
Development of utilities to measure effectiveness

of tests generated by MP RIS Tool

Major Project Report

Submitted in partial fulfilment of the requirements
for the degree of

Masters of Technology

in

Electronics And Communication Engineering

(VLSI Design)

By

Vivek J. Pandit

(14MECV13)

Electronics and Communication Engineering Branch

Electrical Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382481

May 2016

Development of utilities to measure effectiveness

of tests generated by MP RIS Tool

Major Project Report

Submitted in partial fulfilment of the requirements
for the degree of

Masters of Technology

in

Electronics And Communication Engineering

(VLSI Design)

By

Vivek J. Pandit
(14MECV13)

Under the Guidance Of

External Guide Internal Guide
Mr. Gunaranjan Kurucheti Dr. Usha Mehta
(Staff Verification Engineer) (Professor,EC)
ARM, Bengaluru ITNU, Ahmedabad

Electronics and Communication Engineering Branch

Electrical Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382481

May 2016

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of
Technology in VLSI Design at Nirma University and has not been submitted
elsewhere for a degree.

ii) Due acknowledgement has been made in the text to all other material used.

Vivek J Pandit

14MECV13

Certificate

This is to certify that the Major Project entitled ”Development of utilities to

measure effectiveness of tests generated by MP RIS Tool” submitted by

Vivek J. Pandit (14MECV13), towards the partial fulfilment of the requirements

for the degree of Master of Technology in VLSI Design Engineering of Nirma

University, Ahmedabad is the record of work carried out by her under our

supervision and guidance. In our opinion, the submitted work has reached a

level required for being accepted for examination. The results embodied in this

major project, to the best of our knowledge, havent been submitted to any

other university or institution for award of any degree or diploma.

Date:

Guide

Dr. Usha Mehta

(Professor,EC)

HOD

Dr. P. N. Tekwani

Place: Ahmedabad

Program Coordinator

Dr. N. M. Devashrayee

(Professor,EC)

Director

Dr. P. N. Tekwani

Certificate

This is to certify that the Major Project entitled ”Development of utilities

to measure effectiveness of tests generated by MP RIS Tool”, towards

the partial fulfilment of the requirements for the degree of Master of Technology

in VLSI Design Engineering of Nirma University, Ahmedabad is the record of

work carried out by him at ARM Embedded Technology Pvt. Ltd., under our

supervision and guidance. In our opinion, the submitted work has reached a

level required for being accepted for examination. The results embodied in this

major project, to the best of our knowledge, havent been submitted to any

other university or institution for award of any degree or diploma.

PROJECT MANAGER

Mr. Kaleshwar Vemuri

PROJECT GUIDE

Mr.Gunaranjan Kurucheti

Acknowledgments

I take immense pleasure in thanking of my mentor Mr. Gunaranjan Kurucheti,

Staff Verification Engineer and Mr. Kaleshwar Vemuri, Engineering manager

at ARM Embedded Technologies Pvt. Ltd., Bangalore for having permitted me

to carry out this project work.

I wish to express my deep sense of gratitude to my guide Dr.Usha Mehta,

Institute of technology, Nirma University for being a source of inspiration and

for timely guidance during the project.

I would like to express my gratitude and sincere thanks to Dr.P.N.Tekwani,

Head of Electrical Engineering Department for allowing me to undertake this

thesis work and for his guidelines during the review process.

Vivek J Pandit

14MECV13

v

Abstract

In the realm of verification, Random Stimulus Generation or Random Instruction

Sequence (RIS) is widely recognized as an effective approach for verifying corner

cases that are difficult to anticipate. While most of design bugs are detected

by the deterministic formal approach, RIS is highly effective in hitting corner

cases. This dissertation report contains the project work of the utilities that

were developed for MP RIS tool used for verifying processor coherency. These

utilities developed to make an MP RIS Tool capable of measuring the test

efficiency and also provides feedback to ensure that verification intent for a

given target verification area was met. These utilities have been rolled out

along with the RIS tool.

The first utility was targeted towards generating corner-case test sets for floating

point operation verification. Here an interface is created that the RIS tool could

call to generate test-sets, with which the registers would be initialized before

performing the desired FP operation. This approach uses random constrained

approach, where the exponent is subject to certain bound taking into consideration

the precision which determines the floating point format. The randomness

ensures that the generated test-sets cover as many points in testing space.

The second utility created with the aim to help in the analysis of cache-line

migration/ intervention events in Multi-Processor verification. One of the key

aspects to RIS based MP verification is the ability to generate collision events

from different cores to the same region, which can have a cache-line based

granularity or page granularity, in a false shared manner. These collision

events will ensure that cache lines migrate within the private/local caches

of the different processing elements. In this work, a utility called HeatMap

is developed, which parses the simulation traces and graphically depicts the

collision events to regions that were accessed within a test from the different

processing elements. This utility also acts as an additional QA check, to ensure

that intent of verification was met.

vi

The third utility helped in the quality assurance (QA) of the tests generated

from the RIS tool, with some basic checks like memory page info, exception

check and incompatible attribute check.

vii

Abbreviations

AEM

AVS

DVS

FP

HDL

ISS

MMU

MP

NaN

PA

PE

QA

RIS

RTL

VA

Architecture Envelope Model

Architecture Validation Suites

Device Validation Suites

Floating Point

Hardware Description Language

Instruction Set Simulator

Memory Management Unit

Multi Processor or Multi Core

Not a Number

Physical Address

Processing Elements

Quality Assurance

Random Instruction Sequence

Register Transfer Logic

Virtual Address

viii

Contents

Certificate iii

Acknowledgements v

Abstract vi

Abbreviations viii

1 Introduction 2

1.1 Motivation . 2

1.2 Problem Statement . 3

1.3 Thesis Organization . 3

2 Introduction to ARM s MP RIS Tool 4

2.1 Random Instruction Sequence (RIS) Generation 5

2.2 Random Vs Deterministic stimulus generation 5

3 Corner-Case Stimuli Generation for FP Operations 7

3.1 Floating Point Formats . 7

3.1.1 Half-precision floating-point formats 8

3.1.2 Single-precision floating-point formats 10

3.1.3 Double-precision floating-point formats 12

3.2 Condition Codes for FP Corner-Case Tests 13

3.3 Corner-Case Stimuli Generation Utility Architecture 14

3.4 FP Register Initialization Methods 16

3.4.1 Library . 16

ix

3.4.2 Randomize Mantissa and Exponent for FP Register . . . 17

3.5 Corner-Case Stimuli Generation Utility for FP Operation 18

3.6 Implementation Result . 20

4 Heatmap Generation Utility 22

4.1 Heatmap Generation Flow . 23

4.2 Memory Attributes for AEM Tarmac 24

4.2.1 Write-Back(WB) . 25

4.2.2 Write-Through(WT) . 25

4.2.3 Non-Cacheable (NC) . 26

4.2.4 Device-Order (DO) . 26

4.3 Using Heatmap Utility . 27

4.3.1 UNIX Environment . 27

4.3.2 Windows Environment 28

4.4 Enhancing Heatmap Utility . 28

4.5 Implementation results . 28

4.5.1 Heatmap & Graph for the aem tarmac file 28

4.5.2 Memory Attributes for the aem tarmac file 30

5 Quality Assurance (QA) Utility 34

5.1 QA Checks for Test generated by MP RIS Tool 34

5.1.1 Incompatible Attribute Check (ia check) 34

5.1.2 Memory Page information (page info) 35

5.1.3 Exception Check (exc check) 36

5.2 QA Utility Optimization . 37

5.2.1 Changes did to Improve Execution Speed 37

5.2.2 Results . 38

6 Conclusion & Future Scope 39

6.1 Conclusion . 39

6.2 Future Scope . 39

References 41

x

List of Tables

3.1 Possible Conditional Codes with Conditional Flags 14

5.1 Execution Speed Improvement Summary 38

xi

List of Figures

3.1 Half Precision Floating Point Format 8

3.2 Single Precision Floating Point Format 10

3.3 Double Precision Floating Point Format 12

3.4 Block Diagram Of Corner-Case Stimuli Generator 15

3.5 Corner-Case Stimuli Generation Flow for FP Operations 16

3.6 Corner-Case Stimuli Generation Flow for Library Mode 17

3.7 Layout Of Floating Point Number 18

3.8 Flow Chart for the working Designing of Random(R) Mode . . 19

4.1 Block Diagram of Heatmap Generator Utility 23

4.2 Heatmap of Arch64 aem tarmac file with graph 29

4.3 Heatmap of Arch32 aem tarmac file with graph 30

4.4 Heatmap of 4K Page Size aem tarmac file with graph 31

4.5 Heatmap of 64K Page Size aem tarmac file with graph 31

4.6 Heatmap with hover information display 32

4.7 Memory Attribute Result for aem tarmac file with graph 33

5.1 Tarmac trace snapshot shows incompatible attributes 35

5.2 ia check result snapshot . 35

5.3 Tarmac trace memory attributes 36

5.4 page info check result snapshot 36

5.5 Tarmac trace for exceptions . 36

5.6 exc check result snapshot . 37

xii

Chapter 1

Introduction

1.1 Motivation

Analysis of the generated test is very important thing to ensure that it meet

the intent of verifier for the targeted verification area. Floating Point (FP)

operations are very important feature of ARM RISC Architecture. So a New

MP Tool has to have the capability of verifying it and for that a set of tests

(Stimuli's) are required. Deterministic simulation approach will flush out most

of the design bugs but some of the corner cases will not covered by it and

for that we require random stimulus generation. Already available library

based approach isn't enough for all the ARMv8-A FP instructions. So we

must have an effective approach for test generation than library, which will be

capable of generating interesting stimuli's that will cause overflow/carry after

FP Operations. This new approach should also be capable to replace the library

approach. There is currently no method to determine the set of addresses that

were used by the test. Also, the user of any RIS tool that is focused on MP

verification needs to be able to see how many times a particular cache-line

migrates or is snooped between the cores. So Heatmap utility is developed to

make it easy, Heatmap is to be generated for the addresses used in a test and

from a given range of address. Quality Assurance (QA) check utility is also

very important for MP RIS Tool generated test analysis. It contains so many

checks for it with various parameters.

1

1.2 Problem Statement

The objective of this project is to develop utilities that will provide an extra

capability of analysis to MP RIS Tool. These utilities are important to make

analysis and hence to measure effectiveness of the tests generated by the Tool.

An effectiveness of the test determines how suitable it is for the verification of

targeted area.

1.3 Thesis Organization

This Thesis organized in to five chapters, a brief info about them are discussed

below:

Chapter 2, describes an introduction about the Random Instruction Sequence

Tool. It also contains how it is an effective than the Deterministic approach to

cover corner cases.

Chapter 3, describes about the work related to generation of Interesting stimulis

for FP register initialization and various approaches for the test generations.

Chapter 4, describes about the Heatmap Generation utility by block diagram

representation, Implementation results and further enhancement in the utility.

Chapter 5, describes about the Quality Assurance (QA) checks developed for

the MP RIS Tool generated tests.

Chapter 6, describes Concluding remarks and scope for future work.

2

Chapter 2

Introduction to ARM s MP RIS

Tool

ARM's next-generation MP RIS verification tool focusing on memory sub-system

operations and cross-PE coherency transactions in Multi-Processor/Cluster systems.

It's a server-class static RIS generator that achieves high instruction generation

rates (greater that 1000 IPS) and designed to allow derived test sequences to

quickly achieve their desired intent, while also allowing maximum re-use of

generated scenarios for faster overage closure.

It offers full support of ARMv8-A AArch64 execution state. The AArch32 A32

(ARM) ISA is partially supported, and no support is available for AArch32 T32

(Thumb) ISA.

Instruction groupings can be defined to target specific operations and micro-architectural

features.

The following are additional high-level features targeted by ARM’s new MP

RIS Tool:

• Multi-processor memory coherency.

• Barriers.

• Cache and TLB maintenance operations.

• Message passing (Exclusive operations, Load Acquire or Store Release, Atomics).

3

• Load-store dependencies and hazards.

• Generate traffic to maximize use of load-store pipeline and evictions.

2.1 Random Instruction Sequence (RIS) Generation

Random instruction sequence (RIS) tools are widely used across the industry

for processor verification and validation. These tools are often used to find

design bugs in a relatively stable but not yet mature RTL design. RIS tools are

very effective in generating test scenarios that are hard to envision. However,

quite often completely random instruction sequences are of little test value for

exposing corner cases in the design, especially if the bug involves a sequence

of events happening in a narrow timing window. Macros can help enhance

the test quality of the generated instruction sequences by providing controlled

randomness around a specific sequence of instructions targeting a specific area

in the processor architecture.

2.2 Random Vs Deterministic stimulus generation

Random stimulus generation is widely recognized as an effective approach for

verifying corner cases that are hard to anticipate. We found that, while most of

design bugs are flushed out by the deterministic approach, random instruction

sequences are also highly effective in hitting obscure cases, often finding bugs

that may lay undetected for years in real-life applications.

ARM has an internal tool that can generate targeted random code sequences

known as RIS. With RIS, we pre-generate self-checking tests using an ISS as

the reference design. This technique won’t catch design errors that are present

in both the ISS and the HDL model, but in practice this situation is rare and

these sequences are likely to show design errors in either model when enough

sequences have been simulated.

The mainstay methodology that we have used since the early days of the

first ARM CPU design is deterministic simulation. This is a common and

4

well understood methodology that offers a number of advantages, although

it’s limited by the amount of effort required to generate test cases and the

performance of simulation tools. At ARM, we develop test cases as self-checking

assembler sequences. We then replay these code sequences on a simple simulation

testbench consisting of the ARM CPU, a simple memory model, and some

simple memory- mapped peripherals. Our tests fall into two categories, AVS

(Architecture Validation Suites) and DVS (Device Validation Suites).

ARM’s all AVS class tests check architectural functionality such as the instruction

set architecture (32-bit and 16-bit Thumb), the exception model, and the debug

architecture. Our DVS tests focus on the behaviour of specific cores and

check corner cases arising from the particular implementation. An advantage

of this type of test case is that tests are self-contained and portable from

ISS (Instruction Set Simulator) environments to Verilog or VHDL test bench

environments, or to FPGA prototypes and eventually to silicon. Thus, our

customers and we can verify the functional equivalence of all these design views.

These suites of tests are effectively the ARM architecture compliance suites.

5

Chapter 3

Corner-Case Stimuli Generation

for FP Operations

Floating point calculations are often used in critical applications, such as numeric

simulations in nuclear physics or aeronautics, which need a high level of precision.

Formal methods have been used both for hardware level and high-level floating

point verification, but this has proved not to be sufficient. In this work, we

present a tool that will generate test-sets that can generate test stimuli targeting

corner case scenarios in the floating point verification. This approach uses an

random constrained approach, where the exponent/fraction is subject to an

certain bound taking into consideration the precision which determines the

floating point format. The randomness ensures that the generated test-sets

cover as many points in testing space.

3.1 Floating Point Formats

In computing, floating point is the formulaic representation which approximates

a real number so as to support a trade-off between range and precision. A

number is, in general, represented approximately to a fixed number of significant

digits (the significand) and scaled using an exponent; the base for the scaling

is normally two, ten, or sixteen. A number that can be represented exactly is

of the following form:

6

Mantissa x BaseExponent

Here, Mantissa Z, base N, and exponent Z. ARM Floating Point

architecture (VFP) provides hardware support for floating point operations

(Data Type) in half-, single-, and double-precision floating point arithmetic.

ARMv-8A Architecture Supports Three Floating Point Formats:

• Half Precision(HP)

• Single Precision(SP)

• Double Precision(DP)

3.1.1 Half-precision floating-point formats

ARMv8 supports two half-precision floating-point formats:

• IEEE half-precision, as described in the IEEE 754-2008 standard.

• Alternative half-precision.

The description of IEEE half-precision includes ARM-specific details

that are left open by the standard, and is only an introduction to the formats and

to the values they can contain. For both half-precision floating-point formats,

the layout of the 16-bit format is the same.

Figure 3.1: Half Precision Floating Point Format

7

The interpretation of the format depends on the value of the exponent field,

bits[14:10] and on which half-precision format is being used.

For 0 <exponent <0x1F The value is a normalized number and is equal to:

(−1)S ∗ 2(expoent−15) ∗ (1.fraction) (3.1)

The minimum positive normalized number is 2−14, or approximately 6.104 *

10−5.

The maximum positive normalized number is (2 - 2−10) ∗ 215, or 65504.

Larger normalized numbers can be expressed using the alternative format when

the exponent == 0x1F.

For exponent == 0 The value is either a zero or a denormalized number,

depending on the fraction bits: if fraction == 0 The value is a zero. There

are two distinct zeros:

+0 when S==0

-0 when S==1.

If fraction != 0 The value is a denormalized number and is equal to:

(−1)S ∗ 2−14 ∗ (0.fraction) (3.2)

The minimum positive denormalized number is 2−24, or approximately 5.960 *

10−8.

If exponent == 0x1F The value depends on which half-precision format is being

used:

• IEEE half-precision

The value is either an infinity or a Not a Number (NaN), depending on the

fraction bits: if fraction == 0 The value is an infinity. There are two distinct

infinities:

+infinity When S==0. This represents all positive numbers that are too big to

be represented accurately as a normalized number.

-infinity When S==1. This represents all negative numbers with an absolute

value that is too big to be represented accurately as a normalized number.

8

if fraction != 0 The value is a NaN, and is either a quiet NaN or a signaling

NaN. The two types of NaN are distinguished by their most significant fraction

bit, bit[9]:

bit[9] == 0 The NaN is a signalling NaN. The sign bit can take any value, and

the remaining fraction bits can take any value except all zeros.

bit[9] == 1 The NaN is a quiet NaN. The sign bit and remaining fraction bits

can take any value.

• Alternative half-precision

The value is a normalized number and is equal to:

(−1)S ∗ 216 ∗ (1.fraction) (3.3)

The maximum positive normalized number is (2−2−10)∗216 or 131008.

3.1.2 Single-precision floating-point formats

The single-precision floating-point format is as defined by the IEEE 754 standard.

This description includes ARM-specific details that are left open by the standard.

It is only intended as an introduction to the formats and to the values they can

contain. For full details, especially of the handling of infinities, NaNs and signed

zeros, see the IEEE 754 standard.

Figure 3.2: Single Precision Floating Point Format

The interpretation of the format depends on the value of the exponent field,

bits[30:23]:

For 0 <exponent <0xFF , The value is a normalized number and is equal to:

(−1)S ∗ 2(exponent−127) ∗ (1.fraction) (3.4)

9

The minimum positive normalized number is 2−126, or approximately 1.175

* 10−38. The maximum positive normalized number is (2 - 2−23) ∗ 2127, or

approximately 3.403 * 1038. If exponent == 0, The value is either a zero or a

denormalized number, depending on the fraction bits:

If fraction == 0, The value is a zero. There are two distinct zeros:

+0 When S==0.

-0 When S==1.

These usually behave identically. In particular, the result is equal if +0 and -0

are compared as floating-point numbers. However, they yield different results

in some circumstances.

For example, the sign of the infinity produced as the result of dividing by zero

depends on the sign of the zero. The two zeros can be distinguished from each

other by performing an integer comparison of the two words. If fraction != 0,

The value is a denormalized number and is equal to:

(−1)S ∗ 2−126 ∗ (0.fraction) (3.5)

The minimum positive denormalized number is 2−149, or approximately 1.401 *

10−45.

Denormalized numbers are always flushed to zero in AArch32 Advanced SIMD

processing. They are optionally flushed to zero in floating-point processing and

AArch64 SIMD.

If exponent == 0xFF, The value is either an infinity or a Not a Number (NaN),

depending on the fraction bits: If fraction == 0, The value is an infinity. There

are two distinct infinities: +infinity When S==0. This represents all positive

numbers that are too big to be represented accurately as a normalized number.

-infinity When S==1. This represents all negative numbers with an absolute

value that is too big to be represented accurately as a normalized number. If

fraction != 0, The value is a NaN, and is either a quiet NaN or a signaling NaN.

The two types of NaN are distinguished by their most significant fraction bit,

bit[22]:

For bit[22] == 0, The NaN is a signaling NaN. The sign bit can take any value,

10

and the remaining fraction bits can take any value except all zeros.

For bit[22] == 1, The NaN is a quiet NaN. The sign bit and remaining fraction

bits can take any value.

3.1.3 Double-precision floating-point formats

The double-precision floating-point format is as defined by the IEEE 754 standard.

Double-precision floating-point is supported by both floating-point and SIMD

instructions in AArch64 state, and only by floating-point instructions in AArch32

state. This description includes implementation-specific details that are left

open by the standard. It is only intended as an introduction to the formats and

to the values they can contain. For full details, especially of the handling of

infinities, NaNs and signed zeros, see the IEEE 754 standard. A double-precision

value is a 64-bit double word, with the format:

Figure 3.3: Double Precision Floating Point Format

Double-precision values represent numbers, infinities and NaNs in a similar way

to single-precision values, with the interpretation of the format depending on

the value of the exponent: 0 <exponent <0x7FF , The value is a normalized

number and is equal to:

(−1)S ∗ 2(exponent− 1023) ∗ (1.fraction) (3.6)

The minimum positive normalized number is 2−1022, or approximately 2.225

* 10−308. The maximum positive normalized number is (2 - 2−52) ∗ 21023, or

approximately 1.798 * 10308. If exponent == 0 , The value is either a zero or a

denormalized number, depending on the fraction bits:

If fraction == 0 , The value is a zero. There are two distinct zeros that behave

in the same way as the two single-precision zeros:

+0 when S==0

11

-0 when S==1. If fraction != 0 , The value is a denormalized number and is

equal to : (−1)S ∗ 21022 ∗ (0.fraction)

The minimum positive denormalized number is 21074, or approximately 4.941 *

10−324.

For exponent == 0x7FF , The value is either an infinity or a NaN, depending

on the fraction bits:

If fraction == 0 , the value is an infinity. As for single-precision, there are two

infinities:

+infinity When S==0.

-infinity When S==1.

If fraction != 0 , The value is a NaN, and is either a quiet NaN or a signaling

NaN.

The two types of NaN are distinguished by their most significant fraction bit,

bit[51] of the doubleword:

For bit[51] == 0 , The NaN is a signaling NaN. The sign bit can take any value,

and the remaining fraction bits can take any value except all zeros.

bit[51] == 1 , The NaN is a quiet NaN. The sign bit and the remaining fraction

bits can take any value.

3.2 Condition Codes for FP Corner-Case Tests

Floating Point Architecture is an important part of ARM architecture. ARMv8-A

Architecture supports hundreds of Floating Point related Instructions. Each

of instruction is used for any of the three floating point format discussed in

Literature review. Interesting stimulis generation for FP operations involves

generation of the values (tests) within the specified range of respective floating

point format to be loaded in operand registers specified in FP Instruction. Now

the FP operation is performed on operands with these loaded values, and the

final result will be such that it will set condition flags. If any condition occurs

out of sixteen possible conditions as shown in Table 1 after any FP operation

then those respective operand values are called corner-case Tests for that FP

12

operation.

Condition Code Meaning (floating-point) Condition flags

0000 Equal Z == 1

0001 Not Equal or Unordered Z == 0

0010 Greater than, Equal, or unordered C == 1

0011 Less Than C == 0

0100 Less Than N == 1

0101 Greater than, equal, or unordered N == 0

0110 Unordered V == 1

0111 Ordered V == 0

1000 Greater than, or unordered C == 1 And Z == 0

1001 Less than or equal !(C == 1 And Z == 0)

1010 Greater than or equal N == V

1011 Less than, or unordered N != V

1100 Greater than Z == 0 And N == V

1101 Less than, equal, or unordered !(Z == 0 And N == V)

1110 Always Any

1111 Always Any

Table 3.1: Possible Conditional Codes with Conditional Flags

3.3 Corner-Case Stimuli Generation Utility Architecture

As shown in the Figure 3.4 its clear that to generate Corner-Case Stimulis

arguments required to be pass are described below:

(a) Floating Point Instruction

(b) Mode

(c) Floating Point Precision

(a) First argument is a floating point Instruction supported by ARMv8-A ISA.

It can be a ARMv-8A FP instruction in as it is form or it can be followed by

13

some predefined prefixes and suffixes.

(b) Mode can be Library (L) or Random(R).

(c) Floating Point precision can be Half Precision (HP), Single Precision (SP)

or Double Precision (DP).

So after getting all above arguments, the utility tool will analyse it, check

availability of tests for requested type of tests and returns a Test vector of three

elements.

Figure 3.4: Block Diagram Of Corner-Case Stimuli Generator

A complete Corner-Case Stimuli Generation Flowchart is shown in the

Figure 3.5. Its clear that to generate Corner-Case Stimulis arguments required

to be pass three parameters, Floating Point Instruction, Mode and Floating

Point Precision.

So after getting all above arguments, tool will first check whether the mode is

Library (L) or Random (R). Then it will take care about FP Instruction and

if Library (L) mode is selected then tool will look into whether it exists in to

Library or not.

In above case its necessary to check availability of FP Instruction in Library

because of Library has limited numbers of FP instruction support. So if an

entered instruction will not find tests in to the Library then tool will automatically

switch to the Random (R) mode.

Then tool will load the FP Instruction Operands Registers with the generated

values according to the entered Floating Point Precision and perform an Operation.

This process continues to the specified numbers of time (N time).

14

Figure 3.5: Corner-Case Stimuli Generation Flow for FP Operations

3.4 FP Register Initialization Methods

There are two possible methods discussed in this utility for FP register initialization:

• Library

• Randomizing Mantissa and Exponent

3.4.1 Library

In this approach utilizing already available library of corner-case stimulis for

Floating Point register Initialization.

15

But the problem with this approach is that it is useful for very limited numbers

of instructions. So for the many other new FP instructions we require a new

approach and that can also replace the Library based approach.

Another problem with this approach is that its available for only two Single and

Double Precision FP formats.

Figure 3.6: Corner-Case Stimuli Generation Flow for Library Mode

3.4.2 Randomize Mantissa and Exponent for FP Register

This is the new and effective approach than available Library. This approach

will be useful for all the FP instructions supported by ARMv8-A and all three

FP formats. The concept presented here to generate an Interesting stimulis is by

randomizing the values of mantissa and exponent values of FP register. Random

value that is generated within the specified range varies from each FP formats.

As shown in Figure 3.7 only exponent and mantissa part of the FP registers

are randomizing. Both are randomized separately and concatenated together

in order to get a complete value. The test generation is totally independent to

16

Figure 3.7: Layout Of Floating Point Number

status of Sign (S) bit. Test = exponent + mantissa

- E.g. Randomize exp and frac and concatenate them as explained below :

exponent = 2e mantissa = 32a4de

- Final value to be loaded in the register = 2e32a4de

So this will return a vector of elements that will be used by the MP verification

tool for register Initialization. So for example when the FP instruction takes

three operands then a vector of three elements (Which are three operands)

is returned. Here a detailed working by the flow chart of the Random (R)

mode test generator is shown. A test generated by it is according to the range

of specified FP Precision and for the given FP Operation it may or may not

generate Carry/Overflow.

So the cases for which the test will not generate the Carry/Overflow for them

have to set constrains so that for the given FP Instruction and Precision Itll

not generate the same test again.

So by following above steps for all supported FP Instructions, Precisions and

their combinations and respective constraints to be set so that the Random

Test Generator will generate only those tests that will cause Carry/Overflow

for respective Precision and FP Operations.

3.5 Corner-Case Stimuli Generation Utility for

FP Operation

To use this utility, user has to specify three parameters as discussed before.

General form of Parameters or Command line arguments to be passed are shown

17

Figure 3.8: Flow Chart for the working Designing of Random(R) Mode

below. >./<Executable >-i <FP OP SUFFIX >-m <R/L >-p <HP/SP/DP>

Where,

-i → For FP Instruction

-m → For Mode

-p → For Precision Type

<FP OP SUFFIX> → Floating Point Instruction with Prefix FP and an

appropriate SUFFIX.

A header file is created in which the FP instructions of enumerated types

are defined for both Library and Random mode. So the Tool will generate

any number randomly within the respective mode range and return respective

18

Instruction from enum.

<R/L> → Either Random (R) or Library(L).

R → This mode will return a Test vector by randomizing mantissa

and exponent of respective precision Type. It supports all 350 FP Instructions.

L → This mode will return a Test vector from the loaded library for

given FP Instruction. Which supports 35 FP Instruction.

<HP/SP/DP> → Precision Type (Either Half/Single/Double Precision FP

Format)

3.6 Implementation Result

To use this utility user has to call that function, which contains three parameters

and returns a vectors of three elements. Here vector elements are the corner-case

tests for respective FP instruction and precision.

Result 1:

Inputs :

FP Instruction : FP FADD

Mode : L

Precision : DP

Output :

Operand[0] ⇒ 0040000000000000

Operand[1] ⇒ bfb0000000000000

Operand[2] ⇒ 0000000000000000

Result 2:

Inputs :

FP Instruction : FP FCMP

Mode : R

Precision : DP

19

Output :

Operand[0] ⇒ 0040000000000000

Operand[1] ⇒ bfb0000000000000

Operand[2] ⇒ 0000000000000000

20

Chapter 4

Heatmap Generation Utility

Modern multi-processor designs rely on weak consistency memory models that

make it easier to implement performance boosting mechanisms such as caches,

out-of-order, and speculative executions. Implementations of these consistency

models are highly error-prone and hard to verify due to the vast test space and

their distributed nature. One of the key aspects to RIS based MP verification

is the ability to generate collision events from different cores/processing threads

to the same region, which can have a cache-line based granularity or page

granularity, in a false shared manner.

These collision events will ensure that cache lines migrate within the private/local

caches of the different processing elements. There is currently no method to

determine the set of addresses that were used by the test.

In this chapter, we present a utility called Heatmap, which parses the simulation

traces and graphically depicts the collision events to regions that were accessed

within a test from the different processing elements. This tool also acts as an

additional QA check, to ensure that intent of verification was met. Representation

of the accessed addresses in the form of Heatmap will make analysis much easy

than the direct representation of the data, and this will also save much time

and effort.

21

Figure 4.1: Block Diagram of Heatmap Generator Utility

4.1 Heatmap Generation Flow

Heatmap generation utility can be divided in to four parts as shown in Figure

4.1

a) Source Files

b) Parser

c) Output File

d) MS Excel Tool

(a) Source Files :

In order to get Heatmap of addresses used in the test, a source files with the

trace of addresses and the respective instruction is required. For now this

utility supports only one type source files called Architecture Envelope Model

(aem). This source files also called Tarmac files. Here to generate Heatmap,

The test addresses respective to Load/Store Instruction are only used.

(b) Parser:

It is a program written in C++ used to parse the tarmac files and extract an

22

information of the addresses related to Load/Store only and generate an output

file(.txt) file.

(c) Output File:

This is the .txt file that parser code generate. This file used as a source file for

the MS Excel tool.

This file contains the required information in particular format used to generate

Heatmap.

This file contains following information :

- page starting addresses

- Nos of time each page addresses are accessed

- Memory locations accessed from each page

- cpu (core) Information (In case of aem only)

(d) MS Excel Tool

This tool is used to represent the data available in the .txt file in the required

format in the excel sheet and to generate Heatmap as shown in implementation

section.

Excel macros are used to arrange the data and generate the Heatmap.

4.2 Memory Attributes for AEM Tarmac

In the above Heatmap utility part one switch is provided for memory attributes.

When it is on then we have info of each memory page with their attributes that

re accessed in the Test. Each Page has both Inner and Outer Attributes. Inner

or Outer Attributes Can Be Any Of Following:

- Write-Back (WB)

- Write-Through (WT)

- Non-Cacheble (NC)

- Device-Order (DO)

23

4.2.1 Write-Back(WB)

Write back is a storage method in which data is written into the cache every

time a change occurs, but is written into the corresponding location in main

memory only at specified intervals or under certain conditions.

When a data location is updated in write back mode, the data available in

cache is called fresh data, and the corresponding data in main memory, which

no longer matches the data in cache, is called stale. If a request for stale data

in main memory arrives from another application program, the cache controller

updates the data in main memory before the application accesses it.

Write back optimizes the system speed because it takes less time to write data

into cache alone, as compared with writing the same data into both cache and

main memory. However, this speed comes with the risk of data loss in case of

a crash or other adverse event.

Write back is the preferred method of data storage in applications where occasional

data loss events can be tolerated. In more critical applications such as banking

and medical device control, an alternative method called write through practically

eliminates the risk of data loss because every update gets written into both the

main memory and the cache. In write through mode, the main memory data

always stays fresh.

4.2.2 Write-Through(WT)

Write through is a storage method in which data is written into the cache and

the corresponding main memory location at the same time. The cached data

allows for fast retrieval on demand, while the same data in main memory ensures

that nothing will get lost if a crash, power failure, or other system disruption

occurs.

Although write through minimizes the risk of data loss, every write operation

must be done twice, and this redundancy takes time. The active application

program must wait until each block of data has been written into both the main

memory and the cache before starting the next operation. The ”data insurance”

24

therefore comes at the expense of system speed.

Write through is the preferred method of data storage in applications where data

loss cannot be tolerated, such as banking and medical device control. In less

critical applications, and especially when data volume is large, an alternative

method called write back accelerates system performance because updates are

normally written exclusively to the cache, and are backed up in the main

memory only at specified intervals or under certain conditions.

4.2.3 Non-Cacheable (NC)

Normal Non-Cacheable memory is the part of main memory that are not looked-up

in any cache. Some data that are not required to be used frequently or rarely

used data has to store in non-cacheable memory region.

4.2.4 Device-Order (DO)

The Device memory type attributes define memory locations where an access

to the location can cause side-effects, or where the value returned for a load

can vary depending on the number of loads performed. Typically, the Device

memory attributes are used for memory-mapped peripherals and similar locations.

The attributes for ARMv8 Device memory are: Gathering Identified

as G or nG, Reordering Identified as R or nR, Early Write Acknowledgement

hint Identified as E or nE, The ARMv8 Device memory types are: Device-nGnRnE

Device non-Gathering, non-Reordering, No Early write acknowledgement. Equivalent

to the Strongly-ordered memory type in earlier versions of the architecture.

Device-nGnRE Device non-Gathering, non-Reordering, Early Write Acknowledgement.

Equivalent to the Device memory type in earlier versions of the architecture.

Device-nGRE Device non-Gathering, Reordering, Early Write Acknowledgement.

ARMv8 adds this memory type to the translation table formats found in earlier

versions of the architecture. The use of barriers is required to order accesses to

Device-nGRE memory.

Device-GRE Device Gathering, Reordering, Early Write Acknowledgement.

25

ARMv8 adds this memory type to the translation table formats found in earlier

versions of the architecture.

Device-GRE memory has the fewest constraints. It behaves similar to Normal

memory, with the restriction that speculative accesses to Device-GRE memory is

forbidden. Collectively these are referred to as any Device memory type. Going

down the list, the memory types are described as getting weaker; conversely the

going up the list the memory types are described as getting stronger.

4.3 Using Heatmap Utility

4.3.1 UNIX Environment

To use Heatmap utility, user need to enter three required arguments along with

the Heatmap executable. General form of required command line argument is

explained below:

$>./<Executable.exe >-proj <Project Name >-type <Type of File >-arch32/64

-ca-ps <Page Size >-dir <Full Tarmac Directory >

- Here, All 0 - 9 arguments are compulsory for HeatMap generation and for

Memory attributes only 7th Option (Page Size) is not required.

<Executable.exe >−→ It’s an executable(.exe) file to run.

-proj −→ It’s an option indicates that next argument is Project Name.

<Project Name >−→ A project Name, It can be any assigned project name

-type −→ It’s an option indicates that next argument is a type of Tarmac file

to parse

<Type of File >−→ A type of file to parse. For now Its ”aem” only.

-ca −→ Its an option indicates that analysis is for Memory Attributes not for

HeatMap.

-ps −→ It’s an option indicates that next argument is Page Size (Its compulsory

argument for HeatMap generation)

<Page Size >−→ Page Size can be either ”4k” / ”4K” or ”64k”/”64K”

26

-arch32/64 −→ An option for Arch 32 or Arch 64 AEM Tarmac

-dir −→ An Option Indicates that next argument is Tarmac File directory

<Tarmac File >−→ An Absolute Directory of AEM Tarmac File.

4.3.2 Windows Environment

In windows environment an excel file with required macros for reading, arranging

and generating HeatMap of the data of generated .txt file is available.

It also generates graph of PAGE ADDRESSES vs PAGE COUNT for all the

available CPUs in the test for which the HeatMap was generated. In case of

memory attributes option it will generate MEMORY PAGE ATTRIBUTEs Vs

MEMORY PAGE ATTRIBUTE COUNT graph.

The excel file is saved with an extension of .xlsm. This will automatically

enables all the macros when this excel file is open.

4.4 Enhancing Heatmap Utility

Along with the Heatmap representation extra features are also added for more

ease in the analysis to user. Heatmap Utility can be enhanced by including

some of the features mentioned below:

• On mouse hover on the Page address, will display all the addresses accessed

in that page

• Filter out result based on the Cache attributes

An Implementation result for the same is shown in the next sub section.

4.5 Implementation results

4.5.1 Heatmap & Graph for the aem tarmac file

Here numbers represented inside the colour matrix shows that many numbers

of time respective page address is accessed by respective CPU. And a macro is

also written for the graph generation (PAGE COUNT Vs PAGE ADDRESS)

27

• For Arch64

HeatMap for 64-bit test tarmac is shown in Figure 4.2 with respective graph.

Figure 4.2: Heatmap of Arch64 aem tarmac file with graph

• For Arch32

HeatMap for 32-bit test tarmac is shown in Figure 4.3 with respective graph.

• With 4K Page Size

HeatMap for aem tarmac is shown in Figure 4.4 with respective graph for 4K

Page size.

• With 64K Page Size

HeatMap for aem tarmac is shown in Figure 4.5 with respective graph for 64K

Page size.

• Heatmap with Hover Information Display

Hover message contains all the memory addresses accessed and numbers of times

it accessed from the respective page addresses by the respective CPU. Result

for the same is shown in Figure 4.6.

28

Figure 4.3: Heatmap of Arch32 aem tarmac file with graph

4.5.2 Memory Attributes for the aem tarmac file

Figure 4.7 shows Memory Attributes of the Pages accessed in the Test by each

CPUs. Inner and Outer attributes of each accessed pages for respective CPU

are available when mouse pointer hover over the respective cell. And respective

MEMORY PAGE ATTRIBUTEs Vs MEMORY PAGE ATTRIBUTE COUNT

graph is also shown.

29

Figure 4.4: Heatmap of 4K Page Size aem tarmac file with graph

Figure 4.5: Heatmap of 64K Page Size aem tarmac file with graph

30

Figure 4.6: Heatmap with hover information display

31

Figure 4.7: Memory Attribute Result for aem tarmac file with graph

32

Chapter 5

Quality Assurance (QA) Utility

In general for developing products, quality assurance is any systematic process

of checking to see whether a product that being developed is meeting specified

requirements or not. A quality assurance system is said to increase customer

confidence and a company’s credibility, to improve work processes and efficiency,

and to enable a company to better compete with others.

5.1 QA Checks for Test generated by MP RIS

Tool

In this Utility certain checks are developed after running of which a user ensures

that the generated test is passing for that check or not and also shows the check

results (if any).

5.1.1 Incompatible Attribute Check (ia check)

Check for incompatible attributes and display attribute with cpus if incompatibility

presents in a Test.

This check is designed such that it will look for incompatibility presents in the

test which is given as input to check and collects the cpu and incompatible

attribute info and finally displays it.

If an AEM tarmac of respective test having following Trace then ia check result

33

will be as shown below:

Tarmac :

Respective tarmac trace info is shown in Figure 5.1 for ia check

Figure 5.1: Tarmac trace snapshot shows incompatible attributes

ia check Result :

Result for the ia check is shown in Figure 5.2

Figure 5.2: ia check result snapshot

5.1.2 Memory Page information (page info)

Display page information for each page in AEM tarmac (cpu, security, shareability,

memory type, etc.). As shown below the contents under the Tarmac title are

present in the Test for which page info check is run.

Tarmac :

Respective tarmac trace info is shown in Figure 5.3 for page info page info

Check Result :

Result for the page info is shown in Figure 5.4

34

Figure 5.3: Tarmac trace memory attributes

Figure 5.4: page info check result snapshot

5.1.3 Exception Check (exc check)

Display exception report with cpu, exception type, and count information. As

shown below the contents under the Tarmac title are present in the Test for

which exc check check is run.

Tarmac :

Respective tarmac trace info is shown in Figure 5.5 for exc check

Figure 5.5: Tarmac trace for exceptions

exc check Result :

Result for the exc check is shown in Figure 5.6

35

Figure 5.6: exc check result snapshot

5.2 QA Utility Optimization

5.2.1 Changes did to Improve Execution Speed

• Structure Optimization

- Sorted Most frequent accessed Variable to Least frequent accessed variables.

- This will save the time that was wasting due to accessing innermost

memories for required variables.

• Pass by value replaced with Pass By reference in function calls.

- If big objects are passed by value then it takes more time but if it is

passed by reference than only pointer to that object is passed and its size

is fixed irrespective of object size.

• Some Vectors Replaced with the Map.

- Map STL’s has a facility of obtaining the value by key. So any desired

value can be directly accessed using respective key and it saves time. But

In vector to access any intermediate element pointer has to iterate over

that from start or end to reach desired location.

• Replaced many small and often called functions as Inline.

- Inline defined functions are expanded in line when it is called. So this

will save the time that required to do procedure before calling any function

36

like storing the return address in the stack, jumping to the subroutine,

storing the status of registers etc.

• Replaced Post increment assignment with Pre-increment.

- Post increment assignment will make a copy of value, increment it and

then assigns it to variable. But preincrement assignment increment the

value without making its copy. So It will save some time.

• Removed And/or Replaced all unused variable(s)

5.2.2 Results

Sr. No. Options Execution Time

After Optimization

Original

Execution

Time

% Improvement

1 index 29.23 s 438.42 s 1400 %

2 mem share 1167.25 s 1568.53 s 34.37 %

3 share 24.38 s 61.20 s 151 %

4 pgs shared 14.17 s 51.35 s 262 %

5 uninit 117.35 s 62.22 s 258 %

6 smc 24.48 s 60.05 s 145.30 %

Table 5.1: Execution Speed Improvement Summary

37

Chapter 6

Conclusion & Future Scope

6.1 Conclusion

Random Stimuli generator is widely recognized as an effective approach for

verifying corner-cases that are hard to anticipate. That is why for todays

complex multi- processor design, MP RIS Tool are widely used for its verification,

because RIS Tools help in generation of corner-case scenarios for verification of

any design. These scenarios might otherwise be difficult to manually hand-code

or create using a deterministic approach. Utilities for MP RIS Tool will give

an extra capability to analyze the generated test. The RIS generator accepts

configuration files, detailing the layout of the target environment, which needs

to be verified. So in order to measure an effectiveness of the generated tests

for that particular targeted region these analysis utilities are very useful. These

utilities also help in weeding out the tests are do not meet the verification intent

and the MP RIS generator can be tuned accordingly to ensure the verification

is met.

6.2 Future Scope

Currently in the FP corner case test generation utility gives any test randomly

from the respective range of floating point format for any FP instruction. So

there are many such tests that do not cause corner cases. Therefore constraints

38

must be added so that it will generate only those tests for the respective

FP instructions that will cause carry/Overflow after respective FP operation.

Enhancing the capabilities of Quality Assurance checks by adding some more

checks that will refine the test more than currently we have.

39

References

[1] Jhon L. Hennessy, David A. Patterson, ”Data-Level Parallelism in Vector,

SIMD GPU Architecture”. in Computer Architecture: A Quantitative

Approach, 5th ed., MA: Morgan Kaufmann, 2012.

[2] ARM Architecture Reference Manual (Beta) for ARMv8-A. Available:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset

.architecture.reference/index.html

[3] John Harrison, ”Floating-Point Verification”. International Symposium of

Formal Methods Europe (Industry Day), Springer LNCS 3582, pp. 529-532,

2005.

[4] John Harrison, ”Floating-Point Verification using Theorem Proving”.

Proceedings of SFM 2006, the 6th International School on Formal Methods

for the Design of Computer, Communication, and Software Systems.

Springer LNCS 2965, pp. 211-242, 2006.

[5] http://www.cplusplus.com/reference/

40

	Certificate
	Acknowledgements
	Abstract
	Abbreviations
	Introduction
	Motivation
	Problem Statement
	Thesis Organization

	Introduction to ARM s MP RIS Tool
	Random Instruction Sequence (RIS) Generation
	Random Vs Deterministic stimulus generation

	Corner-Case Stimuli Generation for FP Operations
	Floating Point Formats
	Half-precision floating-point formats
	Single-precision floating-point formats
	Double-precision floating-point formats

	Condition Codes for FP Corner-Case Tests
	Corner-Case Stimuli Generation Utility Architecture
	FP Register Initialization Methods
	Library
	Randomize Mantissa and Exponent for FP Register

	Corner-Case Stimuli Generation Utility for FP Operation
	Implementation Result

	Heatmap Generation Utility
	Heatmap Generation Flow
	Memory Attributes for â•ŸAEMâ•Ž Tarmac
	Write-Back(WB)
	Write-Through(WT)
	Non-Cacheable (NC)
	Device-Order (DO)

	Using Heatmap Utility
	UNIX Environment
	Windows Environment

	Enhancing Heatmap Utility
	Implementation results
	Heatmap & Graph for the aem tarmac file
	Memory Attributes for the aem tarmac file

	Quality Assurance (QA) Utility
	QA Checks for Test generated by MP RIS Tool
	Incompatible Attribute Check (ia_check)
	Memory Page information (page_info)
	Exception Check (exc_check)

	QA Utility Optimization
	Changes did to Improve Execution Speed
	Results

	Conclusion & Future Scope
	Conclusion
	Future Scope

	References

