
Development of Plugins for Library
Validation

Submitted By

Noopur Shirahatti

14MCEI10

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Development of Plugins for Library
Validation

Major Project

Submitted in fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Noopur Shirahatti

(14MCEI10)

Guided By

Prof. Jigna Patel

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Certificate

This is to certify that the major project entitled ”Development of Plugins for Library

Validation” submitted by Noopur Shirahatti (Roll No: 14MCEI10), towards the

fulfillment of the requirements for the award of degree of Master of Technology in Com-

puter Science & Engineering (CSE) of Nirma University, Ahmedabad, is the record of

work carried out by her under my supervision and guidance. In my opinion, the submit-

ted work has reached a level required for being accepted for examination. The results

embodied in this major project, to the best of my knowledge, haven’t been submitted to

any other university or institution for award of any degree or diploma.

Prof. Jigna Patel Dr. Sharada Valiveti

Guide & Assistant Professor, Associate Professor,

CSE Department, Coordinator M.Tech - INS

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr. Sanjay Garg Dr. P. N. Tekwani

Professor and Head, Director,

CSE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad

iii

Certificate

This is to certify that the major project entitled ”Development of Plugins for Library

Validation” submitted by Noopur Shirahatti (Roll No: 14MCEI10), towards the

fulfillment of the requirements for the award of degree of Master of Technology in Com-

puter Science & Engineering (CSE) of Nirma University, Ahmedabad, is the record of

work carried out by her under my supervision and guidance. In my opinion, the submit-

ted work has reached a level required for being accepted for examination.

Date:

Project Manager

Mrs. Jyoti Kumar

TRnD Department,

STMicroelectronics, India

iv

Statement of Originality
———————————————————————————————————————

I, Noopur Shirahatti, Roll. No. 14MCEI10, give undertaking that the Major

Project entitled ”Development of Plugins for Library Validation” submitted by

me, towards the fulfillment of the requirements for the degree of Master of Technology

in Computer Science & Engineering of Institute of Technology, Nirma University,

Ahmedabad, contains no material that has been awarded for any degree or diploma in any

university or school in any territory to the best of my knowledge. It is the original work

carried out by me and I give assurance that no attempt of plagiarism has been made.It

contains no material that is previously published or written, except where reference has

been made. I understand that in the event of any similarity found subsequently with any

published work or any dissertation work elsewhere; it will result in severe disciplinary

action.

———————–

Signature of Student

Date:16 May 2016

Place:Ahmedabad

Endorsed by

Prof. Jigna Patel

v

Acknowledgements

First and foremost, sincere thanks to my mentor Mr. Rishabh Bansal, STMicro-

electronics, Noida. I enjoyed his vast knowledge and owe him lots of gratitude for having

a profound impact on this report.

I would like to thank , Mrs. Jyoti Kumar, Manager, STMicroelectronics, Noida for

her valuable guidance. Throughout the training, she has given me much valuable advice

on project work. Without her, this project work would never have been completed.

My deepest thanks and profound gratitude to Prof. Jigna Patel, Assistant Profes-

sor, Computer Science Department, Institute of Technology, Nirma University, Ahmed-

abad for her valuable guidance and continual encouragement throughout this work. The

appreciation and continual support she has imparted has been a great motivation to me

in reaching a higher goal. Her guidance has triggered and nourished my intellectual ma-

turity that I will benefit from, for a long time to come.

I am highly grateful to Dr. Sharda Valiveti, PG Coordinator ,Information and

Network Security, Nirma Institute of Technology for her kind support and permission to

use facilities available in the institute.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Science and Engineering Department, Institute of Technology, Nirma University,

Ahmedabad for his kind support and providing basic infrastructure and healthy research

environment.

A special thank you is expressed wholeheartedly to Dr. P. N. Tekwani, Hon’ble

Director, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation he has extended throughout course of this work.

- Noopur Shirahatti

14MCEI10

vi

Abstract

Design for ICs are created by STMicroelectronics. These packages are then sold to

customers and they fabricate it for further use. These packages are validated before giv-

ing it to customers. This validation when done manually takes time and efforts. The

work is done to develop the scripts for validating the library, so as to reduce the time for

validation.

A library for an IC chip is a collection of cells and has various layers. A cell is the basic

deisgn unit. Different views are defined that tells about the physical, logical and timing

information of the cell. LEF, lib, cdl, verilog etc. contains the information related to cell.

The views are also customized according to the needs of different companies.

For validation different plugins are created which checks certain aspects of a library. The

work was done on Modelization and Crosscheck plugin. For DRC check and LVS check

the specs were changed, so the new code was developed. For some checks bugs were fixed.

The customer gives the specification for a check. A spec file contains the basic flow, view

on which check is to be performed, the options that user can provide for running that

check, etc. Then we develop the scripts for that check. Then unit testing is done by us

and we give it for Regression testing. And if there is no problem in package,then it is

provided to customer.

The library can be tested for validating different views, checking the syntax of the views

or checking the consistency between different views or the tags are crosschecked against

certain specifications, the routing or obstruction information is also validated etc.

The scripts that are developed are integrated in a module and tested against various

libraries using different tools and versions. The reports and logs are generated, so that

the user can know where the error is present in library.

vii

Abbreviations

LEF Library Exchange Format

CDL Circuit Description Language

SIP System in Package

ALU Arithmatic & Logic Unit

VLSI Very Large Scale Integration

BDU Basic Design Unit

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

LVS Layout versus Schematic

GDS Graphical Design System

HCELL Hierarchically Corresponding Cell

CAD Computer-aided design

V Verilog

DEF Design Exchange Format

viii

Contents

Certificate iii

Certificate iv

Statement of Originality v

Acknowledgements vi

Abstract vii

Abbreviations viii

List of Figures xi

1 Introduction 1
1.1 Terminology . 1
1.2 Background . 2
1.3 Objective . 2
1.4 Scope . 3

2 Literature Survey 4
2.1 Analysis of Libraries and its views . 4
2.2 Analysis of IPScreen . 11
2.3 Validation Process Flow . 13
2.4 Analysis of Plugins . 15
2.5 Analysis of Corekit and MifKit . 18
2.6 Brief about CadVal . 19

3 Tools and Technology 20
3.1 Tool Command Language (tcl) . 20
3.2 csh . 20

4 Implementation 22
4.1 Development of Parsers for different views using Corekit 22
4.2 Development of Scripts for Modelization plugin for IPScreen 23
4.3 Development of Scripts for CrossCheck plugin for IPScreen 29
4.4 Screenshots . 34

5 Conclusion 40

ix

Bibliography 41

x

List of Figures

1.1 Library,Cells and views . 1

2.1 Library’s folder . 5
2.2 Symbol view . 6
2.3 Slib example . 7
2.4 Schematic view . 7
2.5 Layout view . 8
2.6 Abstract View . 10
2.7 Library’s vc.bbview file . 12
2.8 IPScreen Architecture . 13
2.9 Mapping of checks and plugins . 14
2.10 Modelization plugin . 16
2.11 TagChecker plugin . 17
2.12 CrossCheck plugin . 18

4.1 Part of code for cdl Parser . 23
4.2 Part of code for cdl Parser . 24
4.3 Algo of DRC . 26
4.4 Algo of LVS . 27
4.5 Algo of General Lef Check . 27
4.6 Algo of Site Check . 28
4.7 Algo of Nitride layer check . 29
4.8 Algo of Abstract view extraction . 30
4.9 Algo of Abstract view consistency . 31
4.10 Algo of Reference view extraction . 33
4.11 Algo of Layout view extraction . 33
4.12 Library loaded in IPScreen . 34
4.13 Plugin is selected . 34
4.14 Reference library loaded . 35
4.15 User provides option for Checks . 35
4.16 Checks of Modelization plugin . 36
4.17 Run area of DRC check . 36
4.18 Log file of DRC check . 36
4.19 Report file of DRC check . 37
4.20 Report file of Site check . 37
4.21 File containing layer names in General LEF check 37
4.22 Checks in CrossCheck plugin . 38
4.23 Lef tree . 38
4.24 Lib tree . 39

xi

Chapter 1

Introduction

1.1 Terminology

Library contains the design data related to an IP. It could be timing information, func-

tionality, layout information etc. that will be fabricated on chip. Library is collection of

cells. The library comprises of various views which are useful in designing a chip[1].

Cell is component performing a basic function. More a digital design concept: Boolean

and basic function (AND, OR).

View is a particular representation of a cell. A view may contain information of multiple

cells. Each cell may have its information in layout view, schematic view, a symbolic view,

a timing view etc. Each view is used by a different tool in a given design flow.[1]

Figure 1.1: Library,Cells and views

1

1.2 Background

The design team generates a package that contains various views. The package (library)

needs to be validated before fabricating it on chips. If validation is done manually then

it takes much time and still leaves scope for error. So, the work is to develop a solution

(plugins) that will validate the library in less time and in different aspects. Different

views can be validated separately like LEF (Library Exchange Format), FRAM, cdl, lib

etc. The syntax can be checked for various views.

Library structure

This is the structure expected for each library of IO libraries: Physical informations are

in the directory <library>/SIP/PHYSICAL. Two files are used to physically describe

IOs. There are a couple of files for each library :

• lef file : <library>/SIP/PHYSICAL/<library>.lef

• cml file : <library>/SIP/PHYSICAL/<library>.cml

The LEF (SIP LEF) is loaded by SoC Encounter tool and CML is loaded by CDNSIP.

This translation from lef path to cml path happens automatically in the CDNSIP tool

and hence its required to have lef and cml files in same directory with same names like

<name >.lef and <name >.cml.

Technology LEF file is present in <library>/LEF which contains the name of the MACROs(cell)

present in library and its attributes like cell area, size, coordinates of each cell, pin infor-

mation present for each cell.

The various types of libraries are:

• Standard Cell Libraries[2]

• IO libraries

• Memories

• Macros

1.3 Objective

The work is to create a solution so as to validate the library and report any inconsistency

or errors; so that the package can be fabricated on chip.

2

1.4 Scope

The scope of the project was to enhance the scripts of different plugins for ipscreen and

develop scripts for new architecture.

This chapter gives a brief overview of the project and explains the terminology that

will be used throughout the report the project and objective is also specified. In second

chapter,the focus is on the literature survey. Tools and technology used is given in third

chapter. Fourth chapter contains the implementation. Future work is specified in fifth

chapter.

3

Chapter 2

Literature Survey

2.1 Analysis of Libraries and its views

Library

We can realize different equations through Boolean functions. Basically it is the process

of breaking a complex function into smaller and understandable (basic) functions. Some

of these basic functions are AND, OR, NOR, XOR. Assuming a designer is going to make

a big design, say ALU, he will require the basic gates or the basic functions to constitute

a big design. This is something similar to the human body which consists of basic units

called cells.

Now, with this basic idea of how big VLSI designs are formed, we will be able to under-

stand the definition of a library more clearly, as given below.

Taken in its simplest form, a library is collection of basic design gates such as AND,

OR, XOR etc. or in other words Library Developers provide the basic design units to

constitute bigger designs.

Types of Library

• CORE library

It consists of Standard cells that implement a basic function like inverter, latch etc.

Core Library is collection of components like gate, registers, counters, adders etc.

• Input/Output Library

It consists of cells called IO buffers that are used to interface chip signals to chip

4

environment. The external voltage coming to the chip must be checked and modified

accordingly, so as to ensure proper functioning of the chip.

• Memory Library

It contains memories of different architectures like SRAM, DRAM, ROM etc. As

the size of a memory can differ, a basic building block is implemented and use it to

configure the generation of different memory sizes.

• Analog and Mixed cell Library

These are implemented using CORE library. Example of this is Digital to Analog

converter.

Further we will see how a library is divided into different views in order to provide different

pieces of information related to the library.

Views

Figure 2.1: Library’s folder

In literal terms view means a kind of media to provide some specific information. A

library takes help of several views to provide different pieces of information related to the

libr

ary. All these views explains the different aspects, coverage and functionalists of BDU

which a library contains.[1]

There are broadly two different fields of work in library development:

• Back-End

In this, activities are concerned with:

– The designing of BDU according to the customer specification.

– Generation of different Back-End views and their verification.

5

• Front-End

This activities encompass:

– Calculation of different parameters for gates such timing, power etc. and

providing them through Front-End views.

– Modelling of gates in Hardware languages such as Verilog, VHDL.

Backend view is divided in 4 categories-

• Symbol-

Symbol graphics define what we will see when this symbol is used in the schematic.

It includes pins, symbol graphics, labels and a selection box. Pins are input and

outputs of a symbol. The shape of the symbol can indicate the cells function.

Labels in the symbol are used to add to the documentation of the design. Selection

box in the symbol defines the area of the symbol that an instance will be selectable

by. Symbol view is a pictorial representation of the cell. SLIB view is the text

representation of the symbol view. SLIB is the derived view of symbol.[1]

Figure 2.2: Symbol view

• Schematic-

Schematic view is a simplified notation of a circuit. It shows the various parts of

circuit as standard symbols that are in simplified form, and connections like the

power and signal connections between the devices. It is representation of a cell at

the transistor level. A schematic view includes component instances, wires and pins.

Pins are the inputs and outputs of the schematic. Arrangement of the components

and their interconnections on the diagram does not correspond to their physical

locations in the finished device.[1]

Circuit Description Language (CDL) is the text description of the schematic.

CDL file tells about the :

6

Figure 2.3: Slib example

Figure 2.4: Schematic view

– Connectivity at the transistor level.

– Device parameters like device name/length/width/Area.

– The hierarchy traversal information of the pins.

– The related bias pin information of the pg pins.

– The related power pin and related ground pin information at the transistor

level.

CDL is used during LVS (Layout vs. Schematic). LVS requires design cdl, which

contains the top level information. The design cdl in turn contains the instances of

the library cdl subckts which contains the internal connection information within

the cell. Logic elements with the same name and the same number of inputs and

7

outputs, but with different implementations, must have different subcircuit defini-

tions in CDL. Either a different name or the name extension should be used, else

calibre gives duplicity error.

• Layout-

Layout view is the actual physical representation of the electrical circuit of cell

that goes on the silicon. Physical representation is made utilizing planar geometric

shapes that are similar to the patterns of metal oxide or semiconductor layers that

make up the parts of an IC. Different layers in a cad environment are used to draw

this physical structure keeping in mind a set of rules that need to be followed.[1]

Figure 2.5: Layout view

Graphical Design System(GDS)

GDS contains the same data as the layout view and is in binary format that repre-

sents the planar geometric shapes, text labels and layers, such as text, path/wire,

boundary/polygon, structure references, and planar geometric shapes in hierarchi-

cal form. GDS is not dependent on any platform because internally defined formats

are used in this for its data types. Numeric attributes are assigned to the objects

like layer number.[3]

Layer Map Files

A layer map file tells Cadence tool how to convert between layers in a Cadence

layout and layers in a GDS file. It acts as a TRANSLATOR between the two

Views. This results to the GDS format acting as list of records that are sequential.

8

The information in each record is contained in a header. According to GDS, the

order of the record is kept. So, it is relatively easy to parse gds by the tool due to

this architecture.

Hierarchically Corresponding Cell(HCELL)

HCELL contains list of cell name pairs, each pair consisting of a layout cell name and

a corresponding source cell name in cdl. HCELLs are provided to improve LVS-H

performance. These are the cells are placed numerous times in the hierarchy. Cells

that appear in hcell lists are not flattened everytime, and therefore could impede

the performance-improvement heuristics in LVS-H. In a pair of hcells, the layout

cell name and corresponding source cell name may be the same, or may be different.

One-to-Many relation can be specified by placing a layout cell name in several hcell

pairs with different source cell names. Many-to-One relation can be specified by

placing a source cell name in several hcell pairs with different layout cell names.

Many-to-Many relations are not allowed.

• Abstract-

Abstract view gives information about the signal and power pin layers running in

the layout view along with the information of area where routing is not allowed.

Abstract views have - pin information, black-box information, routing obstruction

information.

This view is useful while Placement and routing. Placement and Routing using

Semi-Custom Tools does not require the full layout information but only the loca-

tion of various pins to be connected and areas where routing is not allowed (ob-

structions). So this information is extracted from the layout to make an abstract

view.[1]

Library Exchange Format(LEF)

The LEF file is a representation of the Abstract. Library information for a class of

designs is stored in LEF. Data in library includes placement site type, layer, via,

and macro cell definitions. It contains following information:

– Cell Name

– Cell Size

– Definition of Pins

9

Figure 2.6: Abstract View

– Direction of Pins

– Location of Pins

– The Metal in which they are present

– Whether they are power or ground.

– OBS layer definition

A single LEF file can contain all of the library information. But this will create a

large file that can be hard to manage and complex. Due to this,the information

is placed separately into two files, a technology LEF file and a cell library LEF

file. All of the LEF technology information for a design, such as placement and

routing design rules, and process information for layers is stored in technology LEF

file. A technology LEF file includes LEF TECHNO statements like: Manufacturing

Grid, Layer Information (Routing/Non-routing), Via statement/Via Rules, SITE

statements,etc.

The macro and standard cell information for a design is placed in cell library LEF

file. A library LEF file may contain any of the following statements: MACRO

statement, PIN statement, OBS statement, etc. The technology LEF file is read

first at the time of reading of LEF files.[1]

Design Exchange Format (DEF)

The design-specific information of a circuit is contained in DEF file. During the

layout process, it represents design at any instance. It is a representation that uses

10

the syntax conventions. DEF conveys Logical design data is converted to physi-

cal design data using DEF using place-and-route tools. Internal connectivity (i.e.,

netlist), grouping information, and physical constraints can be included in logical

design data. Placement locations and orientations; routing geometry data; logical

design changes for back annotation are to be included in Physical design data.[1]

Types of Information in a library

As we know, a libaray contains several views which provide different information. We

can broadly categorize this information as:

1. Physical Information cell size, geometry of layer, area, direction, type (in lef file)

2. Logical Information functionality of the cell (in verilog file)

3. Timing Information rise time, fall time, delay time (in .lib file)

Library Structure The library is maintained by an index file. The structure of the

index file includes various subsections that all together index the library files based on

various conditions.

• Header: This section includes the library name, product name, process like 65nm,

45nm, 40nm etc, type of library (memory, standard cell, input-output etc).

• Cell: This section includes various cells.

• Conditions Section: This section includes conditions based on parameters like Pro-

cess Variation(PV), Voltage(V), Temperature(T).

• Index Section: The index section includes paths to various cells based on different

conditions. IPScreen parses this section to access the different views of the library.

2.2 Analysis of IPScreen

IPScreen is a framework built using TCl and Tk which is used for validation of a package(

library). When it is launched, it asks for library to be loaded that is to be validated.

Multiple libraries of different technology can be loaded at the same time. After that the

plugin, using which validation is to be performed, is loaded. The reference libraries are

11

Figure 2.7: Library’s vc.bbview file

loaded in next step.

The information of reference libraries is kept in a file in package. It may contain some

basic cell’s information that is to be used by the test library (library that is loaded).

Setup is the first task that is to be executed in this step. It creates a subdirectory for

this plugin, in the directory where ipscreen is launched. In this area, a folder is created

which contains information of path of various views and index file in that package and

its reference libraries.

The user can give certain configuration settings for different views and it is also stored

in a file, so that it can be referenced when needed. According to this configuration, the

flow of check changes. For example, in DRC check if view selected is Cadence then flow

will be different than that of when Physical view is selected.

When a check is executed, another folder gets created inside the plugin directory. This

folder is the workarea and it contains the log file, report file and all other intermediate

files that are created in that check.

Certain tools are also used by these checks for various purpose. These are present in a

tool file. If some tool is missing in that file that will be required by any check in the

selected plugin then that check is disabled in IPScreen. The execution time of check

varies from library to library because the number of cells vary depending on the type of

12

library. For a Memory library the number of cells will be less than that of an IO library.

The plugins and their paths are also stored in a plugin file. Different versions of plugins

can also be added parallely.

When execution of check is completed, IPScreen shows whether that check ran success-

fully or falied.If it failed then we can see the report file that gives errors present in the

library. The report is generated in text format, html format, csv format.

The check can be run on local machine or LSF. IPScreen can also be executed on local

machine or on LSF.

IPScreen contains a folder in the directory where it is launched, that contains all the

information about the library. For example, the views present in that library, its path,

ipstyle (that is the type of library like IO library, Memory library, MACRO library etc.),

path of index file and many other things.

IPScreen can be run in GUI mode or in Batch mode.

Figure 2.8: IPScreen Architecture

2.3 Validation Process Flow

The validation flow ensures the user that the IP under test is correctly validated. To

make things simple to understand lets discuss on a single view.

• In the first step, presence of particular view in the package is checked. Another

thing that is being checked is that indexation of the view is properly done in the

file named vc.bbview or not. If this file is not populated correctly like the view is

13

Figure 2.9: Mapping of checks and plugins

not indexed correctly then as a resultant that particular view cannot be taken by

the tools. This is performed by Mat10bbview plugin.

• In the second step, syntax checking is done where the view is being read by the

respective tools. In case of any incorrectness in the view the tool will not be able

to process that particular view. This check is done by SyntaxCheck plugin.

• Once the view is checked syntactically, the next step is to check that the view is

having the necessary attributes which are required by the tools. If they are found in

the view then their values are being cross verified so that they are modelled accord-

ing to the design rules mentioned in the Kits. These checks are being performed by

Modelization plugin.

• In the fourth step, it is ensured that information is consistent between various

views thats what the check is called as cross view consistency. Using tools of all the

different vendors the view contents are verified in terms of data consistency. This

is done by CrossCheck plugin.

• It is also being ensured that the tags mentioned in the layout are compliant with

the convention. This check is done by a plugin named TagChecker.

14

• Mat10Comp plugin is responsible for checking out the difference between the pre-

vious versions and the existing version of the IPs.

2.4 Analysis of Plugins

Plugins are a group of scripts that are used to check the correctness of design and views.

A certain plugin checks a library on a particular aspect. For example, CrossCheck plugin

checks that all views are consistent with each other, TagChecker checks the tags for

different views etc.

A file is present in plugin that contains the list of checks that can be executed, the tools

on which a check is dependent on, the script that will be called first, etc.

Initially a script is called that sets all the environment variables that will be further used

and it in turn calls the checks further. Such a script is called top script. Help folder is

also present that a user can refer to. A subdirectory is present that contains the scripts

of checks and another contains the additional scripts that are required by those scripts.

The scripts are written in csh and tcl.

A file is present that stores the version of the plugin and the machines that it can work on.

Then documentaion is also provided along with plugin. It contains the user manual that

gives basic information about that plugin and its checks, release history that contains

information about all the versions and bugs that were encountered, etc.

The specifications are provided to create a check. Specification contains the flow of the

check, the configuration that a user can provide, and other necessary information.

The plugins that are used are:

1. Modelization

This is used to check the correctness of library views model statically. It ensures

accurate library functionality in the flow. In this, views on which validation is

performed are LEF views, FRAM view, cdl view, gds view, lib view etc. Some of

the checks are:

• Design Rule Check

• Layout vs. Schematic check

• Route Guide

• General LEF checks

15

• Site check

• Nitride Layer checks.

Figure 2.10: Modelization plugin

2. TagChecker

It is dedicated to perform different checks on tags present in libraries. Two inputs

must be given by the user- Spec, CAD tool required for plugin. Tag specifica-

tion(Spec) can be of 4 types:

• ADCSrevF

• ADCSrevE

• ADCSrevD

• ADCSrevC

Each contains certain set of tags. For example, Vendor, product, version, area,

techno, etc.

The views on which this is done are CDS5, CDSOA database, GDS view and

AVANTI view.

3. SyntaxCheck

This is designed to load each library view in its correspondent CAD tool to ensure

syntax correctness.

16

Figure 2.11: TagChecker plugin

4. CrossCheck

This is designed to ensure views consistency. Similar view consistency - Ensure that

same type of views are consistent among them (i.e. all liberty files, all lef files, all

.v files etc). Cross view consistency - Ensure that all different views or Cross-Views

are consistent with each other(i.e. .lef vs .lib, .lef vs .v)

Some of the tasks are:

• Abstract view extraction and consistency

• Layout view extraction and consistency

• Reference view extraction and consistency

5. Mat10Comp

This compares two packages and lists whats different and common between them.

General Comparison : It aims to compare the bbview file and libraries structure.

Vendor Comparison : It contains tasks that compare two views of all the cad vendor.

It also fills the plugin tables with comparison commands.

6. Mat10BBview

This plugin checks the conformance of Mat10 libraries vs Mat10Library Specifi-

cation 1.0 and 1.1 , in term of : mandatory views are present, and aligned with

17

Figure 2.12: CrossCheck plugin

library structure. The checks consist of: bbview index keys, File convention name

and library structure.

2.5 Analysis of Corekit and MifKit

MifKit is a kit that is used for error and warning reporting. Using this in the script, the

warnings, errors, info etc. can be extracted from the log file. The work was to analyze

this tool and see if this could be used for the new architecture.

For example, tuInfo, tuError etc. functions are predefined that are used to get the info

and warning present. Then it also provides functionality for tracing and debugging, and

facilitates to limit the number of messages that can be displayed. It also provides a report

summary and report statistics that tell the count of the errors and warnings occured.

Corekit contains inbuilt functions for reading attributes of different views and extracting

the values from that views, lef to stf converter etc. For each view, data structures

are implemented using Object oriented tcl. Data structures contains classes in which

18

functions are implemented to get the values of the attributes present in that view.

This kit can be used in the scripts to get values required for further processing. We can

instantiate an object of that views’ database and then call the respective function. For

example, if we want to get the names of cells present in a lef file and the pins and port

information related to each cell then this can be used.

2.6 Brief about CadVal

CadVal is the new module. When the command is fired it starts executing the top script

that creates the run area and inside it different directories. One such directory named

CHECK is created that contains the further information related to that check. Top script

calls another script that identifies the switches(options) that are provided by the user.

The mandatory options that are to be provided are the library name, its bbview path

and the script (csh script) that is to be called. Now, according to the user’s option the

script is executed.

Before this, a script that contains all the environment variables is executed. When the

script is run, the file checks for the library that is provided by user and checks if the path

given is correct. If it is correct the respective view is extracted from library. On this view

the further operations are performed. Several intermediate files are also formed that are

required by the tcl script following. For example, the list of all the layers present in the

library or likewise. Then the tcl script gets executed that performs intended task. Then

the logs gets stored in a separate directory and report in another one.

Advantage of CadVal over IPScreen

• It occupies less memory as compared to IPScreen because there is no need to load

library and reference libraries.

• Less execution time.

• Setup file is created automatically.

• User can run specific checks without loading the whole plugin.

• Reporting is generic in new architecture.

19

Chapter 3

Tools and Technology

These are the technologies that are used in the project for development of plugins.

3.1 Tool Command Language (tcl)

TCL is a dynamic programming language and is the least prescriptive of the scripting

languages. It contains no reserved words and there is no built-in syntax for control

structures or conditionals.[4]

Everything in TCL script is implemented as a command, even control and branching

operations are also implemented as commands. For example, if is a command that in its

simplest form takes a conditional expression to test, and a block of code to be executed

if the condition is true. A Tcl script could replace if with its own implementation. Each

program written in Tcl essentially becomes a domain-specific language for whatever it is

that program is designed to do.[4]

In addition to being a programming language, it is also a cross-platform C library. If you

have to use glib etc. in your C program then you can do it using TCL for providing its

features.[4]

For plugins, the main tasks that are performed by the checks are implemented in tcl.

Different kits/tools that are used are also implemented in tcl.

3.2 csh

The C shell is a command processor typically run in a text window, allowing the user

to type commands. The C shell can also read commands from a file, called a script.

Like all Unix shells, it supports filename wildcarding, piping, here documents, command

20

substitution, variables and control structures for condition-testing and iteration. What

differentiated the C shell from others, especially in the 1980s, were its interactive features

and overall style. Its new features made it easier and faster to use. The overall style of

the language looked more like C and was seen as more readable.[5]

For plugins, the wrapper classes that sets the path or enviromnent variables or get the

information required by the tcl scripts are developed in csh.

21

Chapter 4

Implementation

4.1 Development of Parsers for different views using

Corekit

The work was to develop parsers for traversing views like lef, def, cdl, lib and other view

files and get the information required that can be used by checks.

Example, a LEF file contains the following information:

• Version of the library

• MACROs(cells) present in library

• Class of MACROs (example PAD)

• SIZE (length * breadth)

• PIN name

• PIN direction (input/output/inout)

• PIN use (power/ground/signal/clock)

• PORT present in PIN section and the LAYERs present in PORT section and layer

geometry (coordinates)

• Obstruction information, etc.

22

Figure 4.1: Part of code for cdl Parser

The work was to write scripts to get such information related to a view. Scripts were

written in tcl. The parser reads each attribute of the file and checks for any problem

present in the file of library.

4.2 Development of Scripts for Modelization plugin

for IPScreen

Modelization contains different scripts for validating lef and fram [3] views in different

aspects. Some of them are general lef check, metal obstruction, via obstruction, route

guide etc. For example,the task of one such check(general lef check) is to check if ob-

struction in overlap layer is proper or not and port section for each pin is defined or not,

or the type of layer is routing or not.

Then one check was developed for lef(site check) which was applicable for library sup-

porting MSOT flow. In this, I had to write the script to check that the width of cells

should be multiple of corresponding SITE width and height of cells should match with

corresponding SITE height.

The checks for which the work was done were: Hierarchical Cell level DRC, Hierarchical

Cell level LVS, General LEF checks, Site check, Nitride layer check, etc.

For DRC and LVS, specification was changed. So the work was to write code according

23

Figure 4.2: Part of code for cdl Parser

to new specs.

• Design Rule Checks (DRC)

DRC checks determine if the layout satisfies a set of rules required for manufac-

turing. The most common of these are spacing rules between metals, minimum

width rules, via rules etc. There will also be specific rules pertaining to your tech-

nology. An input to the design rule tool is a design rule file (called a run set by

Synopsys hercules). The design rules ensure sufficient margins to correctly define

the geometries without any connectivity issues due to proximity in the semiconduc-

tor manufacturing processes, so as to ensure that most of the parts work correctly.

The minimum width rules exist for all mask layers, and spacing between the same

layers are also specified. Spacing rules may change depending on the width of one

or both of the layers as well. There can also be rules between two different layers,

and specific via density rules etc. If the design rules are violated, the chip may not

be functional.

Check that hierarchical DRC is clean on all the top cells of library. The task uses

CDS5 or CDSOA database whichever is present in library. In case both are present,

CDSOA will be taken. In case of 65nm, CDS5 is taken, even if both are present.

24

25

Figure 4.3: Algo of DRC

• Layout vs. Schematic

LVS is another major check in the physical verification stage. Here you are verifying

that the layout you have created is functionally the same as the schematic/netlist of

the design-that you have correctly transferred into geometries your intent while creating

the design. So all the connections should be proper and there shouldnt any missing

connections etc. The LVS tool creates a layout netlist, by extracting the geometries.

This layout netlist is compared with the schematic netlist. The tool may require

some steps to create either of these netlists (e.g. nettran run in synopsys). If the two

netlists match, we get an LVS clean result. Else the tool reports the mismatch and the

component and location of the mismatch. Along with formal verification, which verifies

if your pre-layout netlist matches the post-layout netlist, LVS verifies the correctness of

the layout w.r.t intended functionality.

Some of the LVS errors are: Shorts Wires that should not be connected are overlapping,

Opens Connections are not complete for certain nets, Unbound pins If the pins dont

have a geometry, but all the connection to the net are made, and unbound pin is

reported.

Check that hierarchical LVS is clean on all the top cells of the library. Two options are

provided - Cadence Layout vs Cadence Schematic. and Physical GDS vs Physical CDL.

o Use default option is Physical GDS vs Physical CDL.

26

Figure 4.4: Algo of LVS

• General Lef Checks

Some General checks are performed on Cadence lef : There are no 45 degree lines on

overlap layer, Ports to be defined on routing layer, etc.

Figure 4.5: Algo of General Lef Check

27

• Site Check

Checks on Sites in Cadence CDSOA database. The check is applicable only in std cells &

IOs. This check is relevant only for libraries supporting MSOT flow. It checks following:

The SITE of all library cells should have the definition present in SiteDefKit, Width

of all the cells should be multiple of corresponding SITE width, Height of all the cells

should match with the corresponding SITE height.

Figure 4.6: Algo of Site Check

• Nitride layer Check

Checks that Nitride layer is present on wire-bond cells having class PAD in SIP LEF

28

and SIP CML. Option is provided in configuration file : Select WB (i.e. Wire Bond) to

enable the check to run. By default it assumes Flip-Chip, so check does not run.

Figure 4.7: Algo of Nitride layer check

4.3 Development of Scripts for CrossCheck plugin

for IPScreen

Scripts for Abstract and layout view were developed.

• Abstract view extraction

Attributes of different lef views are dumped in .tree files.

29

Figure 4.8: Algo of Abstract view extraction

• Abstract view consistency

Tree files dumped in extraction phase are compared with each other.

30

Figure 4.9: Algo of Abstract view consistency

• Reference view extraction

Reference lib files and lef files are dumped.

31

32

Figure 4.10: Algo of Reference view extraction

• Layout view extraction

Layout view’s tree is dumped in this check.

Figure 4.11: Algo of Layout view extraction

The work that is going on parallely with development of new module, is to remove

33

the bugs from IPScreen and develop the scripts for new views of different plugins. So

that temporary the work can be carried by the clients. And at the same time the new

module is also being developed which will take a couple of years for completion.

4.4 Screenshots

Figure 4.12: Library loaded in IPScreen

Figure 4.13: Plugin is selected

34

Figure 4.14: Reference library loaded

Figure 4.15: User provides option for Checks

35

Figure 4.16: Checks of Modelization plugin

Figure 4.17: Run area of DRC check

Figure 4.18: Log file of DRC check

36

Figure 4.19: Report file of DRC check

Figure 4.20: Report file of Site check

Figure 4.21: File containing layer names in General LEF check

37

Figure 4.22: Checks in CrossCheck plugin

Figure 4.23: Lef tree

38

Figure 4.24: Lib tree

39

Chapter 5

Conclusion

Validation is one of the major step that certifies the quality of the product being provided

to the user. Conventional validation approach has high cycle time and also requires high

man resources so there came a need to go for Hybrid validation approach.

This validation environment has made it possible to reduce the cycle time to a large

extent. Talking about any specific IP which generally takes 7-8 man days for validation

following the conventional approach now can be validated only in a single man day. So

this alternate approach has made a huge gain in run time for validating.

40

Bibliography

[1] M. J. S. Smith, “Application Specific Integrated Circuits,”

[2] W. Agatstein, K. McFaul, and P. Themins, “Validating an ASIC standard cell li-

brary,” pp. P12–6, 1990.

[3] SYNOPSYS, “Astro User Manual, STMicroelectronics,”

[4] http://wiki.tcl.tk/299.

[5] https://en.wikipedia.org/wiki/C_shell.

41

http://wiki.tcl.tk/299
https://en.wikipedia.org/wiki/C_shell

	Certificate
	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	Terminology
	Background
	Objective
	Scope

	Literature Survey
	Analysis of Libraries and its views
	Analysis of IPScreen
	Validation Process Flow
	Analysis of Plugins
	Analysis of Corekit and MifKit
	Brief about CadVal

	Tools and Technology
	Tool Command Language (tcl)
	csh

	Implementation
	Development of Parsers for different views using Corekit
	Development of Scripts for Modelization plugin for IPScreen
	Development of Scripts for CrossCheck plugin for IPScreen
	Screenshots

	Conclusion
	Bibliography

