
Development of CAD Checks for Validating Library
Views and its Reporting

Submitted By

Kinjal Pandya

14MCEI13

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Development of CAD Checks for Validating Library
Views and its Reporting

Major Project

Submitted in fulfillment of the requirements

for the degree of

Master of Technology in Information and Network Security

Submitted By

Kinjal Pandya

14MCEI13

Guided By

Prof. Jigna Patel

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Certificate

This is to certify that the Second phase of project entitled ”Development of CAD

Checks for Validating Library Views and its Reporting” submitted by Kinjal

Pandya (14MCEI13), towards the fulfillment of the requirements for the degree of

Master of Technology in Information And Network Security(CSE) of Nirma University,

Ahmedabad is the record of work carried out by her under my supervision and guidance.

In my opinion, the submitted work has reached a level required for being accepted for

examination. The results embodied in this major project part-II, to the best of my

knowledge, haven’t been submitted to any other university or institution for award of

any degree or diploma.

Prof. Jigna Patel Dr. Sharda Valiveti

Guide & Associate Professor, Associate Professor,

CSE Department, Coordinator M.Tech - INS,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr. Sanjay Garg Prof. P.N.Tekwani

Professor and Head, Director

CSE Department, Institute of technology

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad

iii

Certificate

This is to certify that the major project entitled ”Development of CAD Checks for

Validating Library Views and its Reporting” submitted by Kinjal Pandya (Roll

No: 14MCEI13), towards the fulfillment of the requirements for the award of degree

of Master of Technology in Computer Science & Engineering (CSE) of Nirma University,

Ahmedabad, is the record of work carried out by her under my supervision and guidance.

In my opinion, the submitted work has reached a level required for being accepted for

examination.

Date:

Project Manager

Mrs. Jyoti Kumar

TRnD Department,

STMicroelectronics, India

iv

Statement of Originality
———————————————————————————————————————

I, Kinjal Pandya, Roll. No 14MCEI13, give undertaking that the Major Project

entitled ”Development of CAD Checks for Validating Library Views and its

Reporting” submitted by me, towards the fulllment of the requirements for the degree

of Master of Technology in Information and Network Security (CSE) of Institute of

Technology,Nirma University, Ahmedabad, contains no material that has been awarded

for any degree or diploma in any university or school in any territory to the best of my

knowledge. It is the original work carried out by me and I give assurance that no at-

tempt of plagiarism has been made.It contains no material that is previously published or

written, except where reference has been made. I understand that in the event of any sim-

ilarity found subsequently with any published work or any dissertation work elsewhere;

it will result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Guide Name

Prof. Jigna Patel

v

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Mrs.

Jyoti Kumar, Project Manager, ST Microelectronics, Greater Noida and Mr. Rishabh

Bansal, Technical Leader, ST Microelectronics, Greater Noida for their valuable guidance

and mentorship that helped me to overcome every challenge I faced as I moved on in this

project..

My deepest thanks to Prof. Jigna Patel, Assistant Professor, Department of Com-

puter Science and Engineering, Nirma Institute of Technology, for giving me an oppor-

tunity and guidance throughout the project. It was only due to his valuable opinion

and ever friendly nature that I was able to do part of my research work in a respectable

manner.

I am highly grateful to Dr. Sharda Valiveti, P G Coordinator ,Information and

Network Security, Nirma Institute of Technology for her kind support.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of

Computer Science and Engineering Department, and Prof. P.N.Tekwani,Director of

Institute of Technology, Nirma University for his kind support and providing basic in-

frastructure and healthy research environment.

I would also thank my Institution, all the faculty members and my colleagues.

- Kinjal Pandya

14MCEI13

vi

Abstract

Electronic devices that we are using in our day to day life are composed of several

chips, which is fixed inside these devices for their proper functioning. This chip is a

combination of different programmable logic gates, memories, flip-flops, registers and

latches. Library is a collection of cells and Logic gates that are fabricated onto the chip.

This project is related to development of Plugins for automation of validation of

libraries which are the Intellectual Property. These libraries represent design data of

cells, transistor level design and timing information, actual mask level design that will be

integrated and fabricated on a chip. The automation requires plugins to validate different

views of a library under test. These plugin checks different views of library and each and

every cell and macros of a library.

So in my project, I had implemented scripts of Plugins(Syntax Check, Cross Check,

Modelization, Mat10-Bbview) that can validate the different views of the libraries. In

S T Microelectronics we are using one framework, IPScreen software that provides GUI

for loading different plugins, but in this project we are developing new architecture that

will overcome all the limitations of IPScreen software. Plugin contains all the automated

scripts required for validating library views. SO in this new architecture my task was to

implement scripts for SyntaxCheck and Modelization Plugins and to implement ”Report

Generation” Module.

vii

Abbreviations

SoC System on Chip

IP Intellectual Property

CAD Computer Aided Design

RAM Random Access Memory

ROM Read Only Memory

USB Universal Serial Bus

PLL Phase Locked Loop

EDA Electronic Design Tool

GUI Graphical user Interface

LSF Load Sharing Facility

SLIB Symbolic Library

CDL Circuit Description Language

GDS Graphical Design System

LEF Library Extension Format

CADVal Computer Aided Design Validation
——————————————————————————————————————

–

viii

Contents

Certificate iii

Certificate iv

Statement of Originality v

Acknowledgements vi

Abstract vii

Abbreviations viii

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Overview . 1
1.2 Problem Definition . 2
1.3 Introduction of Library IP . 2
1.4 Types of Library . 3

1.4.1 Core Library . 3
1.4.2 Input/Output Library . 3
1.4.3 Memory Library . 3
1.4.4 Analog and Mixed Signal library 3

2 Literature Survey 4
2.1 Library Views . 4
2.2 Symbolic View . 4

2.2.1 SLIB . 5
2.3 Schematic View . 6

2.3.1 Circuit Description language (CDL) 6
2.4 Layout View . 6

2.4.1 Graphical Design System (GDS) 7
2.5 Abstract View . 7

2.5.1 Library Extension Format (LEF) 8

ix

3 Technology & Tools 10
3.1 Shell Scripts . 10
3.2 TCL (Tool Command Language) . 11
3.3 OTcl (Object Oriented Tcl) . 12

4 IPScreen and Plugins 13
4.1 Input to IPScreen . 13
4.2 Overview of Plugins . 14

5 Implementation Of Plugins using IPScreen Framework 16
5.1 Manual Approach of Validating Library Views 16
5.2 Library Validation Process using IPScreen and Plugins 17

6 Implementation Of new Architecture 25
6.1 Old Approach (IPScreen) vs CadVal . 25
6.2 Intermediate Plugin QA Kit - CadVal . 26
6.3 CadVal Design and Flow . 27
6.4 CadVal Working . 30

7 Future Enhancement 35

8 Conclusion 36
8.1 Differences in Validation Using Manual Approach vs Plugin QA Kit . . . 36
8.2 Time Difference Achieved After Automating Input Preparation 36

Bibliography 38

x

List of Tables

8.1 Differences in Validation Using Manual Approach VS CADVal 37
8.2 Time saved in Input Preparation for Validation 37

xi

List of Figures

2.1 Library, Cell and View Block Diagram 4
2.2 Symbol View representation of a NOT gate 5
2.3 Example of .SLIB . 5
2.4 Schematic View of an Inverter . 6
2.5 Example of .CDL . 7
2.6 Layout View . 7
2.7 Abstract View . 8
2.8 Example of .LEF . 9

4.1 Block Diagram Of IPScreen . 14

5.1 Launching IPScreen . 17
5.2 IPScreen GUI Launched . 18
5.3 Load Library to be Validated . 19
5.4 Load PlugIn . 20
5.5 Checks executed Successfully . 21
5.6 Checks generating Errors and Warnings 22
5.7 Report generated by IPScreen in HTML format 23
5.8 Report generated by IPScreen in TXT format 24

6.1 Block diagram of Intermediate Plugin QA Kit 26
6.2 Input Processing Module . 27
6.3 Setup Generator Module . 28
6.4 Check Executor Module . 29
6.5 Report Generator Module . 30
6.6 Shell Script for EncounterLEF Sub-Check 31
6.7 Executing EncounterLEF Sub-Check on Terminal 32
6.8 HTML Report Generated for EncounterLEF Sub-Check 33
6.9 TXT Report Generated for EncounterLEF Sub-Check 34

xii

Chapter 1

Introduction

1.1 Overview

Electronics devices that we are using in our day to day life are composed of several

chips, which is fixed inside these devices for their proper functioning. This chip is a

combination of different programmable logic gates, memories, flip-flops, registers and

latches. Library is a collection of cells and Logic gates that are fabricated onto the chip.

This project is related to development of Plugins for automation of validation of

libraries which are the Intellectual Property. These libraries represent design data of

cells, transistor level design and timing information, actual mask level design that will be

integrated and fabricated on a chip. The automation requires plugins to validate different

views of a library under test. These plugin checks different views of library and each and

every cell and macros of a library.

So in my project, currently I am developing Plugins(Syntax Check, Cross Check,

Modelization, Mat10-Bbview) that can validate the different views of the libraries. In

S T Microelectronics we are using one framework, IPScreen software that provides GUI

for loading different plugins, but in this project we are developing new architecture that

will overcome all the limitations of IPScreen software. Plugin contains all the automated

scripts required for validating library views.

1

1.2 Problem Definition

Library is a collection of cells, containing different views that are useful in designing a

chip,[1] So before fabricating a library onto the chip we need to validate it. If all the views

of the library and its cells are correct then only we can move further towards soldering

of library onto the chips (then only we can fabricate it onto the chip).

So in my project I am developing scripts of CAD-checks that can validate the library

views syntactically and in many other ways using Plugins. So my task is to develop

scripts for SyntaxCheck and Modelization Plugins. Also to develop scripts for generating

Reports in different different formats i.e. TXT,CSV,HTML and XLS format at the end

of execution of each check.

User can run the IPScreen in two different ways :

• GUI Mode

• Batch Mode

For that, First of all the library that is to be tested (has to be validated) will be loaded

onto the IPscreen framework. Then, plugin is loaded and after that tool required for

validating particular view will be loaded.

1.3 Introduction of Library IP

LIBRARY can be defined as a set of all design data that are available for an Intel-

lectual Property.[2] The design data contains cell functionality, transistor level design of

an IP, and the timing information of cells.[2]

We can also say that library is a collection of cells, containing different views that

are useful in designing a chip. Cell is a component performing a basic function and a

view is just the particular representation of that cell. Due to increased complexity of

circuit and shorter time to market, SoC designers cannot really concentrate on design

of basic building blocks. This database can be reused in designing various System on

Chip(SoC).[3].

2

1.4 Types of Library

Following are the different types of libraries available according to the customers

requirement, design/structure and functionality of the devices.

1.4.1 Core Library

Core Library mainly consists of a group of cells which are Standard Cells. They implement

basic logic functions like flip flops, Gates, Inverter, counters, adder, subtractor, etc..

1.4.2 Input/Output Library

I/O Library consists of a group of cells called I/O buffers. I/O buffers are designed to

interface off chip signals to inside chip environment and vice-versa. I/Os are placed on

the periphery of the chip.[1] I/O libraries are mainly used inside the functioning of input

output devices to store Input and Output bit that are passed by user.

1.4.3 Memory Library

Memory Library contains memory of different architecture. Examples of Memories are

SRAM, DRAM, ROM. As there can be number of memory sizes, we implement basic

building block of memory and configure the generation of different memory sizes.[3]

1.4.4 Analog and Mixed Signal library

Mixed Signal Libraries are implemented using the CORE library in a custom manner.

Digital to Analog Converter, USB and PLL are the examples of Analog and Mixed Signal

libraries.

3

Chapter 2

Literature Survey

2.1 Library Views

As discussed previously, Library is a collection of cells and each cell has views which

are the representation of the cell.[2] All the cells have : Layout View, Abstract View,

Schematic View, Symbolic View and Timing view. A cell is delivered as a set of all view

and each view is used by different different tool in a given electronic design flow.[2] Main

library views are explained below :

Figure 2.1: Library, Cell and View Block Diagram

2.2 Symbolic View

Symbolic View is the sketch (pictorial) representation of any cell, it gives us the idea

about how the symbol design will look like when symbol is used in the Schematic View.

4

It includes Pins, Macros, Symbol, Labels, Selection box. Pins represents inputs and

outputs of the cells. The shape of a particular symbol in the diagram represents cell‘s

function. [1] Labels in the symbol are used to add to the documentation of the design,

selection box selects the complete area for the cells. [3] Symbolic Views allows the user

to abstract a complex Schematic View and replace it by a Symbolic view that can be

used as in further designs.[2] Symbolic view of an Inverter is shown below:

Figure 2.2: Symbol View representation of a NOT gate

2.2.1 SLIB

SLIB stands for Symbolic Library SLIB file is the textual representation of symbolic

view as shown in figure-2.3 :

Figure 2.3: Example of .SLIB

5

2.3 Schematic View

Schematic view is the simplified representation of an electronic circuit. It shows the dif-

ferent components of the circuit as simplified standard symbols, and the power and signal

connections between the devices.[2] It shows the representation of the cell at transistor

level. It represents component instances, wires and pins.

Figure 2.4: Schematic View of an Inverter

2.3.1 Circuit Description language (CDL)

CDL file is the text representation of the schematic view as shown in the figure-2.5.

CDL file provides following information :[2]

• Connectivity at the transistor level

• Device parameters like device name, length, width, Area.

• Power pin and ground pin related information at the transistor level

2.4 Layout View

It is the clear physical representation of cell‘s electronic circuits that goes on the silicon

for fabrication. It is the representation of IC that in terms of geometric shapes which

correspond to patterns of MOS(Metal oxide Semiconductor).[2] Layout view must pass

a sequence of checks during Verification process, The most important checks are Design

Rule Check (DRC) and Layout vs Schematic (LVS).[?] The parameters for such check are

given by chip manufactures.Another name of Layout View mask design, IC mask layout.

6

Figure 2.5: Example of .CDL

Figure 2.6: Layout View

2.4.1 Graphical Design System (GDS)

GDS file is the text representation of the Layout View.GDS file contains the same data

as the layout view & is a binary format for representation of planar geometric shapes,

text labels and layers, such as text, path/wire, boundary/polygon, and planar geometric

shapes in hierarchical form. [3] As GDS is using its internally defined formats for its data

types, GDS is platform independent.

2.5 Abstract View

From Abstract view, one can get the information about the signal & power pin layers

running in the layout view. Abstract view also gives the information of area where

routing is not allowed between the layers. Placement and Routing using Semi-Custom

Tools does not require the full layout information but only the location of various pins

to be connected and areas where routing is not allowed (obstructions)

7

Figure 2.7: Abstract View

2.5.1 Library Extension Format (LEF)

LEF file is nothing but an ASCII representation of the Abstract view. LEF file contains

following information :

• Name of Standard Cell

• Cell Size

• Number Of Input/Output Pins in given Cell

• Definition of Pins

• Direction of Pins

• Location of pins

• OBS layer definition

8

Figure 2.8: Example of .LEF

9

Chapter 3

Technology & Tools

3.1 Shell Scripts

[4]

10

3.2 TCL (Tool Command Language)

[5] TCL is commonly used for rapid prototyping,Automation related scripting applica-

tions, GUI development and testing.

11

3.3 OTcl (Object Oriented Tcl)

OTcl is nothing but an extension to Tcl with Object Oriented Programming[6]. It can be

dynamically extensible. In OTcl the reserved word Class is used to represent class and

method of class are declared using word instproc. The variable self is pointer to the class

it is used in and is equivalent to variable this of C++/Java. The keyword -instproc is

used for defining hierarchy.For example Class Son -instproc Father means that class Son

inherits from class Father.

12

Chapter 4

IPScreen and Plugins

IPScreen[7] provides GUI which is a framework built on TCL. Libraries are loaded on

the IPScreen for validation. Multiple libraries of different technology can be loaded at

the same time. After the Library is Successfully Loaded, Plugins are loaded onto the

IPScreen. Each tuple of library, plugin corresponds to a new tab in IPScreen window.

To run the IPScreen in GUI mode user has to click on each Checks that he wants to

run/execute. To run IPScreen in batch mode, all the commands are written in a command

file and then command file will be passed as an argument on the terminal. Based on the

availability of license for tools, the execution time of the check may vary.[7]. Time of

execution varies based on the total number of cells in the library and cell size.[2]

4.1 Input to IPScreen

• Command File : All the tasks/checks that we want to execute are given in

command file along with Library name. So finally the command file contains:

– Command used to load Library

– Command used to load auxiliary Library

– Command to run specific Check/Task

• Tool & Plugin Information: On the basis of the technology of library(65nm,

32 nm etc) version of tool may changes, so correct tools are to be ensured for each

validation of library. These tools are Electronic Design Automation Tools (EDA

tools).[3] Entry of all the EDA tools that are to be used will be make in a separate

file named as .plugin.list along with its path and version number.

13

• Setup : The setup script sets the environment in order to execute task on load

sharing facility and other environment variables required.

Figure 4.1: Block Diagram Of IPScreen

Figure 4.1 shows the input given by the IPScreen Framework and as shown in figure final

output will be reported in a separate file. So the inputs required are : Command File,

Tool Information and Plugin name. Report will be generated in the form of text, csv, xls

and html.

4.2 Overview of Plugins

Plugins are the software/tools that are used to validate the different library views before

soldering the electronic circuits.[8]

Various Plugins that we are developing in S T Microelectronics, to validate the library

views are as follows :

• Syntax Check : It Checks the different views of the libraries like LEF, GDS,

CDL, FRAM etc. syntactically.

• Cross Check : It will check the consistency of cell and pin attributes between

different views. For example In a LEF view some Cell ABC is placed at some

location and its origin is 2.00, then it will crosscheck that in other view say CDL

that cell ABC is having same location and origin or not. So we can say it will cross

verifies different pin attributes, macros and cells of libraries across different views.

• Modelization : Modelization mainly focuses on the placement and routing related

information. It will check the layers of each macros and figure out the errors if

14

routing is not allowed somewhere between the layers and cell is placed at that

location.

• Mat10 Bbview : It will compare attributes (like Cell names, Operating conditions,

View paths and Input/Output parameters) of bbview file, of the loaded library by

taking bbview file of auxiliary library as reference. So we can say it will compare

two bbview files (bbview file is the main file of a library) and report the differences

between them.

15

Chapter 5

Implementation Of Plugins using

IPScreen Framework

5.1 Manual Approach of Validating Library Views

16

5.2 Library Validation Process using IPScreen and

Plugins

Following steps gives the idea about how the library has been validated using IPScreen

GUI.

• As shown in Figure 5.1, user launches the IPScreen GUI by executing command on

the terminal

Figure 5.1: Launching IPScreen

• After executing command IPScreen will be launched and the GUI appears as shown

in Figure 5.2. It will ask the user to Load the IP (i.e. Library) that user wants to

validate.

• Then user has to select the IP style and path of the library which is to be validated.

User has to give the full path of library upto vc.bbview file, as shown in Figure 5.3

.

17

Figure 5.2: IPScreen GUI Launched

• After Loading the library successfully, the next task is to load the Plugin which

contains scripts that can validate the library views and its attributes as shown in

Figure 5.4.

• After Successfully loading the Library and Plugin, now user can click onto the RUN

button to execute the view specific tasks. By click onto it, IPScreen and Plugin

will start checking the library views as per the command given by user and verifies

the view accordingly. Following figure shows the checks in running mode.

Status of the check will appear after the particular task/check get executed. Status

with:

– DONE with GREEN Tick : indicates check has been executed successfully

without any errors and warnings. This case is shown in figure 5.5.

– DONE with RED Cross Sign: indicates check has been executed, but

there is something wrong with the library view. In this case errors will be

displayed in the report. This case is shown in figure 5.7.

18

Figure 5.3: Load Library to be Validated

– DONE with ORANGE Tick : indicates check has been executed success-

fully, but there are some errors generated in the report. This case is shown in

Figure 5.6.

• Finally the report will be generated in HTML form as shown in figure 5.7 and in

TXT format as shown in figure 5.8.

19

Figure 5.4: Load PlugIn

20

Figure 5.5: Checks executed Successfully

21

Figure 5.6: Checks generating Errors and Warnings

22

Figure 5.7: Report generated by IPScreen in HTML format

23

Figure 5.8: Report generated by IPScreen in TXT format

24

Chapter 6

Implementation Of new Architecture

As there are some limitations of validating libraries using IPScreen Framework, we are

moving towards new archirtecture CadVal that will Faster the library validation process

and the goal is to make this architecture as much intelligent as it can. The main goal

is to minimize manual work which in turn reduces the complexity and makes validation

process much faster.

6.1 Old Approach (IPScreen) vs CadVal

These plugins bundles collection of checks. Prior to automation, there were two ways in

which the validation was done :

• Some checks required the user to manually check all the relationship between various

dierent views.

• By giving input to EDA tool through command line or GUI, the results had to

be collected, and analyzed for each cell. This would take weeks and the results of

validation may still be prone to human errors.

25

6.2 Intermediate Plugin QA Kit - CadVal

Firstly by using an ST Internal tool, tool record and plugin record are prepared from

technology specic data. This technology specic data is developed by the Management,

and stores all the valid tools their versions, species the tools based on the type of

IP(Memory/IO/CORE) etc.

I created a module that automatically parses some input given on command line and

prepares input command le.The input given to module was name of library to validate,

all its supporting IPs, path of the plugins to use. After the input command le is prepared,

and tool records, plugin records are prepared the user automatically launches the job on

the Load Sharing Facility. The validation cannot be done on local machines as the tools

used require large computing resources and licenses that cannot be given on local machine

and are uniformly given to users by the Load Sharing manager in a uniform manner. The

gure shows block diagram of Intermediate PluginQAKit.

Figure 6.1: Block diagram of Intermediate Plugin QA Kit

26

6.3 CadVal Design and Flow

To make the library validation process much faster and to reduce the complexity, CadVal

is mainly divided into 4 modules as follows:

1. Input Processing : As the name suggests, it will process the system inputs. Input

can be of three type. It can be defualt specification file, it can the specification file

given by user or it can be the input generated by tools. So this module will combine

all the inputs coming from different different sources and merge all the inputs in

single input file and process it. It will verify that inputs coming to the system are

correct or not. Class Diagram in the Figure 6.2 shows the detail design of Input

Processing Module.

Figure 6.2: Input Processing Module

27

2. textbfSetup Generator : Task of Setup generator Module is to generate files and

directories and to setup environment variables at each of the level (Library Level,

View Level, Check Level, Sub-Check Level). so we can say setup generator will

create a setup to run the system successfully. Class Diagram in the Figure 6.3

shows the detail design of Setup Generator Module.

Figure 6.3: Setup Generator Module

3. Check Executor : As in the CadVal environment user can execute multiple Sub-

Checks concurrently, task of Check Executor is to launch each Sub-check parallely

on LSF (Load Sharing Facility). Check Executor also takes care about the depen-

dency between the Sub-Checks. For example, if Sub-Check1 (LEF view Check) is

dependent on Sub-Check2 (LIB View Check) then Check Executor will first exe-

cute the Sub-Check2 and after the completion of Sub-Check2 the Sub-Check1 will

be executed. Class Diagram in the Figure 6.4 shows the detail design of Check

Executor Module.

4. Report Generator : Report Generator module generates the report in different

different format (CSV,TXT,XLS,HTML) by reading the LOG files generated after

successful execution of each Sub-Check. When all the Sub-Checks reports get gen-

erated succefully, it will check the status of each sub-checks in the status file and

then generate the Check Level Report then View Level Report and then at the end

it will generate top level (i.e. Library Level) Report. Class Diagram in the Figure

6.5 shows the detail design of Report Genertion Module.

28

Figure 6.4: Check Executor Module

If we look at the flow and directory structure of the CadVal then it is divided as :

• Sub-Check Level : It is Similar to one task/check of an IPScreen. (E.x : SOCE01

- Encounter reads LEF File)

• Check Level : Check Level is a Collection of Multiple Sub Checks. (E.x : Syntax-

Check,Cross-Check)

• View Level : View Level is a Collection of Multiple Checks. (E.x : LEF view, LIB

view, CDL View)

• Library Level : The top most level in the CadVal architecture is a Library level. It

is a collection of Multiple Library Views. (E.x : I/O Library, Memory Library)

So the flow will be like this, Top Most level Library level will call the functions of its inner

29

Figure 6.5: Report Generator Module

level i.e. View Level. View Level further calls Check Level and Check Level launches

the individual Sub-checks on LSF by calling each Sub-Check that is specified by user in

Specification File. After successful execution of each Sub-Checks, report generation will

be done in Check, View and Library level.

6.4 CadVal Working

In CadVal if a user wants to validate some Library then he has to execute command by

passing different different arguments and by setting options (like Library Name,Bbview-

Path,View Name,sub-Check Name etc.) to those arguments. User can Run multiple

Sub-Checks concurrently by launching each Individual Sub-Checks on LSF(Load Sharing

Facility).

• Figure 6.6 shows the screen-shot of a script implemented in CadVal. This is a

script to run EncounterLef Sub-Check to verify LEF view in SyntaxCheck Plugin.

As given in name, Encounter is nothing but the name of tool used to validate the

LEF view.

• To run this EncounterLEF Sub-Check onto the LSF, user has to run command on

terminal that is shown in Figure 6.7

• After successful execution of EncounterLEF Sub-Check, Report Generator module

will generate the reports in Txt,CSV and HTML format. Figure 6.8 shows the

Sub-Check Level report in HTML format generated for EncounterLEF check ans

the Figure 6.9 shows the same report in TXT Format. These reports contains the

information about total no of Fatal, Errors and Warnings if occurs. They also gives

detail description of each Fatal,Error,Warning and Info.

30

Figure 6.6: Shell Script for EncounterLEF Sub-Check

31

Figure 6.7: Executing EncounterLEF Sub-Check on Terminal

32

Figure 6.8: HTML Report Generated for EncounterLEF Sub-Check

33

Figure 6.9: TXT Report Generated for EncounterLEF Sub-Check

34

Chapter 7

Future Enhancement

In future we can enhance the project by making the whole library validation process

GUI (i.e. IPScreen) independent. By typing only a single command and passing the

particular library views (that we want to validate) as an arguments we can get output in

a few minutes/seconds. For that we have to develop CAD checks of Plugins which are

independent of the environment of IPScreen. By validating the library views independent

of IPScreen we can make validation process comparatively more easier and faster than

using this IPScreen approach. So by this way we can enhance the project in future to

make it less complex.

35

Chapter 8

Conclusion

So finally the conclusion is, validation process became much faster and easier using Plugin

QA Kit approach rather than using manual approach of validating library views one by

one using GUI.

8.1 Differences in Validation Using Manual Approach

vs Plugin QA Kit

Some differences between Plugin QA Kit approach and manual approach are listed in

Table 8.1 :

8.2 Time Difference Achieved After Automating In-

put Preparation

The Table 8.2 shows the time saved by automating the task of Input Preparation in

CADVal.

36

Point Old Manual Approach
to launch Plugins Using
IPScreen

Automated Approach to
launch Plugins Using
CADVal

Specifying Library, auxil-
iary Library

Manually find the index file
of each library, its method-
ology and its reference li-
braries and write the com-
mands in command-file.

The librarys cen-
tral location is found
out, and then its
name,Methodology,reference
library etc. are extracted
and are written in input
command-files.

Preparation of plugin record File having plugin and its
path was manually pre-
pared.

The path is provided as an
argument and the plugin file
is automatically generated
at run time.

Launching of Job on LSF The job to be validated was
manually launched on the
LSF.

By default launches the job
on compute farm and also
provides user an option to
bypass the launching of val-
idation and just prepare the
input.

Selection of Tools Each time to validate a li-
brary all the tools required
had to be written in a sep-
arate file. The correct tools
depending on the techno of
library had to be taken care
of.

Now the correct tools are
automatically picked up de-
pending on the techno of li-
brary.

Creation of Work Space For each library validation
a different work space
were manually created
having command-file,plugin
record,tools list.

Now,for N number of li-
braries of same Techno N
Work Spaces will be created
by CADVal’s Setup Genera-
tor Module,in an automated
manner.

Report Generation Manually generate after all
tasks completed using user
interface.

Automatically Generated
after tasks completion.

Table 8.1: Differences in Validation Using Manual Approach VS CADVal

No. of Libraries(of
Same Technology)

Manual Approach of
Input Preparation

Using CADVal

One Library 15-20 Minutes 2-3 Minutes
Two Libraries 25-30 Minutes 5-7 Minutes
Five Libraries 1.5-2 Hour 20-25 Minutes

Table 8.2: Time saved in Input Preparation for Validation

37

Bibliography

[1] W. Agatstein, K. McFaul, and P. Themins, “Validating an asic standard cell library,”

pp. P12–6, 1990.

[2] STMicroelectronics, “Stmicroelectronics internal document on library and views,”

[3] M. J. S. Smith, “Application specific integrated circuits,”

[4] https://en.wikipedia.org/wiki/C_shell.

[5] http://wiki.tcl.tk/299.

[6] https://en.wikipedia.org/wiki/OTcl.

[7] STMicroelectronics, “Stmicroelectronics internal document on ipscreen,”

[8] STMicroelectronics, “Stmicroelectronics internal document on plugins,”

38

https://en.wikipedia.org/wiki/C_shell
http://wiki.tcl.tk/299
https://en.wikipedia.org/wiki/OTcl

	Certificate
	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Tables
	List of Figures
	Introduction
	Overview
	Problem Definition
	Introduction of Library IP
	Types of Library
	Core Library
	Input/Output Library
	Memory Library
	Analog and Mixed Signal library

	Literature Survey
	Library Views
	Symbolic View
	SLIB

	Schematic View
	Circuit Description language (CDL)

	Layout View
	Graphical Design System (GDS)

	Abstract View
	Library Extension Format (LEF)

	Technology & Tools
	Shell Scripts
	TCL (Tool Command Language)
	OTcl (Object Oriented Tcl)

	IPScreen and Plugins
	Input to IPScreen
	Overview of Plugins

	Implementation Of Plugins using IPScreen Framework
	Manual Approach of Validating Library Views
	Library Validation Process using IPScreen and Plugins

	Implementation Of new Architecture
	Old Approach (IPScreen) vs CadVal
	Intermediate Plugin QA Kit - CadVal
	CadVal Design and Flow
	CadVal Working

	Future Enhancement
	Conclusion
	Differences in Validation Using Manual Approach vs Plugin QA Kit
	Time Difference Achieved After Automating Input Preparation

	Bibliography

