
Re-engineering of SLM with Automated
Testing

Submitted By

Jayendra Vyas

14MCEC30

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Re-engineering of SLM with Automated
Testing

Major Project

Submitted in complete fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Jayendra Vyas

(14MCEC30)

Guided By

Prof. Jitali Patel

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Certificate

This is to certify that the major project entitled ”Re-engineering of SLM with au-

tomated testing” submitted by Jayendra Vyas (Roll No: 14MCEC30), towards

the complete fulfillment of the requirements for the award of degree of Master of Tech-

nology in Computer Science and Engineering of Nirma University, Ahmedabad, is the

record of work carried out by him under my supervision and guidance. In my opinion,

the submitted work has reached a level required for being accepted for examination. The

results embodied in this major project part-II, to the best of my knowledge, haven’t been

submitted to any other university or institution for award of any degree or diploma.

Prof. Jitali Patel Dr. Priyanka Sharma

Guide & Associate Professor, Professor,

CSE Department, Coordinator M.Tech - CSE

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad

Dr. Sanjay Garg Dr P.N. Tekwani

Professor and Head, Director,

CSE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Certificate

This is to certify that the major project entitled ”Re-engineering of SLM with au-

tomated testing” submitted by Jayendra Vyas (Roll No: 14MCEC30), towards

the fulfillment of the requirements for the award of degree of Master of Technology in

Computer Science & Engineering (CSE) of Nirma University, Ahmedabad, is the record

of work carried out by her under my supervision and guidance. In my opinion, the sub-

mitted work has reached a level required for being accepted for examination.

Date:

Project guide

Mr Krishna Kumar

CPD Department,

STMicroelectronics, India

iv

Statement of Originality
———————————————————————————————————————

I, Jayendra Vyas, Roll. No. 14MCEC30, give undertaking that the Major Project

entitled ”Re-engineering of SLM with automated testing” submitted by me, to-

wards the accomplishment of the requirements for the degree of Master of Technology

in Computer Science & Engineering of Institute of Technology, Nirma University,

Ahmedabad, contains no material that has been awarded for any degree or diploma in any

university or school in any territory to the best of my knowledge. It is the original work

carried out by me and I give assurance that no attempt of plagiarism has been made.It

contains no material that is previously published or written, except where reference has

been made. I understand that in the event of any similarity found subsequently with any

published work or any dissertation work elsewhere; it will result in severe disciplinary

action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof. Jitali Patel

(Signature of Guide)

v

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Prof. Ji-

tali Patel, Associate Professor, Computer Science Department, Institute of Technology,

Nirma University, Ahmedabad for his valuable guidance and continual encouragement

throughout this work. The appreciation and continual support he has imparted has been

a great motivation to me in reaching a higher goal. Her guidance has triggered and nour-

ished my intellectual maturity that I will benefit from, for a long time to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Science and Engineering Department, Institute of Technology, Nirma University,

Ahmedabad for his kind support and providing basic infrastructure and healthy research

environment.

A special thank you is expressed wholeheartedly to Dr P.N. Tekwani, Hon’ble Di-

rector, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation he has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- Jayendra Vyas

14MCEC30

vi

Abstract

This project is about re-engineering of SLM model where SLM stands for system

level memory. SLM is a memory model used internally in ST Microelectronics to sim-

ulate memory in verification phase of SoC design. Existing SLM is based on flexperf

library which is obsolete now. So, We are re-engineering SLM with re-creating classes

which are independent of flexperf library functions. Automation of existing testcases of

SLM allows developers to test code regressively. SLM GUI is also an integral part of this

project which provides different views for memory instances .

vii

Abbreviations

SLM System Level Memory

GUI Graphical User Interface

HDL Hardware Description language

VHDL Verilog Hardware description language

SoC System On Chip
——————————————————————————————————————

–

viii

Contents

Certificate iii

Certificate iv

Statement of Originality v

Acknowledgements vi

Abstract vii

Abbreviations viii

List of Figures xi

1 Introduction 1
1.1 Our Team . 1
1.2 What is SLM Model? . 1

2 Literature survey 4
2.1 Existing SLM: . 4
2.2 SLM GUI . 5
2.3 Testcases . 5

3 Technological Review 6
3.1 Language and Tools . 6

3.1.1 C++/Tk . 6
3.2 Supported Operating Systems . 6
3.3 Supported Logic Simulators . 6
3.4 SLM functionalities . 7
3.5 How SLM works? . 8
3.6 SLM GUI . 8

4 Requirement Analysis 9
4.1 Objectives for SLM GUI . 9

4.1.1 Functional Objectives . 9
4.1.2 Software Objective . 10

4.2 Objectives for SLM core . 10
4.2.1 Functional Objective . 10

4.3 Objective for Test cases . 11
4.3.1 Functional objectives . 11

ix

5 Implementation details 12
5.1 Snapshots of SLM GUI . 12

5.1.1 SLM GUI architecture . 12
5.1.2 SLM GUI communication process 13
5.1.3 SLM GUI splash screen . 14
5.1.4 SLM GUI property view window 15
5.1.5 SLM GUI Output window . 16
5.1.6 SLM help command in Unix . 17
5.1.7 System Memory instance Properties 18
5.1.8 Daughter Memory instance Properties 19
5.1.9 Memory Layout . 20

5.2 Objectives achieved . 21

6 Conclusion and Future Scope 22
6.1 Conclusion . 22
6.2 Future Scope . 22

6.2.1 Objectives for SLM GUI . 22
6.2.2 Objective for SLM Core . 22
6.2.3 Objectives for testcases . 23

Bibliography 24

x

List of Figures

1.1 SoC design Components . 2

3.1 GUI Components . 8

5.1 SLM GUI architecture . 12
5.2 Overall Communication process . 13
5.3 SLM GUI Home . 14
5.4 SLM GUI Property View . 15
5.5 SLM GUI Output Window . 16
5.6 SLM help command in Unix . 17
5.7 System Memory instance Properties . 18
5.8 Daughter Memory instance Properties 19
5.9 Memory Layout . 20

xi

Chapter 1

Introduction

1.1 Our Team

Our team work with the development of software models for IPs and specifically this

report work is related to memory model. ”System Design Solutions” is responsible for

software modelling of different type of memories. These software models are then deliv-

ered to others teams within ST for incorporating with their simulators for verification

purpose. Our team deals with one such memory model known as System Level Memory

and its brief overview has been presented in the upcoming sections.

1.2 What is SLM Model?

In embedded system SoC is used to exhibit its functionalities. Fabrication of SoC is a

very time consuming and costly process. So, it is designed very precisely and simulated

to check its performance. SoC design process consists of following phases.

SoC Design Process Steps :-

1. Architecture Design

2. IP selection

3. Verification.

4. Integration

5. Validation

1

6. Physical Synthesis

Figure 1.1: SoC design Components

Verification is the phase which takes maximum time in design process. In this phase

various components are simulated on simulator like cadence, mentor graphics etc. Differ-

ent component models are used in order to check the performance.

SLM model is used for simulating memory in ST Microelecronics. SLM model provides

simulation of memory to add ease for developers in debugging memory in design process.

Major functionalities of SLM are memory browsing and backdoor access to memory in-

stances. Apart from that it provides wide range of functionality.

There are 3 major components in re-engineering of SLM

1. Classes of SLM

They depict functionality of SLM in following categories.

2

(a) Utility

(b) Verification

(c) Recording

(d) Access

(e) Co-verification

(f) Debug

2. SLM GUI

It provides memory browsing for different memory instances to add ease in debug-

ging. It provides information about different memory instances. It has reach set

of features like hierarchical view, Property view, searching data at specific address,

range of data. Currently it is standalone software developed in C++/Tk.

3. Automated Testcases

These testcases are automated to be executed when we build SLM. It regressively

checks for any differences in expected output and obtained output. Every testcase

generates log while running testcase. It has following 2 test suits.

(a) HDL testsuit

It contains testcases in verilog. They Check for HDL Code functionality in

different simulators environment.

(b) CPP testsuit

It contains testcases in C++. They check for C++ code functionality for SLM

core.

3

Chapter 2

Literature survey

2.1 Existing SLM:

As mentioned earlier, SLM is a memory model to simulate memory in verification pro-

cess of SoC design.It is ST Microelctronics’s proprietary software. It is used internally

in projects to simulate memory on different simulators. It can be used to verify anu

functional design that require complex memory operations.

SLM is a mixed HDL/C++ model. It reduce the physical memory overhead by simply

giving a ’C’ moemory view to the physical memory. It is heavily integrated with flexperf

library functions. Flexperf library is again ST Microelecronics’s internal tool. This li-

brary is very old and not compatible with modern GCC. So, there is a need to re-engineer

SLM Classes which are independent of flexperf library functions.

SLM provides services in following categories.

1. Utility

2. Verification

3. Recording

4. Access

5. Co-verification

SLM GUI is developed with SLM to provide GUI to end users and developers to view

and access instances. It facilitates developers in debugging.

There are two test suits in co-ordination of SLM to test code regressively. HDL test

4

suit checks HDL code and CPP test suite checks CPP code in order to check fro any

differences between expected outcome and obtained outcome.

2.2 SLM GUI

It is used to communicate with SLM Core. It allows developers to browse memory and

zero time access to memory instances.SLM GUI was initially implemented in JAVA. In

current version it is implemented in CPP/Tk which is very light in comparison of JAVA

version.

In the current version it provides services to display memory instances. It also provides

different views like Property view which gives detail about properties of current memory

instance, Hierarchical view which gives relation of daughter memory instance with other

parent memory and Memory grid view which gives grid view for current memory instance.

It also allows to dump memory instance in required format.

2.3 Testcases

Testcases for HDL and CPP check code for identifying any differences in obtained output

after modification in given code. These testcases are automated to check code regressively

and less time consuming.

Testcases are built with the same time when SLM is built. if they are not automated

then it is very lengthy and complicated process.

Testcases contains test cases for different perspectives. For example , Access category

from CPP test suit contains testcase which checks address scrambling in SLM. It yields

results whether address scrambling has been affected or not after modification in code.

5

Chapter 3

Technological Review

3.1 Language and Tools

SLM models are mixed HDL/C++ memory models. They correspond to HDL func-

tional architectures where assignments of the memory models are replaced by C/C++

subroutine calls. This way the storage becomes C storage in place of the former HDL

register/variable . To connect HDL logic together with the C array and related access

functions, the simulator-specific HDL/C interface are used. SLM C storage and services

are delivered as prebuilt C dynamic libraries.

3.1.1 C++/Tk

SLM GUI is implemented in C++/Tk. It is an interface to the Tk GUI toolkit. C++/Tk

uses templates, operator overloading and implicit conversions. Each C++/Tk expression

ends up as equivalent Tcl/Tk command in the string format which is passed to underlying

Tcl interppreter. It means that C++/Tk uses and depends on Tcl/Tk environment.[1]

3.2 Supported Operating Systems

1. Solaris

2. Linux

3.3 Supported Logic Simulators

1. Cadence NCsim

2. Mentor Modelsim

6

3. Synopsis vcs-mx

4. Verisity Xsim (Axis)

3.4 SLM functionalities

SLM provides functionalities in basically 2 categories.

1. Internal functions for SLM Model providers

(a) Registration

(b) Read and write access

(c) Subset of verification features (Load, Reset system memory)

2. External functions for End users

(a) Utility

These are help and information functions.

(b) Verification

Verification functions are meant to be used in either in the HDL test bench

or from logic simulator console. They rely on backdoor access. They are

executed in 0-HW time. Accesses to SLM cuts are not simulated by the logic

simulator hence reducing simulation time.

(c) Recording

These functions help in logging the memory events in different formats .

(d) Debug

These functions are used for debugging purpose.

(e) System

These functions are related to creation and building of system memories.

(f) HW/SW co-verification

Functions used in parallel of hardware design.

7

3.5 How SLM works?

SLM ’C’ storage and services are delivered as pre-built ’C’ dynamic libraries. In order to

connect HDL logic together with the C array and related access functions, the simulator

specific HDL/C interface are used.

3.6 SLM GUI

SLM GUI can be divided in following components.

Figure 3.1: GUI Components

8

Chapter 4

Requirement Analysis

4.1 Objectives for SLM GUI

4.1.1 Functional Objectives

1. Debug existing SLM GUI code implemented in C++/Tk

SLM GUI was a stand alone software earlier. Debugging was required to ensure

functionalities which were supposed to be delivered.

2. Optimize code

it includes identifying redundant functions, variables and memory leaks. As some of

the functions may not be contributing in depicting functionality of SLM GUI. Some

global variables may also not be used in code. SLM GUI takes memory instances

as input file and generates various log and error files. So, It is also important to

check traces of memory leaks.

3. Add Partial Search feature

Existing SLM GUI was exhibiting search feature which gave an address of data we

look for. But, it did not support partial search. In partial search, GUI finds all

partial matches at binary level and displays.

4. Integrating SLM GUI into SLM Core

Intially it was standalone application. Afterwards need arose to integrate it into

SLM core. So that it can get invoked whenever we build SLM Core. All the files

are directly passed from SLM core to SLM GUI to be displayed by it. Initially the

9

files which we wanted to display on SLM GUI were used to be dumped in a specific

location and GUI was accessing those files from those locations.

4.1.2 Software Objective

1. Modular and extensible

2. Simple integration setup

4.2 Objectives for SLM core

4.2.1 Functional Objective

1. Abstract analysis of SLM core

This objective is about to understand relations between existing files. It includes

understanding flow of SLM Core.

2. Analysis of plugin point for SLM GUI

Currently SLM GUI is stand alone software. It is not integrated with SLM. To

allow SLM GUI communicate directly with SLM, we need to integrate it with SLM

core. So that we can invoke SLM GUI from within SLM.

3. Analysis of classes to be re-engineered

Before re-engineering the SLM Core classes, through analysis was required to carry

out re-engineering.

4. Re-engineering of classes

After thorough analysis of classes built with flexperf library functions, new classes

were supposed to be developed in order to provide dependency on flexperf library.

5. Integration of re-engineered classes

All re-engineered classes were supposed to be integrated to ensure functionalities.

Separate testcases were also supposed to be developed to ensure individual func-

tionalities.

10

4.3 Objective for Test cases

4.3.1 Functional objectives

1. Abstract analysis of existing test suits

Initially there were two test suits

(a) HDL Test suit

It contains test cases to check whether they are carrying out functionality.

Every functionality is checked with content of different simulators.

(b) CPP test suit

It contains test cases to check functionality of C++ code whether they are

carrying out functionality.

2. Automate C++ testcases

It is cumbersome to run testcases manually. There are 25 testcases implented in

C++ checking different aspects of SLM. They need to be automated to check test

results without manual intervention. We can set specific flags while building SLM

which can also build test cases at same time.

They generate log files and error reports to add ease in debugging. These log files

and error reports are very helpful in case some errors are there in code. Automation

of testcases saves plenty of time and makes debugging very simple.

11

Chapter 5

Implementation details

5.1 Snapshots of SLM GUI

5.1.1 SLM GUI architecture

Figure 5.1: SLM GUI architecture

12

5.1.2 SLM GUI communication process

Figure 5.2: Overall Communication process

13

5.1.3 SLM GUI splash screen

Figure 5.3: SLM GUI Home

14

5.1.4 SLM GUI property view window

Figure 5.4: SLM GUI Property View

15

5.1.5 SLM GUI Output window

Figure 5.5: SLM GUI Output Window

16

5.1.6 SLM help command in Unix

Figure 5.6: SLM help command in Unix

17

5.1.7 System Memory instance Properties

Figure 5.7: System Memory instance Properties

18

5.1.8 Daughter Memory instance Properties

Figure 5.8: Daughter Memory instance Properties

19

5.1.9 Memory Layout

Figure 5.9: Memory Layout

20

5.2 Objectives achieved

We divided this project into 3 major components

1. SLM GUI

(a) Analysis of SLM GUI

(b) Optimize existing code

(c) Partial search feature

(d) Differentiate Hexadecimal and decimal mode in displaying memory content

(e) Integrate Partial search feature into SLM GUI

(f) Analysis for SLM GUI plugin oint into SLM Core

(g) Integrate SLM GUI into SLM Core

(h) Extending command line arguments set for SLM GUI

(i) Internal release of SLM GUI

2. Testcases

(a) Analysis of C++ testsuit

(b) Optimize testcases

(c) Automate C++ testcases

(d) Integrate C++ testcases into SLM Core

(e) Study of VHDL testcases

3. SLM Core

(a) Analysis of existing code

(b) Design of new classes

(c) Re-engineer classes which are independent of flexperf library functions

21

Chapter 6

Conclusion and Future Scope

6.1 Conclusion

This project is about Re-engineering. So, in the first phase project activities were largely

dominated by analysis process. Initially SLM GUI was stand alone software. After adding

features related to search it was integrated with SLM Core.

Existing SLM code is decade old and heavily integrated with flexperf library functions.

This library is obsolote now. In the next phase major project activities were dominated

by eleminating dependency of classes to flexperf library functions.

6.2 Future Scope

6.2.1 Objectives for SLM GUI

1. Add new features into SLM GUI

Currently all the objectives related to SLM GUI is achieved. In future we can add

new features if the requirement arises.

6.2.2 Objective for SLM Core

1. Analysis of SLM core classes which are dependent to flexperf library functions

Thorough study of classes with dependency to flexperf library function will be

required in next phase in order to re-engineering of them.

2. Re-engineering of remaining classes

This is the central activity of this project. In this project activity, new classes which

22

are independent of flexperf library functions will be re-engineered.

6.2.3 Objectives for testcases

1. Automation of HDL testcases

Currently HDL test suit is in debugging phase. After this phase they will be

automated to facilitate developers to test their code.

2. Re-engineering of testcases for re-engineered classes

It may be required to re-engineer test cases for both cpp and HDL test suit to test

code for re-engineered classes.

23

Bibliography

[1] M. Sobczak, “C++/tk documentation.” http://cpptk.sourceforge.net, 2015.

24

http://cpptk.sourceforge.net

	Certificate
	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Our Team
	What is SLM Model?

	Literature survey
	Existing SLM:
	SLM GUI
	Testcases

	Technological Review
	Language and Tools
	C++/Tk

	Supported Operating Systems
	Supported Logic Simulators
	SLM functionalities
	How SLM works?
	SLM GUI

	Requirement Analysis
	Objectives for SLM GUI
	Functional Objectives
	Software Objective

	Objectives for SLM core
	Functional Objective

	Objective for Test cases
	Functional objectives

	Implementation details
	Snapshots of SLM GUI
	SLM GUI architecture
	SLM GUI communication process
	SLM GUI splash screen
	SLM GUI property view window
	SLM GUI Output window
	SLM help command in Unix
	System Memory instance Properties
	Daughter Memory instance Properties
	Memory Layout

	Objectives achieved

	Conclusion and Future Scope
	Conclusion
	Future Scope
	Objectives for SLM GUI
	Objective for SLM Core
	Objectives for testcases

	Bibliography

