Re-engineering of SLM with Automated
Testing

Submitted By
Jayendra Vyas
14MCEC30

i NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY
NAAC ACCREDITED ‘A’ GRADE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF TECHNOLOGY
NIRMA UNIVERSITY

AHMEDABAD-382481
May 2016

Re-engineering of SLM with Automated
Testing

Major Project

Submitted in complete fulfillment of the requirements
for the degree of

Master of Technology in Computer Science and Engineering

Submitted By
Jayendra Vyas
(14MCEC30)

Guided By
Prof. Jitali Patel

ij NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY
NAAC ACCREDITED ‘A’ GRADE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF TECHNOLOGY
NIRMA UNIVERSITY
AHMEDABAD-382481

May 2016

Certificate

This is to certify that the major project entitled ” Re-engineering of SLM with au-
tomated testing” submitted by Jayendra Vyas (Roll No: 14MCEC30), towards
the complete fulfillment of the requirements for the award of degree of Master of Tech-
nology in Computer Science and Engineering of Nirma University, Ahmedabad, is the
record of work carried out by him under my supervision and guidance. In my opinion,
the submitted work has reached a level required for being accepted for examination. The
results embodied in this major project part-1I, to the best of my knowledge, haven’t been

submitted to any other university or institution for award of any degree or diploma.

Prof. Jitali Patel
Guide & Associate Professor,
CSE Department,

Institute of Technology,

Nirma University, Ahmedabad.

Dr. Sanjay Garg
Professor and Head,
CSE Department,

Institute of Technology,

Nirma University, Ahmedabad.

il

Dr. Priyanka Sharma
Professor,

Coordinator M.Tech - CSE
Institute of Technology,
Nirma University, Ahmedabad

Dr P.N. Tekwani

Director,

Institute of Technology,
Nirma University, Ahmedabad

Certificate

life.augmented

This is to certify that the major project entitled ” Re-engineering of SLM with au-
tomated testing” submitted by Jayendra Vyas (Roll No: 14MCEC30), towards
the fulfillment of the requirements for the award of degree of Master of Technology in
Computer Science & Engineering (CSE) of Nirma University, Ahmedabad, is the record
of work carried out by her under my supervision and guidance. In my opinion, the sub-

mitted work has reached a level required for being accepted for examination.

Date:

Project guide

Mr Krishna Kumar
CPD Department,

STMicroelectronics, India

v

Statement of Originality

I, Jayendra Vyas, Roll. No. 14MCEC30, give undertaking that the Major Project
entitled "Re-engineering of SLM with automated testing” submitted by me, to-
wards the accomplishment of the requirements for the degree of Master of Technology
in Computer Science & Engineering of Institute of Technology, Nirma University,
Ahmedabad, contains no material that has been awarded for any degree or diploma in any
university or school in any territory to the best of my knowledge. It is the original work
carried out by me and I give assurance that no attempt of plagiarism has been made.It
contains no material that is previously published or written, except where reference has
been made. I understand that in the event of any similarity found subsequently with any
published work or any dissertation work elsewhere; it will result in severe disciplinary

action.

Signature of Student
Date:

Place:

Endorsed by
Prof. Jitali Patel
(Signature of Guide)

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Prof. Ji-
tali Patel, Associate Professor, Computer Science Department, Institute of Technology,
Nirma University, Ahmedabad for his valuable guidance and continual encouragement
throughout this work. The appreciation and continual support he has imparted has been
a great motivation to me in reaching a higher goal. Her guidance has triggered and nour-

ished my intellectual maturity that I will benefit from, for a long time to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-
puter Science and Engineering Department, Institute of Technology, Nirma University,
Ahmedabad for his kind support and providing basic infrastructure and healthy research

environment.

A special thank you is expressed wholeheartedly to Dr P.N. Tekwani, Hon’ble Di-
rector, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation he has extended throughout course of this work.
I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- Jayendra Vyas
14MCEC30

vi

Abstract

This project is about re-engineering of SLM model where SLM stands for system
level memory. SLM is a memory model used internally in ST Microelectronics to sim-
ulate memory in verification phase of SoC design. Existing SLM is based on flexperf
library which is obsolete now. So, We are re-engineering SLM with re-creating classes
which are independent of flexperf library functions. Automation of existing testcases of
SLM allows developers to test code regressively. SLM GUI is also an integral part of this

project which provides different views for memory instances .

vil

Abbreviations

SLM
GUI
HDL
VHDL
SoC

System Level Memory

Graphical User Interface

Hardware Description language
Verilog Hardware description language

System On Chip

viil

Contents

Certificate iii
Certificate v
Statement of Originality %
Acknowledgements vi
Abstract vil
Abbreviations viii
List of Figures xi
1 Introduction 1
1.1 Our Team 1
1.2 What is SLM Model? 1

2 Literature survey 4
2.1 Existing SLM:o 4
2.2 SLM GUI . . . 5
2.3 Testcaseso 5

3 Technological Review 6
3.1 Language and Tools. 6
311 CH4/Tk. . . oo 6

3.2 Supported Operating Systems 6
3.3 Supported Logic Simulators 6
3.4 SLM functionalities 7
3.5 How SLM works? 8
3.6 SLM GUIL o, 8

4 Requirement Analysis 9
4.1 Objectives for SLM GUI 9
4.1.1 Functional Objectives. 9

4.1.2 Software Objective 10

4.2 Objectives for SLM core 10
4.2.1 Functional Objective 10

4.3 Objective for Test cases 11
4.3.1 Functional objectives 11

X

5 Implementation details
5.1 Snapshots of SLM GUI . . .
5.1.1 SLM GUI architecture

5.1.2 SLM GUI communication process

5.1.3 SLM GUI splash screen

5.1.4 SLM GUI property view window
5.1.5. SLM GUI Output window
5.1.6 SLM help command in Unix
5.1.7 System Memory instance Properties
5.1.8 Daughter Memory instance Properties

5.1.9 Memory Layout
5.2 Objectives achieved

6 Conclusion and Future Scope
6.1 Conclusion
6.2 Future Scope

6.2.1 Objectives for SLM GUI

6.2.2 Objective for SLM Core
6.2.3 Objectives for testcases

Bibliography

12
12
12
13
14
15
16
17
18
19
20
21

22
22
22
22
22
23

24

List of Figures

1.1
3.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

SoC design Components 2
GUI Components 8
SLM GUI architecture 12
Overall Communication process 13
SLM GUI Home 14
SLM GUI Property View 15
SLM GUI Output Window 16
SLM help command in Unix 17
System Memory instance Properties 18
Daughter Memory instance Properties 19
Memory Layout 20

x1

Chapter 1

Introduction

1.1 Owur Team

Our team work with the development of software models for IPs and specifically this
report work is related to memory model. ”System Design Solutions” is responsible for
software modelling of different type of memories. These software models are then deliv-
ered to others teams within ST for incorporating with their simulators for verification
purpose. Our team deals with one such memory model known as System Level Memory

and its brief overview has been presented in the upcoming sections.

1.2 What is SLM Model?

In embedded system SoC is used to exhibit its functionalities. Fabrication of SoC is a
very time consuming and costly process. So, it is designed very precisely and simulated

to check its performance. SoC design process consists of following phases.

SoC Design Process Steps :-
1. Architecture Design

2. IP selection

3. Verification.

4. Integration

5. Validation

6. Physical Synthesis

SoC Chip "

e

m

Multimedia Encoders \ Decoders o

r

Direct Memory Access y

S - S

ARM CPU Digital Signal)
Processor

4]

r

F |

d

e

Figure 1.1: SoC design Components

Verification is the phase which takes maximum time in design process. In this phase

various components are simulated on simulator like cadence, mentor graphics etc. Differ-
ent component models are used in order to check the performance.
SLM model is used for simulating memory in ST Microelecronics. SLM model provides
simulation of memory to add ease for developers in debugging memory in design process.
Major functionalities of SLM are memory browsing and backdoor access to memory in-
stances. Apart from that it provides wide range of functionality.

There are 3 major components in re-engineering of SLM

1. Classes of SLM
They depict functionality of SLM in following categories.

(a) Utility

(b) Verification
(¢) Recording

(d) Access

(e) Co-verification

(f) Debug

2. SLM GUI
It provides memory browsing for different memory instances to add ease in debug-
ging. It provides information about different memory instances. It has reach set
of features like hierarchical view, Property view, searching data at specific address,

range of data. Currently it is standalone software developed in C++/Tk.

3. Automated Testcases
These testcases are automated to be executed when we build SLM. It regressively
checks for any differences in expected output and obtained output. Every testcase

generates log while running testcase. It has following 2 test suits.

(a) HDL testsuit
It contains testcases in verilog. They Check for HDL Code functionality in

different simulators environment.

(b) CPP testsuit
It contains testcases in C++. They check for C++ code functionality for SLM

core.

Chapter 2

Literature survey

2.1 Existing SLM:

As mentioned earlier, SLM is a memory model to simulate memory in verification pro-
cess of SoC design.It is ST Microelctronics’s proprietary software. It is used internally
in projects to simulate memory on different simulators. It can be used to verify anu
functional design that require complex memory operations.

SLM is a mixed HDL/C++ model. It reduce the physical memory overhead by simply
giving a ’C” moemory view to the physical memory. It is heavily integrated with flexperf
library functions. Flexperf library is again ST Microelecronics’s internal tool. This li-
brary is very old and not compatible with modern GCC. So, there is a need to re-engineer
SLM Classes which are independent of flexperf library functions.

SLM provides services in following categories.
1. Utility
2. Verification
3. Recording
4. Access
5. Co-verification

SLM GUI is developed with SLM to provide GUI to end users and developers to view
and access instances. It facilitates developers in debugging.

There are two test suits in co-ordination of SLM to test code regressively. HDL test

4

suit checks HDL code and CPP test suite checks CPP code in order to check fro any

differences between expected outcome and obtained outcome.

2.2 SLM GUI

It is used to communicate with SLM Core. It allows developers to browse memory and
zero time access to memory instances.SLM GUI was initially implemented in JAVA. In
current version it is implemented in CPP/Tk which is very light in comparison of JAVA
version.

In the current version it provides services to display memory instances. It also provides
different views like Property view which gives detail about properties of current memory
instance, Hierarchical view which gives relation of daughter memory instance with other
parent memory and Memory grid view which gives grid view for current memory instance.

It also allows to dump memory instance in required format.

2.3 Testcases

Testcases for HDL and CPP check code for identifying any differences in obtained output
after modification in given code. These testcases are automated to check code regressively
and less time consuming.

Testcases are built with the same time when SLM is built. if they are not automated
then it is very lengthy and complicated process.

Testcases contains test cases for different perspectives. For example , Access category
from CPP test suit contains testcase which checks address scrambling in SLM. It yields

results whether address scrambling has been affected or not after modification in code.

Chapter 3

Technological Review

3.1 Language and Tools

SLM models are mixed HDL/C++ memory models. They correspond to HDL func-
tional architectures where assignments of the memory models are replaced by C/C++
subroutine calls. This way the storage becomes C storage in place of the former HDL
register /variable . To connect HDL logic together with the C array and related access
functions, the simulator-specific HDL/C interface are used. SLM C storage and services

are delivered as prebuilt C dynamic libraries.

3.1.1 C++/Tk

SLM GUI is implemented in C++/Tk. It is an interface to the Tk GUI toolkit. C++/Tk
uses templates, operator overloading and implicit conversions. Each C++/Tk expression
ends up as equivalent Tcl/Tk command in the string format which is passed to underlying

Tecl interppreter. It means that C++/Tk uses and depends on Tcl/Tk environment.[!]

3.2 Supported Operating Systems

1. Solaris

2. Linux

3.3 Supported Logic Simulators

1. Cadence NCsim

2. Mentor Modelsim

3. Synopsis ves-mx

4. Verisity Xsim (Axis)

3.4 SLM functionalities

SLM provides functionalities in basically 2 categories.

1. Internal functions for SLM Model providers

(a)
(b)
()

Registration
Read and write access

Subset of verification features (Load, Reset system memory)

2. External functions for End users

(a)

(b)

Utility

These are help and information functions.

Verification

Verification functions are meant to be used in either in the HDL test bench
or from logic simulator console. They rely on backdoor access. They are
executed in 0-HW time. Accesses to SLM cuts are not simulated by the logic

simulator hence reducing simulation time.

Recording

These functions help in logging the memory events in different formats .

Debug

These functions are used for debugging purpose.

System

These functions are related to creation and building of system memories.

HW/SW co-verification

Functions used in parallel of hardware design.

3.5 How SLM works?

SLM ’C’ storage and services are delivered as pre-built 'C’ dynamic libraries. In order to
connect HDL logic together with the C array and related access functions, the simulator

specific HDL/C interface are used.

3.6 SLM GUI

SLM GUI can be divided in following components.

GUI

GUI Data Data Sharing Automated
Technology Communication Methodology Testing

Figure 3.1: GUI Components

Chapter 4

Requirement Analysis

4.1

Objectives for SLM GUI

4.1.1 Functional Objectives

1.

Debug existing SLM GUI code implemented in C++/Tk
SLM GUI was a stand alone software earlier. Debugging was required to ensure

functionalities which were supposed to be delivered.

. Optimize code

it includes identifying redundant functions, variables and memory leaks. As some of
the functions may not be contributing in depicting functionality of SLM GUI. Some
global variables may also not be used in code. SLM GUI takes memory instances
as input file and generates various log and error files. So, It is also important to

check traces of memory leaks.

. Add Partial Search feature

Existing SLM GUI was exhibiting search feature which gave an address of data we
look for. But, it did not support partial search. In partial search, GUI finds all

partial matches at binary level and displays.

Integrating SLM GUI into SLM Core

Intially it was standalone application. Afterwards need arose to integrate it into
SLM core. So that it can get invoked whenever we build SLM Core. All the files
are directly passed from SLM core to SLM GUI to be displayed by it. Initially the

files which we wanted to display on SLM GUI were used to be dumped in a specific

location and GUI was accessing those files from those locations.

4.1.2 Software Objective

1.

2.

Modular and extensible

Simple integration setup

4.2 Objectives for SLM core

4.2.1 Functional Objective

1.

Abstract analysis of SLM core
This objective is about to understand relations between existing files. It includes

understanding flow of SLM Core.

. Analysis of plugin point for SLM GUI

Currently SLM GUI is stand alone software. It is not integrated with SLM. To
allow SLM GUI communicate directly with SLM, we need to integrate it with SLM
core. So that we can invoke SLM GUI from within SLM.

Analysis of classes to be re-engineered
Before re-engineering the SLM Core classes, through analysis was required to carry

out re-engineering.

Re-engineering of classes
After thorough analysis of classes built with flexperf library functions, new classes

were supposed to be developed in order to provide dependency on flexperf library.

Integration of re-engineered classes
All re-engineered classes were supposed to be integrated to ensure functionalities.
Separate testcases were also supposed to be developed to ensure individual func-

tionalities.

10

4.3 Objective for Test cases

4.3.1 Functional objectives

1. Abstract analysis of existing test suits

Initially there were two test suits

(a) HDL Test suit
It contains test cases to check whether they are carrying out functionality.

Every functionality is checked with content of different simulators.

(b) CPP test suit
It contains test cases to check functionality of C++ code whether they are

carrying out functionality.

2. Automate C++ testcases

It is cumbersome to run testcases manually. There are 25 testcases implented in
C++ checking different aspects of SLM. They need to be automated to check test
results without manual intervention. We can set specific flags while building SLM

which can also build test cases at same time.

They generate log files and error reports to add ease in debugging. These log files
and error reports are very helpful in case some errors are there in code. Automation

of testcases saves plenty of time and makes debugging very simple.

11

Chapter 5

Implementation details

5.1 Snapshots of SLM GUI

5.1.1 SLM GUI architecture

SLM Core ey Scratchpad
(mni]; ﬁﬁ_‘;tg]tlr{laﬂsm (Plugin Point for Old GUI)
Move data towards SLM Data
Exchanger/File Dumps
Through Function Calls
Slmgui exe LaunchGUI() File Dumps/ SLM
’ Data Exchanger
executes (Populates its data structure)

Figure 5.1: SLM GUI architecture

12

5.1.2 SLM GUI communication process

Sysla
Buikler

1: Call Candigurator

Gmlum| |auwm| |Gmmnwr| |uan

1.2 Configuration Ready

!

|

Lt |
1.1: Assembla conligurations :

|

|

|

!

o

FInlerace
Shell

2 Build 3LM Cnm-__ 2.1: Prepans Cone

22 SLM Core ready 4J

1

e

3 HGUI enabled
= .ﬂ 3.1 it}

|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
L 4: Build Data Exchanges 1

4.1 Data Exchangar Ready

5.1.1.1.1.1. Build Selr
» 1

& Do action

i
! 5 Buld User Inierface Shell
| B
5.1: Request for information
21.1: Request for
“ = H
| B.1.1.1: information Received i
T - 511 1.1'I'|I(\fmmmﬂmmvmhl
]
I
]
]
i
]
]
| 511112 inifialization Compleie
-
L1]
()] I |
1 i i
| : : &1: Perlonm Action
I I I
|] I
1 | H L
1 [l l

Figure 5.2: Overall Communication process

13

26 2 Action Resit

5.1.3 SLM GUI splash screen

Zdi File Whiew

E5[| Hame | simiserapi | Sim Help|
-1 Hierarchical View Enabled

A A
B — Memory-Instances
EEl top_plt.DATA_memery # top_plt.DATA_memary
#® sc_main.top_plt.demo_csw_inst_0.demo_inst_o.slave_mMo

BC|
a7
¥

Ba|

= &
551
ecil
Bbbec

¥ radis:
2PPOAERA0ERRA1811181111681100

(¥

sc_main.top_plk.dema_csw_inst_0.doma,_inst_0_slave_M0

Figure 5.3: SLM GUI Home

14

5.1.4 SLM GUI property view window

Edi File View

E5 (| Hame | Simuserapi | Sim Help|
an Praperty Wiew Enabled
A "

= ||| = Memory-Instances

] Bmary)
st_main.top pit.demno o |[-9isak lee 2 tap_plt.OATA menory

Logical Mame current : top plt.DATA menory
Alias :
I : 1

; 2
Depth : ETL0EDES

HALI
55 Address Bus Size :
B AL :
L1 Begin Address :
¥ End Addrass 1
anl Rugerlions :
Menory Type] Fhiysical Memary

B

L=
ay

¥
an)

= g
551
ecil
Bbbcc

fa el e

Py

top_pht. DATA memary

Figure 5.4: SLM GUI Property View

15

5.1.5 SLM GUI Output window

Output Window

BEGIN: {ataries

BEGIN De : Tunctions Tor memory viewer, evenl asserlions, menory browser

Del:i Functicas

ni:i‘ﬁ anfermation about variows functicns available with the user

Ne argumnents

Figure 5.5: SLM GUI Output Window

5.1.6 SLM help command in Unix

rtlsoc@crx1052iB1st1is2 :s1mhel
Hom To Proceed ._%

1. Give First argument as -h to know the possible usages of help command
Z. Can use this for getting help on any

Function

Error Message

Context

Category

Just Give tha first argument As the ssarch string for any of the above

=+ Categories Available ==

registration : registration of physical memory instances for in the SLM models
ACCeSS : memory access functions for usage in the SLN models

verification : functions for verification purpose ca'l'lahle from simulator prompt or HDL
utility ;. miscallanecus lowsr added valus function

system : system memory registration and deF1n11:1on functions

recording : functions for handling SDI2/DBI/Console recording

debug : functions for memory viewer, event assertions, memory browser
coverification ¢ Ccpu and address space reégistration, mapping and optimization settings
** Contexts Available ==

verilog_memory_model : to model memory in verilog language.

verilog_testhench : to use SLM services through verilog code.

ncsim_console : to use SLM services at ncsim simulator prompt{conscle).

mti_console : to use SLM services at modelsim similator prompt{console).
vhdl_memory_model : to model memory in VHDL.

vhdl_testbench ¢ to wuse SLM services through VHDL code.

e : to use SLM services in C++ lan

isskit : to use SLM services for co-ver 1F1Ga.1.‘10ﬂf155

c=lang : to use SLM services through ¢ language.

sSpecman 1 1o use SLM services through specman/ e language.

|rtlsoc@crxi052iBist363

Figure 5.6: SLM help command in Unix

17

5.1.7 System Memory instance Properties

Srrsithpad
B TEEasy_ARM7T uSASY_ASMT uinikem
B TEEasr_ARM7 uMemury uRAMDa

B TEEasy_ARM7 uMsmony uRAMOb

B TEEasy_ARM7 uMemary uRAMDC

B TEEasy_ARM7 uMemory uRAMDY

B TEEasy_ARM7 uMemory uRAM1a

B TEEasy_ARM7 uMemony uRAM IS

B TESas_ARM7 uMemony uRAM1C

B TEEasy _ARM7 uMemary uRAM1d

B TEEasy_ARM7 udemony uBooiRGWM 0
B TEFas_ARM7 uMemany uBoolROM 1

B TEEam_ARMT uMemony uBociROM I
B TEEasy_ARM7 uMemony uBociROM 3

¢ B Do

B TEEam_ARWMT uMamuny uBonlRGMD
B TEEaw_ARM7 uMsmany uBootROMI
B TEEssy_ARMT uMemsny uBootROW I
B TEEamy_ARMF uMemity uBontRGM 3

Figure 5.7: System Memory instance Properties

18

5.1.8 Daughter Memory instance Properties

Systarn explarar : Froperty | Walue
" narme TSEam_ARMT ubdemory.uBool .
3 Scratchpad Jia e
prem— a . s
B TEEzsy SRMTUEASY _ARMZ uirttiam | Merman hpe Physieal Instance —
B TEEasy_ARMT Ul emory URAKDa g‘;’ld':_l ?Em
o JqD2g
Physu:al B TEEas!_ARMT.uMemory uRAMOb Wleravieear Recording |digablad
M B TEEz=y_SRMT.ubamarny uRAN I {|Frofiler Recording |=nabled
emory B TEEssy_ARMF.uMerman uRAKOd |cansole g dizabled
B TEEzsy_ARMT.UMEmory URAN1S fAssartons sel [res
nstances B TEEasy_ARMT UM ernony URAN1E fj=tinrlon complate [ree -
= : : SR csarten action IS FMING Pmpe rtles
B TEEasy _ARMT.uMaman uRAK 1c ; 1
B TBEEasy ARMT.uMemony uRaKM1d lcith ncex a le the
B TEEzsy_ARWT.uMamany UBLHRDMO th'“““ - .g
B TEEasy_ARMT ukemon uBLeiRoM 1 Irlsb Eaving Indsx i system
B TEEasy_ARMT.uMamany uECeIROM 2 TES 7 y
B TEBEssy_ARMT.uMemony uBooiROM 3 Lo sddress poundany axD
“ o B edrom High addiess Boundary [T memaory
EEEE] nao
—)
Daughter B Ay emonyEan RO Wraou ora piey HEXADECIHAL instance
g B TEEam_ARWT ub emors UBGIROM 1 BN Gbel for display | TEEasmy_ARM T ub gmory.uBool .
Memories B TSEasy_ARMT.uMemory.uSootRom2 [
- B TBEasy_ARM7.uMemor.uBootRoM3 |
o B ExtRAM_Bank 1]
do= B EximAM_Bank_? |

Figure 5.8: Daughter Memory instance Properties

19

5.1.9 Memory Layout

Word Split
into 8
------------ bits/coloumn
Word Split
into 16
bits/coloumn
Oxe3801000
Nxm Rl 000
Word Not
Split
i!ll‘.l
Nue D000
GECEET TR

0 5 AOFC
Qi Ao
l edad1470

Nma S8 1 D
% 2200000
0x 8 58m 0m

(GxeSc10004
Pt 1

I T T Tt]

Figure 5.9: Memory Layout

20

5.2 Objectives achieved

We divided this project into 3 major components
1. SLM GUI

(a) Analysis of SLM GUI
(b) Optimize existing code
(c) Partial search feature
(d) Differentiate Hexadecimal and decimal mode in displaying memory content
(e) Integrate Partial search feature into SLM GUI
(f) Analysis for SLM GUI plugin oint into SLM Core
(g) Integrate SLM GUI into SLM Core
(h) Extending command line arguments set for SLM GUI

(i) Internal release of SLM GUI

2. Testcases

(a) Analysis of C++ testsuit

(b) Optimize testcases

(c) Automate C++ testcases

(d) Integrate C++ testcases into SLM Core

(e) Study of VHDL testcases
3. SLM Core

(a) Analysis of existing code
(b) Design of new classes

(c) Re-engineer classes which are independent of flexperf library functions

21

Chapter 6

Conclusion and Future Scope

6.1 Conclusion

This project is about Re-engineering. So, in the first phase project activities were largely
dominated by analysis process. Initially SLM GUI was stand alone software. After adding
features related to search it was integrated with SLM Core.

Existing SLM code is decade old and heavily integrated with flexperf library functions.
This library is obsolote now. In the next phase major project activities were dominated

by eleminating dependency of classes to flexperf library functions.

6.2 Future Scope

6.2.1 Objectives for SLM GUI

1. Add new features into SLM GUI
Currently all the objectives related to SLM GUI is achieved. In future we can add

new features if the requirement arises.

6.2.2 Objective for SLM Core

1. Analysis of SLM core classes which are dependent to flexperf library functions
Thorough study of classes with dependency to flexperf library function will be

required in next phase in order to re-engineering of them.

2. Re-engineering of remaining classes

This is the central activity of this project. In this project activity, new classes which

22

are independent of flexperf library functions will be re-engineered.

6.2.3 Objectives for testcases

1. Automation of HDL testcases
Currently HDL test suit is in debugging phase. After this phase they will be

automated to facilitate developers to test their code.

2. Re-engineering of testcases for re-engineered classes
It may be required to re-engineer test cases for both cpp and HDL test suit to test

code for re-engineered classes.

23

Bibliography

[1] M. Sobczak, “C++/tk documentation.” http://cpptk.sourceforge.net, 2015.

24

http://cpptk.sourceforge.net

	Certificate
	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Our Team
	What is SLM Model?

	Literature survey
	Existing SLM:
	SLM GUI
	Testcases

	Technological Review
	Language and Tools
	C++/Tk

	Supported Operating Systems
	Supported Logic Simulators
	SLM functionalities
	How SLM works?
	SLM GUI

	Requirement Analysis
	Objectives for SLM GUI
	Functional Objectives
	Software Objective

	Objectives for SLM core
	Functional Objective

	Objective for Test cases
	Functional objectives

	Implementation details
	Snapshots of SLM GUI
	SLM GUI architecture
	SLM GUI communication process
	SLM GUI splash screen
	SLM GUI property view window
	SLM GUI Output window
	SLM help command in Unix
	System Memory instance Properties
	Daughter Memory instance Properties
	Memory Layout

	Objectives achieved

	Conclusion and Future Scope
	Conclusion
	Future Scope
	Objectives for SLM GUI
	Objective for SLM Core
	Objectives for testcases

	Bibliography

