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Abstract

This thesis mainly presents a discussion about the Firmware Support Package BIOS.

In broader view, Firmware Support Package Basic Input Output System is the binary

distribution of necessary Intel Silicon initialization code which provide access to pro-

gramming information which is not publicly available. The research work described in

the thesis is mainly focused on improving the performance of BIOS and flexibility to

the users to use any open source boot loaders.

Basically the BIOS in modern PCs is to initialize and test the system hardware com-

ponents, and to load a boot loader or an operating system from a mass memory device

which is used for silicon initialization. It act as a layer between OS and hardware to

initialize and interface and finally loads boot loader to give control to OS and BIOS

played supporting hardware role for the devices. The FSP provides chipset and pro-

cessor initialization in a format that can easily be incorporated into many existing boot

loaders. The first design goal of FSP is to provide access to the key programming in-

formation that is open source. The second design goal is to abstract the complexities

of Intel Silicon initialization and expose a limited number of well-defined interfaces. A

fundamental design philosophy is to provide the ubiquitously required silicon initial-

ization code. As such, FSP will often provide only a subset of the products features.

The next generation processors for FSP used to give better performance to the cus-

tomers are Kabylake, Broxton and Apollolake which will release at the end of 2016.

Mainly Kabylake and Apollolake are for PCs and Broxton is for tablet. So, by using

FSP for next generation processors, Intel provides best solution to that customers who

want to use open source bootloaders for particular BIOS.

KEYWORDS: BIOS, Boot loader, FSP, Initialization, Next generation processors
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Chapter 1

Introduction

1.1 Background
Initially, computers had no boot firmware. Instead, the user had to enter a boot program

by hand using switches on the front panel of the computer. This was happen for so long

time but was so tough, error prone, slow and very laborious. At the later stage, when

the change became mandatory, the initial switch positions were encoded as diodes on

cards and were treated as peripheral and all important programs are started to enter into

RAM. For small computers, programs were also not more than 256 words long at that

time peoples started stored in ROM which gave access of boot from very few devices

if you want to access booting from more devices from ROM then you have to change

the ROM. After some time a major change came into process in early 1970 by Gary

Kildall who was owner of digital research. He proposed that boot firmware provides an

abstraction layer between the system hardware and operating system. This layer was to

be used both to boot the system and to provide low level communication with the basic

peripherals. When PCs are came into market developers implemented same concept

called Basic Input Output System [1].

The BIOS consisted of two main pieces mainly Power On Self Test and the run time,

which is worked as an abstraction layer for early PC based operating systems. POST is

activated by the BIOS. It runs series of checks and diagnostics on motherboard. When

BIOS executes, it is checking for registers of CPU, check the unification of the BIOS

with itself, check the different peripheral components, check for main memory and se-

lect devices which are able to booting. Actually BIOS starts its POST when the reset
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is given to CPU. When reset occurs then first memory location which CPU tries to exe-

cute is called as reset vector. During re boot, the CPU saves this code fetch to the BIOS

stored on the system flash memory [1].

Before run time phase one more phase is occuring called Boot phase. The main func-

tionality of the boot phase is to load the boot loader from memory into portion of op-

erating system. It should execute immediately after POST phase but it can execute by

operating system or it can be invoked multiple times in a attempt to find a valid boot me-

dia. When boot phase completes, run time phase will execute. Objective of this phase is

to support these legacy calling interfaces and compatibility with BIOS standards. These

legacy setting are used to set up CPU register state, called BIOS and returned CPU reg-

ister state. After this resume and reboot will occur where it will called by software

request to reboot the machine [1].

The basic goal of the BIOS was to test and initialize the system, to find an input device

which in general we can say keyboard, an output device that would be like monitor and

a boot device, usually called hard disk. After that BIOS start executing boot process

by loading 512 bytes loader from hard drive and give control to it. After that BIOS

played a supporting hardware abstraction role for the devices which it was aware. The

abstraction layer provided by the BIOS were extremely primitive and provided no syn-

chronization. Due to the synchronization problem, the BIOS abstractions were polled

rather than interrupt driven. The abstractions have allowed for implementation of nu-

merous underlying architectures, all of which are compatible with one another [2].

There is another abstraction in firmware provided by the PC BIOS which is called op-

tion ROMs. An option ROM is a BIOS extension that resides on an add-in card. The

option ROM serves the same purpose as device driver in a operating system which al-

low the base software to access peripherals that it does not intrinsically known. Early

many companies producing BIOS noted that BIOS was the only software that actually

ran and required to boot the system. The second point that noted is firmware was the

only piece of software that was absolutely tied to platform [2].

The BIOS discussed here is implemented in two different environment for Intels next

Generation Processors. The two different environments are EDK I and EDK II (also

called as Native). The detail about the EDK I and EDK II will be discussed later.

The implementation with EDK I and EDK II is done with the help of a flag defined
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in the code. Also the driver is implemented in two different modes in which one is

with the complete package of the driver which contains all the source files, header files,

dependency files if any, information files etc.. while the other mode is a binary imple-

mentation of the driver in which the drivers binary file will directly used in the firmware

so no need to build the driver again as it it already a built in driver with the .efi image.

Binary mode will contain only .efi file of the driver and information file for that. This

is also implemented by defining a flag for that [2].

At last, like BIOS has been operating system neutral throughout its life, enabling re-

markable innovation in the operating system community for platform sellers. A plat-

form developed by the same company as the operating system, allowing close, often

seamless, integration between software and firmware [2].

1.2 Motivation
It is always good to do something productive which can be considered as a beneficial

thing in any area for an organization. Here the objective behind the work done in the

thesis is to give more flexibility to the Intel clients by giving choices on boot loaders for

FSP. Whenever user will use that FSP at that time users can use any open source boot

loader to boot the system and Intel will provide only that part for which it is known.

BIOS comes before OS booting so for booting any OS, boot loader is required after

BIOS execution. In regular BIOS, it is not possible to change or add any function-

ality of silicon initialization code because of legal terms. So, to give more access to

customers FSP comes into frame which is a one type of binary which provide key pro-

gramming information of silicon initialization code. It provides chipset and processor

initialization in a format that can be easily incorporated into many existing boot loaders.

So, by using FSP customers can use any open source boot loaders like coreboot, Linux

and Yacto.

Different Intel hardware devices may have different Intel FSP binary instances, so a

platform user needs to choose the right Intel FSP binary release. The FSP binary should

be independent of the platform design but specific to the Intel CPU and chipset com-

plex. We refer to the entities that create the FSP binary as the FSP Producer and the

developer who integrates the FSP into some platform firmware as the FSP Consumer.
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So, the motivation behind this thesis work is to develop FSP such that any limitation of

boot loader from customer side should not be there. From customers side, they should

change any functionality by its own and they should use any open source bootloaders

in upcoming processors like Kabylake and Broxton.

1.3 Problem Statement
In general, BIOS provides all the important information to the platform for initialization

of silicon which is very crucial for initializing any platform. there is some information

which is not directly available but if anyone want to use that it will be available with

legal agreements because of proprietary information. In the case of FSP, it is a binary

distribution code for particular silicon initialization code. FSP provides ready access

of all the key programming information mainly which is not publicly available. The

second point of FSP is just to abstract the all complexities of the initialization of Intel

silicon and will give you a required number of defined interfaces. So the design goal

is to provide necessary required initialization code as FSP provides only some part of

products features.

The limitation of EFI BIOS is that it allows to use particular boot loader for booting the

system and it becomes hard point to follow rules when one has to implement another

features. So FSP contains only silicon initialization code so users can add any other

functionality inside their product without much problem.

Another objective is BIOS contain complete reference code so it requires larger mem-

ory to store when FSP have very small footprint like near about 200 KB. Because of

small footprint its execution time is so fast compared to regular BIOS. Whenever user

want to integrate boot loader with FSP it will integrate very easily and most important

thing is it is supported among all Intel Atom, Core and Xeon processors.

So as per the thesis work, we developed the FSP among all the Intel next generation

processors like Kabylake and Broxton which will be release at the end of 2016. We

fulfilled the clients requirement of FSP for these processors and developed an excellent

and stable FSP.
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1.4 Thesis Organization
The thesis work carried out during the course of time has been presented in total six

chapters as follows:

Chapter 1 Introduction, in this chapter, importance of the thesis and a brief back-

ground about BIOS like how BIOS is working, how it is implementing, its pieces as

POST and run time phases is presented.

The motivation and problem statement of the thesis is also mentioned in this chapter.

Chapter 2 Literature Survey, It describes the basic about Intel platform architec-

ture, basics about BIOS, Different phases of BIOS, Different boot modules, software

architecture overview, UEFI specification, about legacy BIOS and EFI BIOS. It also

gives idea about EDK and EDK II platforms.

Chapter 3 Firmware Support Package, It describes what is FSP, Boot flow of

FSP, Different versions of FSP, Modification in FSP for reference code in every year,

Different firmware volumes of FSP, Basics about different APIs as well as functionality

of that APIs.

Chapter 4 FSP Implementation Strategy, This chapter contain the execution

of FSP in reference code, POST and Phase code implementation, Implementation of

python script for FSP driver separation,How to execute the FSP in platform, FSP 2.0

implementation and the result produced by FSP, How to configure the platform firmware

at the run time and statically, Responsiveness infrastructure of FSP for getting execu-

tion time of all drivers and at the last how to boot the OS for firmware from eMMC.

Chapter 5 Automated BIOS generation using System RDL, This is another project

on which i am working. This chapter contains the overview of the automation of BIOS

generation, Firmware Developement Model of systemRDL, It’s usage model and im-

plementation of the project which can help at every aspect.

Chapter 6 Conclusion and Future Scope, It contains all the conclusions related
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to FSP execution and how important automated BIOS generation from system RDL. In

future scope, there are some thoughts which we discussed with architects can be help

more on FSP to give the flexibility to customers. From advancement side of automation

for BIOS, which can give more flexibility to developers.
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Chapter 2

Literature Survey

2.1 Intel Platform Architecture
Platform encompasses all required ingredients, features, capabilities, initiatives and

technologies. Total four major components of platform are as follows [3]:

1. Hardware:

Processors, chipsets, Communication devices, Memory, Boards, and Systems [3].

2. Software:

Operating systems, Applications, Firmware and Compilers [3].

3. Technologies:

Hyper Threading Technology(HTT), Intel virtualization Technology, Intel Active

Management Technology(AMT) [3].

4. Standard and Initiatives:

Wi-Fi, WiMAX, The Wireless Verification Program [3].

Intel platform architecture is complex with lots of components on it. Every component

must work as designed and there shouldnt́ be any conflicts between the devices on it.

Now a days it is come up with single chip solution which means CPU and PCH are

in single die. Intel platform architecture is shown in Fig. 2.1. From Fig. 2.1, it is

very clear there are many components connected with platform. Mainly at higher level

there are two divisions called Northbridge and Southbridge. These two components

are connected by a bus which is known as DMI. It is mostly Intel link for this bridge
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connection on motherboard. By using this DMI bus north bridge and south bridge will

communicate with each other [4].

Northbridge is usually a one type of hub which is used to control the high end devices

like memory controller. Because of this high performance demand, north bridge is di-

rectly connected to CPU. Here shown in figure all the high end devices like graphics bus

and memory bus are connected to Northbridge. High speed graphics bus and memory

bus are connected by PCI Express bus with north bridge. PCI Express bus is one type

of serial bus which has very high performance in terms of data transfer. In earlier Intel

platform architecture, it was used PCI bus which was parallel bus so its data rate was

so low which was not suit for Northbridge thats why PCI is replaced by PCI Express

which gives very high speed because of point to point technology [4].

Fig. 2.1: Intel Platform Architecture [4]

Bridge which is connected by DMI with Northbridge is called Southbridge. South-

bridge implements the slower performance speed compared to Northbridge because

unlike Northbridge it is not directly connected to CPU. In Intel platform it is also called

as I/O controller hub. It handles all of the computers I/O functions such as USB, audio,

serial, the system BIOS, Interrupt controller, and the IDE channels. As shown in Fig.

2.1, all the pots like serial port, parallel port, keyboard, Mouse, etc. all ports are con-
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nected with south bridge. There are PCI slots also available with Southbridge which

can be used to connect more devices.

Now a days in modern platform architecture, Intel did a major change like instead of

Southbridge, they put PCH block which is directly connected with CPU in a single die.

PCH was found to overcome the bottleneck between processor and motherboard. As

speed of processor is increasing, the data transfer rate between the CPU and mother-

board would achieve full bandwidth. So by PCH it overcome because it took most of

the task of the Southbridge and few roles of north bridge too by front side bus that have

not been incorporated into the CPU package [4].

2.2 Platform Software Architecture
The definition of firmware on PC is instructions (with data) that are consumed by non-

IA execution engines associated with a non-CPU hardware device. There are three main

categories of firmware as follows [4]:

• Fixed embedded firmware: contained in ROM and hidden from platform view

• Upgradeable embedded firmware: contained in built-in non-volatile memory with

default image (code/data); upgradable during life cycle

• Externally stored firmware: storage of the code/data is outside of the device pack-

age that executes the firmware. The external storage is likely in non-volatile

memory form. Patches for embedded firmware falls into this category

No action is required on platform SW to support fixed embedded firmware. Examples

of embedded firmware components are [4]:

• CPU microcode, uncore firmware

• ME ROM code

Upgradeable embedded firmware is presumed to be functional at platform build time.

Discrete graphics card firmware is in this category. Upgrade tool is expected to be avail-

able for at least one of the users SW environment. There is no known ingredient with
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firmware in this category [4].

Firmware code or data is contain by physical repository of firmware device. A physical

firmware device may be divided into smaller pieces to form a multiple logical firmware

device. This logical firmware device is called firmware volume. Each volume is ar-

ranged into a bunch of files. As we know the file unit is the basic unit of storage for

firmware space. Many formats of files have quite different and discrete parts within it.

These parts are called file sections, otherwise just sections for short. All the sections

begin with one type of header that declares the type as well as the length of that section.

The headers for this section must be 4 bytes aligned within the parent files image [4].

Mainly there are large number of sections, they fall into the main two big categories as

follows [4]:

• Encapsulation sections

• Leaf sections

First section is encapsulation section which is essentially container that hold other sec-

tions. The sections which contained inside an encapsulation section is called as child

sections. Leaf section directly contain data and mainly do not contain other sections

unlike encapsulation sections [4].

2.3 BIOS Overview
BIOS is the first code run by a PC when powered on. It acts as a layer between OS

and Hardware. BIOS initialize the various platform components like CPU initializa-

tion, core initialization, memory and chipset initialization etc. The BIOS must do its

job before your computer can load its operating system and applications. The basic

input/output system (BIOS), also known as the System BIOS or ROM BIOS, is a de

facto standard defining a firmware interface.

The BIOS software is built into the PC, and is the first code run by a PC when powered

on like boot firmware. The primary function of the BIOS is to set up the hardware and

load and start a boot loader. When the PC starts up, the first job for the BIOS is to ini-

tialize and identify system devices such as the video display card, keyboard and mouse,

hard disk drive, optical disc drive and other hardware [4].
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The BIOS then locates software held on a peripheral device (designated as a boot de-

vice), such as a hard disk or a CD/DVD, and loads and executes that software, giving it

control of the PC. This process is known as booting, or booting up, which is short for

bootstrapping [4].

BIOS software is stored on a non-volatile ROM chip built into the system on the moth-

erboard. The BIOS software is specifically designed to work with the particular type

of system in question, including having knowledge of the workings of various devices

that make up the complementary chipset of the system. In modern computer systems,

the BIOS chip’s contents can be rewritten, allowing BIOS software to be upgraded.

BIOS features are as follows [4]:

• It acts as a layer between OS and Hardware

• It gets your computer up and running

• Initializes the hardware like Microprocessor, memory, chipset, devices, peripher-

als etc

BIOS is communicating with platform and operating system when it is doing its task

and after finishing its task it will work as supporting code as shown in Fig. 2.2 as fol-

lows [4]:

Fig. 2.2: High Level Diagram of BIOS Space [4]
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From Fig. 2.2, it is clear that BIOS is medium to communicate between operating

system and platform hardware. BIOS is the only software in the platform that knows all

the details of the motherboard. POST is the responsible for testing system which will

use OS loader to load operating system whereas ACPI and SMBIOS tables are useful

for power management and to control it. Runtime services are services which generates

interrupt for particular service to OS then OS give return back notification by executing

that services.

Basically BIOS will provide services like:

• It gives all the power related management functionality through ACPI

• It loads and take care of control over to the OS boot loader

• It give a set of standardized regularities for the OS to use

• It fetch the motherboard and silicon environment from the OS

• It build the system to work an OS

• It give runtime services to the OS e.g. disk and video

The Advanced Configuration and Power Interface (ACPI) is one kind of a specification

which was prepared to structured most of the industry related interfaces which gives ro-

bust operating system (OS)-directed motherboard configuration as well as management

related to the power of both devices as well as entire systems. This is the heart for an

Operating System-directed configuration and Power Management (OSPM).

Power-On Self-Test (POST) routines run very quickly after power is giving to system,

by nearly all electronic devices. It includes regularities to set an primary value for in-

ternal as well as output signals and to execute all internal tests, as found by the device

manufacturer. These initial conditions are also referred to as the devices state.

2.4 Legacy and EFI BIOS
Currently, Industry has migrated from Legacy BIOS to a standard and modular EFI

BIOS. EFI BIOS offers new improved features and flexibility for code developers. The

difference between Legacy BIOS and EFI BIOS is shown in Table 2.1.
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Legacy BIOS UEFI BIOS
This is traditional BIOS New architecture based on EFI spec
Written in assembly code, initially designed
for IBM PC-AT

C based, initially designed for itanium server
systems

Interface is per-BIOS spaghetti code, not
modular

Well defined module environment and inter-
face based on EFI specification

Lives within the first 1MB of system mem-
ory

Can live anywhere in the 4GB system mem-
ory space

Uses 16bit memory access. Requires hacks
to access above 1MB memory

Allow direct access of all memory via(32 bit
and 64 bit) pointers

Supports 3rd party modules in the form of 16
bit option ROMs

Supports 3rd party 32/64 bit drivers

Examples: AMI core 8, Phoenix legacy
BIOS

Examples: Aptio (AMI), H20 (Insyde),
Tiano (Intel)

Table 2.1: Legacy BIOS and EFI BIOS [4]

Legacy BIOS is able to run different operating system, like MS-DOS, equally well

on computers other than IBM. Additionally Legacy BIOS has defined OS independent

interface for hardware that enables interrupts to communicate with video, disk and key-

board devices along with BIOS ROM loader and bootstrap loader. Now a days legacy

BIOS is not used that much then also its two functions called system configuration and

setup are using now.

UEFI was created to change the Legacy BIOS to streamline the process of booting,

and it behave as the interface between operating system of computer and its platform

firmware. It not only changes the most functions of BIOS, but also offers a rich exten-

sible pre-OS environment which will give advanced boot and runtime services [4].

Fig. 2.3: UEFI Interface between BIOS and OS Loader [4]

UEFI to BIOS accomplishes the same basic task as it is act as common interface

between system firmware and operating system. It has same size and performance mea-

14



sures as it has boot faster in less flash environment. It should be operating system

neutral like it should work in variety of system including Linux and windows. Major

change in between this access method of ACPI and SMBIOS are different[7].

BIOS code whatever we are using today enable for legacy BIOS as well as EFI BIOS

by means of a module called CSM. Some OS not support the EFI BIO, so for that CSM

module is used to run necessary BIOS code. When this mode is ON, system will boot

for legacy BIOS and if this mode is OFF, system will boot to native EFI BIOS [4].

The CSM module is used to translates all the data generated under the EFI environment

into the data or information required by the legacy environment as well as it will makes

the legacy BIOS services available such that it will booting to the operating system and

for use in runtime [4].

2.5 UEFI Specifications
Unified Extensible Firmware Interface (UEFI) is grounded in Intel initial Extensible

Firmware Interface(EFI) specification, which defines a software interface between an

operating system and platform firmware. The UEFI architecture allows users to execute

applications on a command line interface. It has intrinsic networking capabilities and is

designed to work with multi processors systems.

The interface inside the UEFI is in the form of data tables which contains platform-

related all information, after that boot as well as runtime service calls which are avail-

able to the OS loader and to the OS. By all this, it provides a complete environment for

booting an OS. This specification is designed only as a pure specification for interface.

As we know, the specification defines the all the set of interfaces as well as structures

of that platform firmware must implement. Similarly, another way specification defines

all the set of interfaces as well as structures that the OS may use in booting. The inter-

face of UEFI and compatibility of UEFI specification is shown in Fig. 2.4 as follows [4]:
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Fig. 2.4: UEFI Interface [4]

The intent of the specification is to define a way for the OS and platform firmware

to communicate only information necessary to support the OS boot process. This is ac-

complished through a formal and complete abstract specification of the software visible

interface presented to the OS by the platform and firmware. Furthermore, an abstract

specification opens a route to replace legacy devices and firmware code over time. New

device types and associated code can provide equivalent functionality through the same

defined abstract interface, again without impact on the OS boot support code [4].

The specification is applicable to a full range of hardware platforms from mobile sys-

tems to servers. The specification provides a core set of services along with a selection

of protocol interfaces. The selection of protocol interfaces can evolve over time to be

optimized for various platform market segments. At the same time, the specification

allows maximum extensibility and customization abilities for OEMs to allow differen-

tiation. In this, the purpose of UEFI is to define an evolutionary path from the traditional

PC-AT-style boot world into a legacy-API free environment [4].

2.6 UEFI BIOS Boot Phases
When platform initialization occurs, at that time BIOS will pass through different four

phases called Security, Pre EFI initialization, Driver execution environment and Boot

device select. BIOS starts execution once power will be on. After that it execute the
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phases step by step for initialization and during BDS phase, it gives the control to OS

after that by using boot loader OS takes care the system and BIOS work as supporting

code. As shown the flowchart in Fig. 2.5 [4].

Fig. 2.5: Phases of BIOS Execution [4]

EFI BIOS is a modular code and it boots in a manner such that each phase will

execute correctly. EFI Boot process is dived into four main phases which are:

• Security Phase

• PEI Phase

• DXE Phase

• BDS Phase as shown in Table 2.2.

SEC PEI DXE BDS
Provides processor boot
strap vector

Initializes processor Initializes processor,
cache, chipset and
SMM

Run down list of
selected devices.

Initializes temporary
RAM using CPU cache

Detect corrupted flash
and recover if corrupted

Execute PCI enumer-
ation and initializes
video, keyboard, mouse
and USB legacy

Load boot image
into memory

Provides optional secu-
rity features

Find and initializes
RAM

Initializes drivers and
create table interfaces

Jump to boot im-
age and try for
next image

Table 2.2: EFI Boot Phases and Services [4]
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1. SEC Phase:

The Security phase or we can say SEC phase is the first phase in the PI Archi-

tectue and is used for the following:

• It handles all platform related restart events

• It creates a memory store for temporary base

• It serves as the root of trust in the system

• It passes information related to handoff to the PEI Core

This phase contains the first code executed after power-on or reset. Not only

have peripherals not been initialized, but memory may not be available. The SEC

phase is not particularly suitable for software-based performance measurement.

For most platforms, SECs total elapsed time can be determined by measuring

from the beginning of time to the start of PEI. This is the mechanism used by EDK

II. Apart from the minimum required architecturally information about handoff,

this phase can also pass optional information to the next phase called PEI Core,

such as the SEC Platform will give Information PPI or may be information about

the health status of the processor [4].

2. PEI Phase:

The above phase called the PEI phase of the PI Architecture is invoked quite early

in the phase of boot flow. Specifically, after some initial processing in the Security

(SEC) phase, any restarting event will called by the PEI phase. The PEI phase

will operate with the platform in a nascent state at the starting phase, leveraging

only on processor resources, like the cache of processor as a call stack, to release

Pre-EFI Initialization Modules (PEIMs). These PEIMs are responsible for the

following [4]:

• Initializing most of original memory complement

• Describing the memory stack data in Hand-Off Blocks (HOBs)

• Describing the location of volume for firmware in HOBs

• Giving control into the next phase called Driver Execution Environment

(DXE) phase
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Ideally, this phase is intended to be the smallest amount of code chunk to achieve

the ends listed above. As such, any other reliable algorithms as well as processing

should be deferred to the DXE phase of execution. This phase actually consists of

two sub-phases: Prememory and Postmemory. PreMem is the state before main

memory is available for use and PostMem refers to the state after main memory

is usable [4].

After SEC phase transitions to PEI phase, the firmware is in the PreMem state. At

this point, some temporary memory is usually available. On some IA platforms

the temporary memory is actually a portion of the processors cache that has been

placed in a special mode. While operating in this special mode a number of

restrictions exist:

• Temporary memory may only be used for data storage, not instruction exe-

cution

• The size of temporary memory is usually small

• Temporary memory will not survive enabling of caching

• Initialized external or static variables cannot be used since they will reside

within the read-only firmware device, not temporary memory. Global con-

stants can be used, but they must be declared as CONST and treated as

read-only

The PEI phase flow is shown in Fig. 2.6.
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Fig. 2.6: PEI Phase Flow [4]

As shown in Fig. 2.6, it is high level flow of PEI execution in which when power

on will happen SEC phase will occur and execute from memory map. During this

phase T-RAM should also initialize. After that SEC invokes the PEI initialization

which will call different PEI services. In next phase core dispatcher comes which

finds firmware volume to execute PEIM which execute PPIs. After all PEIM exe-

cution system memory will initialize and at last final PEIM executes called DXE

IPL which will do transaction into DXE phase. Table 2.3 is PEI service table as

follows [4]:

Services Functions
PPI InstallPpi() LocatePpi() NotifyPpi() ReInstallPpi()
Boot Mode GetBootMode() SetBootMode()
HOB GetHobList() CreateHob()
Flash Volume FfsFindNextFile()
PEI Memory InstallPeiMemory() AllocatePool()
Status Code PeiReportStatusCode()
Reset PeiResetSystem

Table 2.3: PEI Services and its Functions [4]

As soon as memory has been initialized and is ready for use, these HOBs, and

other PEI data stored in temporary memory, are copied into main memory and the

PEI phase continues on in the PostMem state. Due to memory restrictions during
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the PreMem state, some differences exist between performance measurements

made during PEI and measurements made later.

This phase is used for crisis recovery as well as resuming from the S3 sleep state.

For the crisis recovery, this phase should be there reside in some small, fault-

avoidance block of the firmware store. Because of that, it is imperative to keep the

footprint of the PEI phase as small as possible. Apart from that, for a successful

resume for S3, the resume speed is of utmost importance, so the code path which

will be through the firmware should be minimized. Above two boot flows also

speak to the need to keep the processing as well as code paths in the PEI phase

to a minimum. The implementation of this phase will be more dependent on the

architecture of the processor than any other phase. In particular, behind this idea,

the more resources the processor provides at its initial or nearby initial state, the

richer the interface between the PEI Foundation and PEIMs [4].

3. DXE Phase:

This phase also called as Driver Execution Environment is where most of the sys-

tem will perform initialization. Pre-EFI Initialization which is the phase comes

before DXE, is used for initializing main memory in the platform so that the this

phase can be loaded and can be executed. The control of the system at the end of

the PEI phase is passed to the this phase through a list of data structures created

based on position-independent called Hand-Off Blocks (HOBs). By using DXE

phase the amount of complexity become decrease and enable to write a code in

more modular fashion. Lets see how PEI to DXE transition will happen by Fig.

2.7 [4].
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Fig. 2.7: PEI to DXE Foundation [4]

When PEI initialize it calls to DXE IPL which store the HOBs. After DXE IPL

complete its initialization, it call to DXE foundation which calls firmware vol-

umes to extract the DXE drivers. HOBs are the only blocks which pass from PEI

to DXE phase. DXE foundation populate the architecture protocols. Architecture

protocols are the only DXE drivers that can access the hardware directly. It means

whichever DXE drivers want to communicate with hardware has to go through

the architecture protocols.

There is particular DXE phase flow is also there in order to execute the particular

services of DXE phase as shown in Fig. 2.8. In this DXE phase overview, DXE

foundation will initialize the DXE services, once this services initializes foun-

dation begins to dispatch the DXE drivers. DXE dispatcher looks for firmware

volume which will find a priori file. A priori file contain DXE drivers which have

peak of image. DXE drivers should execute in exact order what they mentioned

because each DXE driver is loaded into system memory specified by DXE dis-

patcher. Once dispatcher complete a priori file the it will look for more firmware

volumes until all DXE drivers will execute. Once all the drivers are execute then

DXE dispatcher will look for a priori file and check wheather any driver still need

time to execute otherwise it will leave the DXE phase and will give the control to

next phase [4].
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Fig. 2.8: DXE Phase Flow [4]

4. BDS Phase:

During Driver Execution Environment, the Boot Manager executes the DXE drivers

by using DXE Dispatcher only after all the DXE drivers whose dependencies have

been satisfied. After this process, control is given to the BDS phase of execution.

The BDS phase is used for implementing the boot policy of platform. This boot

policy gives flexibility which allows system vendors to optimize the user experi-

ence during BDS phase of execution. The Boot Manager will also support boot-

ing from a short-form device path which will starts with the first node and being

a firmware volume device path.

The boot manager should must use the GUID in the volume of firmware device

node to match it to a firmware volume inside the system. The GUID in the vol-

ume of firmware device path is compared with the firmware volume name GUID.

If both match is made, then the volume for firmware device path can be appended

to the device path of the matching volume for firmware and normal boot behavior

can now be used. The BDS phase is implemented as part of the BDS Architec-

tural Protocol.

The Driver Execution Environment Foundation gives control to this phases Archi-

tectural Protocol after all of the Driver Execution Environment drivers who have

dependencies satisfied as well as loaded and executed by the DXE Dispatcher.
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The BDS phase is responsible for the following [4]:

• It will initialize the console devices

• It will load the device drivers

• It will trying to attempt load and execute boot selections

If the BDS phase will not be able make progress, it goes for executing the DXE

Dispatcher to see if the dependencies of any additional DXE drivers have been

satisfied or not since the last time the DXE Dispatcher was invoked.

DXE dispatcher calls last DXE driver called BDS driver. In general DXE core

call DXE dispatcher which first complete all the DXE and UEFI drivers and then

it completes BDS entry which is implemented as driver. BDS entry could require

other driver to dispatch so that BDS might recall DXE dispatcher. This scenario

is shown in Fig. 2.9 [4].

Fig. 2.9: BDS Phase Flow [4]

2.7 EDK and EDK II Platform
EDK (Extensible Firmware Interface Developer Kit) was the first generation of the

open source EFI development kit. EDK was a development environment designed with

a functional arrangement of the components to support windows development. EDK

provides access to the outside of Intel who did not have a direct license agreement with
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Intel with more robust development environment. EDK was directed at companies who

develop both the firmware and the drivers. EDK was eventually upgraded to EDK II

which expands operating system support.

EDK II is the second generation development environment. It has two main objectives

which were lacking in the first generation EDK as follows [4]:

• EDK II organizes the content in whole chunk which are added and removed as a

whole

• EDK II allows compiling under multiple operating systems, including windows,

Linux, Apple OS
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Chapter 3

Firmware Support Package

3.1 Overview
Intel Firmware Support Package (FSP) provides key programming information for ini-

tializing Intel silicon including the processor, memory controller, chipset and certain

bus interface as needed. It can be easily integrated into a firmware boot environment of

the developers choice such as core boot, Wind River Vxworks, RTOS, Linux and open

source firmware.

Intel found that it keeps the necessary information of programming which is crucial

for silicon initialization. Some important information of programming is treated as se-

cret information and if anyone wants then only be accessible with legal agreements.

The first point for design of FSP is to provide easy access to the important informa-

tion of programming that is not available everywhere. The second point of FSP is just

to abstract the all complexities of the initialization of Intel silicon and will give you

a required number of defined interfaces. So main design goal is to provide necessary

required initialization code as FSP will provide us only some part of products features

[5].

FSP is easy to adopt, economical to build and scalable to design thereby reducing time

to market. As it is not a standalone boot loader, it must be integrated with host boot

loader infrastructure to carry out other functions such as [5]:

• Initializing non Intel components

• Conducting bus enumeration and discovering devices in the system
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• Industry Standards

When FSP will create it gives package in which it contains following:

• FSP binary

• Guide for Integration

• Updatable Product Data (UPD) or Vital Product Data (VPD) structure definitions

• File for Boot Settings (BSF)

The utility required for FSP configuration called Binary Configuration Tool (BCT) is

available as a different package. By using this tool FSP configuration data can be easily

changed which is there in UPD and we can change that data run time. So, by using this

tool FSP can modify the setting at the run time [5].

3.2 FSP Usage Model
FSP is basically creating from complete reference BIOS only which is shown in Fig.

3.1 as follows:

Fig. 3.1: FSP Usage Model [5]

As per Fig. 3.1, it is clear that first only silicon initialization code is require from

complete reference BIOS by extracting from Intel boot loader development kit. This
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Silicon initialization code is combined with FSP glue logic which contain different ar-

chitecture protocols which makes wrapper API. After that we have to put that wrapper

into custom system boot loader to load that FSP in the system. Basically FSP is incor-

porated into many existing boot loader frameworks without exposing the Intellectual

Property (IP) of Intel. FSP is distributed as single binary package to the customer. In

FSP, all the silicon initialization PEIMs are packaged into one single package and make

one separate package which will work as FSP. After making as single package it can

plugs into existing firmware frameworks which is suit for all platform because of no

need of any modification required to support the FSP. Main objective of FSP is to do a

binary customization of regular silicon initialization code so that anyone can use very

freely without much modification with whatever existing boot loader which gives more

freedom to customers [5].

3.3 FSP Code Delivery Model
At every year Intel modified its FSP code delivery model by giving change in code

structure of complete reference BIOS in silicon initialization as shown in Fig. 3.2 [5].

Fig. 3.2: Code Delivery Model for FSP A) 2012 B) 2013 C) 2014 D) 2015 [5]
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In 2012, Intel started to implement FSP from reference code of silicon initialization.

From Ivybridge platform FSP is started to execute. In this time Intel was providing total

12 different reference code packages for binary enabling strategy as well as at that time

all reference code packages were individual. In the 2013, when Haswell platform came

at that time Intel gave a FSP implementation as a 6 reference code packages as all are

separate only. In the 2014, Intel did major changed in a FSP code format at the time of

Broadwell where they made a single RC package which single RC package is of binary

package but the number of reference code packages are same as of 2013. In Braswell

at 2014 and Skylake at 2015, Intel gave more reduction in reference code packages as

they gave only for silicon package namely South Agent, PCH, ME and CPU as a single

RC package and gave platform package as sample code [5].

3.4 FSP Integration
The FSP binary can be integrated into many different boot loaders and embedded OS.

Below are some required steps for the integration [5].

1. Customizing:

The FSP has some sets of configuration parameters that are part of the FSP binary

and can be customized by external tools provided by Intel [5].

2. Rebasing:

The FSP is not Position Independent Code (PIC) and the whole FSP has to be

rebased if it is placed at a location which is different from the preferred base

address specified during the FSP build [5].

3. Placing: Once the FSP binary is ready for integration, the bootloader needs to be

modified to place this FSP binary at the specific base address identified above [5].

4. Interfacing: The bootloader needs to add code to setup the operating environ-

ment for the FSP, call the FSP with the correct parameters and parse the FSP

output to retrieve the necessary information returned by the FSP [5].
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3.5 FSP Boot Flow
When binary enabling strategy completed then the next step will be the flow of booting

for FSP. During FSP, we have to decide which API will come at which position and

based on that have to decide design flow. There are different APIs for memory, silicon

and temporary memory to execute that we should have to follow for particular execution

of FSP. In boot flow every step of API is very important to execute correctly because

every API is dependent on next API to work for so when previous API will execute at

that time next API will start to initialize. FSP boot flow is shown in Fig. 3.3 as follows

[5]:

Fig. 3.3: FSP Boot Flow [5]

From Fig. 3.3, which is flow of FSP, with the FSP binary from the FSP Producer in

blue and the platform code that integrates the binary, or the FSP Consumer, in purple.

The FSP EAS describes both the API interface to the FSP binary that the consumer code

invokes, but it also describes the hand off state from the execution of the FSP binary.

The latter information is conveyed in Hand-Off Blocks. When FSP started executing it

find for entry point from where it can start. After that it will initialize cache as RAM.

At the next phase it initializes memory and remove temporary memory as well. After

memory portion it comes to chipset initialization and initialize platform and gives con-
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trol to OS after ready to boot event.

3.6 FSP Versions
Day by day when FSP becomes more popular then changes in boot flow was also re-

quired. According to demand of board or customer boot flow should be like more

appropriate for customers which should give good performance. So, initially FSP had

version 1.0 at the time of FSP started. After that Intel started to work on FSP 1.1 which

was giving more control and flexibility to the boot loader which ultimately was good

for customers. At later stage now Intel invent FSP 2.0 which have many changes over

FSP 1.1 which is implemented in latest platforms and giving good performance over

other versions [5].

a) FSP 1.0 and 1.1:

Fig. 3.4: FSP Boot flow Versions (a) 1.0 (b) 1.1[5]

From Fig. 3.4, one can see FSP 1.0 and 1.1 boot flow. As simple way its look

like a same flow but changed many things. From the figure it is clear that at the Tem-

pRamInit API both are same but when we see at the next step which is MemoryInit API
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at that point both version are changed. In FSP 1.0 when control comes at FSPInit API

then it will go to FSP package and execute all three API called FspMemoryInit, Tem-

pRamInit and FspSiliconInit. After executing this all only control come back to boot

loader. Whereas we can see that in FSP 1.1 after every API execution control come

back to boot loader means after FspMemoryInit, TempRamInit and FspSiliconInit API

control come back and search for boot loader and after that it will execute other phases.

So by this method FSP upgraded from 1.0 to 1.1. By doing this change in FSP 1.1, Intel

gave more access to boot loader over FSP so that if any change wants to do then can do

it easily and give it to FSP.

In the FSP boot flow all the APIs are playing very important role during execution. Ev-

ery API should call in order to execute FSP correctly by method. So now we can see

one by one every API as follows [5]:

1) TempRamInit API:

The above API which is TempRamInit is called immediately after coming out of reset as

well as before the memory and cache are available. This API also loads the microcode

updation, enables code cache for a region which is specified by the boot loader and

it sets up a temporary memory stack to be used prior to main memory stack being

initialized. To execute this API, a hardcoded stack memory must be set up with the

following values [5]:

• The return address of this API where the TempRamInit returns control

• A pointer for the input parameter for this API

A prototype of this API is define as shown in Fig. 3.5.
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Fig. 3.5: TempRamInit API prototype [5]

2) FspInit API:

The above API is called after TempRamInit. This API mainly initializes the memory

stack, the processors and the chipset to which is required to enable normal operation of

these devices. This API accepts a pointer from the data structure that will be dependent

on a platform and defined for each FSP binary. The boot loader mainly provides a con-

tinuation function as a input parameter when calling this API. After this API completes

its execution, it will not return to the boot loader from where it was called but rather it

will returns control to the boot loader by calling the same function which is passed to

this API as an argument.

A prototype of this API is shown in Fig. 3.6 [5].

Fig. 3.6: FspInit API Prototype [5]

3) NotifyPhase API:

The above API is used to notify the FSP about the all phases in the boot phases. This

allows the FSP to take necessary actions as needed whenever different initialization
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phases will execute. The phases will be dependent on platform and will be documented

with the release of FSP. Recently FSP supports mainly two notify phases [5]:

• Post PCI enumeration

• Ready To Boot

A prototype of NotifyPhase API is as shown in Fig. 3.7 [5].

Fig. 3.7: NotifyPhase API Prototype [5]

4) FspMemoryInit API:

The above API is called after TempRamInit and initializes mainly the memory stack.

This API accepts a pointer to a structure of data which will dependent on platform and

defined for each and every FSP binary. This API initializes the memory subsystem por-

tion, initializes the pointer to the HobListPtr, and returns from other to the boot loader

from where it was called. Still the memory of system has been initialized in this API,

the boot loader should be migrate its stack memory and data from memory to memory

of system after this API.

A prototype of this API is shown in Fig. 3.8 [5].
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Fig. 3.8: FspMemoryInit API Prototype [5]

5) TempRamExit API:

The above API is called after FspMemoryInit. This API will release the temporary

memory arranged by TempRamInit. This API accepts a pointer to a structure of data

that dependent on platform and defined for each and every FSP binary. FspMemoryInit,

TempRamExit as well as FspSiliconInit API provide an alternate method to finish the

silicon initialization and provides boot loader an opportunity to get control whenever

system memory is available and before the temporary memory is release.

A prototype of this API is shown in Fig. 3.9 [5].

Fig. 3.9: TempRamExit API Prototype [5]

6) FspSiliconInit API:

The above API is called after TempRamExit. FspMemoryInit, TempRamExit as well

as FspSiliconInit API provide an different method to complete the silicon initialization.

This API initializes the processor and the chipset which including the IO controllers in

the chipset required to enable normal operation of such a devices. This API accepts
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a pointer to a structure of data that dependent on platform and defined for each FSP

binary.

A prototype of this API is shown in Fig. 3.10 [5].

Fig. 3.10: FspSiliconInit API Prototype [5]

b) FSP 2.0:
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Fig. 3.11: FSP Boot Flow Version 2.0 [6]

From Fig. 3.11, It is the proposed boot flow of FSP 2.0. Here we can see that ma-

jor change compared to FSP 1.0 and FSP 1.1 is it divided into main three parts called

FSP-T, FSP-M and FSP-S. FSP-T contain API related to temporary memory initializa-

tion like TempRamInit API. FSP-M contain API related to main memory initialization

and to come out from temporary memory like MemoryInit API and TempRamExit API.

FSP- S contains information related to silicon initialization and to notify OS phase as

SiliconInit API and NotifyPhase API. Forth portion is like optional which mainly used

for backware compatibility with FSP 1.0 and FSP 1.1 specifications. If this component

will present it comes first as first component in FSP binary. This component have an

FSP INFO HEADER with header revision 1 or 2 and may provide the interfaces re-

quired for backward compatibility with previous FSP specifications.

Now from boot flow, when powered on first control find for TempRamInit from FSP-T

and it will look for FSP INFO HEADER. After completion of this API control back

to find FspMemoryInit API from FSP-M and control goes to this APIs header. During

this phase, it checks for reset, if it required then it will come again in the same API

otherwise it migrates to next API. Next to FspMemoryInit comes FspTempRamExit
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API which comes in FSP-M which is used to remove temporary memory. After that

FSP-S will come which have FspSiliconInit API which will initialize the silicon. After

that raise a request for reset, if yes then control goes back to FspSiliconInit otherwise

control goes to next phase called FspNotifyPhase API. In this API, FSP gives control

to OS and check for two event called PCI enumeration and Ready to boot. Next to that

payload will come and OS will boot by using boot loader [6].
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Chapter 4

FSP Implementation Strategy

4.1 POST and Phase Code
The Power On Self Test is activated by the BIOS. It runs a series of checks and diag-

nostics on your motherboard. The objectives of the BIOS during POST are as follows

[6]:

• It check for registers of CPU

• Check the unification of the BIOS with itself

• Check the different peripheral components

• Check the main memory of system

• Check and execute BIOS

• Identify, organize, and select which devices are available for booting

Actually BIOS start its POST when the reset is given to CPU. When reset will occur

then first memory location which CPU tries to execute is called as reset vector. During

reboot, the CPU will save this code fetch to the BIOS stored on the system flash mem-

ory. For Warm boot BIOS will come from stored location called RAM [6].

4.1.1 Why POST Code Required

The POST runs very quickly, it hardly takes 2-3 mins to boot to OS and user will nor-

mally not even noticed that its happening unless it stops in between because presence
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of some faulty or some hardware is missing, When turned on the PC, it may happen

system starts beeping sounds and then stopped without booting up. That is the POST

telling something is wrong with the machine. Here the speaker is used because this test

happens so early on, that the video is not even activated yet! Its hard to finds out where

actually execution is stopped in which phase or which hardware is faulty or missing in

the system.

If execution is stops in between. Some debug boards also doesnt contain serial interface

which is used to take serial dumb of POST, In this situation also its really hard to find

out where the execution is if its hangs in between, with help of last executed POST code

its easy to debug execution is in which phase. So, by this code one can easily determine

the problem by using board and we not have to give much effort for finding any error

during booting process. POST code itself will tell the error for code [6].

4.1.2 How POST Status Code Works

POST look out the information present by displaying a number to the port 80 (a screen

display was not possible with some failure modes). Both the number mainly one is

progress indication and second is error codes were generated. If suppose failure is oc-

curred then it will not generate a code, at that time code which was available on last

POST will come to aid in diagnosing the problem. There are add-on cards also avail-

able that can be placed in to PCI slot and on which post codes can be seen else now a

days with this comes inbuilt with debug board. BIOS POST code is shown in Fig. 4.1

[6].
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Fig. 4.1: BIOS POST Code in Board [6]

4.1.3 Types of POST Code

POST status codes are mainly divided in to following categories:

• Debug codes

• Error codes

• Progress codes

Firstly for debug codes required for operations related to the basic nature of the in-

formation about debug. Second one is error codes which is required for operations

related to exception conditions. Next one comes Progress codes which is for oper-

ations related to activities of the component classification. The values 0x000x0FFF

are in general operations that are common by all subclasses in a class. After class,

there are also subclass-specific operations. Out of the all subclass-specific operations,

the values 0x10000x7FFF are occupied by this specification. The remaining values

(0x80000xFFFF) are not defined by any of this specification and this value can assign

for that range by OEMs. The merging of class and subclass operations provides the full

set of operations that is given by an entity.

Table 4.1 gives the class for POST code as follows:
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1)Hardware 1)Computing Unit 1)EFI COMPUTING UNIT
2)User accessible peripheral 2)EFI PERIPHERAL
3)I/O bus 3)EFI IO BUS

2)Software 1)Host Software 1)EFI SOFTWARE

Table 4.1: POST Code Classes [6]

4.1.4 Implementation

Each postcode is falls into specific subclass and class, each class has its unique value

which is predefined. There are four main classes as follows:

• Software Host Software

• I/O Bus

• User-Accessible Peripherals

• Computing Unit

For Progress code,

Progress code for execution reached to DXE phase.

PEI CPU AP INIT, 0x35 ,

This status falls into computing unit class and host processor subclass.

#define PEI CPU AP INIT

(EFI COMPUTING UNIT HOST PROCESSOR EFI CU HP PC AP INIT)

For this status code function call is:

REPORT STATUS CODE

( EFI PROGRESS CODE,

EFI COMPUTING UNIT HOST PROCESSOR EFI CU HP PC AP INIT )

Which will show value 35 on the status codes display.

For error code,

Error code for memory is installed or not:

PEI MEMORY NOT INSTALLED, 0x55 ,

This status code is falls into software class and PEI foundation subclass.

#define PEI MEMORY NOT INSTALLED

(EFI SOFTWARE PEI SERVICE EFI SW PEI CORE EC MEMORY NOT INSTALLED)

For this status code function call is:
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REPORT STATUS CODE

( EFI ERROR CODE,

EFI SOFTWARE PEI SERVICE EFI SW PEI CORE EC MEMORY NOT INSTALLED

)

4.1.5 Phase Code

As we show that POST code is required for BIOS, when BIOS gives some error during

booting at the same method in FSP when particular code will give error or when FSP

will hang at that time it is quite difficult to find where system stucked because there are

many API and its phases where system may hang and it will not boot. So, Phase code

is such a utility by which we can find very easily that at which point system hang.

When Phase code started applying at that time we found that higher nibble is free dur-

ing BIOS POST code except Memory Reference Code which will take complete 16 bit

as DD00 to DD7F. So, we planned to put this into higher nibble API wise so that it will

combine for both POST code and Phase code.

4.1.6 Implementation

When Phase code started to implement at that time first of all they give one proposal

which is used to set phase code along with the POST code as shown in Fig. 4.2.

Fig. 4.2: Proposed Method for Phase Code
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As Shown in Fig. 4.2, ZZ is lower two nibbles whereas X is higher nibble. For

FSP, higher nibble is used for phase code and other bits are kept as it is for POST code.

Mainly last two nibbles are used for API entry and exit to get the idea about which API

is running. The best point about this proposal was all APIs are sequential so that POST

code will work fine but the main drawback is MRC have DD00 to DD7F but according

to this proposal it should be BD00 to BD7F so, we have to change this either in API or

we have to change this into MRC code.

For above reason second proposal comes into frame for implementation as shown in

Fig. 4.3.

Fig. 4.3: Finalized Implementation of Phase Code

As shown in Fig. 4.3, It looks like same as previous proposal but here for FSP,

higher nibble started in reverse order means first API we can start from F like that se-

quence wise it follows all APIs. By this method the problem of MRC also solved and

Phase code and POST code we can put together. So after that all the APIs started from

TempRamInit to NotifyPhase API will follow reverse hex numbers.

4.2 FSP Separation from Source Code
As we know complete BIOS required all the Phases like SEC, PEI, DXE and BDS to

execute the complete BIOS. At every step BIOS will dispatch the required driver and
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it will give control to next phase. Again next phase will dispatch the necessary drivers

and like that complete cycle goes on. This four phases are very important to execute the

regular BIOS.

After that Intel gave optimization in their code and found FSP where it will give just

binary to the end user to experience flexibility. Because it is using only some drivers

during execution it not required the all folders of regular BIOS as shown in Fig. 4.5.

Fig. 4.4: (a) Regular BIOS Execution (b) FSP Execution

Fig. 4.4 (a) shows phase execution for regular BIOS where green color shows that

it required all the phases mainly green color is for Si package required to execute. Now

shown in Fig. 4.4 (b), where only first three phase pre boot, SEC and PEI are required

to execute the FSP rest of the phase are not required. Here show that in FSP, only first

three phases are come under Si package, rest of the phases are non-silicon package.

So phases which are not required then corresponding drivers are also not required of

that phase in FSP. If we put that driver as it is then it will not do anything but unnec-

essarily it occupies space in reference code. So it is better to remove that driver from

reference code.

For removing unnecessary driver, python script is requires for Skylake, Kabylake and

Broxton where after running this script all the unnecessary drivers removed from the

source code and only useful drivers are there in Silicon package for FSP.

45



4.2.1 Flow Chart of Script

Fig. 4.5: Flow Chart of Script

As shown in flow chart, it is clear that for that script we have to find a file which gives

all the information related to FSP drivers. In regular BIOS FspPkg.dsc file will give the

information regarding all the FSP drivers which are there in silicon package. So, if we

want to find the drivers then our script should run in FspPkg.dsc. After that for drivers

regular BIOS will contain .inf extension. So inside FspPkg.dsc we have to search .inf
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files and if we detect that file then we want location of that file. After extracting that

.inf file, It was found location also for that file and saved in one temporary folder which

is created by script. For every .inf file, it was happened same and put in respective tem-

porary folder and saved there at last when all the .inf will complete then we have to put

this files in original folder and delete the temporary folder.

We have to put this python script inside in the FspPkg of reference code. Where it will

execute the script and optimization the code.

After running this python script,

• Sky lake silicon code became 24.4 MB from 69.7 MB

• Kaby lake silicon code became 26.5 MB from 72.5 MB

• Broxton silicon code became 117 MB from 216 MB

As shown in Fig. 4.6, where it shows that silicon folder before running this python

script and after running the python script. There is huge amount of file is not required

to build the FSP are deleted after running this python file so it occupies very less space

as well as it boot very fastly compared to regular BIOS.

Fig. 4.6: Silicon Folder before Python Script

47



Fig. 4.7: Silicon Folder after Python Script

As shown in Fig. 4.7, it is very clear that what python code did here inside Cpu

folder only it is deleted more than 3 folders and it will same case for all the folders

inside the Silicon folder so that it will allow to FSP to work fastly.

Like that there are many packages in EDK II platform for building as mentioned below

in Table 4.2.
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Sr. Package Details
1 Base tool This will give tools related to build for both EDK and

EDK2. It gives miscellaneous tools such as ECC and
EOT

2 EdkCompatibilityPkg It gives security features were introduced (e.g. Au-
thenticated Variable Service, Driver Signing, etc.)

3 EdkShellBinPkg It gives header les and libraries which enable build the
EDK module in UEFI 2.0 mode with EDK II Build

4 EmulationIntelRestrictedPkg Binary images of the EFI Shell 1.0 for IA32, X64 and
IPF

5 FatBinPkg This package provides binary device drivers to sup-
port the FAT32 le system

6 FatPkg This Platform le is used to generate the Binary Fat
Drivers

7 IA32FamilyCpuPkg This package supports IA32 family processors,with
CPU DXE module, CPU PEIM, CPU S3 mod-
ule,SMM modules, related libraries, and correspond-
ing definitions

8 IntelFrameworkModulePkg contain definition and module for EFI framework
9 IntelFrameworkPkg This package provides definitions and libraries that

comply to Intel Framework Specifications
10 MdeModulePkg This package provides the modules that conform to

UEFI Industry standards.
11 Mde Pkg provide definition for MDE specification
12 Network Pkg It gives IPv6 network drivers, PXE driver, IPsec

driver, iSCSI driver and necessary applications for
shell.

13 PcAtChipsetPkg Designed to follow PcAt defacto standard
14 PerformancePkg provide performance measurement
15 SecurityPkg Provides TPM, secureboot , UID
16 ShellBinPkg Provide Binary shell application which follow UEFI
17 ShellPkg provide definition for EFI and UEFI shell
18 SourceLevelDebugPkg provide target side modules.
19 UefiCpuPkg provides UEFI compatible CPU modules.

Table 4.2: EDK II Reference Code Packages [4]

4.3 FSP 2.0
Before FSP 2.0, Intel was using FSP 1.1 for implementation of FSP in reference code.

In FSP 1.1 Intel was used in general two firmware volume called memory and silicon.

In Memory FV, all the APIs related to the memory will added. In Silicon FV, all the

APIs related to the silicon will added. In this version memory related APIs are com-

bined so it will be temporary memory as well as main memory both will include so it
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was not giving good performance [4].

So for more optimization, Intel give proposal of FSP 2.0 where it give enhanced FV by

separating all APIs from respective FVs. By using this, it gave excellent performance

and gave better solution to the customers too [4].

Here one can see the difference between FV structure for FSP 1.1 and FSP 2.0. in Fig.

4.8.

Fig. 4.8: Firmware Volume for (a)FSP 1.1 (b) FSP 2.0 [5]

In Fig. 4.8 (a), there are two firmware volume defined where yellow API is Tem-

pRamInit API, both green are FSPMemoryInit API and TempRamExit API. Last both

blue APIs are FspSiliconInit API and NotifyPhase API. But shown in Fig. 4.8 (b), it is

proposed diagram of FSP 2.0 where TempRamInit is comes under FSP-T. FSPMemo-

ryInit and TempRamExit comes under FSP-M. FspSiliconInit and NotifyPhase comes

under FSP-S. The last FV is added in FSP 2.0 which is compability component. If it

is present in FSP 2.0 then it will execute first in the FSP binary. This component will

have an FSP INFO HEADER with header revision 1 and 2 and may interface required

for backward compatibility with previous versions [5].
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As per FSP 1.1, FSP 2.2 have following changes did inside the flow.

• Updated FSP Binary format with FSP component information T, M, S, C

• Updated FSP Information Tables with FSP component identification

• Removed VPD configuration data and updated UPD configuration data

• Updated Boot Flow

• Added Reset Request status return types

So after implemented FSP 2.0 it is coming in reference code as shown in Fig. 4.9 as

follows:

Fig. 4.9: FSP 2.0 Implementation [5]
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4.4 Firmware Configuration for FSP
At the time of initialization of FSP, FSP needs some data to configure particular feature

at the run time. So to support this need, it required some data region where we can keep

this data because it will update at the run time and FSP will take the data from this data

region.FSP will do this configuration for platform and based on the input given by user

it will take the data for platform configuration and changed the value from data in con-

figuration region. So when FSP will build the source code it will take the configuration

data from this region and by this way it will get the latest platfrom configuration [6].

The data region which saves the configuration contains two sets called VPD(Vital Prod-

uct Data) and UPD(Updatable Product Data). This set of regions are divided based on

it’s type of configuration changing for data. VPD is region where we can save the con-

figuration data statically only means during the time of boot, boot loader can’t change

the data at this region. So if some user want platform configuration changes at the run

time then this region will not work. UPD is a region working exactly opposite to the

VPD where we can save the data dynamically and when boot loader want to change the

data at the time of boot, then it can easily change the data at run time [6].

For changing the data statically inside the VPD and UPD, there is one separately cus-

tomized tool called Binary Configuration Tool(BCT). In general BCT is a one utility

mainly used to change all the settings of configuration resides in binary file. This en-

ables the users to use the BCT which will customize the FSP configuration from Intel’s

FSP binary [6].

Fig. 4.10: High Level Diagram of BCT [6]
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As shown in Fig. 4.10, it is giving basic understading of how BCT tool is working.

BCT tool is first read the Boot Setting File(BSF) which provides a graphical interface

for manipulating a setting of FSP binary. Addition to BSF, BCT can take the binary with

modified configuration settings. At the output side BCT gives augmented BSF(ABSF)

as well as it will give the patched binary. Augmented BSF contain the information about

the setting of configuration to use the patch binary. Apart from this, BCT also gives the

log file at the output side which will give the information about which configuration

setting used in BSF so that it can work as feedback for next setting [6].

Fig. 4.11: GUI of BCT [6]

From Fig. 4.11, it is GUI for BCT. In this tool left pane is navigation pane which

will be use to traverse the configuration settings tree under the standard or category tab.

Right pane is help pane which will change as configuration settings by floating mouse

sursor. Center pane is configuration pane which display all the settings of configuration.

For Modifying the binary file, select File option and choose the file from open BSF op-

tion. After load the menu item select the file. After modified the configuration settings,

patch the binary associated with BSF by select the patch under Binary tools menu [6].

Apart from static configuration, UPD data can also be modified by boot loader dynam-

ically. For this UPD needs to be organized as a structure.
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Fig. 4.12: API called to UPD [6]

As shown in Fig. 4.12, where every APIs contains the UpdDataPtr as an argument

which will be initialized to point UPD. Whenever it will give NULL value then FSP

will use built in UPD for FSP binary. If boot loader overrides the UPD parameters, then

it will copy UPD from flash to memory and now FSP binary will initialize with this data

structure [6].

Fig. 4.13: Definition of UPD

If we want to use this UPD then first we have to define this UPD in FSP file which
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is shown in Fig. 4.13. For every APIs there is different UPDs which need to define.

In this definition it contain three fields which are offset, total number of bytes and the

dafault value of this UPD.

4.5 Responsiveness Infrastructure of FSP

4.5.1 What is Responsiveness?

Responsiveness is the measurement of the time taken by particular executable. In FSP

there are many drivers which will execute at the time of boot according to it’s sequence.

In FSP, this drivers are executing based on flow like in PEI phase, drivers which are

relevant to PEI phase will execute same case will happen with the other phases as well.

As we discussed earlier that in FSP 2.0 there are mainly four firmware volumes called

FSP-T, FSP-M, FSP-S and FSP-C. So whenever particular FV will execute then all the

drivers under this FV will execute. So we need the timing of this all drivers for different

FV’s of FSP which is called Responsiveness of FSP.

4.5.2 Why Responsiveness?

Once one has to get the timing of all the drivers of FSP for all FV’s then we can calculate

the total timing taken by FSP drivers which is needed for calculating total execution

time taken by FSP. Apart from this by using responsiveness we can look the timing of

drivers so that we can judge the performance of particular drivers and if by chance any

driver give wrong timing then we can check that why it is giving that timing. If we have

the execution timing of all the drivers then we can reduce the total execution timing of

FSP by changing some drivers code.
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Fig. 4.14: FV’s of FSP for responsiveness [7]

Fig. 4.14 shows different APIs in different FVs. TempRamInit API is executing in

FSP-T. FspMemoryInit and TempRamExit are executing in FSP-M and FspSiliconInit

and NotifyPhase are executing in FSP-S. So whenever particular APIs are executing in

sequence then based on that drivers will execute and we have to collect the timing while

execution.

4.5.3 Implementation

Responsiveness infrastructure can make by FSP binary and FSP wrapper. There are

separate drivers for FSP binary and FSP wrapper. So for getting the response time

for FSP wrapper, we need to save the execution time of all the drivers from platform

package. For FSP binary, we need to change the drivers from FSP package. FSP binary

and FSP wrapper are in sync at the time of execution and it will execute the drivers in

sequence one after another [7].

Once all drivers complete its execution, we gets the response time of all drivers which

we need to store somewhere to execute at the time of booting. The area of storage

for this response time is called Firmware Performance Data Table(FPDT). FPDT is

the type of table which provides complete information about the platform initialization

performance records. This all information gives the data of performance during boot

for specific work within firmware. The FPDT contains only those data that is necessary

for boot process of every platform as follows [7]:

• Value of timer at the beginning of BIOS
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• Switch the control to boot loader

Value of timer express in increase of 1 nanosecond. So suppose if any driver indicates

the 25678 as execution time then it means it taken 25.678 microsecond to execute. For

capturing the log at the time of boot, we are using one tool called intel system scope

tool. This tool we need to install to os first afterwards when the FPDT log is save then

during the time of boot whenever we reach to os we need to open the tool and just has

to save the FPDT log. This log contains all the data which is saved under FPDT region

[7].

Fig. 4.15: Intel’s System Scope Tool

Fig. 4.16: Result of Responsiveness

As shown in Fig. 4.16, it is showing one of the driver’s execution time implementa-

tion. In that PERF START EX and PERF END EX are the macros used to calcute the

57



start and end timing. Fields of this macro gives the records address and GUID respec-

tively to store properly. Figure 4.19 shows the timing of that driver in intel system scope

tool where one can see that particular driver is taking approximately 6021 nanoseconds

time for execution.

4.6 eMMC Boot Flow for FSP

4.6.1 Overview

After developing the FSP, when it comes at the side of booting, FSP can boot by using

SSD or by using eMMC. This devices are used to fetch the OS for boting. eMMC

is a multimedia card use for solid state storage. In general eMMC is used to store

the data for portable device. By using MMC reader, customers can read the data by

just attaching the MMC in slot. Now a days Embedded MMC(eMMC) is mainly used

in a industry for storage in low cost devices. eMMC is not that much sophisticated

for speed and features, so it is not find in any typical desktop and laptop computers.

eMMC doesn’t have firmware inside chips, multiple flash memory chips, fast interfaces

and faster hardware inside it.

eMMC is low cost flash memory that is inside the phone or low end PCs to work as

host for bootable device. It is quite cheaper than solid state storage called solid state

drive(SSD). Solid state drive has controller which also have the firmware which support

advance features like it can do read and write operation for overall memory chips in

SSD, by this way it can increase the operational speed. There are multiple chips in SSD

unlike the eMMC so that whenever we will write or read something in SSD it will work

so faster than eMMC.

4.6.2 Implementation

At the time of eMMC booting, most of the platform firmware are stored in eMMC.

While booting from SSD, platform firmware will fetch by SPI through serially but in

eMMC it is happening by different way. eMMC is connected externally to the board, di-

rect access of eMMC is not possible so for accessing the eMMC data we need to follow

other procedure. As platform firmware is stored in eMMC, if we want to boot the OS

from eMMC then we need to take the firmware from eMMC. For taking the firmware

from eMMC, CPU will put CSE as inter mediator to fetch the data from eMMC as CPU
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can’t fetch the firmware directly.

When the system power on, the CSE will first fetch the block of code from eMMC and

this code will store into SRAM where CPU can directly fetch this block. This SRAM

will be saved it’s data at the top of CPU’s 4GB address space but there are many blocks

of memory needs to save at that address space, SRAM is limited in size. So once CPU

will start it’s execution from SRAM then turn by turn CSE will transfer the complete

block of code from eMMC to SRAM.

The firmware boot flow is done in three stages:

• Execute from SRAM

• Execute from CAR

• Execute from Memory

First block of code will store in SRAM but after sometime once sequence will complete

data will be remove from SRAM and when temporary RAM need to implement at that

time CAR will use and FSP-M will execute from CAR. Once temporary memory needs

to execute and main memory will come at that time firmware will switch into memory

from CAR. This switching will happen by boot loader. Once boot loader will switch

the code into main memory after that it will initialize the silicon and it will boot to OS.

59



Chapter 5

Automated BIOS generation using

System RDL

5.1 Overview
This is another project intel is driving to automate the BIOS code generation. With

development of FSP project, This project is also going parallel with FSP development.

As a part of this project, i have to create a BIOS code by just using RDL file and not by

manually developing BIOS.

SystemRDL is kind of language which can be use to design as well as development of

digital system which is complex otherwise. By using systemRDL anyone can deliver

the intellectual property (IP) products used in designs. Specifically systemRDL layout

support the cycle of registers from specification, verification, generation to maintenance

and documentation. Here from specification registers can be arrays and memories. For

systemRDL the source is description of registers from software, hardware and docu-

mentation. At the output side it will generate RTL documentation.

In today’s scenario, BIOS code developers are developing the BIOS code manually

after referring the BIOS specs and RTL or XML files which contains every details of

registers added in latest flow. Apart from this files developers needs to refer C specs and

HAS document for any change in features. This all files change platform by platform

so developers need to check every time when they will develop the BIOS for different

platforms. So now developers need to trace the changes for new designs and have to

make changes accordingly but as it becomes time consuming and error prone which is
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increase the overall system bug [].

Now if we can work on automation of generation process of BIOS, then we can solve

the many problems as developers are facing during the time of development and it will

become faster process from development side and it will result into Time To Market

product. So basically it gave the following advantages by automated BIOS generation

process as follows:

• Decrease the developement effort from silicon code

• Gave the standard format of BIOS

• Presilicon time frame utilize into design of firmware

Fig. 5.1: High Level Diagram of Proposed Solution[11]

As shown in Fig. 5.1, which is giving idea about the proposed solution of today’s

problem. Left one is the flow we are following today in which first we have to review C

specs and HAS documents to collect the changes the data at the silicon level features.

Many times new features at the silicon level is not mention properly then some feature

will miss out to implement. Now we have to collect the data at the register level from

architects to make one flow for BIOS but sometime bit level change not communicates

properly then design will not work properly. Now from this all information BIOS specs
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will prepare for register information for flow initialization which will give interdepen-

dence as from BIOS specs code will develop. So finally all process will become error

prone [8].

For ovecome this problem another proposed flow come into picture where we can re-

move this interdependence. In this flow silicon architects create the flow for specific

IP in a format of XML files which gives the information at design level. Now from

this RTL crif files we will generate the header files which will give the data about the

registers for that IP. From this flow we will generate the source file along with header

file. After at the last phase we will integrate that header file and source file into main

BIOS code base [8].

5.2 Firmware Developement Model
For automate the BIOS from SystemRDL we need to follow specific model which will

be different from ordinary flow to make the development automated as shown in Fig

5.2:

Fig. 5.2: Firmware Development Model [11]

As Shown in Fig. 5.2, which is showing two developement process namely one

which we are following as of now and the second process is what we are implementing
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to automate the BIOS and give the early solution to the customers. Here at the first

stage both are following the same process as first we need to enable the feature from

silicon RTL documentation with some bug if created. Now in current process, designer

will not enable that feature as it has some bug but we are deriving our BIOS files from

RTL documentation we will enable that feature with bug [11].

As designer not allowed to enable the feature so at the time of pre validation we will

not have any result about that feature. In proposed process, at the time of pre validation

will have some result of that feature which will also indicate the issue related to that

bug for feature. Currently after pre validation we are enabling the feature and so we get

the idea about that issue at post validation but at the time of our model we already get

the idea about the bug at pre validation we solved that issue in pre validation and by so

we can reach to customers very early [11].

5.3 System RDL Usage Model
BIOS automation will done by RDL file which will provide the sufficient information

about the flow of BIOS which is shown in Fig. 5.2 as follows:

Fig. 5.3: System RDL Usage Model [8]

As shown in Fig. 5.3, it shows usage model for automated BIOS generation by sys-

tem RDL. At the center there is spec database which contains all necessary specs which
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will require to generate the flow. Mainly it has silicon changes specs and the register

related information to generate the BIOS spec. This spec DB will be used by both front

end and back end to create the complete flow. At the front end mostly designers will

be there which will design a flow for automation and the User Interface will work by

override tool to use the BIOS code. This override tool and the UI both are in sync from

front end to back end. For this communication spec DB is not requires. Override tool

will make after BIOS code generation of source file and header file which will use af-

terwards by the users. So by this way complete cycle creates from the front end to back

end[11].

Once we completed the data gathering from front side from designers which is requires

for design flow, it will collect that all information in the form of specs and it will be

save in the spec DB. Now once specs will be generate, by using that specs RTL flow

will be create at the back end which will be validate so that if some error will come then

it can remove at that point only. After validating flow, it needs to be integrate into the

main flow and check that all are working fine or not. Once that flow will work fine then

based on that flow needs to make the document which will helpful for further designing

as well as it will work as feedback system for next flow. From spec DB apart from RTL

flow, it will generate the XML flow which will give the all details of registers level and

will generate the flow[11].

There is one python script working in between the flow which will take the input as

XML file this file can be named as CRIF file as well and at the output side this script

will give the source file and header file for BIOS. Python script will take the XML file

and first it will check all the register convention mention in the file as well as it’s offset

and it’s value. Once it will find the information about this register then it will define

that register into header file with its offset and value. This register will be use inside

source file. Once all register will be define inside header file properly then script will

start to make source files based on the flow mention inside XML files[11].

XML files have fields to define all the information for particular function inside flow. It

has field named title where we have to give the flow name after that it ask for parameters

need to pass into flow for future use of registers. Like that it contains so many fields

called Step, Guard, Action, Condition etc. so based on the requirements of functions,

we need to fill the all field properly and give that field to CRIF file.Now when this file
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will go as an input for python script, script take a look for all this field and inside script

all action is already define properly that which field should put at which place inside

source file while defining function.

Fig. 5.4: Back End Overviewn [8]

As shown in Fig. 5.4, it is giving some more overview about the back end which is

too important to work on. Here from the front end and spec database, it generates the

two XML files called the flows and CRIF in which CRIF will contain all the information

regarding the registers used to make the flow. Here we can see it is like feedback system

where first python script will generate the BIOS source file and header file. After that

script will give its feedback to XML file where flow will take this as input and it will

change its flow accordingly [8].

Once flow change according to feedback, it generate the output as what flow changed

and after that changed flow goes as input to the CRIF files because once flow will

change it will change all the register information so that BIOS generation source and

header file will generate according to the change flow otherwise if source files are not

the as same as flow then BIOS integration will not work. So there is complete cycle

created at the back end side so at every point complete flow from back end side will

stay updated and it will work for same. At the last the override tool which is also the
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part of back end can change the flow XML file which can be change manually. So if

in looping some error will come then we should change the file so that we can make it

proper [8].

5.4 Implementation
For implementing this project, first we requires the result from front end which will

give the CRIF file and flow file. Flow file will generate from systemRDL which has

basic flow generation method for all IP inside this file. SystemRDL file includes all the

information regarding registers which are described by RTL files. For every RTL files

it has information regarding some other register files where each register file contain

some registers and this register contains the different fields of registers.

Fig. 5.5: Snippet of XML file

As shown in Fig. 5.5, it is showing the flow of XML file where it is asking for

different field to fill for generating the next file in flow. Here in every register file it

will ask for register file, bar number, bus number, device number, function number and

registers used. Here CRIF will give as an input to python script and at the output side

script will generate the requires header files and source file based on information given

into flow XML file.

Once CRIF file will give as an input then at the output side we will get the CRIF.pkl

file. CRIF.pkl file is the filter version of CRIF file which will contain only those type of
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register information which is requires for generating source and header file. CRIF file

is different for different IP and it will change its register information according to the

IP. Now for generating source file and header file instead of using CRIF file we will use

CRIF.pkl file because this file is already filter version of original file so we can directly

get the information only which we want.

Fig. 5.6: Snippet of Source file

For generating the source code and the information about all IPs, other script will

be used. This script will write the offset, register mask, register width etc. into header

file which all are standardized and declare throughout the code which will be useful

for optimization. As shown in Fig. 5.6 which is snapshot of source file generated by

script but it is looking similar to the file which developers are developing. In this source

file, script generating first function named GmmInitApi with the arguments specify in

the CRIF file. Once function define, it will define the variable which will use by this

function. After that script will start to define and use the registers one by another declare

in CRIF file. This register value is already given into header file.
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Fig. 5.7: Integration of BIOS code

As shown in Fig. 5.7, which is showing the integration of BIOS code generated by

SystemRDL into the main codebase.Here in codebase header files are keeping inside

Include folder whereas different IPs are stored according to the IP’s basic location. For

source file store , it saves in LibraryPrivate folder for main codebase.
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Chapter 6

Conclusions and Future Scope

6.1 Conclusions
From this thesis work of Firmware Support Package BIOS for Next Generation

Processors, FSP is very important binary configuration of BIOS. In general, if we use

regular BIOS it requires large size of memory as well as it is taking time to boot. Instead

of that if we use FSP then it contains less number of drivers than regular BIOS. So, it

require less memory size as well faster boot time. FSP has become very popular because

of points mentioned below [12]:

• Its interface is simple for any boot loader

• It has very small foot print around 200 KB

• It will take 200 milliseconds for execution

• Customizable configuration data region for the developers platform environment

• Supported across the Intels all intelligent system processors

• Widely adopted by Intels extensive ecosystem, integrating the Intel FSP into an

array of value add boot loader solutions

By this research project of Automated BIOS generation using System RDL, we

can use that automation of BIOS code is how much important. It not only reduce the

developers effort but it reduce the error while code generation and so that it reduce the

time to market.
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According to flow, we are trying to solve the issue into pre silicon validation, issue at the

time of SOC initialization become reduce to 30% which helped to enable the customers

very early. As new features are implemented at the very early stage, stabilization of this

feature becomes so faster which result into complete end to end feature validation in

pre silicon and so faster launch of product than actual deadline [12].

Because of this work, Intel got alignment for overall pre silicon firmware readiness to

actual pre silicon milestones which in result give all the platform productivity so higher

and give chances to put the resources into right areas.

6.2 Future Scope
FSP is going good way in place of reference BIOS where it will execute the FSP in

three different phases as preboot,SEC and PEI. Now a days FSP is working so faster

than regular BIOS as it has advantages like:

• Royalty free solution from Intel

• Allow fast boot solution

• Easily integrated into existing firmware implementations

At present, we are developing FSP with its responsiveness infrastructure. As of now,

for responsiveness, we are checking the execution timing of every APIs to get the per-

formance of each driver. Now onwards with measuring the timing, we will also start

to optimize the code. Optimization is requires to achieve the milestone set at the upper

level. So for every API of FSP like FSP-T, FSP-M and FSP-S we will set one execution

time and we will follow that by optimizing the code.

There are many features which FSP is supporting, so if developers want to enable or

disable the feature then it can be possible by build flags. So in case if we want unbuild

some features then build flags play a main role but this facility is not available for cus-

tomers as they do not have code base. So, planning to have one more API called FSP-O

which allows customers to have that facility.

For Automated BIOS generation using System RDL, As of now we are using

particular SOC initialization for that IP. That SOC initialization happen by one Flow file

that we need to change for different IPs according to the IP on which we are working.

In main BIOS codebase there are many IPs included for complete silicon initialization.
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So whenever we will start SOC initialization for different IP at that time first we need to

change the flow file then only we can able to do initialization for that IP. To overcome

this issue we need to do is re usability. By re usability we can use same IP initialization

code flows across different segments which will reduce more efforts from designers.

Fig. 6.1: Re usability Structure [12]

From Fig. 6.1, which giving the overview of re usability structure. In this one main

RDL will generate which can be separate and use by Big core platforms, Small core

platforms and server platforms for SOC initialization. Once that SOC initialization will

become complete, then based on the platforms it will generate the spec database. This

will give the idea that which SOC initialization happened so that at the back end side

according to that design collateral for registers, pre si and post si validation and at the

last segmentation of source and header file will happen [12].
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