
Development of Software for Switched
Power Supply Module with DSP Toolkit

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Dharmendra Savaliya
(14MECE05)

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
MAY 2016

Development of Software for Switched
Power Supply Module with DSP Toolkit

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Dharmendra Savaliya

(14MECE05)

Under the guidance of

External Project Guide: Internal Project Guide:

Mr. Rasesh Dave (Eng.-SD) Prof. Amit Degada
Power Supply Group, Assistant Prof., EC Branch,
ITER-India, IPR, Block A, EE Depart., Institute of Tech.,
Sangath Skyz, Bhat-Motera Road, Nirma University,
Koteshwar, Ahmedabad. Ahmedabad.

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
MAY 2016

iii

Declaration

This is to certify that

i). The thesis comprises my original work towards the degree of Master of Technology

in Embedded Systems at Nirma University and has not been submitted elsewhere

for a degree.

ii). Due acknowledgment has been made in the text to all other material used.

- Dharmendra Savaliya

14MECE05

iv

Certificate

This is to certify that the Major Project entitled “Development of Software for

Switched Power Supply Module with DSP Toolkit” submitted by Dhar-

mendra N. Savaliya (14MECE05), towards the fulfillment of the requirements

for the degree of Master of Technology in Embedded Systems, Nirma University,

Ahmadabad is the record of work carried out by him under our supervision and

guidance. In our opinion, the submitted work has reached a level required for being

accepted for examination.The results embodied in this major project, to the best

of our knowledge,haven’t been submitted to any other university or institution for

award of any degree or diploma.

Date: Place: Ahmedabad

Prof.Amit Degada Dr. N.P. Gajjar

Internal Guide Program Coordinator

Dr. D.K.Kothari Dr. P.N.Tekwani

Section Head (EC) HoD(EE),Director-IT

v

Certificate

This is to certify that the Major Project entitled “Development of Software for

Switched Power Supply Module with DSP Toolkit ” submitted by Dhar-

mendra N. Savaliya (14MECE05), towards the fulfillment of the requirements

for the degree of Master of Technology in Embedded Systems, Nirma University,

Ahmedabad is the record of work carried out by him under my supervision and

guidance. In my opinion, the submitted work has reached to the level of required

for being accepted for examination.

Date: Place: Ahmedabad

Project Guide: Deputy Proj. Man.: Project Manager:

Mr. R.J. Dave Mr. N.P. Singh Mr. U.K. Baruah

Engineer-SD, Engineer-SF, Engineer-H,

Power Supply Group, Power Supply Group, Power Supply Group,

ITER-India, IPR. ITER-India, IPR. ITER-India, IPR.

vi

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr. D. K. Kothari,

Head of Electrical Engineering Department, and Dr. N. P. Gajjar, PG Coordina-

tor of M.Tech Embedded Systems program for allowing me to undertake this thesis

work and for his guidelines during the review process.

I take this opportunity to express my profound gratitude and deep regards to Prof.

Amit Degada, guide of my major project for his exemplary guidance, monitoring

and constant encouragement throughout the course of this thesis. The blessing, help

and guidance given by him time to time shall carry me a long way in the journey of

life on which I am about to embark.

I would take this opportunity to express a deep sense of gratitude to my Project

Guide Mr. Rasesh J. Dave(ITER-india) for his cordial support and providing

valuable information regarding the project and guidance, which helped me in com-

pleting this task through various stages. I would also thank to Mr. N. P. Singh

(Deputy Project Manager) and Mr. Ujjwal K. Baruah (Project Manager)

Power Supply Group(ITER-India) for always giving good suggestions and help to

solve to complete my project in better way.

Lastly, I thank almighty, my parents and friends for their constant encouragement,

without which this assignment would not be possible.

- Dharmendra Nandlalbhai Savaliya

14MECE05

vii

Abstract

HVPS (High Voltage power supply) can be used in industrial application such as RF

(Radio Frequency) heating. Design & implementation of on-board control for HVPS

(high voltage power supply) is done with switched power supply module. Designed

High voltage power supply regulation is critical and requires high speed switching

electronic system.

A DSP(Digital Signal Processor) software development to achieve on board con-

trol, protection and communication functionality of the single Switched Power Sup-

ply (SPS) module is proposed. Universal Asynchronous Receive/Transmit (UART)

based communication for the SPS module allows transition from one state to an-

other state as per defined sequence. On board controller manages the controlled

reproduction and routing of gate pulse for SPS with settable frequency and vari-

able duty cycle. A control interface is designed to communicate with Test Jig via

UART bus protocol. A Test Jig (with another DSP) is also envisaged to demon-

strate required functionality. Real time Parameters of SPS Module i.e. Heat sink

temperature, DC link voltage (Analog to Digital Converter(ADC) based) & present

state of the module should be monitored. Real time Pulse width modulation regen-

eration with delay in terms of nano seconds achieved with XINT(External interrupt).

Operating principles and protection considerations of SPS module are achieved by

on-board controller software development of high voltage power supply. Complete

system with Test Jig and one Field application board is tested and implemented to

verify feasibility of the proposed scheme.

viii

Contents

Declaration iii

Certificate iv

Acknowledgements vi

Abstract vii

List of Figures xiv

List of Tables xv

Abbreviation Notation xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Overview . 2

1.4 Project Block Diagram . 6

1.4.1 Customized UART Communication Protocol 7

1.4.2 Task Handling . 8

1.5 Error Packing & Decoding . 9

1.6 Hardware & Software used . 10

1.7 Thesis Organization . 11

ix

x CONTENTS

2 Literature Survey 13

2.1 Research paper . 13

2.2 Architecture of C2000 Family . 15

2.3 Introduction to Piccolo Launchpad 16

2.3.1 Low Power Modes . 17

2.3.2 Reset Circuit . 18

2.4 Different programming Style . 18

2.5 Summary . 19

3 Modules of F28x MCU used in project 21

3.1 GPIO Module . 21

3.2 CPU Timer Module . 24

3.3 Watchdog Module . 28

3.4 Serial Communication Interface(SCI) Module 31

3.5 Enhanced Pulse width modulation(EPWM) Module 34

3.6 Analog to Digital Converter(ADC) Module 38

3.6.1 ADC Mode . 38

3.7 Event capture(ECAP) Module . 43

3.8 External Interrupt(XINT) Module . 45

3.9 Summary . 47

4 Splitting C Program 49

4.1 Header file . 49

4.2 Source file . 50

4.3 Passing argument and Returning value 51

4.4 Advantages of Using Several Files . 52

4.5 Summary . 53

5 Issues Faced During Development 55

5.1 Insufficient Memory . 55

CONTENTS xi

5.2 Floating Number Error . 56

5.3 CMD File Error . 57

5.4 ADC Stopped working . 58

5.5 Infinite While Loop . 59

5.6 Summary . 60

6 Developed GUI 61

6.1 GUI developed for Test Jig . 61

6.2 GUI developed for SPS Control Card 62

6.3 Summary . 62

7 Setup and Result 63

7.1 Experimental Outcomes . 63

7.2 System setup for development . 64

7.3 Results . 65

7.4 CCS Debug Window . 67

7.5 Summary . 69

8 Conclusion and Future Scope 71

8.1 Conclusion . 71

8.2 Future Scope . 72

A Code Composer Studio guide 73

A.1 Structure of files . 73

A.2 Creating New Project . 75

A.3 Build and Debug Project . 76

A.4 Flash Programming . 76

A.5 Summary . 80

Appendices 73

xii CONTENTS

B GUI Development 81

B.1 GUI Composer . 81

References 83

List of Figures

1.1 Multi Converter HVPS System . 3

1.2 SPS Control card circuit . 4

1.3 Control flow of program . 5

1.4 Project Block diagram . 6

1.5 C2000 Family TI’s DSPs . 11

2.1 F2802x Architecture . 16

2.2 Reset Circuit . 18

3.1 GPIO Module . 22

3.2 GPIO Mux Selection . 23

3.3 Watchdog Select . 28

3.4 EPWM Module . 35

3.5 ADC Module . 39

3.6 ADC Sequential Mode . 40

3.7 ADC Simultaneous Mode . 40

3.8 ADC Example . 41

5.1 Insufficient memory error . 55

5.2 Floating point Error and identifier not found 56

5.3 Solved Floating error . 56

5.4 Program will not fit into memory . 57

5.5 text section require more memory . 57

xiii

xiv LIST OF FIGURES

5.6 Solved Cmd Error . 58

5.7 Program Structure for ADC . 59

6.1 F28335 Test Jig Controller GUI . 62

6.2 F28027 SPS Control Card GUI . 62

7.1 Dummy test setup with Test Jig & SPS control card 64

7.2 EPWM Regeneration from F28x series DSP with ECAP 65

7.3 EPWM Regeneration from F28x series DSP with XINT 66

7.4 high frequency detection by F28x series DSP 66

7.5 EPWM generation for both IGBTs 67

7.6 CCS debug window for SPS Control card 68

7.7 CCS debug window for Test Jig . 68

A.1 Section in memory . 74

A.2 CCS Work Flow . 76

A.3 Property setup for flash programming 77

B.1 GUI Composer . 82

List of Tables

1.1 UART Data Frame for Packet . 7

1.2 Packet Data . 8

1.3 Error bits & Fault level . 10

2.1 Low Power Modes . 17

2.2 Exit Low Power Modes . 17

7.1 Temperature measurements . 63

7.2 Voltage measurements . 64

A.1 Compiler Section Names . 74

xv

Abbreviation Notation

ADC . Analog to Digital Convertor

CAN .Controller Area Network

ECAP . Enhanced Capture Module

EPWM .Enhanced Pulse Width Modulation

EQEP . Enhanced Quadrature Encoder Pulse

FOC .Fiber Optical Cable

GUI .Graphical User Interface

HVPS .High Voltage Power Supply

HES . Hall Effect Sensor

I2C . Inter-Integrated Circuit

IGBT . Insulated Gate Bipolar Transistor

IPR . Institute for Plasma Research

ITER . International Thermonuclear Experimental Reactor

JTAG . Joint Test Action Group

LIN .Local Interconnect Network

PCB .Printed Circuit Board

PIE . Peripheral Interrupt Expansion

PLL .Phase Locked Loop

SCI . Serial Communication Interface

SPI . Serial Peripheral Interface

SPS . Switched Power Supply

UART . Universal Asynchronous Receiver/Transmitter

VFC . Voltage to Frequency Control

XDS . Cross Document Sharing

XRS . External Reset

xvi

Chapter 1

Introduction

1.1 Motivation

High Voltage Power Supply (HVPS) are mainly configured with multi-secondary

transformers, insulated gate bipolar transistor (IGBT) based switched Power Supply

Modules and controllers. For switched power supply modules, onboard intelligence

is mandatory requirement that controls the operation, observes self-protection and

communicates with HVPS main controller. This thesis report mainly covers the pro-

gramming part of DSP based controller of switched power supply module. Testing of

DSP program is performed on evaluation board & available as developed Hardware.

This project uses a DSP (TI TMS320F28335 Evaluation Kit) software program-

ming to achieve onboard control, protection and communication functionality of the

single SPS (Switched Power Supply) module. UART based communication for the

SPS module allows transition from one state to another state as per defined se-

quence. On board controller manages the controlled reproduction or routing of gate

pulse for SPS with settable frequency and duty cycle. Real time Parameters of SPS

Module viz. Heat sink temperature, DC link voltage & present state of the module

should be monitored. A Test Jig (with another DSP) is also used to demonstrate

1

2 CHAPTER 1. INTRODUCTION

required functionality.

1.2 Problem Statement

A typical chopper controller involves switching control, reproduction of switching

pulses for IGBTs, besides temperature monitoring, Over Voltage, Under Voltage

protection. It involves UART communication for state transitions.

JTAG debugger of controller with XDS cable allows real time debugging in Texas

instrument’s code composer studio (CCS) debugger. For development of chopper

controller, DSP using C programming language with inbuilt PWM, SCI(UART) and

ADC module is selected.

1.3 Overview

HVPS’s Chopper control card can be configured with different ways in this project,

it is based on DSP F28335 Delfino Controller & DSP controller is used to perform

switching operation, monitoring & Circuit protection.

In this project development of software to perform & validate SPS module con-

troller is proposed. To achieve desired operations & functionality check of SPS

control card is done by Test Jig controller.

Multi-Converter HVPS System contains multiple chopper module. Each chopper

module contain it’s own DSP based controller.

In figure 1.1 it shows component of chopper like contactor, diode rectifier & IGBT

Switch. This Component can be controlled by DSP controller. DC (Direct Current)

voltage across balancing resistor, current across IGBT switch & temperature of heat

1.3. OVERVIEW 3

Figure 1.1: Multi-Converter HVPS System

sink at IGBT can be monitor by chopper control card. Developed Software for chop-

per control card contain multiple task to handle different operation i.e. Parameter

passing, DC link voltage monitoring & Current monitoring.

Generated gate pulse is given to IGBT Switch A as shown in 1.2 for varying output

voltage with duty cycle. When IGBT switch A is turned off capacitor bank should

be discharge to avoid circuit damage, so IGBT switch B is used for fast discharging.

Operation of SPS module control will be divided into different task (state) as shown

in 1.3. The sequences of operation are Parameter passing, DC link up, Stand by,

Ready & Power on. In Parameter passing Test jig will pass all data range of fre-

quency, temperature, IGBT, under voltage, over voltage & over current. If data

4 CHAPTER 1. INTRODUCTION

Figure 1.2: SPS Control card circuit

received by control card are ok then ACK be transmitted & achieved state will be

DC link up.

In DC link up voltage across capacitor bank is built by soft charging via resis-

tor & it will be measured, if voltage is in range then after 9 sec next state stand

by will be achieved. In standby state the control card will directly connected to

the power supply & voltage will be measured by sampling, if voltage is not in range

error will be generated by control card. When Test jig transmit command for next

state SPS module will come into Ready state.

In Ready state if all data checking will be without error then IGBT will be en-

abled. Then power on command will be transmitted by Test jig & SPS module

will start receiving PWM. If received duty cycle is more than 90% SPS module will

1.3. OVERVIEW 5

generate error.

As shown in figure 1.3 on power ON DSP go into infinite loop, first checking all

condition for required parameters are in range. During communication in DC link

or Standby state loss occurs than it will generate error. If in state Standby, Ready

& Power on SPS receive OFF Pass command it will go back to previous state.

Power ON DSP

If(Send char =
Received Char)

Wait for Parameter
PASS

Wait for DC Link
Up Command

Sample & Trans.
Voltage, Current &
Temperature Data

If CPU Timer INT
After 9 sec

generated ?

Auto State
Transition to

Standby Sample & Trans.
Voltage, Current &
Temperature Data

Wait for Ready
Command

Transition to
Power On

Sample & Trans.
Voltage, Current &
Temperature Data

Sample & Trans.
Voltage, Current &
Temperature Data

Off Pass
detection logic

Off Pass
detection logic

Off Pass
detection logic

Off Pass
detection logic

Parameter pass
Error gen. logic

Comm loss
detection logic

Error Gen.

Comm loss
detection logic

Error Gen.

On PWM
interrupt
detection

On PWM
interrupt loss

Sample & Trans.
Voltage, Current &
Temperature Data

Data is out of
range logic –

Error Gen.

Figure 1.3: Control flow of program

6 CHAPTER 1. INTRODUCTION

1.4 Project Block Diagram

Control card is connected with external peripheral like IGBT (Insulated Gate Bipo-

Figure 1.4: Project Block diagram

lar Transistor) driver, Contactor Driver, LED Display, Current Sensor, Temperature

sensor & Voltage divide. Communication of controller with Test Jig Controller Board

is done by SCI Fiber Optic cable(FOC) link as shown in figure 1.4.

• IGBT driver is useful for switching IGBT operation.

• Contactor driver is useful to operate contactor.

• LED Display useful for displaying of State of SPS module & Error code in

SPS module.

• Hall Effect Sensor(HES) is useful for current measurement.

1.4. PROJECT BLOCK DIAGRAM 7

1.4.1 Customized UART Communication Protocol

Communication is done by Serial communication interface(SCI) as SCI is useful for

longer distance & main advantage of SCI is Asynchronous communication.

Table 1.1 shows packet structure we have used.Bit 0 of Packet 1 & Packet 2 Contain

Health bit. Bit 1 of Packet 1 & Packet 2 Contain Packet ID for packet 1 it is 0 &

for Packet 2 it is 1.

In packet 1, bit 2,3 & 4 indicate Status of Chopper module & bit 5,6 & 7 indi-

cates MSB Data of our 9bit DC link value. Last six bits of Packet 2 contain 6 bit

MSB of our full DC link value.

Table 1.1: UART Data Frame for Packet

Packet 1 :

Data 0 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7
Health
Bit

Packet
ID

Status
Bit 1

Status
Bit 2

Status
Bit 3

Data
Bit 1

Data
Bit 2

Data
Bit 3

Packet 2 :

Data 0 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7
Health
Bit

Packet
ID

Data
Bit 4

Data
Bit 5

Data
Bit 6

Data
Bit 7

Data
Bit 8

Data
Bit 9

Test Jig Controller have to perform more number of UART communication Simul-

taneously. So, Test Jig can handle number of SPS control card By choosing proper

parallel Processor. In this project, it considers parameters like frequency monitor-

ing, IGBT Switching, temperature monitoring, under voltage control, over voltage

control & over current control.

8 CHAPTER 1. INTRODUCTION

Table 1.2: Packet Data

Parameter Range Original
Value

Decimal
value

Start Code - - 555(HEX)
Frequency 1,2.5,5,10 kHz 1 301
Temperature 50-80 C 70 370
IGBT Switch 0/1 0 300
Under Voltage 600-650 V 650 325
Over voltage 800-860 V 860 430
Over Current 70-285 A 285 285

1.4.2 Task Handling

Project contain different task to perform sequentially. As shown in figure 7.1 Delfino

board is Test Jig controller & Piccolo Board is Chopper control Card. Different Task

that will be performed by Test Jig controller is as below :

• State 0: Parameter Passing

• State 1: DC link Up

• State 2: Standby

• State 3: Ready

• State 4: Power ON

• Default State: OFF Pass

Test Jig transmit values in first task as parameter passing,if received value is not

in range then DSP will set default value & transmit to Test Jig. ADC module will

produce result by sampling voltage value & that will be transmitted to Test Jig

controller in DC Link up Task.

During DC Link up, DSP controller will monitor DC Link Data & Transmits for

1.5. ERROR PACKING & DECODING 9

9 sec and automatically switch to stand by state if threshold is achieved. Standby

task will transmit ADC sampled value simultaneously as received by ADC Result

register. UART transmission done at 100Khz baud rate between Test Jig and SPS

Controller. Ready command will be given by Test Jig controller, after receiving this

task command, Control card will monitor GPIO Status. LED Display in figure 1.4

will be handle by GPIO Module. Hall Effect sensor will measure current & give

value to Control Card. Temperature sensor will measure heat sink temperature.

Across Capacitor DC link voltage will be measured by ADC using voltage divider

output.

On receiving PWM Pulses from Test Jig control card module will start captur-

ing interrupt with external interrupt module. Duty cycle PWM can be vary from

Test Jig during run time. Output voltage at SPS module will be according to ON

time period in generated PWM. When Test Jig gives Off Pass command SPS module

will come to one step low task as shown in figure 1.3.

1.5 Error Packing & Decoding

If during run time error occurs then health bit in table 1.2 is 1. when error is

generated one packet with data shown in 1.3 transmitted to the Test Jig. Packet 1 :

There are two fault levels, level 0 and level 1, as shown in table 1.3. On level 1 fault

modules need to go through power on-off cycle.

10 CHAPTER 1. INTRODUCTION

Table 1.3: Error bits & Fault level

Sr no. Data Bit Fault Fault level
1 Bit 0 Over Current Fault Level 0
2 Bit 1 Over Voltage Fault Level 0
3 Bit 2 Over Temperature Fault Level 0
4 Bit 3 Under Voltage Fault Level 1
5 Bit 4 Charging Fault Level 1
6 Bit 5 IGBT short Fault Level 0
7 Bit 6 WDT fault Level 1
8 Bit 7 Loss of Communication Level 0
9 Bit 8 Reserved Level 0

1.6 Hardware & Software used

C2000 family TI’s DSP is used for hardware, Which contains On-board emulation

Program and debug your C2000 Launchpad by simply plugging it in to your com-

puter with the included mini USB cable. Support for USB & serial communication

is also included. Extend your C2000 Piccolo Launchpad with application focused

Booster-packs. All 40 pins on the Launchpad allow for easy access to all the periph-

erals on the F28027 device.

Why to use TI’s DSP?

Pre-programmed C2000 Piccolo F28x MCU Built in isolated XDS100 JTAG Emu-

lator enables real-time in-system programming and debugging via USB CPU reset

button and programmable push button enables development on any Piccolo F28x

device free unrestricted version of Code Composer Studio integrated development

environment (IDE) v6 free download of control SUITE software with examples, li-

braries, application software and more low Price approximately $17.00.

There are wide range of variety in DSP memory, No of peripherals in C2000 fam-

ily varies, in this project Ti’s DSP used for Compatibility with all MCU. For this

project F28027 Piccolo, F28335 Delfino & F2811 Series Controller is being used for

1.7. THESIS ORGANIZATION 11

Test Jig & SPS Control card software development.

P
er

fo
rm

an
ce

Features

F281x Series
Piccolo

Controllers

F283x Series
Delfino

Controllers

F280x Series
Controllers

Figure 1.5: C2000 Family TI’s DSPs [5]

1.7 Thesis Organization

The rest of the thesis organized as follows.

Chapter 2 This chapter includes basic introduction & Literature Survey of F28x

family. Reset circuit, low power mode and other features of TI’s DSP is also dis-

cussed.

Chapter 3 This chapter deals with different modules of Piccolo launchpad that

12 CHAPTER 1. INTRODUCTION

we have used in our software development. In this chapter guide is given how we

can configure module & use it into our Application.

Chapter 4 This chapter deals with development of C Program. During devel-

opment of C Program, programmer needs to divide code functionality wise, because

it makes easier to edit code & detect the part of code which is not working.

Chapter 5 In this chapter communication with TI Community & answers are in-

cluded. When programming C software with multiple modules their are possibilities

of error generation, TI community provides solution by expert members.

Chapter 7 In this chapter photos of result captured during project work is in-

cluded. Photos of setup & photos of CCS debug window of project work is also

included.

Chapter 8 This chapter describes future scope & the work summary of project

that is done.

Chapter A During the beginning of development how to use CCS with launch-

pad is described in this chapter. Other chapter includes how to configure CCS for

launchpad, how to run code & how to debug program and view variable, graph &

some features of CCS.

Chapter B This chapter deals with GUI development on GUI Composer provided

by CCS. We also learn how to develop GUI for our application using JAVA Script.

How can we use pre-processing & post-processing function to see our desire value

from range.

Chapter 2

Literature Survey

2.1 Research paper

1 Mandar Bhalekar & Umashankar, ”Development Of a Research Platform

for Power Electronic Converter Modeling in Real Time F28335 Digital

Simulation Applications using eZDSP”, IEEE Transaction paper on Power

Electronics published in ICICES, Dec 2014

This paper includes requirement of full or partial validation of real time simu-

lation applications.a 3 phase AC-DC-AC converter topology has been used with

dc link, diode rectifier and IGBT inverter with inductive load.Open Loop model

of AC-DC-AC realization & Design presented in this paper. For PWM generation

Delfino F28335 DSP controller is used. The simulation is carried out in MATLAB

& SIMULINK and results of simulation and actual model are compared.The pro-

posed PWM algorithm has been validated.

This paper presents the design & analysis of a digitally controlled 3-phase PWM

inverter to develop more practical & theoretical knowledge of control applications.

The basics of Hardware installations & software optimization for proposed system

13

14 CHAPTER 2. LITERATURE SURVEY

have been presented in brief.The simulation results are verified practically using

TMS320F28335 DSP at High switching frequency. The very close similarity be-

tween actual hardware results of output voltage & simulation wave forms shows

the efficiency, accuracy of AC-DC-AC PWM converter.

2 Liran Katzir & Yakir Loewenstern ”Implementation of a High Voltage

Power Supply With The Matlab/Simulink Embedded Coder”, IEEE

Transaction paper on Power Electronics published in Convention of Electrical

and Electronics Engineers in Israel, Jun 2014

High voltage power supply with a voltage multiplier can be developed by us-

ing a DSP-based controller.DSP controller can give the output voltage back to

the PWM signals of the power stage.By using the MATLAB & Simulink embed-

ded coder design time is greatly reduced. The design with a DSP controller, does

not need additional components and is simple compared to more traditional ana-

log control techniques. Practical results using the Texas Instruments (TI) DSP

TMS320F28335 Micro-controller show a good real-time behavior. For example,

the output of a 12-link multiplier with a rise time lower than 5mS and a low ripple

of under 0.1% is actively corrected by the digital feedback loop.

High voltage power supply, using a voltage multiplier controlled by a DSP-based

controller was presented. The closed feedback loop was implemented by sampling

the output, processing in the controller and correcting by manipulating the PWM

phase-shift signal. The design was done using using the MATLAB/Simulink em-

bedded coder, greatly reducing the design time. The design is relatively simple

and can be implemented using a low cost controller. Experimental results of the

high voltage power supply using the DSP TMS320F28335. Microcontroller from

TI show a a good convergence and real time behavior with a large reduction of

2.2. ARCHITECTURE OF C2000 FAMILY 15

output ripple.

3 Michael G. Giesselmann & William J. Carey ”100-kV High Voltage Power

Supply With Bipolar Voltage Output and Adaptive Digital Control”,

IEEE Transaction paper on Plasma Science published in OCT 2014

This paper presents a 100-kV high frequency transformer/ rectifier package, which

is capable of a dual output polarity operation. An H-Bridge inverter drives the

primary of the high voltage (HV) transformer at a frequency of 20 kHz. The

inverter is driven by a Microchip dsPIC33F digital signal controller using peak

current mode control with adaptive slope compensation. The HV-tank has two

HV-coax output cables with a grounded shield on each cable. If the center conduc-

tor of the coax cable designated as negative output is grounded, positive voltage is

obtained from the coax cable designated as positive output and vice versa. This

paper provides design details and experimental results from tests of the entire

system.

2.2 Architecture of C2000 Family

This architecture is common for all C2000 family devices. This is multi-bus architec-

ture & also known as harvard architecture. Program bus & Data bus connected as

shown in figure 2.1 by different bus which enhance performance of device. In figure

2.1 upper left corner includes memory like RAM, Boot ROM & Sectored Flash. In

lower left diagram we can see execution section which includes Auxiliary Register,

Multiplier, Atomic ALU(Arithmetic Logic Unit) & CLA(Control Low Accelerator)

is independent unit which have own sets of buses. PIE(Peripheral interrupt Expan-

sion) manager & 3 CPU timer is also available in architecture.

At upper right diagram consist control Unit & lower right diagram consist commu-

16 CHAPTER 2. LITERATURE SURVEY

Figure 2.1: F2802x Architecture [4]

nication unit. Control Unit includes peripheral like ePWM(Enhanced pulse width

modulation), eCAP(enhanced capture Capture module), eQEP(Enhanced Quadra-

ture Encoder Pulse), 12bit ADC & Watchdog. Communication Unit includes periph-

eral like A CAN(controller area network), I2C(Inter-Integrated Circuit), SCI(Serial

Communications Interface), SPI(Serial Peripheral Interface), LIN(Local Intercon-

nect Network) & GPIO(General purpose input output).

2.3 Introduction to Piccolo Launchpad

The C2000 Piccolo Launchpad is an evaluation platform that allows the user to

practice real-time control programming on the C2000 Piccolo micro controllers.

The Launchpad is based on the Piccolo TMS320F28027 with features such as 12bit

ADC, 8PWM channels, I2C, SPI, UART, and 64KB of on board flash memory, etc.

2.3. INTRODUCTION TO PICCOLO LAUNCHPAD 17

It utilizes an integrated isolated Cross Document Sharing(XDS)100 Joint Test Ac-

tion Group(JTAG) emulator for easy programming and debugging. In addition, it

also has 40 Printed Circuit Board(PCB) pins that are available for easy access to

the pin of the F28027 microcontroller and programmable/reset button.

2.3.1 Low Power Modes

Table 2.1: Low Power Modes [7]

Low Power
Mode

CPU
clock

Peripheral
Clock

Watchdog
Clock

PLL/OSC

Normal Run ON ON ON ON
IDLE OFF ON ON ON
Standby OFF OFF ON ON
HALT OFF OFF OFF OFF

Piccolo Launchpad support different low power modes in each power mode their

are distinct configuration for clocks. In normal mode all peripheral like CPU clock,

Peripheral clock, Watchdog clock & PLL clock is ON which consumes more power

then Other configuration. Ideal mode save power more then normal run by turning

CPU clock off. If peripheral clock is turned off in idle mode it comes into standby

mode. Switching off all clock module it saves all power & come into halt Mode.

Table 2.2: Exit Low Power Modes [7]

Exit Low
Power Mode

RESET GPIO A WD INT Any INT

IDLE YES YES YES YES
Standby YES YES YES NO
HALT YES YES NO NO

When code is in any LPM(Low Power Modes) of Launchpad to exit from that

mode needs to give instruction to launch pad peripheral. Reset, GPIO, Watch-dog

18 CHAPTER 2. LITERATURE SURVEY

interrupt or any interrupt can be used to exit Idle mode. To exit from Standby

mode Reset, GPIO or Watch-dog interrupt can be used. To exit from halt mode

Reset or GPIO can be used.

2.3.2 Reset Circuit

Reset is process to reboot system to get back default configuration. Piccolo launch-

pad allows different ways to reset it. Hardware logic of Launchpad for reset. If dur-

ing initialization Missing clock detect it will automatically reset software. Watchdog

Timer, Power on Reset, Brown out reset Or External reset(XRS) Pin Active reset

to F28x device can be also configured.

Figure 2.2: Reset Circuit [6]

2.4 Different programming Style

1 Direct Register Programming

As the name suggest, the Direct Register Access Model (DRAM)writes value di-

rectly to the individual peripheral registers. All of the peripheral registers are

defined in the corresponding header file for specific device. It is therefore impor-

tant for the user to include such header file along with the developed program.

An example of DRAM is demonstrated as follow:

AdcRegs.ADCINTFLGCLR.bit.ADCINT1 = 1;

2.5. SUMMARY 19

AdcRegs.ADCINTFLGCLR.bit.ADCINT2 = 1;

This particular code clears the ADC interrupt flag for ADC interrupt 1 and 2.

2 Software Programming

The Software Driver Model (SDM) utilize an API(application programming in-

terface) provided by the peripheral driver library. In which can be used by appli-

cations to control peripherals. The driver header file needs to be included in this

case to utilize SDM and a handle to specific peripheral needs to be initialized. An

example of SDM is shown as follow:

myPwm1 = PWM init((void∗)PWM ePWM1 BASEADDR, sizeof(PWM −

Obj));

myPwm2 = PWM init((void∗)PWM ePWM2 BASEADDR, sizeof(PWM −

Obj));

2.5 Summary

This chapter includes basic introduction, IEEE Transaction paper on power elec-

tronic & Literature Survey of F28x family. Reset circuit, low power mode and other

features of TI’s DSP is also discussed.

20 CHAPTER 2. LITERATURE SURVEY

Chapter 3

Modules of F28x MCU used in

project

3.1 GPIO Module

GPIO module consist three GPIO port. GPIO A, GPIO B & Analog Port. A single

GPIO pin is multiplexed Up to three independent level. This three level are MUX

selection, Direction Selection & port Configuration. Port A consists of GPIO0 to

GPIO31, port B consists of GPIO32 to GPIO38 & The analog port consists of AIO0

to AIO15 as shown in figure 3.1.

In figure 3.2 MUX Control bits are available. To use Port as Gpio by default value is

given as 00. To use it for different peripheral like Epwm, ADC, SCI or more PORT

MUX bit for appropriate pin can be configured. After MUX selection to configure

GPIO for either as input or as output by GPxDIR. By using GPxDAT GPIO can

be ON, OFF or Toggle Gpio as Configuration.

Example 3.1 :

Write A Program of C2000(TMS320F28027) Launchpad Evaluation Kit to GPIO

toggling on GPIO port 0,1,2 and 3 to blink LED.

21

22 CHAPTER 3. MODULES OF F28X MCU USED IN PROJECT

Figure 3.1: GPIO Module [6]

EALLOW;

SysCtrlRegs.WDCR = 0x0068;

//Write same for GPIO 1, 2 & 3

GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 0; // 0=GPIO, 1=EPWM1A, 2=Resv, 3=Resv

GpioCtrlRegs.GPADIR.bit.GPIO0 = 1; // 1=OUTput, 0=INput

EDIS;

//Write same for GPIO 1, 2 & 3

GpioDataRegs.GPASET.bit.GPIO0 =1;

while(1)

{

//Write same for GPIO 1, 2 & 3

GpioDataRegs.GPATOGGLE.bit.GPIO0 = 1;

DELAY US(1000000);

}

3.1. GPIO MODULE 23

Figure 3.2: GPIO Mux Selection [6]

GUIDE : Now available register to access are EALLOW Protected, so to get access

write EALLOW at beginning of code.

After that SysCtrlRegs.WDCR = 0x0068; command to disable watchdog, so it may

not run at debug time.

Which indicate bit 3,5 and 6 are high. Means WDCHK =101 it must ALWAYS

write 1,0,1 to these bits whenever a write to this register is performed unless the in-

tent is to reset the device via software. Then WDDIS= 1 indicate watch dog Disable.

Now to access GPIO for it first GpioCtrlRegs in which select GPAMUX1 and set

GPIO 0 and 2 as general purpose GPIO to be accessed. Then to give direction as

Output to get LED Blink on that port GpioCtrlRegs.GPADIR.bit.G- PIO0 = 1; By

using this given direction as output can be set.

The use infinite while Loop for LED blink on GPIO port 0 and 2.

Here we have set toggle bit as 1 of GPIO 2 then some delay then set toggle bit as 1

24 CHAPTER 3. MODULES OF F28X MCU USED IN PROJECT

of GPIO 0 then delay.

NOTE :

1 Delay US function will not perform if watchdog is not disabled.

2 After that initialize all GPIO and turn it off by GpioDataRegs.GPASET.bit.G-

PIO0 =1; at starting so it GPIO will not blink during the run.

3.2 CPU Timer Module

Piccolo launchpad have 3 CPU timer to perform timing operations. To Acknowl-

edge Timer 0 use TINT0 using PIE table. CPU timer 1 & 2 can be acknowledge by

TINT1 & TINT2 or XINT13 & XINT14. To use CPU timer 1 & 2 to acknowledge

TINT0 is necessary.

Example 3.2 :

Write A Program of C2000(TMS320F28027) Launchpad Evaluation Kit to generate

interrupt using CPU timer 0 and 1.

//First Include Header files. interrupt void cpu timer0 isr(void);

interrupt void cpu timer1 isr(void);

void main(void)

{

InitSysCtrl();

DINT; // Disable CPU interrupts and clear all CPU interrupt flags:

InitPieCtrl();

IER = 0x0000;

IFR = 0x0000;

InitPieVectTable();

EALLOW; // This is needed to write to EALLOW protected registers

PieVectTable.TINT0 = &cpu timer0 isr;

3.2. CPU TIMER MODULE 25

PieVectTable.TINT1 = &cpu timer1 isr;

EDIS; // This is needed to disable write to EALLOW protected registers

InitCpuTimers(); // For this example, only initialize the Cpu Timers

// Configure CPU-Timer 0 and 1 to interrupt every second:

// 60MHz CPU Freq, 1 second Period (in uSeconds)

ConfigCpuTimer(&CpuTimer0, 60, 1000000);

ConfigCpuTimer(&CpuTimer1, 60, 1000000);

CpuTimer0Regs.TCR.all = 0x4001;

// Use write-only instruction to set TSS bit = 0

CpuTimer1Regs.TCR.all = 0x4001;

// Use write-only instruction to set TSS bit = 0

IER |= M INT1;

IER |= M INT13;

// Enable TINT0 in the PIE: Group 1 interrupt 7

PieCtrlRegs.PIEIER1.bit.INTx7 = 1;

EINT; // Enable Global interrupt INTM

ERTM; // Enable Global real time interrupt DBGM

for(;;);

}

interrupt void cpu timer0 isr(void)

{

CpuTimer0.InterruptCount++;

// Acknowledge this interrupt to receive more interrupts from group 1

PieCtrlRegs.PIEACK.all = PIEACK GROUP1;

}

interrupt void cpu timer1 isr(void)

{

EALLOW;

26 CHAPTER 3. MODULES OF F28X MCU USED IN PROJECT

CpuTimer1.InterruptCount++; // The CPU acknowledges the interrupt.

EDIS;

}

GUIDE :

Now For Programming CPU timer the steps to follow :

Step 1: Initialize system control.

Step 2: Initialize Gpio.

Step 3: Disable all interrupts and Initialize PIE vector table.

Step 4: Initialize Device Peripheral.

Step 5: Use code to enable specific interrupt.

Step 6: Idle loop forever.

Now, here cpu timer0 isr(); is function declaration.

InitPieCtrl();

This is a function that is provided into TIs header file. Use this function as it

is. The purpose of this function is to clear all pending PIE(Peripheral Interrupt

Expansion)-Interrupts and to disable all PIE interrupt lines. This is a useful step

when we would like to initialize the PIE-unit. Function InitPieCtrl() is defined in

the source code file DSP281x PieCtrl.c; Inside main, direct after the function call

InitPieCtrl(); add the function call to:

InitPieVectTable();

This TI-function will initialize the PIE-memory to an initial state. It uses a prede-

fined interrupt table PieVectTableInit() defined in source code file DSP281x PieVec-

t.c and copies this table to the global variable PieVectTable defined in DSP281x Glo-

balVariableDefs.c. Variable PieVectTable is linked to the physical memory of the

PIE area. To be able to use InitPieVectTable should be added two more source files

to our project:

3.2. CPU TIMER MODULE 27

Source Code file DSP281x DefaultIsr.c will add a lot of interrupt service routines to

our project. When you open and inspect this file you will find that all ISRs consist

of an endless for-loop and a specific assembler instruction ESTOP0. This instruc-

tion behaves like a software breakpoint. This is a security measure. Remember, at

this point we have disabled all PIE interrupts. During run the program can’t see an

interrupt request. If for some reason like a power supply glitch, noise interference or

just a software bug, the DSP calls an interrupt service routine then this event can

be catch by the ESTOP0 break.

InitCpuTimers();

This function will set the core Timer0 to a known state and it will stop this timer.

ConfigCpuTimer(&CpuTimer0, 60, 1000000);

The 60 in configuration indicate frequency in MHz and 1000000 is in uS means it is

delay of 1 Second.

PieCtrlRegs.PIEIER1.bit.INTx7 = 1;

Before starting timer0 needs to enable its interrupt masks.

To enable CPU timer interrupt set bit 7 of PIEIER1 to 1.

EINT; and ERTM; Enable interrupts globally

CpuTimer0Regs.TCR.bit.TSS = 0;

Now to start the timer 0, the bit TSS inside register TCR will do this task. After

the end of main to add our new interrupt service routine cpu timer0 isr.

1 Increment the interrupt counter CpuTimer0.InterruptCount. This gives number

of global information about how often this 1 Sec task was called.

2 Acknowledge the interrupt service as last line before return. This step is nec-

essary to re-enable the next timer0 interrupt service. It is done by: PieCtrl-

Regs.PIEACK.all = PIEACK GROUP1;

for(;;); Use for loop forever

28 CHAPTER 3. MODULES OF F28X MCU USED IN PROJECT

3.3 Watchdog Module

Watch dog is a timer which detect Program malfunctions & reboot our system for

Recovery after predefined time out period.

Figure 3.3: Watchdog Select[6]

Watch dog can be configured as shown in figure 3.3. When Good Key 55 + AA

detect before prescale counter generate timeout then the reset interrupt will not be

generated & Counter will be reloaded. But if Other then this key will detect then

after timeout WDINT will be generated. WDCHK bits from 2-0 will check always

during the program if other then 101 WDCHK will be detected then it will Generate

WDRST signal.

Example 3.3 :

#include ”DSP28x Project.h” // Device Headerfile and Examples Include File

3.3. WATCHDOG MODULE 29

interrupt void wakeint isr(void);

Uint32 WakeCount=0,n=0;

Uint32 LoopCount=0;

void main(void)

{

// Common Flow of System Initialization

EALLOW; // This is needed to write to EALLOW protected registers

PieVectTable.WAKEINT = &wakeint isr;

SysCtrlRegs.SCSR = BIT1;

EDIS;

PieCtrlRegs.PIECTRL.bit.ENPIE = 1; // Enable the PIE block

PieCtrlRegs.PIEIER1.bit.INTx8 = 1; // Enable PIE Gropu 1 INT8

IER |= M INT1; // Enable CPU INT1

EINT; // Enable Global Interrupts

ServiceDog();

EALLOW;

SysCtrlRegs.WDCR = 0x0028; // SET timer period

EDIS;

for(;;) // loop forever

{

LoopCount++;

// DELAY US(13107); // 13.11ms interrupt Period for WDCR = 28

DELAY US(13108);

ServiceDog();

}

30 CHAPTER 3. MODULES OF F28X MCU USED IN PROJECT

}

interrupt void wakeint isr(void)

{

WakeCount++;

// Acknowledge this interrupt to get more from group 1

PieCtrlRegs.PIEACK.all = PIEACK GROUP1;

}

GUIDE : First to Initialize System peripheral like PLL(Phase Locked Loop),

WatchDog, enable peripheral clocks functions for this program located in the DSP2802x SysCtrl.c

file.

Clear all interrupts and initialize PIE vector table & disable CPU interrupts. Ini-

tialize PIE control registers to their default state. This function is found in the

DSP2802x PieCtrl.c file.

Disable CPU interrupts and clear all CPU interrupt then initialize the PIE vec-

tor table with pointers to the shell Interrupt Service Routines (ISR). This is useful

for debug purposes. The shell ISR routines are found in DSP2802x DefaultIsr.c.

This function is found in DSP2802x PieVect.c.

Interrupts that are used in this example are re-mapped to ISR functions found

within this file. Connect the watchdog to the WAKEINT interrupt of the PIE

Write to the whole SCSR register to avoid clearing WDOVERRIDE bit.

Enable WAKEINT in the PIE: Group 1 interrupt 8 & Enable INT1 which is con-

nected to WAKEINT.

• Reset the watchdog counter, Enable the watchdog.

3.4. SERIAL COMMUNICATION INTERFACE(SCI) MODULE 31

• Un-comment Service Dog to just loop here.

• Comment Service Dog to take the WAKEINT instead.

Insert all local Interrupt Service Routines (ISRs) and functions here. If local ISRs

are used, reassign vector addresses in vector table.

3.4 Serial Communication Interface(SCI) Module

SCI module of Piccolo Launchpad is useful for serial communication between con-

troller. Port as SCI can be configured by proper MUX bits selection.

SCI module is a serial I/O port that permits Asynchronous communication between

the C28x and other peripheral devices. The SCI transmit and receive registers are

both double-buffered to prevent data collisions and allow for efficient CPU usage.

In addition, the C28x SCI is a full duplex interface which provides for simultaneous

data transmit and receive. Parity checking and data formatting is also designed to

be done by the port hardware, further reducing software overhead.

SCI is receiving LSPCLK means if CPU Clock is 60MHz then we can use SCI-

CLK up to (60/4)MHz = 15MHz.

Example 3.4 :

Write A Program of C2000(TMS320F28027) Launchpad Evaluation Kit to generate

Array and transmit to SCIA port with 9600 Baud rate, 1 start bit, 8 data bit, 1

stop bit with no parity and Receive it with External LOOP Back.

#include ”DSP28x Project.h” // Device Header file and Examples Include File

void scia echoback init(void);

void scia fifo init(void);

#define CPU FREQ 60E6

32 CHAPTER 3. MODULES OF F28X MCU USED IN PROJECT

#define LSPCLK FREQ CPU FREQ/4

#define SCI BAUD 96E2 // 9600 baudrate

#define SCI BRR (LSPCLK FREQ/(SCI BAUD*8))-1

Uint16 ReceivedChar[10]= {0,0,0,0,0,0,0,0,0,0},i;

Uint16 SendChar[10]={0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A};

void main(void)

{

InitSysCtrl();

InitSciaGpio(); // initialize GPIO Port 28 & 29

DINT;

InitPieCtrl();

IER = 0x0000;

IFR = 0x0000;

InitPieVectTable();

scia fifo init(); // Initialize the SCI FIFO

scia echoback init(); // Initalize SCI for echoback

for(;;){

for(i = 0; i < 10; i + +)

{

SciaRegs.SCITXBUF =SendChar[i]; // Transmitter Code

while(SciaRegs.SCIFFRX.bit.RXFFST !=1) { } // Receiver Code

// wait for XRDY =1 for empty state

ReceivedChar[i] = SciaRegs.SCIRXBUF.all;

}

}

}

void scia echoback init()

{

3.4. SERIAL COMMUNICATION INTERFACE(SCI) MODULE 33

SciaRegs.SCICCR.all =0x0007; // 1 stop bit, No loopback, No parity,8 char bits,

// async mode, idle-line protocol

SciaRegs.SCICTL1.all =0x0003; // enable TX, RX, internal SCICLK,

// Disable RX ERR, SLEEP, TXWAKE

SciaRegs.SCICTL2.all =0x0000;

SciaRegs.SCICTL2.bit.TXINTENA =0;

SciaRegs.SCICTL2.bit.RXBKINTENA =0;

#if (CPU FRQ 60MHZ)

SciaRegs.SCIHBAUD =0x0000; // 9600 baud @LSPCLK = 15MHz (60 MHz SYSCLK).

SciaRegs.SCILBAUD =SCI BRR;

#endif

SciaRegs.SCICCR.bit.LOOPBKENA =0; // Disable loop back

SciaRegs.SCICTL1.all =0x0023; // Relinquish SCI from Reset

}

void scia fifo init()

{

SciaRegs.SCIFFTX.all=0xE040;

SciaRegs.SCIFFRX.all=0x2044;

SciaRegs.SCIFFCT.all=0x00;

}

GUIDE : First include header file & declare function scia echoback init & scia fifo init.

Now define CPU frequency as 60MHz,so LSPCLK is 15MHz. Define baud rate as

9600 & last function to calculate SCI BRR. After that initialize variable. Add

common flow of system initialization. Write code to initialize SCI Fifo & SCI con-

figuration.

34 CHAPTER 3. MODULES OF F28X MCU USED IN PROJECT

The SCI for External loopback is Configured. So, connect GPIO port 28 & 29.

Now in the infinite ”for loop” start to transmit data From Tx pin & by using exter-

nal loopback receive same data at Rx Pin.

SCI FIFO configuration is done by function scia echoback init & scia fifo init. In

scia echoba- ck init function Frame structure ,enable Tx, Rx & defined sci low baud

rate value is defined. First disabled internal loopback. Then in function scia fifo init

Tx & Rx fifo and given delay between data frame zero is configured. To monitor

transmitted and received data add variable SendChar & ReceivedChar into Expres-

sion window of CCS Debug mode.

3.5 Enhanced Pulse width modulation(EPWM)

Module

Enhanced pulse width modulation(EPWM) represents signal as sequence of pulses.

PWM have fixed frequency & fix pulse amplitude. When using power switching

device such as transistor for desire current or power supply, it is difficult to operate

this device in proportional region & easy to control in saturation region.

EPWM is digital signal & is to generate with MCU, it can control properly power

switching device. Generated PWM output is also available to the GPIO pins.

EPWM module can generate INT for PIE block as well as Start of conversion(SOC)

signal for ADC.

Clock prescaler convert SYSCLKOUT signal into timer based clock as shown in

figure 3.4. The 16-bit time base counter can generate symmetric & Asymmetric

waveform using 3 different mode count up,count down & count up-down mode. Pe-

riod register shows maximum count value. Compare logic use two compare register

3.5. ENHANCED PULSE WIDTH MODULATION(EPWM) MODULE 35

Figure 3.4: EPWM Module[6]

to compare signal from time base counter. Action qualifier are use to generate action

using input from Compare logic. Dead band add delay in switching gate signal &

prevent short circuit. PWM chopper use high frequency to modulate PWM wave-

form Trip zone & Digital compare provide protection mechanism to protect Output

Pins from over voltage & over current.

Example 3.5 :

#include ”Lab.h” // Main include file

#define PWM HALF PERIOD 1000 // period/2 for 15 kHz symmetric PWM

#define PWM DUTY CYCLE 500 // 50% duty cycle

int x;

void main(void)

{

// Do common system initialize here.

InitEPwm(); // Initialize the EPwm (FILE: EPwm.c)

36 CHAPTER 3. MODULES OF F28X MCU USED IN PROJECT

asm(” EALLOW”); // Enable EALLOW protected register access

GpioCtrlRegs.GPAMUX1.bit.GPIO1 = 0; // 0=GPIO 1=EPWM1A

GpioCtrlRegs.GPADIR.bit.GPIO1 = 0; // 0=input 1=output

asm(” EDIS”); // Enable EALLOW protected register access

asm(” CLRC INTM, DBGM”); // Enable global interrupts and realtime debug

while(1) // endless loop - wait for an interrupt

{

// J6.1 GPIO0 EPWM1A to J6.2 GPIO1

x = GpioDataRegs.GPADAT.bit.GPIO1; // GPIO1 pin

}

}

The InitEpwm function written in EPWM.c file which include EPWM Configu-

ration is as below

void InitEPwm(void)

{

asm(” EALLOW”); // Enable EALLOW protected register access

SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;

asm(” EDIS”); // Disable EALLOW protected register access

//Configure ePWM1 for 15 kHz symmetric PWM on EPWM1A pin

EPwm1Regs.TBCTL.bit.CTRMODE = 0x3; // Disable the timer

EPwm1Regs.TBCTL.all = 0xC033; // Configure timer control register

// bit 5-4 11: SYNCOSEL, 11 = sync-out disabled

// bit 1-0 11: CTRMODE, 11 = timer stopped (disabled)

3.5. ENHANCED PULSE WIDTH MODULATION(EPWM) MODULE 37

EPwm1Regs.TBCTR = 0x0000; // Clear timer counter

EPwm1Regs.TBPRD = PWM HALF PERIOD; // Set timer period

EPwm1Regs.TBPHS.half.TBPHS = 0x0000; // Set timer phase

EPwm1Regs.CMPA.half.CMPA = PWM DUTY CYCLE; // Set PWM duty cycle

EPwm1Regs.CMPCTL.all = 0x0002; // Compare control register

// bit 1-0 10: LOADAMODE, 10 = load on PRD match

EPwm1Regs.AQCTLA.all = 0x0060; // Action-qualifier control register A

// bit 7-6 01: CAD, 01 = clear

// bit 5-4 10: CAU, 10 = set

EPwm1Regs.AQSFRC.all = 0x0000; // Action-qualifier s/w force register

EPwm1Regs.AQCSFRC.all = 0x0000; // Action-qualifier continuous s/w force reg-

ister

EPwm1Regs.DBCTL.bit.OUT MODE = 0; // Deadband disabled

EPwm1Regs.PCCTL.bit.CHPEN = 0; // PWM chopper unit disabled

EPwm1Regs.TZDCSEL.all = 0x0000;

// All trip zone and DC compare actions disabled

EPwm1Regs.TBCTL.bit.CTRMODE = 0x2;

// Enable the timer in count up/down mode

asm(” EALLOW”); // Enable EALLOW protected register access

SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;

// TBCLK to ePWM modules enabled

asm(” EDIS”); // Disable EALLOW protected register access

} // end InitEPwm()

GUIDE : In this example 15Khz symmetric waveform is generated using EPWM1A.

In the main.c file of example first initialized all peripheral of launchpad with our

38 CHAPTER 3. MODULES OF F28X MCU USED IN PROJECT

epwm Configuration, then take sample by using GPIO. After initEPWM set GPIO1

as input pin. Sampling rate of GPIO is low so this can’t give accurate output. Con-

nect Pin J6.1 to J6.2 to see output on GPIO1 port on debug window.

In initEWM function first disable timer, then set timer period & duty cycle. CM-

PCTL bit for load configured on period match.

3.6 Analog to Digital Converter(ADC) Module

ADC module is 12 bit analog to digital converter. ADC module have 16 input chan-

nel & 16 result register as shown in figure 3.5. SOC Configuration select trigger

source, channel to convert & acquisition prescale window size that can be triggered

by Software, CPU timer, EPWM Or using external signal. ADCINT1 & ADCINT2

is fade back to continue conversion. ADC can be operated in Sequential Or Simul-

taneous mode. ADC Clocking is done by CPU Clock at 60MHz.

3.6.1 ADC Mode

1 ADC Sequential mode is used while sampling using only channel A. Total sam-

ple time is 13 cycles. By using 60MHz CPU clock maximum sampling rate of

4.62 mega samples per second(MSPS) as calculated {60MHz/(13cycles/sample)}

= 4.62 MSPS can be achieved.

2 ADC Simultaneous mode is used while sampling by using both channel A & Chan-

nel B simultaneously. Total sample time is 26 cycles for 2 sample. By using 60MHz

CPU Clock maximum sampling of 4.62 MSPS as {60MHz/(13cycles/sample)} =

3.6. ANALOG TO DIGITAL CONVERTER(ADC) MODULE 39

Figure 3.5: ADC Module [6]

4.62 MSPS can be achieved.

Sequential mode can be trigger by AdcRegs.ADCINTSOCSELx & Simultaneous

mode can be trigger by AdcRegs.ADCSAMPLEMODE register.

Example 3.6 :

Write a program to generate waveform using EWM1A at GPIO0 as shown in fig-

ure 3.8 with period 15Khz and sample it by using ADCINA0 by triggering it with

EPWM2A at 50KHz.

In this example to generate waveform to be sample by using EPWM1A and for

Triggering ADC use EPWM2A. ADC Result will be copied by CPU to Data mem-

ory when ADC ISR is in execution. In this example to take AdcBuf[ADC BUF LEN]

variable is required which will continuous print our data memory in to Array with

40 CHAPTER 3. MODULES OF F28X MCU USED IN PROJECT

Figure 3.6: ADC Sequential Mode[4]

Figure 3.7: ADC Simultaneous Mode [4]

50 array element.

Main() function includes system initialization first, after that initialize EPWM1A

with GPIO0 for sample wave and for triggering ADC initialize EPWM2A.

#include ”Lab.h” // Main include file

#define PWM HALF PERIOD 1000 // period/2 for 15 kHz symmetric PWM

#define PWM DUTY CYCLE 500 // 50% duty cycle

Uint16 AdcBuf[ADC BUF LEN]; // ADC buffer allocation

Uint16 DEBUG TOGGLE = 1; // Used for realtime mode investigation test

Uint16 adcsamp,x;

void main(void)

3.6. ANALOG TO DIGITAL CONVERTER(ADC) MODULE 41

Figure 3.8: ADC Example [7]

{

// Do common system initialize here.

InitEPwm(); // Initialize the EPwm (FILE: EPwm.c)

InitAdc(); // Initialize the EPwm (FILE: Adc.c)

asm(” EALLOW”); // Enable EALLOW protected register access

GpioCtrlRegs.GPAMUX1.bit.GPIO1 = 0; // 0=GPIO 1=EPWM1A

GpioCtrlRegs.GPADIR.bit.GPIO1 = 0; // 0=input 1=output

asm(” EDIS”); // Enable EALLOW protected register access

asm(” CLRC INTM, DBGM”); // Enable global interrupts and realtime debug

while(1) // endless loop - wait for an interrupt

{

// J6.1 GPIO0 EPWM1A to J5.6 ADCINA0

42 CHAPTER 3. MODULES OF F28X MCU USED IN PROJECT

adcsamp = AdcResult.ADCRESULT0; // GPIO1 pin

}

}

The InitAdc function written in Adc.c file which include ADC configuration is as

below

void InitAdc(void)

{

asm(” EALLOW”); // Enable EALLOW protected register access

//— Reset the ADC module

AdcRegs.ADCCTL1.bit.RESET = 1; // Reset the ADC

// Must wait 2 ADCCLK periods for the reset to take effect.

asm(” NOP”);

asm(” NOP”);

//— Power-up and configure the ADC

AdcRegs.ADCCTL1.all = 0x00E4; // Power-up reference and main ADC

DelayUs(1000); // Wait 1 ms after power-up before using the ADC

//— SOC0 configuration

AdcRegs.ADCSAMPLEMODE.bit.SIMULEN0 = 0; // SOC0 in single sample mode

(vs. simultaneous mode)

AdcRegs.ADCSOC0CTL.bit.TRIGSEL = 7; // Trigger using ePWM2-ADCSOCA

AdcRegs.ADCSOC0CTL.bit.CHSEL = 0; // Convert channel ADCINA0 (ch0)

AdcRegs.ADCSOC0CTL.bit.ACQPS = 6; // Acquisition window set to (6+1)=7

cycles

AdcRegs.ADCINTSOCSEL1.bit.SOC0 = 0; // No ADCINT triggers SOC0. TRIGSEL

field determines trigger.

AdcRegs.SOCPRICTL.bit.SOCPRIORITY = 0; // All SOCs handled in round-

3.7. EVENT CAPTURE(ECAP) MODULE 43

robin mode

//— ADCINT1 configuration

AdcRegs.INTSEL1N2.bit.INT1CONT = 1; // ADCINT1 pulses regardless of AD-

CINT1 flag state

AdcRegs.INTSEL1N2.bit.INT1E = 1; // Enable ADCINT1

AdcRegs.INTSEL1N2.bit.INT1SEL = 0; // EOC0 triggers ADCINT1

PieCtrlRegs.PIEIER1.bit.INTx1 = 1; // Enable ADCINT1 in PIE group 1

IER |= 0x0001; // Enable INT1 in IER to enable PIE group

AdcRegs.ADCCTL1.bit.ADCENABLE = 1; // Enable the ADC

asm(” EDIS”); // Disable EALLOW protected register access

} // end InitAdc()

GUIDE : Configuration of EPWM2 to trigger the ADC at a 50 kHz sampling rate

in function initEPWM() of Epwm.c file. Configure ePWM1 for 15 kHz symmetric

PWM on EPWM1A pin.

3.7 Event capture(ECAP) Module

ECAP module of F28x series is used to get PWM duty cycle with time stamps. Us-

ing time stamps to get PWM ON period & PWM Off period from that duty cycle

can be calculated. This calculation require times in micro second to get PWM duty

value.

Example 3.7 :

void InitECapture(void);

void main(void)

{

InitECap1Gpio();

44 CHAPTER 3. MODULES OF F28X MCU USED IN PROJECT

InitECap();

EALLOW; // This is needed to write to EALLOW protected registers

PieVectTable.ECAP1 INT = &ecap1 isr;

EDIS; // This is needed to disable write to EALLOW protected register

for(;;);

}

interrupt void ecap1 isr(void)

{

ECap1PassCount++;

ECap1Regs.ECCLR.bit.CEVT4 = 1;

ECap1Regs.ECCLR.bit.INT = 1;

ECap1Regs.ECCTL2.bit.REARM = 1;

TSt1 = ECap1Regs.CAP1; // Fetch Time-Stamp captured at t1

TSt2 = ECap1Regs.CAP2; // Fetch Time-Stamp captured at t2

TSt3 = ECap1Regs.CAP3; // Fetch Time-Stamp captured at t3

TSt4 = ECap1Regs.CAP4; // Fetch Time-Stamp captured at t4

Period1 = TSt3-TSt1; // Calculate 1st period

DutyOnTime1 = TSt2-TSt1; // Calculate On time

DutyOffTime1 = TSt3-TSt2; // Calculate Off time

pcycle = (float)(DutyOnTime1/Period1); // Calculate Duty Cycle

// Acknowledge this interrupt to receive more interrupts from group 4

PieCtrlRegs.PIEACK.all = PIEACK GROUP4;

}

3.8. EXTERNAL INTERRUPT(XINT) MODULE 45

3.8 External Interrupt(XINT) Module

External interrupt in XINT module is used for capturing real time trip as input.

XINT can be configured for both kind of trip detection either high to low & low to

high. Use XINT to set ISR in real time at trip detection. XINT take times in nano

second to capture PWM & regenerate it.

Example 3.8 :

interrupt void xint1 isr(void);

interrupt void xint2 isr(void);

Uint32 Xint1Count;

Uint32 Xint2Count;

void main(void)

{

InitGpio();

InitPieVectTable();

EnableInterrupts();

EALLOW; // This is needed to write to EALLOW protected registers

PieVectTable.XINT1 = &xint1 isr;

PieVectTable.XINT2 = &xint2 isr;

EDIS; // This is needed to disable write to EALLOW protected registers

PieCtrlRegs.PIEIER1.bit.INTx4 = 1; // Enable PIE Gropu 1 INT4

PieCtrlRegs.PIEIER1.bit.INTx5 = 1; // Enable PIE Gropu 1 INT5

EINT; // Enable Global Interrupts

ERTM; // Enable Global realtime interrupt DBGM

EALLOW;

GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 0; // GPIO

GpioCtrlRegs.GPADIR.bit.GPIO0 = 0; // input

GpioCtrlRegs.GPAQSEL1.bit.GPIO0 = 0; // Xint1

46 CHAPTER 3. MODULES OF F28X MCU USED IN PROJECT

GpioCtrlRegs.GPAMUX1.bit.GPIO1 = 0; // GPIO

GpioCtrlRegs.GPADIR.bit.GPIO1 = 0; // input

GpioCtrlRegs.GPAQSEL1.bit.GPIO1 = 0; // Xint2

// GPIO0 is XINT1, GPIO1 is XINT2

GpioIntRegs.GPIOXINT1SEL.bit.GPIOSEL = 0; // Xint1 is GPIO0

GpioIntRegs.GPIOXINT2SEL.bit.GPIOSEL = 1; // XINT2 is GPIO1

EDIS;

// Configure XINT1

XIntruptRegs.XINT1CR.bit.POLARITY = 1; // Rising edge interrupt

XIntruptRegs.XINT2CR.bit.POLARITY = 0; // Falling edge interrupt

// Enable XINT1 and XINT2

XIntruptRegs.XINT1CR.bit.ENABLE = 1; // Enable Xint1

XIntruptRegs.XINT2CR.bit.ENABLE = 1; // Enable XINT2

for(;;);

}

interrupt void xint1 isr(void) // Rising edge interrupt

{

Xint1Count++;

// ISR routine section

PieCtrlRegs.PIEACK.all = PIEACK GROUP1;

}

interrupt void xint2 isr(void) // falling edge interrupt

{

3.9. SUMMARY 47

Xint2Count++;

// ISR routine section

PieCtrlRegs.PIEACK.all = PIEACK GROUP1;

}

3.9 Summary

This chapter deals with different modules of Piccolo launchpad that we have used

in our software development. In this chapter guide is given how we can configure

module & use it into our Application.

48 CHAPTER 3. MODULES OF F28X MCU USED IN PROJECT

Chapter 4

Splitting C Program

4.1 Header file

When writing large programs, dividing it into modules is reliable to understand.

The program can be separated source files. main() can be in one file, main.c say,

the others will contain functions. Our own library of functions by writing a suite of

subroutines in one (or more) modules can be created. In fact modules can be shared

among many programs by simply including the modules at compilation. There are

many advantages to this approach, the modules will divide into common groups of

functions. Compilation by compiler will be for each module is separately then it will

link compiled modules by linker.

Header files

A modular approach adoption will used naturally, while keeping variable definitions,

function prototypes etc. with each module. However what if several modules need

to share such definitions?

It is best to centralize the definitions in one file and share this file among the mod-

ules. Such a file is usually called a header file. Convention states that these files

have a .h suffix.

49

50 CHAPTER 4. SPLITTING C PROGRAM

E.g.: Task 1.h

#ifndefPROGRAM Task 1 H

#definePROGRAM Task 1 H

extern int Task1(int a);

#endif /* PROGRAM Task 1 H */

In example header files are included into Program.c main file by using ifndef defini-

tion. Then extern is useful to get external code into our program.c main source file.

The function Task1() written in header file will be called from other source file.

4.2 Source file

Now as described in above section needs to call function from other file. To define

source file & call it’s function from header file discussed below.

E.g. : Task.c

#ifndef Task 1

#define Task 1

#ifdef cplusplus

extern ”C”

#endif

#include ”DSP28x Project.h”

extern unsigned int val,Task;

#ifndef Task1 INCLUDED

#define Task1 INCLUDED

int Task1(int a)

{

// Set your condition for jump out to mainloop4out

4.3. PASSING ARGUMENT AND RETURNING VALUE 51

GpioDataRegs.GPASET.bit.GPIO0 =1;

for(;;)

{

GpioDataRegs.GPATOGGLE.bit.GPIO0 =1;

DELAY US(200000);

if(Task !=1){

goto mainloop1out;

}

}

mainloop1out :

val = Task;

return val;

}

#endif

#ifdef cplusplus

}

#endif /* extern ”C” */

#endif /* NEW C */

The source file which includes called function from Task1.h header learned in above

section. After including function to header to define this function as global using

extern.

Then other header file to it should be included. Don’t forget to put one blank line

at the end creating source or header file that may generate error.

4.3 Passing argument and Returning value

Now as given in the example section have definition of function named Task1 as

shown below.

52 CHAPTER 4. SPLITTING C PROGRAM

E.g.:

int Task1(int a)

{

.

.

return xyz;

}

The argument is into bracket as integer a which will give us value of written variable

into bracket in main.c file. At the end of code definition returns xyz which return

value to the function & the return type is defined at starting as integer so, it will

return integer value.

4.4 Advantages of Using Several Files

Advantages of Using Several Files The main advantages of spreading a program

across several files are:

Teams of programmers can work on programs. Each programmer works on a differ-

ent file.

An object oriented style can be used. Each file defines a particular type of ob-

ject as a data type and operations on that object as functions. The implementation

of the object can be kept private from the rest of the program. This makes for well

structured programs which are easy to maintain.

Files can contain all functions from a related group. For Example all matrix opera-

tions. These can then be accessed like a function library.

Well implemented objects or function definitions can be reused in other programs,

4.5. SUMMARY 53

reducing development time.

In very large programs each major function can occupy a file to itself. Any lower

level functions used to implement them can be kept in the same file. Then pro-

grammers who call the major function need not be distracted by all the lower level

work.

4.5 Summary

This Chapter deals with development of large C Program. When we are developing

large C Program we should divide our code functionality wise, because it makes

easier to edit code & detect the part of code which is not working.

54 CHAPTER 4. SPLITTING C PROGRAM

Chapter 5

Issues Faced During Development

5.1 Insufficient Memory

POST : In program almost PRAMH0 section of .text section is used now it needs

Figure 5.1: Insufficient memory error [6]

55

56 CHAPTER 5. ISSUES FACED DURING DEVELOPMENT

to extend memory.Is it possible to extend memory?

ANS : For getting more .text section we need FLASH memory.

5.2 Floating Number Error

POST : As shown in figure we can not get floating number, How can we expand it

upto 4 floating digits? & Error:identifier not found status

Figure 5.2: Floating point Error and identifier not found[6]

ANS : Problem we faced is even though adcsamp & ans is in float, we are getting

the division of adcsamp to Range b as integer.

The other Error identifier not found status is due to variable is not defined as global,

so value will not appear during run time.

Figure 5.3: Solved Floating error[6]

5.3. CMD FILE ERROR 57

5.3 CMD File Error

POST : while changing the built in value we getting error that ”Program will not

fit into available memory”.

Figure 5.4: Program will not fit into memory [6]

ANS : In this figure 5.2 .text section require more memory, as we have 4K memory

for L0 available we can extend it.

But after extending it from 900 to B00 value we get other error in reading variable

Figure 5.5: text section require more memory [6]

”Memory map is not readable”

& we had solved that error by changing the starting location of Next RAM ,because

58 CHAPTER 5. ISSUES FACED DURING DEVELOPMENT

that was Overlapping & error was occurring.

Figure 5.6: Solved Cmd Error[6]

5.4 ADC Stopped working

POST : Program structure is like in figure 5.6. We are initializing Adc as global

to code at main function than in first task for loop we are using ADC result from

adcresult0 register. But after complete task 1 ”for loop” when we come return to

MAIN function ”adcresult0” register stop to showing sampling value in task 2 ”for

loop” why?

ANS : In task 1 we have not initialized any peripheral, but at start of task 2 at code

start we have OFF all LED, we were using same GPIO port for ADC Triggering by

EPWM1A & LED control handling. So, as we execute the following code at start

of task 2 the GPIO0 was changed from EPWM to LED GPIO out as in code below

and that is why adcresult register was stop to showing result & ADC was Stopped.

GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 0; // 0=GPIO, 1=EPWM1A

5.5. INFINITE WHILE LOOP 59

Main Loop

End

Task 1

Task 2

Adc Result
sampling &

Condition check

Adc Result
sampling &

Condition check

Infinite for loop

Infinite for loop

Figure 5.7: Program Structure for ADC [6]

GpioCtrlRegs.GPADIR.bit.GPIO0 = 1; // 1=OUTput, 0=INput

So, Using the EPWM4A which is not going to used for other purpose GPIO.

5.5 Infinite While Loop

POST : During SCI transmission using F28027 we have written following line which

actually WAIT for XRDY=1 & program got stuck into infinite while loop

while(SciaRegs.SCIFFRX.bit.RXFFST != 1)

But During run it stop execution with ” SciaRegs.SCIFFRX.bit.RXFFST =4 ” &

Loop was stuck due to FIFO is not clear.

ANS : Their was problem in controlSUITE examples. so we have to change it

60 CHAPTER 5. ISSUES FACED DURING DEVELOPMENT

to ”while(SciaRegs.SCIFFRX.bit.RXFFST == 0) ” to clear FIFO.

It might possible that there were 2 or more characters in the FIFO and the example

was halting in the while loop and unable to read from the FIFO.

5.6 Summary

In This Chapter we have included error as the post that we had posted on TI

Community & answered by us. We have different module available with different

pin Configuration. so during Programming large software with many modules their

are possibility of error generation.

Chapter 6

Developed GUI

6.1 GUI developed for Test Jig

Development of GUI as shown in figure 6.1 for F28335 Delfino Controller as Test

Jig controller & in figure 6.2 F28027 Piccolo Controller as Chopper control card is

done with GUI Composer.

Delfino Controller as Test Jig will control SPS control card with F28x series MCU.

So, GUI of Test Jig will show value transmitted by delfino controller and set it. We

are monitoring the values of Frequency, IGBT, Temperature, Under Voltage, Over

voltage & Over current value. When their will be any data change, that will be

transmitted by SPS control card as Error Packet.

61

62 CHAPTER 6. DEVELOPED GUI

Figure 6.1: F28335 Test Jig Controller GUI

6.2 GUI developed for SPS Control Card

Figure 6.2: F28027 SPS Control Card GUI

6.3 Summary

This Chapter deals with GUI development on GUI Composer provided by CCS. We
can learn how to develop GUI for our application using JAVA Script. How can we
use Pre-processing & Post-processing function to see our desire value from range.

Chapter 7

Setup and Result

7.1 Experimental Outcomes

Development purpose SPS control module is tested with different available resistors

instead of Thermistor. Digital count in Table 7.1 shows value of voltage received at

ADC. As temperature increases value of voltage decreases.

Table 7.1: Temperature measurements

Sr
no.

Resistor Digital
Count

Voltage Temperature

1 3.3K 1774 1.2996 71
2 5K 2152 1.5766 60
3 10K 2765 2.0256 44
4 20K 3230 2.3663 24

During development voltage value is sampled with ADC available in DSP. ADC

module support range of 0 to 3.3v, so voltage divider is used to give input voltage

to ADC. Using the voltage divider voltage range from 0 to 1000v converted to range

0 to 3.3v as shown in Table 7.2.

63

64 CHAPTER 7. SETUP AND RESULT

Table 7.2: Voltage measurements

Sr
no.

Input Voltage Digital Count Voltage

1 2.96 4048 850
2 2.53 3448 724
3 2.09 2858 600

7.2 System setup for development

Figure 7.1: Dummy test setup with Test Jig & SPS control card

Development of Test Jig & SPS control card is simultaneously. Setup photo in-

cludes controller communication of F28335(Delfino) & F28027(Piccolo) Controller.

The blue color output is data transmitted by Test Jig controller & Response by

Piccolo Controller is in Yellow Color as shown in Figure 7.2.

7.3. RESULTS 65

7.3 Results

Generated PWM from Test Jig will be captured using ECAP module from F28x

series controller. ECAP takes time stamps during capture after that for duty cycle

calculation we have to do some operation on data which takes times. In fig 7.2 we

can see generated PWM of Test jig & SPS module, there is 180us delay that is not

tolerable.

Figure 7.2: EPWM Regeneration from F28x series DSP with ECAP

To reduce delay generated PWM from test jig will be captured using external in-

terrupt module from F28x series controller. External interrupt generate PWM by

setting and erasing GPIO as soon as interrupt received that gives real time response.

For conditional checking of PWM duty cycle we start CPU timer as interrupt re-

ceived. In fig 7.3 we can see generated PWM of Test jig & SPS module, there is

222ns delay that is sufficient & real time.

66 CHAPTER 7. SETUP AND RESULT

Figure 7.3: EPWM Regeneration from F28x series DSP with XINT

During real time PWM capturing, there is possibility of generation of high frequency

or undesirable signal that can damage circuit. high frequency between 1ms as shown

in fig 7.4 can be detected by timer interrupt and terminate our program.

Figure 7.4: high frequency detection by F28x series DSP

During the real time operation when IGBT switch A is off as shown in figure 7.5,

7.4. CCS DEBUG WINDOW 67

capacitor bank should be discharged for circuit protection. Discharge of capacitor

bank will be done by IGBT switch B. When IGBT switch is off we will switch on

IGBT switch B for small 3us for discharging capacitor bank.

Figure 7.5: EPWM generation for both IGBTs

7.4 CCS Debug Window

1 Piccolo - SPS Control Card Figure 7.6 is CCS Debug window of F28027 piccolo

controller. Expression tab is useful to shows continuous value of global variable.

Status, AdcBuf, Adc value, d1,d2 & range are included in Expression for contin-

uous monitoring.

2 Delfino - Test Jig Controller CCS Debug Window for Delfino Test Jig controller

as in figure 7.7 includes different value received from piccolo controller. Different

task can be operated by this Debug window.

68 CHAPTER 7. SETUP AND RESULT

Figure 7.6: CCS debug window for SPS Control card

Figure 7.7: CCS debug window for Test Jig

7.5. SUMMARY 69

7.5 Summary

this chapter presents the outcome/results of work. Photos of setup & photos of CCS

debug window for our project work has been included.

70 CHAPTER 7. SETUP AND RESULT

Chapter 8

Conclusion and Future Scope

8.1 Conclusion

Development of Software for Chopper Control Card is presented in this report.

Texas instruments provide C2000 Family provide low power & low cost controller.

F28335 Delfino controller is used in chopper control card development. This con-

troller provide temperature sensor, CPU timer, watchdog, EPWM, ADC, XINT &

SCI features,which is most suitable for chopper control card development. Devel-

oped Software allows state transition using UART Communication. Code composer

studio provide ControlSUITE which includes header files, Source files & libraries for

all Texas instrument’s Devices. JTAG Debugger Of Controller with XDS cable will

allow to real time debug in CCS debugger.

SPS Module can be controlled by DSP with accurate precision. Fast switching

in IGBT can be done by XINT. DC link voltage & IGBT current can be monitor

by ADC module for circuit protection. Using On-board intelligence, state of control

card can be monitored from Test Jig controller. Developed software for the chopper

control is tested with Field application module and Test Jig.

71

72 CHAPTER 8. CONCLUSION AND FUTURE SCOPE

8.2 Future Scope

Developed DSP software can be tested for multiple chopper modules in an integrated

manner. Further rigorous testing of software in field is essential to demonstrate

required performance.

Appendix A

Code Composer Studio guide

A.1 Structure of files

CCS Project Contains C Source, Assembly, Linker command file, DSP Configu-

ration & Libraries. CCS Project also require to configure Build Option & Build

configuration. Different CCS File structures & how to configure project is described

in below.

CMD File: Command Linker file includes two main section as Program memory

& Data memory. In CMD file Initialized Sections are declared as Flash or Program

memory while Uninitialized Sections are declared as RAM or Data Memory.

Example.cmd

{

PAGE 0: /* Program Memory */

FLASH: origin = 0x3E8000, length = 0x10000

PAGE 1: /* Data Memory */

M0SARAM: origin = 0x000000, length = 0x400

M1SARAM: origin = 0x000400, length = 0x400

}

In the CMD file above we have given program memory as page number 0 & Data

73

74 APPENDIX A. CODE COMPOSER STUDIO GUIDE

memory as page number 1.

Figure A.1: Section in memory [6]

In Figure A.1 we can see .ebss & .stack is initialized with RAM while .cinit & .text

Sections are initialized with FLASH in memory. In table A.1 initialized section

should be written into FLASH Or Program memory & Uninitialized sections should

be written into RAM or Data memory.

Table A.1: Compiler Section Names [7]

Sections Name Description Link Lo-
cation

Initialized
Sections

.text Code FLASH

.cinit Initialize Value FLASH

.econst Constant FLASH

.switch Table for Switch statement FLASH

.pinit Global Constructor FLASH
Uninitialized
Sections

.ebss Global & Static Variable RAM

.stack Stack Space RAM

.esysmem Memory for malloc function RAM

A.2. CREATING NEW PROJECT 75

A.2 Creating New Project

CCS Provide Control Suite software which includes libraries, header file & peripheral

source file.Control suite also include Texas instrumentation Compiler. To Create

new CCS Project we have to follow steps given below :

Step 1 First from Project menu select create New CCS Project.After that select tar-

get as ”2802x piccolo” for F28027 Launchpad & ”TMS320F28027”.For this

development board Connection available as ”Texas instrumentation XDS

100v1 USB Debug Probe”.After that give project name & select compiler

version. Then Click on finish.

Step 2 Now to add source file right Click on project and Click on ”Add Files”.Then

Go to location ” C:\ti\controlSUITE\device support\f2802x\v127\DSP280-

2x common\source” and add CodeStartBranch.asm, DefaultISR.c, SysC-

trl.c, PieCtrl.c, PieVect.c & necessary peripheral files.

Step 3 After that add file ”C:\ti\controlSUITE\device support\f2802x\v127\DSP-

2802x headers\source\DSP2802x GlobalVariableDefs.c” & ”C:\ti\controlS-

UITE\device support\f2802x\v127\DSP2802x headers\cmd\DSP2802x H-

eaders nonBIOS.cmd”.

Step 4 Then to add .CCXML file Right Click on Project ”NEW” then ”Target

Configuration File” & add File by Choosing appropriate Target Board.

Step 5 Now to configure project properties Right Click on Project ”Properties” then

go to Build− >C2000 Compiler And add Source File locations.

Step 6 After that to add linker location Right Click on Project ”Properties” then

go to Build− >C2000 Linker And add Source File Search paths.

Step 7 That write basic program into main.c File then build, debug & Resume to

Run Program on target board.

76 APPENDIX A. CODE COMPOSER STUDIO GUIDE

A.3 Build and Debug Project

When we build, debug & run the program on our target board the procedure take

place is shown in figure A.3.Code is written into editor. Now .cmd file added as

DSP/BIOS configuration. Compiler covert Source code into machine code or .asm.

After that Assembler Translates assembly language statements into target machine

code.Then Linker will link .asm file with DSP/BIOS Libraries,Run time Libraries

& generate .out file. This generated .out file will be given to Debugger.

Debugger can debug this file Using simulator(SIM), Development Support Kit(DSK),

Evaluation Module(EVM) Or Cross document Sharing(XDS) to DSP Board.

Figure A.2: CCS Work Flow

A.4 Flash Programming

Industrial product with DSP have in built flash program which runs on Power on.

In code composer studio for flash programming, we need to change F28x RAM.cmd

A.4. FLASH PROGRAMMING 77

file to F28x.cmd file. we need to first configure our device from project property as

shown in figure A.1.

Figure A.3: Property setup for flash programming

Functions that will be run from RAM need to be assigned to a different section.

This section will then be mapped using the linker cmd file.

#pragma CODE SECTION(eva timer1 isr, ”ramfuncs”);

#pragma CODE SECTION(eva timer2 isr, ”ramfuncs”);

#pragma CODE SECTION(evb timer3 isr, ”ramfuncs”);

// Copy time critical code and Flash setup code to RAM

// Memcopy should be added before initsysctrl function. MemCopy(&RamfuncsLoadStart,

&RamfuncsLoadEnd, &RamfuncsRunStart);

// Call Flash Initialization to setup flash waitstates

// This function must reside in RAM

78 APPENDIX A. CODE COMPOSER STUDIO GUIDE

InitFlash();

MEMORY

{

PAGE 0: /* Program Memory */

/* Memory (RAM/FLASH/OTP) blocks can be moved to PAGE1 for data alloca-

tion */

FLASHD : origin = 0x3EC000, length = 0x004000 /* on-chip FLASH */

FLASHC : origin = 0x3F0000, length = 0x004000 /* on-chip FLASH */

FLASHA : origin = 0x3F6000, length = 0x001F80 /* on-chip FLASH */

CSM RSVD : origin = 0x3F7F80, length = 0x000076 /* Part of FLASHA. Program

with all 0x0000 when CSM is in use. */

BEGIN : origin = 0x3F7FF6, length = 0x000002 /* Part of FLASHA. Used for

”boot to Flash” bootloader mode. */

CSM PWL : origin = 0x3F7FF8, length = 0x000008 /* Part of FLASHA. CSM

password locations in FLASHA */

ROM : origin = 0x3FF000, length = 0x000FC0 /* Boot ROM available if MP/MCn=0

*/

RESET : origin = 0x3FFFC0, length = 0x000002 /* part of boot ROM (MP/MCn=0)

or XINTF zone 7 (MP/MCn=1) */

VECTORS : origin = 0x3FFFC2, length = 0x00003E /* part of boot ROM (MP/MCn=0)

or XINTF zone 7 (MP/MCn=1) */

PAGE 1 : /* Data Memory */

/* Memory (RAM/FLASH/OTP) blocks can be moved to PAGE0 for program al-

location */

/* Registers remain on PAGE1 */

RAMM0 : origin = 0x000000, length = 0x000400 /* on-chip RAM block M0 */

RAMM1 : origin = 0x000400, length = 0x000400 /* on-chip RAM block M1 */

A.4. FLASH PROGRAMMING 79

RAML1 : origin = 0x009000, length = 0x001000 /* on-chip RAM block L1 */

FLASHB : origin = 0x3F4000, length = 0x002000 /* on-chip FLASH */

RAMH0 : origin = 0x3F8000, length = 0x002000 /* on-chip RAM block H0 */

}

SECTIONS

{

/* Allocate program areas: */

.cinit : > FLASHA PAGE = 0 // From FLASHA

.pinit : > FLASHA, PAGE = 0 // From FLASHA

.text : > FLASHA PAGE = 0 // From FLASHA

codestart : > BEGIN PAGE = 0

ramfuncs : LOAD = FLASHD, // From FLASHD

RUN = RAML0,

LOAD START(RamfuncsLoadStart),

LOAD END(RamfuncsLoadEnd),

RUN START(RamfuncsRunStart),

LOAD SIZE(RamfuncsLoadSize),

PAGE = 0

/* Allocate uninitalized data sections: */

.stack : > RAMM0 PAGE = 1

.ebss : > RAML1 PAGE = 1

.esysmem : > RAMH0 PAGE = 1 // From RAMH0

/* Initalized sections go in Flash */

/* For SDFlash to program these, they must be allocated to page 0 */

.econst : > FLASHA PAGE = 0

.switch : > FLASHA PAGE = 0

.reset : > RESET, PAGE = 0, TYPE = DSECT

vectors : > VECTORS PAGE = 0, TYPE = DSECT

80 APPENDIX A. CODE COMPOSER STUDIO GUIDE

}

F2812.cmd file define the memory block start/length for the F2812 PAGE 0 will

be used to organize program sections & PAGE 1 will be used to organize data

sections. Allocate sections to memory blocks. Codestart user defined section in

DSP28 CodeStartBranch.asm used to redirect code execution when booting to flash

ramfuncs user defined section to store functions that will be copied from Flash into

RAM.

.reset is a standard section used by the compiler. It contains the the address of

the start of c int00 for C Code. When using the boot ROM this section and the

CPU vector table is not needed.Thus the default type is set to DSECT.

A.5 Summary

During the beginning of development how to use CCS with launchpad is described in

this chapter. How to configure CCS for launchpad, how to run code & how to debug

program and view variable, graph & some features of CCS is shown in chapter.

Appendix B

GUI Development

B.1 GUI Composer

Code Composer Studio Provide GUI composer to develop graphical user interface.

To develop GUI is simple using drag & drop button, text box & all other stuff.

Back-end programming for pre & post processing function as shown in figure B.1 is

done in JAVA Script. To run GUI in real time script file needs to be added in project.

In this project values coming from Host is in decimal so we have defined Pre-

processing function into script file to convert it into Hex. After Showing value

to GUI we have to do as that was so as Post processing function we have to add

reverse function. We have developed GUI as shown in figure 6.1 for F28335 Delfino

Controller as Test Jig controller & in figure 6.2 F28027 Piccolo Controller as Chop-

per control.

81

82 APPENDIX B. GUI DEVELOPMENT

Figure B.1: GUI Composer

References

[1] Mandar Bhalekar & Umashankar, “Development Of a Research Platform for
Power Electronic Converter Modeling in Real Time F28335 Digital Simulation
Applications using eZDSP”, IEEE Transaction paper on Power Electronics pub-
lished in ICICES, Dec 2014

[2] Liran Katzir & Yakir Loewenstern “Implementation of a High Voltage Power
Supply With The Matlab/Simulink Embedded Coder”, IEEE Transaction pa-
per on Power Electronics published in Convention of Electrical and Electronics
Engineers in Israel, Jun 2014

[3] “Michael G. Giesselmann & William J. Carey “100-kV High Voltage Power
Supply With Bipolar Voltage Output and Adaptive Digital Control”, IEEE
Transaction paper on Plasma Science published in OCT 2014

[4] “TMS320F28027 PICCOLO Documents by TI”, [Online]. Available: http :
//www.ti.com/product/tms320f28027?qgpn = tms320f28027 Last Updated:
DEC 2013

[5] “C2000 Launchpad Tutor For Beginners ”, [Online]. Available: http :
//azimsgarage.blogspot.in/p/blog − page.html, Last Updated: Nov 2014

[6] Texas Instruments“MCU Design Days 2014 for C2000 ”, [Online]. Available:
https : //www.ti.com Last Updated: JUN 2014

[7] Texas instrumentation , sprt547 C2000 Piccolo Workshop.pdf, http :
//www.ti.com, JAN 2015

[8] Texas instrumentation , TMS320F28027 PICCOLO Documents by TI, http :
//www.ti.com/product/tms320f28027?qgpn = tms320f28027, JUL 2013

[9] Mandar Bhalekar and Umashankar S A Development of a Research Platform for
Power Electronic Converter Modeling in Real Time F28335 Digital Simulation
Applications using eZDSP, ICCPCT-2013

[10] “sprufn3d TMS320F2802x Piccolo System Control and Interrupts.pdf ”, [On-
line]. Available: https : //www.ti.com Last Updated: JAN 2015

83

	Declaration
	Certificate
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviation Notation
	Introduction
	Motivation
	Problem Statement
	Overview
	Project Block Diagram
	Customized UART Communication Protocol
	Task Handling

	Error Packing & Decoding
	Hardware & Software used
	Thesis Organization

	Literature Survey
	Research paper
	Architecture of C2000 Family
	Introduction to Piccolo Launchpad
	Low Power Modes
	Reset Circuit

	Different programming Style
	Summary

	Modules of F28x MCU used in project
	GPIO Module
	CPU Timer Module
	Watchdog Module
	Serial Communication Interface(SCI) Module
	Enhanced Pulse width modulation(EPWM) Module
	Analog to Digital Converter(ADC) Module
	ADC Mode

	Event capture(ECAP) Module
	External Interrupt(XINT) Module
	Summary

	Splitting C Program
	Header file
	Source file
	Passing argument and Returning value
	Advantages of Using Several Files
	Summary

	Issues Faced During Development
	Insufficient Memory
	Floating Number Error
	CMD File Error
	ADC Stopped working
	Infinite While Loop
	Summary

	Developed GUI
	GUI developed for Test Jig
	GUI developed for SPS Control Card
	Summary

	Setup and Result
	Experimental Outcomes
	System setup for development
	Results
	CCS Debug Window
	Summary

	Conclusion and Future Scope
	Conclusion
	Future Scope

	Appendices
	Code Composer Studio guide
	Structure of files
	Creating New Project
	Build and Debug Project
	Flash Programming
	Summary

	GUI Development
	GUI Composer

	References

