”

#include "HelloWorldJNICppImpl.h"

#include <iostream>

using namespace std;

void sayHelloWorld () {

cout << "Hello World from C++!" << endl;

return;

}

41

– Write interface in C++ Program connecting to Java - ”HelloWorldJNICpp.c”

#include <jni.h>

#include "HelloWorldJNICpp.h"

#include "HelloWorldJNICppImpl.h"

JNIEXPORT void JNICALL Java_HelloWorldJNICpp_sayHelloWorld

(JNIEnv *env, jobject thisObj) {

sayHelloWorld(); // invoke C++ function

return;

}

– To get this resultant file

∗ set JAVA HOME=C:/ Program Files/ Java / jdk1.7.0 XX

∗ g++ -Wl,–add-stdcall-alias -I”% ”JAVA HOME %/ include” -I”%JAVA HOME%/

include win32” -shared -o hello.dll HelloWorldJNICpp.c HelloWorld-

JNICppImpl.cpp

• Step 4: Execute Java class

– java -Djava.library.path=. HelloWorldJNICpp

Conclusion:-

(a) JNI approach is to provide interface between java and Qt, which is C++ based

framework. But to do so, we need to write JNI interfaces for all required Qt

class functions, to be called from java.

(b) Writing JNI interface for each function of Qt class is very much time consum-

ing. Or in other words, It is like writing every thing again in java.

42

4.4.2 Conclusion

Sr.

No.

Approach Description Maintenance Limitations

1 Write JNI inter-

face

To communicate need

to write JNI in between

Qt(C++) and JAVA

Moderate Need to write JNI interface

manually for all class re-

quired to call from JAVA.

2 Qt Jambi Gener-

ator

IT takes users specification

XML and internally builds

Java classes for respective

Qt(C++) classes

Moderate No proper documentation

available.

3 QX11Embed

Container

Container binds other wid-

get inside it.

Moderate Need to check with sample

program. Platform compat-

ibility.

4 Launch zMAP

as other window

Provide button to launch

zMAP using java plugin, so

opens in another window.

Less Cant interact with different

java environment

43

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Initial phase of internship was bit of getting ramp ups on technologies, which I didn’t

know priory. I got great understanding about Qt (Cute) and C++.Also I learn scripting

technologies like perl, python during workshop and in working. To understand the debug

solutions and working, I had many hands on exercises in initial time, and it help me a lot

to understand working environment. I got good knowledge on TLD, ZNDV and back-end

specifically mysql and overview of elastic, in my internship.

Leadership/Ownership:

Mentors and team member trusted me to develop full stack creation of solution as

part of different debug solutions. And for it I had many experiments carried out to come

up to solutions, which is currently part of TLD and ZNDV respectively. I had owned

scratchpad in TLD and ZNDV as an engineer in full term internship. Also got many

opportunities to talk with customers and get positive feedback’s from them.

Scope/Impact/Relevance to Intel:

• I had to deliver scratchpad which supports drag and drop functionality for ta-

ble/tree/log view formats, with capabilities like coloring searching, filtering, email-

ing. Email functionality used to send this scratchpad details to respective debug-

ger/engineer/tool user, to ease understanding and provides information related to

any kind of flaws, if any occurred in debug. By this, it is saving much time of

debugger/engineer/tool user to debug tools and cost effectiveness in pre-si verifica-

44

tion. It is also provides ease to understand small chunk using scratchpad sent as as

email. And also worked on UI enhancement for transaction level debug.

• While in ZNDV, there are many request for enhancement and exploration, which

I carried out. Exploration about making ZNDV part of eclipse and work as a core

part as written in JAVA. For it I got one month time and I provided my analysis

on it and presented to team, which unfortunately turn into freeze state as there

is no simpler way to do that, even I can write JNI interface, I need to write it

for hundreds of classes and thousands of functions, which is very time and cost

effective!

• I had request about showing links and connections for per block wise, so to re-

move the ambiguity in ZNDV diagrams and user can have easy understanding and

also providing utilities for identify non-functional area of SoC, so user can make it

correct, even if user don’t have much prior information/experience.

• This all impacts majorly as one of the clients said,”Scratchpad will be the game

changer” and ZNDV is very important tool to get knowledge of SoC level via

visualization.

Lessons Learned:

I learned about day-to-day life in corpora. How actually work carry out, chances got

to meet higher level people in organizations. Faced challenges, initially when I had very

shallow knowledge of domain, but that’s a part of learning and rapidly I compete with it.

• And for my excellent work I got :

”Recognizing Mrugesh for his commendable effort in delivering ZNDV re-

quest. Mrugesh quickly ramp up on ZNDV Code and implemented the feature

with good quality. He took ZNDV request apart from his regular deliverable

on scratch pad and delivered in short span of time, I would highly appreciate

his multitasking abilities for making the things successful. Thank You.”

45

Results Orientation:

• Award honors the impact I have demonstrated through:

• Assuming responsibility.

• Constructively confronting and solving problems.

• Executing flawlessly.

5.2 Future Work

• New exploration path for reducing loading time for views, using web technologies

like Node js/Angular js and elastic as a back-end.

• Making visualization feature available from core - to uncore connecting with IP’s,

which covers everything comes under debug.

• Currently visualization part of debug solutions are very much stable and now shift-

ing towards improvement in debug efficiency, like exploring AMBA/USB protocols,

which will be next step.

• Shifting to load sharing and adopting hadoop technologies in future, so data loading

and sharing will get improved and make it more efficient to use.

46

Bibliography

[1] “http://doc.qt.io/qt-5/reference-overview.html,”

[2] “http://doc.qt.io/qt-4.8/model-view-programming.html,”

[3] “https://www3.ntu.edu.sg/home/ehchua/programming/java/javanativeinterface.html,”

[4] B. Vermeulen, K. Goossensy, R. van Steedenz, and M. Bennebroekx,

“Communication-centric soc debug using transactions,”

[5] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and D. Miller, “A

reconfigurable design-for-debug infrastructure for socs,”

[6] “http://www.design-reuse.com/articles/12790/transaction-based-debug-of-pci-

express-embedded-soc-platforms.html,”

[7] K. Goossens, B. Vermeulen, R. van Steeden, and M. Bennebroek, “Transaction-based

communication-centric debug,”

[8] “http://www.design-reuse.com/articles/33664/using-transactions-to-effectively-

debug-large-soc-designs.html,”

47

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Company Profile
	Team Profile
	What We Do

	General Overview
	Technology Used
	QT Framework
	Eclipse
	Java Native Interface - JNI

	Transaction Level Debug
	General
	Overview of System On Chip Level Debug
	Debug Paradigms

	Debug Process through Transaction
	Experiment and Development of Drag N Drop
	Approach - For Drag N Drop
	Custom editor - Notepad view
	Email capability to send scratchpad records

	Transaction Level Debug Details

	Zoom Network Diagram Viewer
	General
	Detail Of Zoom Level Network Diagram Viewer
	Zoom Network Diagram Viewer Details
	Development Task - Zoom Network Diagram Viewer
	 Exploration on how external Qt application to be part of eclipse
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

