
TESTCHIP DESIGN AND
VERIFICATION AUTOMATION

Major Project Report

Submitted In Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

By

BHAUMIKKUMAR PATEL

(14MECE10)

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad - 382481
May-2016

TESTCHIP DESIGN AND
VERIFICATION AUTOMATION

Major Project Report

Submitted In Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

by

BHAUMIK PATEL
(14MECE10)

External Project Guide:

Mr. RAJESHKUMAR
IMMADI
Project Manager,
ST Microelectronics Pvt Ltd,
Greater Noida

Internal Project Guide:

Prof. Y. N. TRIVEDI
Professor,
Institute of Technology,
Nirma University

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad - 382481
May-2016

ii

Declaration

This is to certify that

1. The Project Report comprises of my original work towards the degree of Master of

Technology in Embedded System at Nirma University and has not been submitted

elsewhere for a degree.

2. Due acknowledgement has been made in the text to all other material used.

Bhaumik H Patel

CERTIFICATE

This is to certify that the Project Report entitled TESTCHIP DESIGN AND VERIFI-

CATION AUTOMATION submitted by BHAUMIKKUMAR PATEL (14MECE10),

towards the partial fulfillment of the requirements for the degree of Master of Technology

in ”Embedded Systems”, Nirma University, Ahmadabad is the record of work car-

ried out by his under our supervision and guidance. In our opinion, the submitted work has

reached a level required for being accepted for examination. The results embodied in this

major project, to the best of our knowledge, haven’t been submitted to any other university

or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Dr. Y. N. Trivedi Dr. N. P. Gajjar

Internal Guide Program Coordinator

Dr. D. K. Kothari

Section Head, EC

Dr. P. N. Tekwani Dr. P. N. Tekwani

Head of EE Dept. Director, IT

CERTIFICATE

This is to certify that the Project Report entitled TESTCHIP DESIGN AND VERIFI-

CATION AUTOMATION submitted by BHAUMIKKUMAR PATEL (14MECE10),

towards the partial fulfillment of the requirements for the degree of Master of Technology

in Embedded Systems, Nirma University, Ahmadabad is the record of work carried

out by his under our supervision and guidance. In our opinion, the submitted work has

reached a level required for being accepted for examination.

Mr. Rajeshkumar Immadi

Project Manager

ST Microelectronics Pvt Ltd

Greater Noida

v

Disclaimer

“The content of this thesis does not represent the technology, opinions, beliefs, or positions

of ST Microelectronics Pvt. Ltd., its employees, vendors, customers, or associates.”

vi

Acknowledgments

I would like to express my gratitude and sincere thanks to Dr. D.K.Kothari, Head of EC

Department, and Dr. N.P.Gajjar, PG Coordinator of M.Tech Embedded Systems program

for allowing me to undertake this thesis work and for his guidelines during the review process.

I take this opportunity to express my profound gratitude and deep regards to Prof. Yogesh

N. Trivedi, guide of my major project for his exemplary guidance, monitoring and constant

encouragement throughout the course of this thesis. The blessing, help and guidance given

by him time to time shall carry me a long way in the journey of life on which I am about to

embark.

I would take this opportunity to express a deep sense of gratitude to Project Manager Mr.

Balwant singh, Senior Project Manager , ST Microelectronics Pvt Ltd. for his cordial

support, constant supervision as well as for providing valuable information regarding the

project and guidance, which helped me in completing this task through various stages.

I would also thank to Mr. Rajeshkumar Immadi Our project manager, my Project

Mentor Mr. Kapil Juneja and Nilanjan Guha for always helping, give good suggestions

and solving my doubts and guide me to complete my project in better way.

Lastly, I thank almighty, my parents and friends for their constant encouragement without

which this assignment would not be possible.

Bhaumikkumar H PATEL

(14MECE10)

vii

Abstract

Purpose of TestChip is to verify the invented Technology and IPs added in System On

Chip(Soc) which implementation in silicon wafer. It includes all the IPs which are to be used

for Researched Technology or System On Chip(SOC) applications. TestChip provides post

silicon validation details included Library of Memory,RO,Standard-Cell,Analog or any other

IP. Before any SOC/ASIC Mass Productions, Test Chip gives us better silicon parameters

and testability.

Test Patterns are similar to test vectors except these are cycle based patterns. Patterns

for the testing are deliver to the Fabrication after the tape-out. These Patterns are almost

same except which IP are being tested so that to make these patterns automatically gen-

erated. Fulfillments of this tool gives better quality of test patterns,accurate and less time

consuming to generate. It also helps in quick verification of RTL/netlist of any block or

while chip.

RTL Generation is Generating Register Transfer Logic(RTL) of the multiple block in less

time period. To make Register Transfer Logic(RTL) of the BLOCK automatically generated.

They already have one automation for this but its using XML language for generate the

Register Transfer Logic(RTL). When tool crash because of the lack input and any other

reason its hard to debuge by designer. So develop one tool which is using tcl language

for generating Register Transfer Logic(RTL). This thesis presents a test chip methodology

and automatic generation of test pattern and Register Transfer Logic(RTL) to help achieve

fundamental goals.

Contents

Certificate i

Declaration ii

Cerificate iii

Cerificate iv

Disclaimer v

Acknowledgments vi

Abstract vii

1 Testchip Introduction 1

1.1 Testchip:- Concept . 1

1.2 Testchip Design Flow . 2

1.3 Expectations of Testchip . 3

1.4 Cost if bug detects at production time 4

1.5 Components added to Testchip . 4

1.6 Problem Statement and Its Solution . 4

1.7 Importance of Verification Environment Automation 5

1.8 About Project: Test Pattern Automation And RTL Generation Au-

tomation . 6

2 Standard cell And Memory IP 7

2.1 Standard Cell . 7

2.1.1 ALLCELL Block . 7

2.1.2 FDD Block . 8

2.1.3 Retention Block . 8

2.2 Memory IP . 8

2.3 Static RAM . 9

2.3.1 Single Port Random Access Memory (SPRAM) 10

2.3.2 DUAL Port Random Access Memory (DPRAM) 10

viii

CONTENTS ix

3 TestChip Architecture 12

3.1 Purpose Of Testchip . 12

3.2 Architecture of Testchip . 13

3.2.1 TOP LEVEL . 13

3.3 Standard cells . 15

3.3.1 ALLCELL TOP . 17

3.3.2 ALLCELL . 19

3.3.3 FDD . 21

3.3.4 RETENTION BLOCK . 23

4 Auto Test Pattern Generation Tool 24

4.1 Test Patterns of Standard Cell . 24

4.1.1 Flow of Test Patterns . 26

4.2 Need of Automation Tool . 27

4.2.1 Problem Statement and Its Solution 27

4.3 Tool . 27

4.3.1 Design sheet information:- . 28

4.3.2 LIB information sheet:- . 29

4.3.3 Feature of Tool . 30

5 RTL Generation Tool 31

5.1 Need of Automation Tool . 31

5.1.1 Problem Statement and Its Solution 31

5.2 Tool . 32

5.2.1 Feature of Tool . 32

6 Work Contribution and Result 34

6.1 Validation Flow . 34

6.2 Simulation Graphs . 35

6.2.1 SCAN 0, SCAN 1 and SCAN ALL 35

6.2.2 BYPASS MUX . 36

6.2.3 BYPASS SCAN . 37

6.2.4 FUNC SCAN AND FUNC MUX 38

7 Tools 41

7.1 Incisive unified simulator . 41

7.2 Shell Scripting . 42

Conclusion 43

References 44

List of Figures

1.1 Testchip Design Flow . 3

2.1 FDD Block Pin . 8

2.2 SINGLE PORT SRAM . 10

2.3 DUAL PORT RAM TYPE - 1 . 11

2.4 DUAL PORT RAM TYPE - 1 . 11

3.1 Maturity flow of Library and IP . 13

3.2 Testchip Architecture Block . 14

3.3 STD different level of heirarchy . 15

3.4 Top hierarchy . 16

3.5 ALLCELL top . 16

3.6 Input Block . 17

3.7 GP1 pinmap . 18

3.8 COMBO . 20

3.9 TRI . 21

3.10 FDD MUX . 22

4.1 Tool flow . 26

4.2 Tool structure . 28

6.1 Validation Flow . 34

6.2 ref chain flop for scan0 . 35

6.3 scan0 . 35

6.4 scan1 . 36

6.6 ref cahin bypass mux . 36

6.5 scan all . 37

6.7 bypasss mux . 37

6.8 bypasss mux . 38

6.9 bypass scan . 38

6.10 ref cahin func mux . 39

6.11 func mux . 39

6.12 ref cahin func scan . 40

x

LIST OF FIGURES xi

6.13 func scan . 40

List of Tables

7.1 NUC Command . 41

xii

Chapter 1

Testchip Introduction

RTL is large architecture of low level constructs called standard cell. This architecture is

taken from standard-cell library consisting of pre-characterized collections of gates. Standard

cell is typically particular to the planned manufacturer of the ASIC or System on Chip.

Standard Cell is fundamental cell which are used frequently in design of chip (e.g. OR,

AND, XOR, XNOT, Inverter). It includes Latch and Flip ops types of storage elements.

Common usage function are already includes in standard cells and used directly from stan-

dard cells library like element of XOR, XNOT, NAND, NOR. This library is specific to

particular technology.

In order to meet diverse SoC application requirements, it is not practical to design the

whole system from scratch. Hence the approach is to integrate complex blocks that have

been individually designed. These blocks are called intellectual property (IP) cores. An IP

core is a reusable unit of logic, cell, or chip layout design and is the intellectual property of

one party. IP cores may be licensed to another party or can also be owned and used by a

single party alone.

The SoC containing test-structures for memories, mixed IPs, standard cells and sensors

is used as test chip for post silicon validation. It provides assurance that functionality of

IPs, standard cells and other components are correct and its maturity is high enough for the

mass productivity.

1.1 Testchip:- Concept

There is large financial and time loss if any bugs or functional defect captured in new

SOC/ASIC production. To resolve where Errors are occurred after packaging or at produc-

tion level is very time consuming and might be unresolved for production level which suffers

financial loss as well as takes time.

Testchip is way to mature latest technology to verify its functionality of different IP

blocks and implementation of the logic on to the physical silicon chip. It makes good view

in term of fabrication process of latest technologies or any SOC’s Testability, Functionality

1

CHAPTER 1. TESTCHIP INTRODUCTION 2

and Reliability.

Testchip also includes extended Testability of the Chip itself so that time to market

consumes less and need inexpensive tester. It has very on-chip pattern generator and testing

algorithms for memories. It ensures the maturity of the invented technology on silicon and

finds out the fabrication defect for same.

Advantage

• It provides the best design flexibility for upcoming production of the chip.

• High performance and High density by resolving the problem which occurred at the

Testchip.

• Highlighting CAD vs Silicon results differences of different IPs

• Effort to make Low Power Consumption for Latest Technology.

• Implement the Best Test Environment for the Market Deliver Chips.

• Gives Less Financial loss if Technology has any fabrication incompatibility.

Limitation

• Silicon wastage because testchip is not in any SOC applications so testchip targets to

test as more as different IP in silicon area.

1.2 Testchip Design Flow

Technology development now not only driven to improve the circuit speed and density,

but also concentrating on reducing the power consumption. Power is emerging as the most

critical issue in system-on-chip design today so scaling would be mandatory and smaller

dimension circuit have been preferred which lesser and lesser nm technology is chosen. It is

important to have detailed understanding of the power consumption behavior of a chip.

The IC design process starts with a given set of requirements. After the development,

this initial design is tested against the initial design requirements. When these requirements

are not satisfied, the design must be improved. If such improvement is either not possible or

too costly, then the requirements must be revised and the IC design process re-starts with

the new modified requirements.

The failure to properly verify a design in its early phases typically causes significant and

expensive re-design at a later stage, which ultimately increases the time to market. Thus,

the verification of the design plays a very important role in every step. Fig.1.1 provides

a view of the Very large scale integration (VLSI) design flow based on schematic capture

systems. Although top-down design flow provides an excellent design process control, in

reality, there is no truly unidirectional top down design flow. Both top-down and bottom-up

CHAPTER 1. TESTCHIP INTRODUCTION 3

Figure 1.1: Testchip Design Flow

approaches have to be combined. For instance, if a chip designer defined architecture without

close estimation of the corresponding chip area, then it is very likely that the resulting chip

layout will exceed the area limit of the available technology. In such a case, in order to fit

the architecture into the allowable chip area, some functions may have to be removed and

the design process must be repeated. Thus, it is very important to feed forward low-level

information to higher levels (bottom up) as early as possible.

1.3 Expectations of Testchip

As stated above that Testchip is chip to target testing of different IP in silicon wafer be-

fore any mass productions in SOC Integration/any new technology to set up for production.

Testchip design flow helps to design flow of chip mass productions because of new technology

cells and library is not mature at production level. The cycle time of the Testchip has to

be tight so that necessary action can be taken to improve the IP or flow before the actual

product out to the market. Design flow of testchip schedules from 1 to 4/5 months depending

on the complexity of testchip.

CHAPTER 1. TESTCHIP INTRODUCTION 4

1.4 Cost if bug detects at production time

SOC fabricates for mass production without made testchip and on silicon validation

specification. Large Financial loss has to be suffered for company if any functional errors

or bugs occur. It might be solved sometimes any minor errors at packaging level like any

output have attenuated logic level.

The Pentium FDIV bug was a bug in the Intel P5 Pentium floating point unit (FPU).

Because of the bug, the processor would return incorrect results for many calculations used

in math and science. The error was rarely encountered by users. Intel were criticized very

heavily and ultimately recalled the defective processors.

1.5 Components added to Testchip

• Memory IP

• Standard Cell

• Analog Mixed IP

1.6 Problem Statement and Its Solution

Test chip utilize before usage of any of IPs in SOC application, it would be tested first in

silicon chip and its functionality is verified for physical silicon. Test chip is used for detailed

information of the post silicon validation and used for better implement logic to the physical

silicon chips. Therefore, SOC integration starts after testify with test chip. There is any

delay in test chip development as SOC will have to be delayed. There is challenge to reduce

time for test chip. It reduce time to market SOC or ASIC if it may reduce the time for test

chip.

Any SOC/testchip reduce time to market by how fast verification is performed so reduce

time to verified the Design of Test Chip is very important. Design of testchip is almost

reached at least time. Challenge is be to verified testchip so that we can ensure that SOC

might have been right functionality except any fabrication defects.

By Introducing AUTO TEST PATTERN GENERATION TOOL, It generates the test

patterns automatically by giving the Design mapping Document of IP and Design activation

IP Documents. Design mapping Document has the mapping information that which top

pins related to the IP pins at the low level hierarchy and their execution cycle file values

of top pins. Design activation IP Document has its block select value which used for active

particular block and its down hierarchy block called as CUT where actual IPs and their

supported driven blocks. Design mapping Document also has input data bus width and

address bits.

CHAPTER 1. TESTCHIP INTRODUCTION 5

Basically Test chip have different LIB cell IP. Every time test patterns have to written

according to the Test chip. Now After developing AUTO TEST PATTERN GENERATION

TOOL, Patterns are related to LIB not TEST CHIP so it would be easy to maintain patterns

algorithm temple according to LIB because LIB cell IP are almost repeatedly in all TEST

CHIP.

Tool makes the Patterns to not relate to Specific Test chip because the top of TEST CHIP

always being changed, not Standard cell LIB IPs. Design Mapping Document of Specific

Test chip is provided by the Test Chip Developers which are used to generate the mapping

files in the patterns and other files and algorithms are always being generic to Standard cell

LIB IP. Tool has the list of the patterns of algorithms and list of LIB information those are

being likely to generate.

For RTL generate of the standard cell library they already have one tool for generate

the RTL for Block. But on depending upon the changes include in .lib(synopsys standard

format) file its make difficult recognize type of cell and segrate the cell information. Because

all Tool used XML language for the generating RTL. As some changes in .lib file its also

reflect that we have to change the tool respective. as language used is not as easy to learn

which lead to include one automation engineer to maintain that tool. Also our team Testing

standard cell which not include same strategy for testing. So they need to include that

feature for future development if customer ask for that.

So I had developed tool which take input like some standard file (.lib and .db). and use

the same tool(Design Compiler and Prime time) which can read that type of file and use

language which is easy to understand by designer(tcl and shell). As some changes include as

tool development (Design compiler and Prime time) its will not reflect for identify the cell

type and its pin information.

As they are testing the different library like SVT, LVT. Those type of library we can not

all combine. Also there are some different SPEC for testing the cell as per requirement we

combine some library make one block for that cell.

RTL Generation Tool generate RTL of Standard Cell Test Chip automatically by giving

library file (.lib and .db) for which we want to generate the RTL for Testing. Design

document has library information with some reference library and reference cell like AND,

OR, XOR, MUX, FLOP, CLOCK GATING CELL and BUSKEEPER cell. Design document

has information about generate the RTL of the different block like for which library we want

to combine the library make one block for testing.

1.7 Importance of Verification Environment Automa-

tion

As Testchip design flow is very tight and short, from Design, implementation, verification

and sign-off complete very quick. As Verification is very time consuming depending on the

CHAPTER 1. TESTCHIP INTRODUCTION 6

complexity of design. Verification would be made quickly if test patterns (test bench) for

designs are created automatically. This type of automation is very time saving and effective

for verification. Also, Quality of Verification is very much improved.

1.8 About Project: Test Pattern Automation And RTL

Generation Automation

Testing semiconductor cell is increasingly important today because of the high density of

current cell chips. In this thesis report we investigate on the various functional fault models

present for todays cell technology and discuss about the ways and means to detect these

faults. This tool generate scan pattern for any lib. This pattern test on testchip which is

design for any particular LIB.

Writing RTL of the Standard cell Test Chip manually takes too much time and design

cycle of any IP they cann’t make. So its require to make its automated for writing RTL of

design. if there is some change in spec after create RTL manually which will reflect in the

making whole design new. This will not help for testing any IP so its necessary to write

RTL of design automatically. I proposed with one solution to my sir that we can use tool

like Design compiler and Prime time which read standard cell file which contain information

about cell delay and functionality. if they standard cell team going to use different type of

the version for creating .lib and .db file according to that version we use same for separate

the cell which cell is corresponding to which category. For this is use some design compiler

command for it. After separation of cell i write of RTL of testchip using C shell language.

Chapter 2

Standard cell And Memory IP

2.1 Standard Cell

Standard Cell is fundamental cell which are used frequently in design of chip (e.g. OR,

AND, XOR, XNOT, Inverter). It includes Latch and Flip ops types of storage elements.

Common usage function are already includes in standard cells and used directly from stan-

dard cells library like element of XOR, XNOT, NAND, NOR. This library is specific to

particular technology.

Test chip contains the whole standard cells library in post silicon validation. A standard

cell library is a consolidated data used in designing a SOC (system on chip). It is a collection

of low level logic functions such as AND, OR, INVERTER, flip-flops, latches and buffers.

These cells are realized as fixed height variable width full custom cells. The key aspect

with these libraries is that they are of a fixed height, which enables them to be placed in

rows, easing the process of automated digital layout. The cells are typically optimized full

custom layouts, which minimize delay and area. Full-custom design is no longer feasible

as Complexity of the design is continuously increasing. Standard cell contains layouts and

power calculations.

To meet these test specifications, Presently have 3 kinds of STD cell block architectures:

• ALLCELL Block

• FDD Block

• Retention Block

2.1.1 ALLCELL Block

There can be several groups present at the top, which will constitute to groups G1, G2

etc. Designer can decide total number of libraries in a group based on some rules. The

output of these groups which is DATAOUT is given to Output Block. There is muxing of

7

CHAPTER 2. STANDARD CELL AND MEMORY IP 8

logic present in the Output Block which selects the suitable group output. The structure of

Output block is not fixed and it depends on the number of libraries present in each group.

Thus the final ALLCELL Top block will be giving an output which is DOUT.

2.1.2 FDD Block

FDD block was originally used for flops that have dual edge triggering capability. Now

this block is also used for flops with some other special features and critical than the normal

flop. Library is instantiated huge no. of times (1024) on a testchip.

The dual-edge triggered flip-flop exhibits low delay and small power consumption be-

cause the clocking is done at half the clock frequency as compared to single-edge triggered

storage element. For these and some other special flops, there is requirement of large no. of

instantiation. Also, the library is very small (24 -36).Hence, we cannot use SEQ block of

these cells.

In FDD architecture the whole library is present in the place of CUT of ALLCELL block

as shown in fig 2.1. Thus a whole library shares a Ref cell which takes the muxed output

from the library. This block is then repeated as per the requirements.

Figure 2.1: FDD Block Pin

2.1.3 Retention Block

Retention block is used to test Retention flops which retain their data.

Architecture and connectivity wise this block is just same as FDD block. Separate block

other than FDD is used for these flops because the SLEEP pins of these flops have to be

routed through always on cells.

2.2 Memory IP

SOC integration is not possible of without any memory component. Memory IP is very

vital part of SOC and any reason of failure of memory IP result SOC application failure.

Memory is being different types based on SOC application.

CHAPTER 2. STANDARD CELL AND MEMORY IP 9

Semiconductor Memories are classified according to the type of datastorage and the type

of data access mechanism into the following two main groups

• Non-volatile Memory (NVM) also known as Read-Only Memory(ROM) which retains

information when the power supply voltage is off. With respect to the data storage

mechanism NVM are divided into the following groups:

– Mask programmed ROM. The required contents of the memory is programmed

during fabrication,

– Erasable PROM (EPROM). Data is stored as a charge on an isolated gate capac-

itor (floating gate). Data is removed by exposing the PROM to the ultraviolet

light.

– Electrically Erasable PROM (EEPROM) also known as Flash Memory. It is also

base on the concept of the floating gate. The contents can be re-programmed by

applying a suitable voltages to the EEPROM pins. The Flash Memories are very

important data storage devices for mobile applications.

• Read/Write (R/W) memory, also known as Random Access Memory (RAM). From the

point of view of the data storage mechanism RAM are divided into two main groups:

– SRAM (Static Random Access Memory)

– DRAM (Dynamic Random Access Memory)

Our Targets for test chip are SRAM and ROM memory. SRAM used as cache memory

in micro-controllers , like the primary caches in powerful microprocessors, such as the x86

family, and many others,to store the registers and parts of the state-machines used in some

microprocessors on application specific ICs, or ASICs (usually in the order of kilobytes).ROM

is used extensively in graphic cards, hard disks, DVD drives, TFT screens.

2.3 Static RAM

The memory cell is a 6 transistor circuit which is a flip flop comprising two cross-coupled

inverters and two access transistors, the access transistors turn on when the word line is

selected (high) and its voltage rises to Vdd, and they connect the flip flop to the bit lines.

Sizing of the transistors in the memory cells is very important especially for speed and chip

cost.

The sense amplifier is important in the total performance of the SRAM chip since the

sense delay time directly affects the access time. Sense amplifier is used to sense the small

changes in voltage that results when a particular cell is switched onto the bit line. One stage

differential pair of sense amplifier is utilized here. The sense amplifier circuit is controlled

by a clock signal, which is synchronized with the pre-charging and word-line signals.

CHAPTER 2. STANDARD CELL AND MEMORY IP 10

• TYPE OF SRAM:-

– Single Port static Random Access Memory (SPRAM)

– Dual Port static Random Access Memory (DPRAM)

2.3.1 Single Port Random Access Memory (SPRAM)

Single Port SRAM is simple SRAM contains single port to used for read and write op-

eration as shown in fig 2.2. Clock pin , read and write operation are perform with its logic,

is positive edge trigger. Every Posedge reflects the Input data bus to memory with address

bus and respective of read or write signal.

• Memory has logic low control pin of CSN and WEN.

• WEN - Write Enable logic low Write when Logic low otherwise read.

• CSN - Chip select logic low Chip selected Write when Logic low otherwise disable.

• Memory has SLEEP which is used to switch off peripheral. Memory also has test

mode,scan chain pins,special testing pins.

Figure 2.2: SINGLE PORT SRAM

2.3.2 DUAL Port Random Access Memory (DPRAM)

DUAL Port SRAM gives advantage of read and write perform simultaneously by adding

extra data bus, address bus and extra control signal.In some application like Video RAM , El-

evators to Robot Control, Commercial Aircrafts to Unmanned Flight Controls, Surveillance

cameras to Night vision systems.Dual Port Memory has increased bandwidth approximately

2x the speed of a similar single port RAM.

CHAPTER 2. STANDARD CELL AND MEMORY IP 11

DUAL Port Random Access Memory TYPE-1

This type of dual port memory has only one data port though it contains read and write

different address bus as well as different chip selection bit as shown in fig 2.3. It has one

write enable signal common for both.

When any address

Figure 2.3: DUAL PORT RAM TYPE - 1

DUAL Port Random Access Memory TYPE-1

This type of dual port memory has two data port though it contains read and write

different address bus as well as different chip selection bit. It also contains different write

enable signal which gives permission to read and write at a time.

Memory has two data inputs port , two cheap selection enable , 2 write enable , 2 Address

Bus as well as 2 Output Data ports. It is same like two SPRAM (Single Port SRAM) are

going to attached together.

DUAL PORT SRAM port is independent of each other. Both port have their own WEN

and CSN signals as well as their operating frequency.

Figure 2.4: DUAL PORT RAM TYPE - 1

Chapter 3

TestChip Architecture

3.1 Purpose Of Testchip

Test chip is single chip contains different type of IP blocks which includes for silicon

qualification and functionality test. It has RAM and ROM type memory includes single,

dual port RAM. It has Memory-BIST and BISC for easy testing Methodology.

BIST has in-built Memory testing algorithms which enable by the registers performs the

memory testing algorithms to all Memory IPs. Then output gives the bad and repair signal

for that particular memory.

Test chip is special purpose silicon Qualification chip which performs too many testing

on implemented blocks. It has tested with different Power, voltage and temperature. It has

radiation test, life time test which ensures how to improved yield of our product. As much

as CAD level data and actual data correlated that let yield and productivity of chip goes to

high.

The list of blocks which includes in Test chip are as below

• Memory Blocks

• PLL Blocks

• Standard cell Blocks and RO Chain Blocks

Testchip is needed to give post silicon validation parameter to our customer. Testchip

is testify that our IP, standard cell Library, Analog and mixed IPs performs normal ex-

pected functionality. Ideally, Testchip should be made first before any Maturity level of any

technology library or SOC Integration but Practically TestChip will be made parallel with

SOC integration. Test chips testing result and post silicon data comes before SOC final

implementation. SOC modification does if TestChip results reflect it.

Flow of Maturity of Library is shown in fig 3.1 below :-

12

CHAPTER 3. TESTCHIP ARCHITECTURE 13

Figure 3.1: Maturity flow of Library and IP

• First step: - Define a new technology platform. There is no specification at this time

and no library component. It takes list of component from old library.

• Second step: - Next, the specification is set and it includes all component of new

technology platform (process, libraries, CAD tools) After Design is completed with

help of library cells and components. Layouts and characterizing performed at this

level. Some other components might be defined later also.

• Third step: - This level, the design are validated on the silicon. Here the Functionality

and characterizing of library by testchip.

• Fourth step: - At last level, Testability is defined very well. It makes easy to test and

must take less time. Yield and productivity must increase of chip. Library and IP is

certified at this step with post silicon data.

Testchip is full custom chip from specification to tape-out as well as fully testable so

that TestChip contains some of features give below which used accurate and speedy design

generation. Automation of Design also can be used if these feature available.

• Repetitive design across Memblock

• Design Re-use and standardization

• Reduction of manual effort

3.2 Architecture of Testchip

3.2.1 TOP LEVEL

TestChip Architecture is shown as in fig 3.2 above with TOP Level hierarchy. Their func-

tionality are given below

CHAPTER 3. TESTCHIP ARCHITECTURE 14

Figure 3.2: Testchip Architecture Block

• Input Muxing :- Used to take input from external world passing to downwards

• TOP Register Banks :- Register Bank has particular enable pins and IP selection pins

of Memblocks and any other blocks

• CLK Assembly :- This block is useful for mapping which clock is used specific memblock

and IP.

• BIST Central Controller :- BIST Controller controls all the signals which carried to

BIST Wrapper around every Memory IP.

• Output Muxing :- This block is responsible to carried away output bus to the padframe.

• PIPE-MBG :- Pipling used for operating faster clock ans MBG(Macro Backgroung

Logic) is used for generation of different type input combination.

• IG-Gating :- Memory has special IG pin used for blocking input data to the memory

pins when enable.

• Output Muxing :- This block is responsible to carried away output bus to the padframe.

From TOP of TestChip, there are many blocks and blocks are divided as per design. For

any selection of Blocks, BLOCKSEL [N-1:0] Register is placed in TOP Level of Testchip,

where N is maximum block number. How to select BLOCKSEL is described after this

section. For more testability, boundary scan is added to the top level input and output pins.

CHAPTER 3. TESTCHIP ARCHITECTURE 15

3.3 Standard cells

Below figure 3.3 show different hierarchical level of Standard cell architecture.

Top level consists of the input block, output block and number of the Group G1, G2 etc.

Designer can decide total number of libraries in a group based on some rules.

H2 hierarchy is further sub divide of the different group G1, G2 etc. it consists G1 R0

G1 CTRL G1 R90 block.

H3 hierarchy is sub divide of the G1 R0 and G1 R90 Block. It consist different libraries.

Figure 3.3: STD different level of heirarchy

CHAPTER 3. TESTCHIP ARCHITECTURE 16

Figure 3.4: Top hierarchy

Figure 3.5: ALLCELL top

CHAPTER 3. TESTCHIP ARCHITECTURE 17

3.3.1 ALLCELL TOP

There can be several groups present at the top, which will constitute to groups G1, G2

etc. Designer can decide total number of libraries in a group based on some rules. The

output of these groups which is DATAOUT is given to Output Block. There is muxing of

logic present in the Output Block which selects the suitable group output. The structure of

Output block is not fixed and it depends on the number of libraries present in each group.

Thus the final ALLCELL Top block will be giving an output which is DOUT.

I BLOCK

The ALLCELL TOP consists of Input Block, G1, G2 etc. and an Output Block. The

Input Block is an interface block which is made up of buffers as shown in fig 3.6. The width

of the inputs given to these buffers is as per the specification file provided to the designer.

The output of this I Block is given as the input to various groups formed at the TOP.

Figure 3.6: Input Block

GP1

Controller which is a FSM (Finite State Machine) along with G1 R0 and G2 R90 together

forms a group called G1. This G1 is a group formed at the TOP. There can be several groups

formed at the TOP based on the necessity.

The segregation of Libraries in different groups is of special importance. Following are

the points that are to be taken care while creating the library groups:

• Separate netlist can be generated for these groups; hence those libraries which require

dedicated power supply should be kept in Separate group.

CHAPTER 3. TESTCHIP ARCHITECTURE 18

• Libraries which cannot be routed together should be kept in separate groups.

• The no. of library instances in a group is limited to 32(16 each in R0 & R90).

Figure 3.7: GP1 pinmap

G1 R0

One level above (GLOBAL CELL) for libraries will be an Interface Unit. The Interface

Unit will have a corresponding INI and RTL. The INI file contains the information regarding

how the exporting is done at the top. The RTL file will be containing a module that defines

the various inputs & outputs with their exact bus width as given in the specification.

There can number of libraries present which are termed as Lib1, Lib2, Lib3 etc. and each

library can have several instances depending on the requirement (Max. 4). Below diagram

shows 2 libraries (Lib1 and Lib2) have 2 instances each. The GP1 R0 (which is group formed

at the top) will have a Reference Unit which will be having inputs such as CP, Cut Data1

and Ctrl. The no. of library instances in a group is limited to 16.

G1 R90

G1 R90 is at same level of hierarchy as G1 R0. The no. of library instances in R90 &

R0 orientation are provided in the input.csv.

CHAPTER 3. TESTCHIP ARCHITECTURE 19

REFERENCE UNIT

The Reference Unit consists of Reference Flop, Reference Mux, Reference Buffer, Refer-

ence and/or gate. The most reliable cell in the library is used as a Reference. The output of

the library1 is MUXOUT & QOUT which together forms DOUT1. Thus DOUT1, DOUT2

etc. goes into Output Mux wrapper. The four bits coming from MUXOUT and four bits

coming from QOUT that output is given to Output Mux Wrapper. Inside the Output Mux

Wrapper there are muxs used along with MUX CTRL 10th and 11th bit used for select

line. This is done so that at a time only 2 bit output comes from the output of two muxs

depending on the type of cells.

OLT Controller

OLT controller is a FSM which enables the operation life test [OLT] of STD cells. It

contains an FSM which increments Input data going to the CUTs, updates MUXCTRL of

the STD cell block libraries, and compares their outputs.

If the output obtained from any of the CUTs is found faulty, it flags a BBAD signal.

When outputs have been compared for all cells (by varying MUXCTRL), for all the possible

input combinations, BEND signal is generated indicating the end of OLT test (1 loop). This

BEND signal is then again lowered to 0, to start another loop of testing. This way, Testing

continues till the OLT time.

3.3.2 ALLCELL

The basic cells for ALLCELL are COMBO, SEQ, TRI, and CBUF. The main difference

b/w these units are the type of CUTS (cell under test).

COMBO

This contains cells which include AND, OR, INVERTS, BUFFERS etc. and these cells

are called as CUT (cell under test). The basic architecture is shown in fig 3.8.

Main components of this unit are:

• Cell under test [CUT]

• Reference cell

• Outmux

These components are connected in the way as shown. Presently all the Cuts share the

inputs. Outputs from these cuts are applied to the D0 input of the bypass mux. Bypass

mux, as the name suggests, is given a bypass input at D1. Through this input we can test

the D-Q path of ref flop to which the output of bypass mux is applied.

CHAPTER 3. TESTCHIP ARCHITECTURE 20

Reference cell comprises of a bypass mux and a flop. Ref flops are connected in a scan

chain such that, Q output of each flop is connected to TI Input of next flop. The no. of ref

flops for each CUT depends upon type of block i.e. [Allcell, FDD]

Figure 3.8: COMBO

SEQ

In SEQ the cells are flops. CP¡0¿ from Interface unit is given to these flops as clock input.

CP¡1¿ from Interface unit is given to Reference flops as clock inputs. Hence clocks of CUTS

and Ref cells are independent from top.

The reset used in SEQ will be present in CUT DATA2 bus (this bus contains extra pins,

special signals). The TI (Test Input) and TE (Test Enable) is present in Test Ctrl bus.

There is also a Reference Cell at the output. Rest of the components and paths in SEQ

block are same as in COMBO.

TRI

TRI block contains tri state cell as CUTS. The tri state cell has an enable E and

CUT Data1 as input. The output of the tri cell is given to a bus keeper as well as to

a mux of the Reference Cell. Consider if there are two thresholds zero and one then if

an intermediate value occurs the bus keeper keeps the previous stored logic. Rest of the

components and paths in SEQ block are same as in COMBO.

CHAPTER 3. TESTCHIP ARCHITECTURE 21

Figure 3.9: TRI

CBUF

The Clock gating cells are kept in CBUF unit of ALLCELL block. A basic Clock gating

cell has 3 inputs, E (Enable), TE (test enable), and CP (clock input).

E & TE do the same task of enabling the clock propagation through the cell. Both these

inputs are required in the cell because clock gating enable has to be top-controlled in test

mode besides being internally generated in functional mode. Both these inputs come from

CUT DATA2. CP input comes from CP [0] of interface unit.

In terms of connectivity of other components, CBUF is same as COMBO or SEQ.

3.3.3 FDD

Basic FDD structure contains 3 units:

• FDD INTERFACE

• FDD MUX

• FDS

FDD INTERFACE

FDD interface, as the name suggests provides an interface b/w top and FDS block con-

taining the cells.

CHAPTER 3. TESTCHIP ARCHITECTURE 22

Main functions of this block:

• It provides separate TI inputs to all the FDS cells.

• Provides Blockselect logic to select a particular cell of FDS.

• Provides Blockselect gated Clocks to FDS cells in normal mode, in test mode CP is

mapped to all the cells.

• Provides the muxing bw Q & TQ outputs of the FDS cells.

FDD MUX

FDD MUX is the muxing structure present inside FDD unit. It takes MUXCTRL IN-

OUT BLOCK MUXCTRL [13:8], as select inputs (same as the block sel inputs in FDD

interface). Depending upon these bits, QOUT [35:0] from FDD interface is muxed. The

single output MUXOUT then goes to the Ref cell of that particular FDD unit.

Thus the FDD unit containing the above three sub blocks is replicated no. of times

(specified on the spec. sheet). This way, we have whole library instantiated no. of required

times.

Figure 3.10: FDD MUX

FDS

FDS structure contains the whole library of Cells. It contains another buffer hierarchy

of dummy block, one for each cell, interfacing bw the FDS hierarchy and cells inputs and

CHAPTER 3. TESTCHIP ARCHITECTURE 23

outputs. Separate TI inputs are provided from FDD Top hierarchy. Both Q & TQ outputs

are taken out of each cell, and taken to the top of FDS hierarchy.

3.3.4 RETENTION BLOCK

Retention block is used to test Retention flops which retain their data. Architecture and

connectivity wise this block is just same as FDD block. Separate block other than FDD is

used for these flops because the SLEEP pins of these flops have to be routed through always

on cells.

Chapter 4

Auto Test Pattern Generation Tool

4.1 Test Patterns of Standard Cell

Test Patterns require to access to testchip at time of testing. These are predefined cycle

based patterns which are logic low or logic high input value depending on particular pattern.

One test pattern is related to one LIB targeted with selecting the respective Standard cell

library and their related Mode Selection. Test Patterns give strobing to the output so tester

can expect ideal logic value comparing with actual logic value coming.

Test Patterns are written with cycle base language developed by STMicroelectronics.

These patterns are delivering to the Testing team for silicon testing of Test chip. Test

patterns of any function faults have been written with algorithm basics so that Tester at

testing time need not larger size of memory whereas for ATE (Automatic Test Equipment)

does require.

Test Pattern is input combination which can drive chip and can tested the functionality

of the chip. Test patterns are given to the Fabrication Lab so that their testing engineer

would be fired these test patterns and ensures that silicon chips have not any physical defects

or faults. The good and bad chips are filtered out. Faulted TestChip are used for the faults

and physical defect analysis. There are different test patterns algorithms are used for these

testing like example Scan0, Scan1, Scan All BYPASS MUX, BYPASS SCAN, FUNC MUX

and FUNC Scan.

Advantage of Test Pattern

• Test Vectors are not needed due to Usage of Test Pattern.

• Tester has lesser size of memory so Test Patterns overcome tester limitation.

• Reusable of cycles which part of Test Patterns.

• Ensures good testing quality.

24

CHAPTER 4. AUTO TEST PATTERN GENERATION TOOL 25

• Testchip Test Patterns are in written in STMicroelectronics with help of the utile

Language which is cycle based language. It requires the entire input chip pin has logic

value. It ensures that any of TOP pin does not keep floating because tester does not

’X’ as well as can ambiguous the output of the chip.

• Loops are used with given pin logic value with every time clock is given and toggles in

cycles which easily debugged by the Test Engineer.

• Cycle is combination of driven input value. When main algorithm file use EXE ”Cycle

name”, Cycle of ”Cycle name” is executed and drives values to input pins. Different

Cycle file have to been used for different modes.

• This utile language is converted into Verilog which used for the simulation and debug

these test patterns at Simulation level.

• After testing the Chip, testing output would be forwarded to the design team and

verify the CAD level chip and testing chip output.

• Testchip give better fabrication chip defects and fault models for latest technology

development and gives low financial loss if technology is not reliable and stability.

Test Patterns supported files functionality

• First step to define the constant file which has constant that are used in algorithm at

any stage. It also has clock cycle time and other time constant defined.

• Second step to define mapping pin information, in test chip standard cell pins mostly

same but their pins are varied with top level mapping, so every time to make a pattern

is very tedious job. To define compiler wise mapping and its algorithm is most practical

and convenient way.

• Third step to define variables those are used later in the algorithms and give the

defaults value to their.

• After variable definition writing the procedure files which are used to define value to

TOP Pins.

• Next to define cycles depend on Mode where each every cycle has different pin values

according to the functionality.

• Main algorithms is defined the pins of top and gives it value according to algorithm

iteration or as per the functionality demands. Cycle passes these values to pins and

clock is driven after these.

• This repetitive manner of algorithm executes until the proper functionality is not

verified.

CHAPTER 4. AUTO TEST PATTERN GENERATION TOOL 26

4.1.1 Flow of Test Patterns

In Test Pattern, above figure showed the way of pattern written, here detailed about how

these patterns are worked with design.

• First the constant, variable, mapping, procedure files have to defined.

• Starting with algorithm, first Reset High and Reset Low cycle executes which give

High and low logic at reset respectively.

• After this Block selection is mandatory. Block selection is done with data pins and

some of the address pins.

• Next LIB selection is mandatory. LIB Selects based on the block indexing so same

value (indexing value) have to pass for selection of LIB though from TOP side LIB

Number is not as same as Index value.

• After selection of LIB, Providing the mode selection value with same methodology of

data pins.

• Test chip is now accessible to standard cell or any other IP to perform the operation

on it.

Figure 4.1: Tool flow

CHAPTER 4. AUTO TEST PATTERN GENERATION TOOL 27

4.2 Need of Automation Tool

• Lesser time to generation of automation Pattern.

• Quality of Test Patterns are very much improved due to every single patterns are

verified at silicon level.

• Similar Automated Test patterns(conversion to Verilog testbench) utilized in quick

validation of RTL and netlsit of Design because this tool only need design document

which deliver when RTL is ready.

4.2.1 Problem Statement and Its Solution

SOC integration starts after the test chip or parallel with testchip design. There is any

delay in test chip development as SOC will have to be delayed. There is challenge to reduce

time for test chip. It reduce time to market SOC or ASIC if it may reduce the time for test

chip.

Any SOC or Test chip reduce time to market by how fast verification is performed so

reduce time to verified the Design of Test Chip is very important.

Design of Test chip is almost reached at least time. So Challenge is be to verify Test Chip

so that we can ensure that SOC might have been right functionality except any fabrication

defects.

By Introducing AUTO TEST PATTERN GENERATION TOOL, It generates test pat-

terns automatically by giving the Design mapping Document of IP and Design activation IP

Documents. Design mapping Document has the mapping information that which top pins

related to the IP pins at the low level hierarchy and their execution cycle file values of top

pins. Design activation IP Document has its block select value which used for active partic-

ular block and its down hierarchy block called as LIB where actual IP and their supported

driven blocks(standard Cell).

Tool makes the Patterns to not relate to Specific Test chip because the top of TEST

CHIP always being changed, not Library. Design Mapping Document of Specific Test chip

is provided by the Test Chip Developers which are used to generate the mapping files in the

patterns and other files and algorithms are always being generic to Standard cell. Tool has

the list of the patterns of algorithms and list of LIB information those are being likely to

generate.

4.3 Tool

Tool is generated patterns automatically providing input of Design mapping Document

and Design LIB Information document. Design mapping documents (CSV file) contains

CHAPTER 4. AUTO TEST PATTERN GENERATION TOOL 28

information of top pin to IP pins and Design IP Information document has list of pattern to

generate for any particular LIB and how many combo, SEQ, CBUF cell present in the LIB.

Tool is generated mapping file which is related to Cell of LIB. Pattern Algorithms Pins

which are specific LIB pins. Mapping file used #define mapping pin TOP PIN (Processor

directive) for test patterns.

Figure 4.2: Tool structure

4.3.1 Design sheet information:-

• TOP PIN: give information about the top pin(example : MIM BOT MIM RES SCA-

NEN TDI TESTMODE TMS BS CK BS EN BURNIN COMP TQ)

• DIRECTION: give direction for that pin (example : BIDIR BIDIR INPUT INPUT

INPUT INPUT INPUT INPUT INPUT INPUT)

• INPUT PIN MAP: give input pin definition for which you want use in utile pattern.

(example : N/A N/A N/A N/A TEST MODE N/A N/A N/A OLT MODE EN N/A

)

CHAPTER 4. AUTO TEST PATTERN GENERATION TOOL 29

• OUTPUT PIN MAP: give output pin definition for which you want use in utile

pattern. (example : N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A)

• LOAD REGBANK: give value o, 1, D, N/A or LOAD REGBANK for which input

pin you want to give as input. (example : 0 0 0 0 0 0 0 0 0 0)

• STDCELL EPOD DUMMY CYCLE: give value o, 1, D, N/A for which input

pin you want to give as input. (example : N/A N/A N/A N/A 0 N/A 0 0 N/A N/A)

• CIRCUIT RESET LOW: give value o, 1, D, N/A for which input pin you want to

give as input. (example : 0 0 0 0 0 0 0 0 0 0)

• STDCELL SCAN CYCLE: give value o, 1, D, N/A or STDCELL CLK for which

input pin you want to give as input. (example : N/A N/A N/A N/A 0 N/A 0 0 N/A

N/A)

• STDCELL FUNCTIONAL CYCLE: give value o, 1, D, N/A or STDCELL CLK

for which input pin you want to give as input. (example : N/A N/A N/A N/A 0 N/A

0 0 N/A N/A)

• SEQ CELL FUNCTION CYCLE: give value o, 1, D, N/A or STDCELL CLK for

which input pin you want to give as input. (example : N/A N/A N/A N/A 0 N/A 0

0 N/A N/A)

• CBUF CELL FUNCTIONAL CYCLE: give value o, 1, D, N/A or STDCELL CLK

for which input pin you want to give as input. (example : N/A N/A N/A N/A 0 N/A

0 0 N/A N/A)

• TRI CELL FUNCTIONAL CYCLE: give value o, 1, D, N/A or LOAD REGBANK

for which input pin you want to give as input. (example : N/A N/A N/A N/A 0 N/A

0 0 N/A N/A)

• SET DEFAULTS: give value o, 1, D, N/A or LOAD REGBANK for which input

pin you want to give as input. (example : 0 0 1 0 N/A 0 N/A N/A 0 0)

4.3.2 LIB information sheet:-

• BLOCK NAME : give library name which you want to generate (example : REP1 8T LIB1

)

• BLOCKSELECT : give block select for lib (example : 0000 0000 0000 0000 0010 0000 0000 0000

)

• LIB NUMBER: give lib number (example: lib1 lib2) it is used for the change number

of lib array in variable file.

CHAPTER 4. AUTO TEST PATTERN GENERATION TOOL 30

• LIB COUNT: give lib count which is change in you template file (example: LIB COUNT

1) it is used for change the value of particular lib different scan pattern.

• CELL TYPE : give name which type of cell you want to produce (example : ALL-

CELL , FDD)

• BASIC CELL : give information about which type of basic cell you want to generate

(example : combinational, seq, cbuf ,tri)

• CELL SELECT NO: give how many pin are used for the cell select this used for

produce the cell select procedure.

• NUMBER OF OUTPUT COMBO: total number of output for combinational

cell.

• NUMBER OF OUTPUT CBUF: total number of output for cbuf cell.

• NUMBER OF OUTPUT SEQ: total number of output for the sequential.

• SCAN NAME : give information about how many scan you want to generate

• CYCLE NAME : give information about cycle you want to generate

• LIBRARY COUNT: LIBRARY COUNT information which is change in template.

4.3.3 Feature of Tool

• Less Time consuming to generate test patterns. Design Mapping and IP information

CSV are going to make in one hour.

• Tool takes time to generate test patterns are only 10 min.

• Tool with Sanity Checks, any undefined format of input is not acceptable, flash ERROR

and Quit to process.

• Test Pattern template makes and once verify on silicon wafer then after assurance that

these patterns have not any bug so QUALITY of TEST PATTERNS are improved

very much.

• STMicroelectronics has tool which convert these test patterns to Verilog file which

used for simulation and validation purpose so Validation of RTL and NETLIST is very

quick and easy.

Chapter 5

RTL Generation Tool

There is generic architecture for Testing the standard cell. We can use that architecture

and I can automate writing RTL for standard cell. I develop tool which is generating the

RTL for the standard cell test chip. Basic Architecture is as shown earlier. its use same

refcell for create scan chain and only cell are going replace with which we want to test. That

is why automation is needed for generating RTL. Manually, RTL write take time of 3-4 days.

This can be done by only 2 to 3 hours only. By time within 1 or 2 day test Spec change

if we write the RTL manually it will take more 2 or 3 day which is not help to tackle with

time to market product. Its require to done using automation

5.1 Need of Automation Tool

• Lesser time to generation of RTL.

• Quality of RTL are very much improved due to every cell is separated using the Design

compiler and Prime Time.

• Its Generate RTL cum Netlist of the Test Chip for the BLOCK level so it don’t require

to synthesis. Its also save time for its.

5.1.1 Problem Statement and Its Solution

SOC integration starts after the test chip or parallel with testchip design. There is any

delay in test chip development as SOC will have to be delayed. There is challenge to reduce

time for test chip. It reduce time to market SOC or ASIC if it may reduce the time for test

chip.

Any SOC or Test chip reduce time to market by how fast design is performed and if there

is some fault in design we can take over on it. so reduce time to verify the Design of Test

Chip is very important.

31

CHAPTER 5. RTL GENERATION TOOL 32

Design of Test chip is almost reached at least time. So Challenge is be to verify Test Chip

so that we can ensure that SOC might have been right functionality except any fabrication

defects.

By Introducing RTL GENERATION TOOL, It generates RTL of the standard cell library

block automatically by giving the Design Document of IP and group of the library. Design

Document has the library block level information that which library we want to create library

and which library we want to combine and also contain the reference library we can use that

library cell as some reference library. We also give the library file of the standard cell in

two formate .lib and .db with there corner. We give some information about the path from

where its take library and from where its generate output.

Tool makes the RTL to not relate to Specific Test chip because the top of TEST CHIP

always being changed, not Library. Design Document of Specific Test chip is provided by

the Test Chip Developers which are used to generate the RTL and Architecture is always

being generic to Standard cell so its easy to create the RTL of the Library. Tool has the list

of Library with the reference library.

5.2 Tool

Tool is generating RTL automatically providing input of Design Document and Library

file contain the cell information. Design documents (CSV file) contains information of Library

with there corner. Also contain the reference library with reference cell.

Write RTL for Standard cell testchip without the automation take too much time. Which

leads to increase the time to market of any product. So test chip has very less time to validate

IPs. So there is already one tool which use library of the standard cell and process on that

file than segregate the cell in different category. Also define the pin of the cell for port map.

It use XML language for segregate the cell information from the .lib file of the standard

cell lib. As Standard cell team use different version of the Design compiler which result in

change some of the information may change for standard cell. It difficult for segregating the

cell in different category. Designer does not has knowledge on the xml language which leads

to increase the difficulty in debug the tool.

So They require atleast one engineer for maintain the tool. I come with one solution. For

that i use design compiler and prime time tool for identify the cell type category and write

the script in tcl language for characterize cell. I use design compiler command for identify

cell and its pin information. Designer has knowledge on the tcl language if tool misbehave

in future than he can easily debug the problem and he can also add new feature if require

in tool.

5.2.1 Feature of Tool

• Less Time consuming to generate RTL.

CHAPTER 5. RTL GENERATION TOOL 33

• Tool takes time to generate test patterns are only 10 min.

• Tool with Sanity Checks, any undefined format of input is not acceptable, flash ERROR

and Quit to process.

• Easy to debug.

Chapter 6

Work Contribution and Result

• Developed Tool Pattern Generation Tool

• Making Test Pattern for the Test Chip

• Automation for Design Flow to reduce time for tape out used SHELL and PERL Script

• Modification of Verilog standard cell behavioral Code

• Validation of RTL and NETLIST design

6.1 Validation Flow

Figure 6.1: Validation Flow

34

CHAPTER 6. WORK CONTRIBUTION AND RESULT 35

6.2 Simulation Graphs

6.2.1 SCAN 0, SCAN 1 and SCAN ALL

In this test TI-Q path of Reference cell flop is targeted. TE of all the flops is set high,

and TI inputs are loaded. During TE=1, the ref flops TI are mapped to their respective Qs

and we have a scan chain with input TI and output SCAN OUT.

Figure 6.2: ref chain flop for scan0

Figure 6.3: scan0

CHAPTER 6. WORK CONTRIBUTION AND RESULT 36

Figure 6.4: scan1

6.2.2 BYPASS MUX

In this test, the Bypass mux is tested. Targeted path is Bypass data Muxout. For

this, Bypass selection is turned on, and appropriate MUX selection is made. The output at

MUXOUT should be equal to BYPASS DATA.

Figure 6.6: ref cahin bypass mux

CHAPTER 6. WORK CONTRIBUTION AND RESULT 37

Figure 6.5: scan all

Figure 6.7: bypasss mux

6.2.3 BYPASS SCAN

After we have checked the Bypass Mux, D-TI path of Ref flop is targeted. In this test

the Qout data is compared against the BYPASS DATA.

CHAPTER 6. WORK CONTRIBUTION AND RESULT 38

Figure 6.8: bypasss mux

Figure 6.9: bypass scan

6.2.4 FUNC SCAN AND FUNC MUX

Thus after all the paths through which CUT data is received have been checked. we can

move to checking CUT functionality. There are two possible paths through which CUT data

can be observed which are CUT - MUXOUT and CUT QOUT.

First step towards checking the functionality is to compare the two outputs MUX-

OUT & QOUT. ATPG pattern cover all the paths in the ALLCELL block and remove the

possibility of any uncovered path in the design.

CHAPTER 6. WORK CONTRIBUTION AND RESULT 39

Figure 6.10: ref cahin func mux

Figure 6.11: func mux

CHAPTER 6. WORK CONTRIBUTION AND RESULT 40

Figure 6.12: ref cahin func scan

Figure 6.13: func scan

Chapter 7

Tools

• Incisive unified simulator (IUS)

• Shell Scripting

7.1 Incisive unified simulator

Incisive is a suite of tools from Cadence Design Systems related to the design and verifi-

cation of ASICs, SOCs, and FPGAs. Incisive is commonly referred to by the name NCSIM

in reference to the core simulation engine. Depending on the design requirements, NCSIM

has many different bundling options of the following tools.

Tool Command Description

NC verilog ncvlog

The NC-Verilog compiler performs syntactic and static semantic
checking on the verilog HDL design units. If no errors are found,
compilation produce an internal representation for each HDL design
unit in the source files

NC VHDL ncvhdl

The NC-VHDL compiler performs syntatic and static semantic
checking on the input source files or VHDL design units. if no
errors are found, compilation produces an internal representation
for each HDL design unit in the source files

NC Elabo-
rator

ncelab

Unified linker / elaborator for verilog. The elaborator constructs
a design hierarchy based on the instantiation and configuration in-
formation in the design and compute initial values for all objects
in the design.

NCSim ncsim
Unified simulation engine for verilog. Load snapshot images gener-
ated by NC Elaborator. This tool can be run in GUi mod. In GUI
mode, ncsim is similar to the debug features of Modelsim.

Table 7.1: NUC Command

41

CHAPTER 7. TOOLS 42

7.2 Shell Scripting

A shell script is a computer program designed to be run by the UNIX shell, a command

line interpreter. The various dialects of shell scripts are considered to be scripting languages.

It uses for automation, text and file manipulation.

Conclusion

• Testchip provides necessity post-silicon validation data before any mass production of

SOC and also ensure maturity any technology library.

• Test patterns are cycle based patterns which give advantage of less time for testing

and implementation reusability of cycle.

• Test Patterns are similar algorithms except minor modification needed so automation

tool is developed which have improved test patterns quality and less human interrup-

tion. Standard cell Test Chip use almost same architecture we can automate RTL

generation for better quality and less human interruption.

• Tool , reduced human efforts , is developed test patterns and RTL which untimely time

saving and used in generation of RTL and after that using Test pattern validate that

RTL and Netlist in early days of Design.

43

Bibliography

[1] ST Internal Documents

[2] A. J. van de Goor “Testing semiconductor memories: theory and practice ”

[3] Jen-Chieh Yeh, Chi-Feng Wu, Kuo-Liang Cheng, Yung-Fa Chou, Chih-Tsun Huang,

and Cheng-Wen Wu ”Flash Memory Built-In Self-Test Using March-Like Algorithms” ,

National Tsing Hua University

[4] Sung-Mo Kang & Yusuf Leblebici “Cmos Digital Integrated Circuits Analysis and De-

sign”

[5] M.S. Abadir and J.K. Reghbati, LSI testing techniques.

[6] A Ring Oscillator Based Variation Test Chip by Joseph Sinohin Panganiban - Mas-

sachusetts Institute of Technology

44

	Certificate
	Declaration
	Cerificate
	Cerificate
	Disclaimer
	Acknowledgments
	Abstract
	Testchip Introduction
	Testchip:- Concept
	Testchip Design Flow
	Expectations of Testchip
	Cost if bug detects at production time
	Components added to Testchip
	Problem Statement and Its Solution
	Importance of Verification Environment Automation
	About Project: Test Pattern Automation And RTL Generation Automation

	Standard cell And Memory IP
	Standard Cell
	ALLCELL Block
	FDD Block
	Retention Block

	Memory IP
	Static RAM
	Single Port Random Access Memory (SPRAM)
	DUAL Port Random Access Memory (DPRAM)

	TestChip Architecture
	Purpose Of Testchip
	Architecture of Testchip
	TOP LEVEL

	Standard cells
	ALLCELL TOP
	ALLCELL
	FDD
	RETENTION BLOCK

	Auto Test Pattern Generation Tool
	Test Patterns of Standard Cell
	Flow of Test Patterns

	Need of Automation Tool
	Problem Statement and Its Solution

	Tool
	Design sheet information:-
	LIB information sheet:-
	Feature of Tool

	RTL Generation Tool
	Need of Automation Tool
	Problem Statement and Its Solution

	Tool
	Feature of Tool

	Work Contribution and Result
	Validation Flow
	Simulation Graphs
	SCAN 0, SCAN 1 and SCAN ALL
	BYPASS MUX
	BYPASS SCAN
	FUNC SCAN AND FUNC MUX

	Tools
	Incisive unified simulator
	Shell Scripting

	Conclusion
	References

