
Automation and Optimization in Layout
Generator

Submitted By

Niravkumar Ashokkumar sharma
14MCEN22

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Automation and Optimization in Layout
Generator

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

Submitted By

Niravkumar Ashokkumar Sharma
(14MCEN22)

Guided By

Prof. Usha Patel

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2016

Certificate

This is to certify that the major project entitled ”Automation and Optimization

in Layout Generator” submitted by Niravkumar Ashokumar Sharma (Roll No:

14MCEN22), towards the partial fulfillment of the requirements for the award of degree

of Master of Technology in Computer Science and Engineering(Networking Technologies)

of Institute of Technology, Nirma University, Ahmedabad, is the record of work carried

out by him under my supervision and guidance. In my opinion, The submitted work has

reached a level required for being accepted for examination. The results embodied in this

project, to the best of my knowledge, haven’t been submitted to any other university or

institution for award of any degree or diploma.

Mr. Ashu Talwar Mr. Rohit Pandey

Section Manager, S/w Application Developer,

TRnD Department, TRnD Department,

ST Microelectronics,Greater Noida ST Microelectronics,Greater Noida

Prof. Gaurang Raval Prof. Usha Patel

Associate Professor, Assistant Professor,

Computer Science Engineering, Computer Science Engineering,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr. Sanjay Garg Prof.P. N. Tekwani

Professor and Head, Director,

CSE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, Niravkumar Ashokkumar sharma, Roll. No. 14MCEN22, give undertaking

that the Major Project entitled ”Automation and Optimization in Layout Gen-

erator” submitted by me, towards the partial fulfillment of the requirements for the

degree of Master of Technology in Computer Science & Engineering(Networking

Technologies) of Institute of Technology, Nirma University, Ahmedabad, contains no

material that has been awarded for any degree or diploma in any university or school in

any territory to the best of my knowledge. It is the original work carried out by me and I

give assurance that no attempt of plagiarism has been made. It contains no material that

is previously published or written, except where reference has been made. I understand

that in the event of any similarity found subsequently with any published work or any

dissertation work elsewhere; It will result in severe disciplinary action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof. Usha Patel

(Signature of Guide)

iv

Acknowledgements

It gives me tremendous joy in communicating thanks and significant appreciation to my

guide Prof. Usha Patel, Assistant Professor, Computer Science Department, Institute

of Technology, Nirma University, Ahmedabad for her significant direction and nonstop

support all through this work. The gratefulness and nonstop bolster she has granted has

been an extraordinary inspiration to me in coming to a higher objective. Her direction

has activated and sustained my scholarly development that I will profit by, for quite a

while to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Science and Engineering Department, Institute of Technology, Nirma University,

Ahmedabad for his kind support and providing basic infrastructure and healthy research

environment.

A special thank you is expressed wholeheartedly to Prof.P. N. Tekwani, Hon’ble

Director, Institute of Technology, Nirma University, Ahmedabad for the unmentionable

motivation he has extended throughout course of this work.

My Sincere as a result of Mr.Ashu Talwar Manager, ST Microelectroniocs, Greater

Noida. I exploiting his vast information and great future vision and owe his heaps of

appreciation for essentially affecting this report.

I would like to thank my Mentor, Mr. Rohit Pandey , ST Microelectroniocs,

Greater Noida for her valuable guidance. Throughout the training, he has given me

valuable advice on project work. He has given me all kind of support to handle complex

situation.

I would like to thank you to my Institution, All faculty members of Computer Engi-

neering Department, Nirma University, Ahmedabad for their special attention and sug-

gestions towards the project work.

- Niravkumar Ashokkumar Sharma

14MCEN22

v

Abstract

VLSI technology is used for generation of memory. It has requirement of three crucial

parameter : time, cost, effort. So our motive is to optimize this parameter. If we reduce

the time causes reduction in effort and also vary the cost.Here we for different technology

along with configuration parameter, we develop the compiler to generate the views.If any

single configuration parameter change then we need to start from the beginning although

belong to same technology. So to reduce the time and effort we make a framework

called unibe.It provides the common platform for all technology along with different

combination of parameter.We pass configuration parameter as input file to framework and

it will generate the views.Before passing input file we are validating it through checker.

Moreover we are also trying to optimize the input file so most of the task can be shifted

before it passes to unibe. As a result in reduction of time and saves the effort which

reduces to execution time as well as validation time of view of the memory.It will take 6

to 8 month to develop the cut and execution time will take 15 to 20 mins.

vi

Abbreviations
CDL Circuit Design Language.

GDS Graphical Design Stream.

LVS Layout Vs Schematic.

DRC Design Rule Check
——————————————————————————————————————

–

vii

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

Abbreviations vii

List of Figures x

1 Introduction 1
1.1 General . 1
1.2 Objective of Study . 2
1.3 Motivation . 2
1.4 Scope of Work . 2
1.5 Activities . 3

2 Literature Survey 4
2.1 Architecture of Memory . 4

2.1.1 Basic architecture . 5
2.1.2 Advance architecture . 5

2.2 Important Terminology . 6
2.2.1 Importance of MUX . 6
2.2.2 Importance of Row-decoder . 7
2.2.3 Importance of IO Cells . 7
2.2.4 Importance of Wrapper Cells . 7
2.2.5 Importance of Environment Cells 7

2.3 Process Designing Memory . 7

3 Project Overview 10
3.1 GDS(Layout) & CDL(NetList) . 10
3.2 UNIBE Process Flow . 11
3.3 Object Generation stream for Architectural Library 12

4 Implementation and Result 14
4.1 Existing Approach . 14
4.2 Proposed Approach . 14

4.2.1 Checker . 16

viii

4.2.2 js Evaluator . 17
4.2.3 Some Challenging Problem . 17

4.3 DEF view . 18
4.3.1 DEF view algorithm . 18
4.3.2 Graphical view of DEF view . 20

4.4 Optimization . 21

5 Validation 24
5.1 Introduction . 24
5.2 Product Diff Tool . 24

6 Conclusion and Future Scope 27
6.1 Conclusion and Future Scope . 27

Bibliography 29

ix

List of Figures

2.1 Basic Architecture . 4
2.2 Spilt Architecture . 5
2.3 Bank Architecture . 6
2.4 Memory Layout . 8
2.5 flow of LVS . 9

3.1 Schematic view of circuit . 11
3.2 Process Flow . 12
3.3 Flow Diagram of UNIBE . 13

4.1 Proposed Approach . 15
4.2 Text File . 15
4.3 Checker Flowchart . 16
4.4 Comparison Between two Script Engine 18
4.5 DEF view Generation Algorithm . 19
4.6 DEF view Generation Output . 19
4.7 TEXT layer of Memory . 20
4.8 METAL layer of Memory . 20
4.9 Top view label promotion . 21
4.10 Memory cell . 21

5.1 Structure diagram of Product diff Tool 25
5.2 Flow of Product diff Tool . 25
5.3 Demo Output of Product Diff Tool . 26

6.1 Execution Graph : Compiler → Time . 27
6.2 Validation Graph : Compiler → Time 28

x

Chapter 1

Introduction

1.1 General
Our Information society at the turn of the 21st century bears an immense interest for

microelectronic gadgets with definitely improved execution, keeping in mind the end

goal to satisfy the general public future necessities for data preparing, exchange and

capacity of devices. A standout amongst the most progressively advancing divisions of

microelectronics is right now the memory market, which is seen by the buyer in the

pervasive memory sticks, memory cards for advanced cameras, and so forth. the memory

can be divided int two parts which is volatile and non-volatile memory

As the name suggest, Microelectronics is a subfield of electronics. Microelectronics

relates to the study and manufacture (or microfabrication) of very small electronic designs

and components. Usually, but not always, this means micrometre-scale or smaller. These

devices are typically made from semiconductor materials. Many components of normal

electronic design are available in a microelectronic equivalent. These include transistors,

capacitors, inductors, resistors, diodes and (naturally) insulators and conductors can all

be found in microelectronic devices

The quality of achievement in microelectronics business is basically depends on exe-

cution time. It is not simply execute the thing as looked for. It should work for extended

period of time ceaselessly. Even the things also depend on design time of circuit.depending

of both : Quality time and Design time the validation time is also calculated.

1

1.2 Objective of Study
As we know that VLSI technology is used to develop memory and it is very crucial. The

fail of fabrication of memory causes major loss. So it is require passing through some

simulation process which develop the cell of memory and pass through different cases to

make robust. The process through which memory cut is developed called compiler. The

compiler works on different technologies and different types of memory. The process of

developing the memory is called design time of chip. To analyze the memory we need the

different view which makes the memory robust and fail-safe which is called the validation

phase of memory. To make process reliable and more faster we need to automate and

optimize the thing.

1.3 Motivation
A user will provide the specification and based on that we develop the memory. Again for

different memory needs, We need to change the compiler configuration which is taking

more time. We need something generalized structure for all memory architecture. For

that we need to concentrate on layout part of memory to make the process fast and

reliable. So our aim is to optimize the code and automate the thing. The input should

be simpler so that customer can develop the memory cut and if there is any issue found

,can be solved by the expert person. Thus reduces the load at the expert and provide

satisfactory solution to customer.

1.4 Scope of Work
The guideline method of reasoning of the assignment is to give an interface between others

instrument which makes the memory cuts and diminish the compiler advancement time.

Unibe thing supports all designing. That suggests Unibe will have the ability to make

view for every technology, no need to use different compiler to create view.

To automate the process we write one text file or provide GUI interface which has all

data about to generate the view of memory. The layout structure will parse the file and

generate the product. So our task is to generate the different cut and validate it.Thus it

will saves the design time. We just need to validate the cut and found any issue then fix

it.

2

1.5 Activities
• Understanding various processes involved in the Circuit Design flow.

• Understanding Technology that can be useful in project infrastructure.

• Learning the Reflection API, understanding the usage of Reflection API and analyse

Java pattern.

• Learning shell script to validate the product.

• Implement Text Parser

• Implement checker

3

Chapter 2

Literature Survey

2.1 Architecture of Memory
Memory architecture explains the way of implementing electronic computer data storage

in a proper manner that is a combination of the most reliable, fastest, most durable and

least expensive way to retrieve and store information. Based on the specific application,

There are two types of basic architecture introduced :

• Basic architecture

• Advance architecture

Figure 2.1: Basic Architecture
[1]

4

2.1.1 Basic architecture

Every one of the cells joined with the word line in the line is active, when they chose

lines are high in this manner dispersal increment. In the crucial fundamental building,

line access time is the two main considerations add to the read access. When the size of

the Memory expands the heap is lessened in light of the fact that the quantity of cells

joined with the word line increments. Consequently, The word line deferral expands due

to the increment in the word line capacitance. By lessening the bit line capacitance and

the word line capacitance are the two elements that can be enhanced, however this is

accomplished strictly when utilizing an alternate architecture and the other architecture

is spilt core architecture and bank architecture as shown in figure 2.2 and 2.3. [1]

Figure 2.2: Spilt Architecture
[1]

2.1.2 Advance architecture

The advance architecture is spilt core and bank architecture. The basic problem in

previous architecture is read and write the data to memory cell. It takes less time in

cell which is near to rowdec while take higher time which is far from rowdec. Again

there is drop of voltage while writing or reading data to memory cell far to rowdec. To

overcome this issue we need the advance architecture which resolve this matter and make

the memory architecture more efficient.

In spilt core architecture the row-decore is shifted to middle of memory core to reduce

the time of retrieving and but still require the time to store data. The problem is

5

Figure 2.3: Bank Architecture
[1]

overcome by the bank architecture. In this architecture the IO is shifted to memory

core horizontally. So it has the two IO systems: Local IO and Global IO. There is also

more flavors available based on environmental condition. [1]

2.2 Important Terminology
Memory is constantly given as far as words*bits. In any case, when we create we change

over it into rows and column.

Rows= words/mux; cols=bits*mux;

2.2.1 Importance of MUX

Presently assume the structure of memory is not suitable for SoC. We can diminish

the structure of memory and expand the width by keeping up the same size as far as

words*bits. Memory =rows*cols = ((words/mux)*(bits*mux)) = words*bits. All in

spite of the fact that we have changed over words*bits into rows*col still we are looking

after same memory size. With mux=2 Rows = 512/2 = 256 Cols =16*2 =32. So now

width is twice and height is half. Now in the event that we utilize mux= 4 height will be

diminished to 1/4 and widht will be incresed by variable of 4. Along these lines we can

change the perspective proportion with the utilization of mux.[2]

6

2.2.2 Importance of Row-decoder

Rowdec is utilized for selecting specific row. Presently single rowdec can select from

predefined set of rows for example: 4 in this way rowdec can choose 4 rows only.

The arrangement of columns from which a rowdec can choose a line is known as

rowdecunit. In this way we required numerous rowdec to get to all columns of memory.

Why we can’t choose all rows with single rowdec? Since the quantity of columns are not

fixed it relies on upon words and mux so on the off chance that we make single rowdec it

won’t work when configuration changes. In this way number of rowdec is computed on

premise of columns.

NoRowdec= (lines/rowdecunit) + (columns % rowdecunit==0?0:1); [3]

2.2.3 Importance of IO Cells

Io cell relies on upon number of bits. Number of IO’s will be put as commonly as bits.

In mono structural planning bits are even or odd. It doesn’t make a difference yet if

there should be an occurrence of split and bank architecture it relies on upon rationale

on which side we need to put one additional IO. As here our lief and right part won’t be

identical.[2]

2.2.4 Importance of Wrapper Cells

As the name suggest, It is wrapper to the cell which is used to provide additional func-

tionality to particular cell.

2.2.5 Importance of Environment Cells

Environment cells are utilized in between core and IO cells. There are two sorts of

Environment cells. Introductory one is Vertical Environment strap which is used in core

and IO while other is Horizontal Environment strap which are used in core and Rowdec.

Environment Cells are used for to absorb electromagnetic impressiveness made by the

group of cells. So after each predefined number of cells strap cells are used so that effect

of electromagnetic is diminished which does not affect.[3]

2.3 Process Designing Memory
The basic stage in IC organizing is the making of the design utilizing software called

virtuoso. This configuration is checked using DRC to affirm that the outline does not

7

release any standards chose in the DRM which is required for the best working of the

chip. By then once the design is DRC clean it is separated and the flavor model of plan to

guarantee that the course of action addresses the same circuit as it is in the flair model.

following are data about the checks :

Figure 2.4: Memory Layout

• A diagram block set focuses certain geometric and structure impediments to ensure

attractive edges to record for variability in semiconductor passing on star cesses,

with a specific choosing target to ensure that a liberal bit of the parts work pre-

cisely. While diagram statute checks don’t reinforce that the organization will work

precisely, They are made to watch that the structure meets the framework obli-

gations regarding a given layout sort likewise handle building. DRC programming

by and large takes as enter a course of action in the GDSII standard connection,

and produces a report of plan decide encroachment that the maker may change.

Purposely ”extending” or waiving certain blueprint benchmarks is routinely used

to widen execution and bit thickness to the disservice of yields.

• LVS check whether the outline and the schematic are undefined or not. Affiliation

showed in both outline and schematic must be same. Inputs for doing LVS may

be GDS file or CDL file. The GDS file contains the configuration information for

8

circuit. CDL file contains the schematic information required for circuit. Stream of

LVS is showed up in figure.

Figure 2.5: flow of LVS

9

Chapter 3

Project Overview

Essential use of BE Compiler is to generate Layout and netList as per data specification.

For Different technology particular BE compiler is come into picture. We need each

technology to go ahead single platform.As per the examination, A lot of commonly piece

of code used in developing the memory cut for different technology. Following are the

motivation behind UNIBE:

• Give single interface to client inputs information.

• Memory designer just fill the template according to as their necessities.

• Support different technology, architecture.

3.1 GDS(Layout) & CDL(NetList)
A standard cell is a mix of transistor and it interface inward structures. The basic cells

includes NAND, NOR, and XOR Boolean limit. Using this basic cells the memory cells

are developed and group of this cells are called the BELib which is the most precious

input to develop the SoC. Below Figure shows Schematic view of circuit. The outline

of a standard cell is begin at the transistor level, portrayed in the type of a transistor

netlist or schematic perspective. The netlist is a nodal depiction of transistors and their

interconnections to each other.

Memory Designers proclaims the info parameter to simulate the electronic conduct of

the netlist and after that computing the circuit’s time domain response. The reproduc-

tions checks whether the netlist executes the desired result and foresee others parameters,

10

for example, power or utilization. Since the perspectives are useful for abstract simula-

tion. Layout view is the least level of configuration deliberation. Design view portray

the complete data of interconnection between the terminal components.

As the name suggest, GDS is the graphical view of memory which elaborate the

number of layers in SoC, How is the connection established and what is the area covered

by all the components of memory, What is the size of signal pins how the power is driven

from in circuitry.

while designing the SoC, It is mandatory to take a note for DRC value which rule

check. As the current flows in the circuitry, Its create the magnetic field. So we need to

minimize it. Moreover it is also happened that there might be voltage drop between to

cells while we to fetch or retrieve the data.[2]

Figure 3.1: Schematic view of circuit

3.2 UNIBE Process Flow
UNIBE process flow is as shown in below figure:

• In the first place Memory Designer requesting to create the memory cut.

• Web gen send demand with information to the unibe.

• Unibe Module working flow

11

– Take command

– View Call

– Unibe solicitation to make object of top structure from the parser.

– Parser return object of structure

– The generated object is converted into the specific object using .jar file.

• Generate views

• (GDS or CDL)View is returned

Figure 3.2: Process Flow
[1]

3.3 Object Generation stream for Architectural Li-

brary
• Demand for building a Structure.

• Demand for building Alias by Structure is sent.

12

Figure 3.3: Flow Diagram of UNIBE
[1]

• Request to assemble Block particular square Object.

• Request is sent to generation of Sub Blocks.

• Sub Block Object is returned which is to be set on top of BLOCK.

• Object of Block is Returned.

• STRUCTURE Object is Return.

13

Chapter 4

Implementation and Result

4.1 Existing Approach
In order to develop the memory Compiler, The user will provide INPUT PARAM-

ETERS Configuration file along with needed other things like FE product, BE-Lib,

Modules, Memory-Cell. Using this six product including BE product generated by our

team will provide to COMPILER and develop the view of memory cut as PRODUCT.

To generate one mature memory cut will take 10-12 moths and then it is deliver for

fabrication.

This thing we have done for one particular architecture. Now parameter change then

we need to repeat the whole process to generate memory cut although it is belong to

same technology. The existing approach as shown in figure

This approach is trust-worthy but taking long time to generate the memory cut. We

need one another approach which maintain the flexibility of process and take less time

compare to conventional approach. So it is demand to develop new approach should be

feasible, efficient terms of time and flexible.

4.2 Proposed Approach
To overcome all the problem faced by the existing approach, We need unique and common

framework which support all combination of configuration parameter along with different

technology [3]

UNIBE is framework which is product of ST Microelectronics supports different

technology of memory along with configuration parameter.The input to this framework

14

Figure 4.1: Proposed Approach
[3]

is the Text file of configuration parameter and what kind of view need to generate.

This would work as black-box module to the end user this framework is taking care

of everything for which manually done by the team. Now the term used in proposed

architecture is explain as below:

Figure 4.2: Text File

• TextFile : This is a input file which contain the configuration data regarding de-

veloping memory cut which is shown in figure 3.3 .

15

• Parser : This module parse any kind of record that is supported by UNIBE and

adherent it to DTO. DTO is specific sort of game plan to store data. We are using

Objects to store data. Finally DTO are traded to challenge of particular class.

4.2.1 Checker

The user provide input file in form of Text file or XML file. The Text file is shown in

figure 3.3. The defined structure of file is written by user which may contain error by

mistake. So we need to validate the file by parsing.There is two level of checker :Checker

Level 1 and Checker Level 2 that is static and dynamic checker respectively.

Figure 4.3: Checker Flowchart

• Static Checker : Checking syntax of defined structure. For example it should start

with BEGIN and END prefix followed by name of the parameter.

• Dynamic Checker : Checking defined parameter and evaluate it. For example,

It is checking parameter inside the block like NAME, REF etc parameter defined

properly or not. It is checking the parameter which has variable value and it should

be as per domain of the data.

16

4.2.2 js Evaluator

This is javascript evaluator which is used for evaluation of variable value. One of the

variable is “itr structure“ indicated in figure 3.3. The need for this evaluation engine is

explain here : For instance above mention variable value is used in let’s say on ten place

and the value of this variable is different. We can define this variable as constant in ten

different place but again we need to do manually which is not desirable.to automate the

value of the value of this variable is generic so it can be done through java evaluator. We

are using “Rhino“ javascript Engine. It is open-source and time taken by it is small.

4.2.3 Some Challenging Problem

Is is easy to parse the file based on defined syntax inside file but it is challenging task to

evaluate the parameter defined inside it for example “itr structBank“ which has variable

value and it can be change based on the other parameter dependency. We are parsing

the file through java code but it is not evaluating the value. So to evaluate the value we

are using java script.

For evaluation of value what kind of script engine to be used. If we choose particular

script engine it should not affect the other modules gets updated. Again there are many

kind of script engine available in market but we need open source best script engine. For

that we find two script engine. [4]

• Rhino

• Nashorn

Both are developed in java but the difference is lying for evaluation of script. Oracle has

shown the graph for comparing both script-engine as below :

For evaluation of java script we need script engine which evaluate the variable and use

the value ahead. Again the value of same variable can be change for another dependency

so we need to evaluate again and again. So as solution we use Rhino script engine. Again

for evaluation we are using threading which reduce the time of execution.

As per analysis of compiler to make the framework generic, It has about 146 total

variable which is used in almost all compiler. Again it has domain of value can be

different.so it need to run in worst case. This situation can be handle by thread but for

normal machine it may through out of memory exception. So we have limited number

17

Figure 4.4: Comparison Between two Script Engine
courtesy: developer.mozilla.org

of thread. Again we need to validate the value at run time as it is matching the domain

value. Otherwise it should throw an error. So we need to maintain the variable value for

all cases and it is handle by counter and parent counter value which is worse case.

4.3 DEF view
As we know that the main product which is used for fabrication of chip is GDS view.

But along with this main view others views are also generated like CDL view. One more

view is introduce which is DEF view.

The cells which contains the DEF view cell needs to abut in memory compiler. DEF

view method generation needs to be call after abutment of the other memory compo-

nent.The reason behind it calling after abutment of the memory is that because we need

to link the DEF view cells with signal pins.

The DEF view is required as the pin properties contains only small information but

could not tell other things like it’s orientation, its length.

The DEF view doesn’t impact the other component of memory, But the purpose

behind the introduction of this view is to validate the position and properties of Signal

pins.The signal pins can be Address pins or Data pins.It also contain the information

about orientation.

4.3.1 DEF view algorithm

The algorithm is as shown in the figure. The input is provided as cells which is place in

the memory while streaming the GDS file. Now the one cell name is provided through

which we can associate the information regarding the cell. The cells are find from the

GDS file and make them sort so that we can ensure that no cell can be left and then it is

18

provided to the label selector which extract the cell and make them differentiate . Now if

we find the desire cell then it rename the cell and insert the other information regarding

the pin otherwise itâĂŹs simply put the information regarding the cell and generate the

DEF file as output.[5] The algorithm is shown in below:

Figure 4.5: DEF view Generation Algorithm

Figure 4.6: DEF view Generation Output

19

4.3.2 Graphical view of DEF view

As we know that memory in the form of Graphical view is complex. So for better

understanding of DEF view I have closed the other layer of memory. Following is the

Graphical view of DEF view:

Figure 4.7: TEXT layer of Memory

The first figure shows the text layer on which the cell are placed for the DEF view.

The second figure shows the def view cells which is connected with the signal pins which

contain the properties of signal pins. Third figure shows label promoted on the top level

and one of the label represent the propertied of the signal pin.

Figure 4.8: METAL layer of Memory

20

Figure 4.9: Top view label promotion

4.4 Optimization
Memory is composition of cells. By making particular pattern, repeating the pattern we

can built the core of the memory. Given below figure through demonstrate the optimiza-

tion in core. This time difference between shifting the code doe

Figure 4.10: Memory cell

If we look at the legacy JAVA code of the developing the above structure. Its look

like below:

Given below is the problem which is written in TEXT file and parse through TEXT

PARSER

BEGIN STRUCTURE BLK MAIN

DIRECTION ”LEFT TO RIGHT}”

NAME ”ALIAS(ALIAS BLK1) ”

NAME ”ALIAS(ALIAS BLK2) ”

ENDS BLK MAIN

21

BEGIN ALIAS ALIAS BLK1

NAME ”BLOCK(BLK SUB1) ”

ENDS ALIAS BLK21

BEGIN ALIAS ALIAS BLK2

NAME ”BLOCK(BLK SUB2) ”

ENDS ALIAS BLK2

BEGIN BLOCK BLK SUB1

NAME ”BLOCK(BLK C) ”

ITERATE ”1 :4”

ENDS BLK SUB2

BEGIN BLOCK BLK C

NAME ” c e l l 1 ”

ITERATE ”1 :3”

ENDS BLK C

BEGIN BLOCK BLK SUB2

NAME ”BLOCK(BLK E) ”

ITERATE ”1 :4”

ENDS BLK SUB2

BEGIN BLOCK BLK E

NAME ” c e l l 2 ”

ITERATE ”1 :3”

ENDS BLK E

Below is the legacy code in JAVA:

22

Class BLK MAIN {

BLK MAIN() {

f o r (i n t i = 1 ; i <= 2 ; i++) {

f o r (i n t j = 0 ; j < 4 ; j++) {

f o r (i n t k = 0 ; k < 3 ; k++){

ABUTRT(âĂĲcellâĂİ + i) ;

}

}

}

}

}

Here is the code which is written in text file and it is optimized one.

BEGIN BLOCK BLK A()

NAME ”BLK B(x=UNI COUNTER) ”

ITERATE ”1 :2”

ENDS BLK A

BEGIN BLOCK BLK B(x)

NAME ”BLK C(x=x) âĂİ

ITERATE ”1 :4”

ENDS BLK B

BEGIN BLOCK BLK C(x)

NAME (x\%2)==0?” c e l l 1 ” : ” c e l l 2 ”

ITERATE ”1 :3”

ENDS BLK C

23

Chapter 5

Validation

5.1 Introduction
The previous existing architecture is used to generate the compiler. It is trustworthy

but manual. It is taking the investment of time. So to save the time and make more

efficient we are introduced with new architecture that is UNIBE. Now, The product is

developed from the UNIBE architecture which is time efficient and flexible from the user

perspective.

Now the problem is that how to validate the product? We need something which

evaluate the thing and produce the desirable result by comparing the compiler generated

form old and new architecture.

5.2 Product Diff Tool
The product diff tool take input as two files which has path regarding product produced

with old approach and new approach. It also contain the exhaustive cutlist and BELib

path. Both are common for old and new approach. The product validation tool contains

four parameter

• Validation Script : It contains Script like BEproddiif, gds2txt, memvalidkit.

• Output : Contain generalized and cutwise report.

• Local Product : contain exhaustive cutlist and BELib.

• Confiles : It is input file to validation scripts.

24

Figure 5.1: Structure diagram of Product diff Tool

Figure 5.2: Flow of Product diff Tool

Above figure shows the structure diagram of Product Diff Tool:

The confFiles which is the data to the script contains the path of product and other

parameter. The primary script BEprodDiff.sh accept the path and built up environment

to run the script. It calls the memvalidkit.sh script which create the GDS and CDL files

for both old and also new approach with gave through cutlist.

25

As GDS record is binary so specifically we can’t look at it, so we have to change over

into text content through gds2text.sh script. The principle script compare the cutwise

GDS and CDL document and create the generalized and in addition cutwise report. The

yield output is appeared in beneath figure.

Figure 5.3: Demo Output of Product Diff Tool

26

Chapter 6

Conclusion and Future Scope

6.1 Conclusion and Future Scope
As we know quality time is more important in microelectronics.so it is require to make

the thing automate and as possible as optimize.By making a unique framework, it gives

platform to develop the compiler for all technology and architecture supporting combi-

nation of all configuration parameter.Moreover optimization in Layout code and input

file saves quality time.change in single parameter doesn’t effect others thing. Hence it

reduces the time and effort to develop one mature compiler.

Figure 6.1: Execution Graph : Compiler → Time

If we look at the Execution graph for the different technology compiler,the time is

taken by the old approach is more than the new approach.

By looking at the validation graph, It also convey that the new approach is batter

27

Figure 6.2: Validation Graph : Compiler → Time

for validation of the compiler,But there is still scope for improvement for the validation

script which minimize the validation time at fabrication. here still design time is almost

same but it improve the quality steps to develop the SoC.

As enhancement we can reduce the time of validation of input File and also provide

input in form of GUI. we can also reduce the time of validation script which enhance the

overall performance of the SoC development.

28

References

[1] STMicroelectronics, “St tools,” pp. 1 – 8, October 2015.

[2] STMicroelectronics, “St documents on cut generation,” pp. 1 – 17, October 2015.

[3] STMicroelectronics, “St internal documents on memories and training manuals,”

pp. 314 – 317, October 2015.

[4] Vogella, “www.vogella.com/tutorials/java.html,” Jannuary 2016.

[5] Oracle, “docs.oracle.com/javase/7/docs/technotes/guides/scripting/programmergui,”

January 2016.

29

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	Introduction
	General
	Objective of Study
	Motivation
	Scope of Work
	Activities

	Literature Survey
	Architecture of Memory
	Basic architecture
	Advance architecture

	Important Terminology
	Importance of MUX
	Importance of Row-decoder
	Importance of IO Cells
	Importance of Wrapper Cells
	Importance of Environment Cells

	Process Designing Memory

	Project Overview
	GDS(Layout) & CDL(NetList)
	UNIBE Process Flow
	Object Generation stream for Architectural Library

	Implementation and Result
	Existing Approach
	Proposed Approach
	Checker
	js Evaluator
	Some Challenging Problem

	DEF view
	DEF view algorithm
	Graphical view of DEF view

	Optimization

	Validation
	Introduction
	Product Diff Tool

	Conclusion and Future Scope
	Conclusion and Future Scope

	Bibliography

