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Abstract

As process of fabrication technologies advances, chip complexity increases and the

design flow becomes more iterative. Iterations in the design flow cost money, time

and engineering resources that adversely affect the time to market and cost of the

devices being designed.

This report deals with the development of a generic HDL models and describes the

validation process and need for automation of validation environment of behavioral

memory models.

The project deals with Development of SP, ROM, p-REG & DPREG behavioral

models and the use of SV verification environment to validate those behavioral models

and using Shell Scripts to automate the validation process.

The technology does affect the physical level of the design, but functionality does

not change. The customers needs affect the model structure and the functionality, not

the technology. Thus we always prefer that the given model works for the technology,

not on that technology.

NOTE: Since the work done in this project is of confidential nature, more stress

is given on concepts than on actual work done.
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Chapter 1

Introduction to VLSI

1.1 History and Evolution Of Integrated Circuits

The development of microelectronics spans a time which is even lesser than the aver-

age life expectancy of a human, and yet it has seen as many as four generations. Early

60s saw the low density fabrication processes classified under Small Scale Integration

(SSI) in which transistor count was limited to about 10. This rapidly gave way to

Medium Scale Integrationin the late 60s when around 100 transistors could be placed

on a single chip.

It was the time when the cost of research began to decline and private firms started

entering the competition in contrast to the earlier years where the main burden was

borne by the military. Transistor-Transistor logic (TTL) offering higher integration

densities outlasted other IC families like ECL and became the basis of the first inte-

grated circuit revolution. It was the production of this family that gave impetus to

semiconductor giants like Texas Instruments,Fairchildand National Semiconductors.

Early seventies marked the growth of transistor count to about 1000 per chip called

the Large Scale Integration.

By mid eighties, the transistor count on a single chip had already exceeded 1000

and hence came the age of Very Large Scale Integration or VLSI. Though many im-

1
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provements have been made and the transistor count is still rising, further names of

generations like ULSI are generally avoided. It was during this time when TTL lost

the battle to MOS family owing to the same problems that had pushed vacuum tubes

into negligence, power dissipation and the limit it imposed on the number of gates

that could be placed on a single die.

1.2 VLSI Design Flow

The VLSI design cycle starts with a formal specification of a VLSI chip, follows a

series of steps, and eventually produces a packaged chip. A typical design cycle may

be represented by the flow chart shown in Figure. Our emphasis is on the physical

design step of the VLSI design cycle. However, to gain a global perspective, we briefly

outline all the steps of the VLSI design cycle. [6]

Figure 1.1: VLSI Design Flow
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∙ System Specification:

The first step of any design process is to lay down the specifications of the

system. System specification is a high level representation of the system. The

factors to be considered in this process include: performance, functionality, and

physical dimensions (size of the die (chip)). The fabrication technology and

design techniques are also considered.

The specification of a system is a compromise between market requirements,

technology and economical viability. The end results are specifications for the

size, speed, power, and functionality of the VLSI system.

∙ Architectural Design:

The basic architecture of the system is designed in this step. This includes, such

decisions as RISC (Reduced Instruction Set Computer) versus CISC (Complex

Instruction Set Computer), number of ALUs, Floating Point units, number and

structure of pipelines, and size of caches among others.

The outcome of architectural design is a Micro-Architectural Specification (MAS).

While MAS is a textual (English like) description, architects can accurately

predict the performance, power and die size of the design based on such a de-

scription.

∙ Behavioral or Functional Design:

In this step, main functional units of the system are identified. This also iden-

tifies the interconnect requirements between the units. The area, power, and

other parameters of each unit are estimated. The behavioral aspects of the sys-

tem are considered without implementation specific information. For example,

it may specify that a multiplication is required, but exactly in which mode such

multiplication may be executed is not specified. We may use a variety of mul-

tiplication hardware depending on the speed and word size requirements. The

key idea is to specify behavior, in terms of input, output and timing of each

unit, without specifying its internal structure.
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The outcome of functional design is usually a timing diagram or other rela-

tionships between units. This information leads to improvement of the overall

design process and reduction of the complexity of subsequent phases. Func-

tional or behavioral design provides quick emulation of the system and allows

fast debugging of the full system. Behavioral design is largely a manual step

with little or no automation help available.

∙ Logic Design:

In this step the control flow, word widths, register allocation, arithmetic oper-

ations, and logic operations of the design that represent the functional design

are derived and tested.

This description is called Register Transfer Level (RTL) description. RTL is ex-

pressed in a Hardware Description Language (HDL), such as VHDL or Verilog.

This description can be used in simulation and verification. This description

consists of Boolean expressions and timing information. The Boolean expres-

sions are minimized to achieve the smallest logic design which conforms to the

functional design. This logic design of the system is simulated and tested to

verify its correctness. In some special cases, logic design can be automated us-

ing high level synthesis tools. These tools produce a RTL description from a

behavioral description of the design.

∙ Circuit Design:

The purpose of circuit design is to develop a circuit representation based on

the logic design. The Boolean expressions are converted into a circuit repre-

sentation by taking into consideration the speed and power requirements of the

original design. Circuit Simulation is used to verify the correctness and timing

of each component.

The circuit design is usually expressed in a detailed circuit diagram. This

diagram shows the circuit elements (cells, macros, gates, transistors) and inter-

connection between these elements. This representation is also called a netlist.
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Tools used to manually enter such description are called schematic capture

tools. In many cases, a netlist can be created automatically from logic (RTL)

description by using logic synthesis tools.

∙ Physical Design:

In this step the circuit representation (or netlist) is converted into a geometric

representation. As stated earlier, this geometric representation of a circuit is

called a layout. Layout is created by converting each logic component (cells,

macros, gates, transistors) into a geometric representation (specific shapes in

multiple layers), which perform the intended logic function of the correspond-

ing component. Connections between different components are also expressed

as geometric patterns typically lines in multiple layers.

The exact details of the layout also depend on design rules, which are guidelines

based on the limitations of the fabrication process and the electrical properties

of the fabrication materials. Physical design is a very complex process and there-

fore it is usually broken down into various sub-steps. Various verification and

validation checks are performed on the layout during physical design. In many

cases, physical design can be completely or partially automated and layout can

be generated directly from netlist by Layout Synthesis tools. Layout synthesis

tools, while fast, do have an area and performance penalty, which limit their use

to some designs. Manual layout, while slow and manually intensive, does have

better area and performance as compared to synthesized layout. However this

advantage may dissipate as larger and larger designs may undermine human

capability to comprehend and obtain globally optimized solutions.

∙ Fabrication:

After layout and verification, the design is ready for fabrication. Since layout

data is typically sent to fabrication on a tape, the event of release of data is called

Tape Out.Layout data is converted (or fractured) into photo-lithographic masks,

one for each layer. Masks identify spaces on the wafer, where certain materials
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need to be deposited, diffused or even removed. Silicon crystals are grown and

sliced to produce wafers. Extremely small dimensions of VLSI devices require

that the wafers be polished to near perfection. The fabrication process consists

of several steps involving deposition, and diffusion of various materials on the

wafer. During each step one mask is used. Several dozen masks may be used

to complete the fabrication process.

A large wafer is 20 cm (8 inch) in diameter and can be used to produce hundreds

of chips, depending of the size of the chip. Before the chip is mass produced, a

prototype is made and tested. Industry is rapidly moving towards a 30 cm (12

inch) wafer allowing even more chips per wafer leading to lower cost per chip.

∙ Packaging, Testing and Debugging:

Finally, the wafer is fabricated and diced into individual chips in a fabrication

facility. Each chip is then packaged and tested to ensure that it meets all

the design specifications and that it functions properly. Chips used in Printed

Circuit Boards (PCBs) are packaged in Dual In-line Package (DIP), Pin Grid

Array (PGA), Ball Grid Array (BGA), and Quad Flat Package (QFP). Chips

used in Multi-Chip Modules (MCM) are not packaged, since MCMs use bare or

naked chips.

The chip design includes different types of processing steps to finish the entire flow.

For anyone who just started his carrier as a VLSI engineer has to understand all the

steps of the VLSI design flow to become good in his area of operations. There are

different types of design procedures.

1.2.1 Front End Design

∙ Design entry: It describes the RTL (Register Transfer Level) logics in HDLs.

For this, we use any of the hardware description languages (HDLs) such as

verilog and VHDL. This design specification contains all the details which all
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Figure 1.2: Front End Design Flow

are required for the design architecture, RTL block diagram, clock frequency,

frequency domain details, waveforms, port details etc.

∙ Logic Synthesis: The RTL logic written is synthesized to get the gate level

netlist. This process can be done with the help of EDA tools. The code written

can be implemented on an FPGA board only if, it is synthesizable.

∙ Gate level simulation: The gate level simulation of the logic is very important

in the verification. The functional check, timing checks and the Power analysis

checks are included in the verification.

1.2.2 Back End Design

∙ Schematic entry: Using the cadence schematic editor in icms, you can create

and extract the logic design you needed.
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Figure 1.3: Back End Design Flow

∙ Pre layout simulation: The logic design is then verified, before doing its

layout. The netlist of the schematic is generated and simulated using any of the

tools such as Cadence ultrasim or Synopsys hspice. The working of each circuit

can be checked using the simulation results.

∙ Layout Design: After the schematic is simulated and verified, the correspond-

ing mask layers of the circuit should be created which can be done using the

Layout Editor by cadence. The layout design includes the floor planning, place-

ment and routing.

The locations of each schematic component are decided in the floor planning and

are placed accordingly. While routing, the interconnections are done between

the components.

∙ Extracted simulation: The layout design should be extracted with the par-

asitics and simulate the system for performance using hspice or ultrasim. The
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parasitics can be either resistance or capacitances which are produced because

of the interconnecting wires using for the routing. The parasitic components

may affect the circuit performance badly. The parasitics cannot be avoided but

can be reduced by proper routing. Finally the routed netlist that is called as

GDS-II will be sent to the foundry and the chip will be manufactured as per

the technology requirement.





Chapter 2

Verilog : Hardware Description

Language

2.1 Introduction

In electronics, HDL is a language from a class of computer language for formal

description of electronic circuit. It can describe circuit operation, its design and

tests to verify its operation at any level. It also allows for the synthesis of a

HDL description into a netlist (a specification of physical electronic components

and how they are connected together), which can then be placed and routed

to produce the set of masks used to create an integrated circuit. VHDL and

VERILOG are popular HDLs.

2.1.1 History

Verilog was created by Prabhu Goel and Phil Moorby between late 1983 and

early 1984. Although the history of the Verilog HDL goes back to the 1980s,

when a company called Gateway Design Automation developed a logic simula-

tor, Verilog-XL, and with it a hardware description language.

11
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Cadence Design Systems acquired Gateway in 1989, and with it the rights to

the language and the simulator. In 1990, Cadence put the language (but not

the simulator) into the public domain, with the intention that it should become

a standard, non-proprietary language. The Verilog HDL is now maintained by

a non profit making organisation, Accellera, which was formed from the merger

of Open Verilog International (OVI) and VHDL International. OVI had the

task of taking the language through the IEEE standardisation procedure.

In December 1995 Verilog HDL became IEEE Std. 1364-1995. A significantly

revised version was published in 2001: IEEE Std. 1364-2001. There was a fur-

ther revision in 2005 but this only added a few minor changes. [5]

Verilog was one of the first modern hardware description languages to be in-

vented. It is one of the two most common Hardware Description Languages

(HDL) used by integrated circuit (IC) designers.

2.1.2 Levels of Abstraction

HDLs allows the design to be simulated earlier in the design cycle in order to

experiment with different architectures or correct errors. Designs described in

HDL are easy to design and debug, technology-independent, and are usually

more readable than schematics, particularly for large circuits. Verilog can be

used to describe designs at four levels of abstraction:
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Figure 2.1: Verilog: Levels of Abstraction

– Algorithmic level (much like c code with if-else, case and loop statements).

– Register transfer level (RTL uses registers connected by Boolean equa-

tions).

– Gate level (interconnected AND, OR etc.).

– Switch level (MOS transistors)

More recently Verilog is used as an input for synthesis programs that generate

a gate-level description (a netlist) for the circuit. Some Verilog constructs are

not synthesizable. Also the way the code is written will greatly affect the size

and speed of the synthesized circuit. Most readers will want to synthesize their

circuits, so non-synthesizable constructs are used only for test benches. These

are program modules used to generate I/O needed to simulate the rest of the

design. The words not synthesizable is used for examples and constructs as

needed that do not synthesize.
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2.1.3 Benefits

– Early design verification via high level design verification

– Evaluation of alternative architectures

– Top-down design (w/synthesis)

– Reduced risk to project due to design errors

– Design capture (w/synthesis & independence of implementation media)

– Reduced design/development time & cost (w/synthesis)

– Base line testing of lower level design representations - example: gate level

or register level design

– Ability to manage/develop complex designs

– Hardware/software co-design

– Documentation of design (depends on quality of designer comments)

2.1.4 Designer concerns

– Loss of control of detailed design

– Synthesis is inefficient

– Quality of synthesis varies between synthesis tools

– Synthesized logic does not perform the same as the HDL

– Learning curve associated with HDLs & synthesis tools

2.2 Design Flow using Verilog

The diagram below summarises the high level design flow for an FPGA or ASIC.

In a practical design situation, each step described in the below sections may

be split into several smaller steps, and parts of the design flow will be iterated

as errors are uncovered.
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Figure 2.2: Desin Flow Using Verilog

2.2.1 System-level Verification

As a first step, Verilog may be used to model and simulate aspects of the com-

plete system containing one or more ASICs or FPGAs. This may be a fully

functional description of the system allowing the specification to be validated

prior to commencing detailed design. Alternatively, this may be a partial de-

scription that abstracts certain properties of the system, such as a performance

model to detect system performance bottle-necks.

2.2.2 RTL design and testbench creation

Once the overall system architecture and partitioning is stable, the detailed

design of each FPGA or ASIC can commence. This starts by capturing the

design in Verilog at the register transfer level, and capturing a set of test cases
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in Verilog.

These two tasks are complementary, and are sometimes performed by different

design teams in isolation to ensure that the specification is correctly interpreted.

The RTL Verilog should be synthesizable if automatic logic synthesis is to be

used. Test case generation is a major task that requires a disciplined approach

and much engineering ingenuity: the quality of the final FPGA or ASIC depends

on the coverage of these test cases.

For today’s large, complex designs, verification can be a real bottleneck. This

provides another motivation for System Verilog - it has features for expediting

testbench development. See the System Verilog section of Knowhow for more

details.

2.2.3 RTL verification

The RTL Verilog is then simulated to validate the functionality against the

specification. RTL simulation is usually one or two orders of magnitude faster

than gate level simulation, and experience has shown that this speed-up is best

exploited by doing more simulation, not spending less time on simulation. In

practice it is common to spend 70-80% of the design cycle writing and simu-

lating Verilog at and above the register transfer level, and 20-30% of the time

synthesizing and verifying the gates.

2.2.4 Look-ahead Synthesis

Although some exploratory synthesis will be done early on in the design process,

to provide accurate speed and area data to aid in the evaluation of architectural

decisions and to check the engineer’s understanding of how the Verilog will

be synthesized, the main synthesis production run is deferred until functional

simulation is complete. It is pointless to invest a lot of time and effort in
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synthesis until the functionality of the design is validated.

2.3 Scope of Verilog

Verilog can be used at different levels of abstraction as we have already seen.

But how useful are these different levels of abstraction when it comes to using

Verilog?

Figure 2.3: Scope of Verilog
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– Design process

The diagram below shows a very simplified view of the electronic system

design process incorporating Verilog. The central portion of the diagram

shows the parts of the design process which will be impacted by Verilog.

– System level

Verilog is not ideally suited for abstract system-level simulation, prior to

the hardware-software split. This is to some extent addressed by Sys-

temVerilog. Unlike VHDL, which has support for user-defined types and

overloaded operators which allow the designer to abstract his work into

the domain of the problem, Verilog restricts the designer to working with

pre-defined system functions and tasks for stochastic simulation and can

be used for modelling performance, throughput and queueing but only in

so far as those built-in langauge features allow. Designers occasionally use

the stochastic level of abstraction for this phase of the design process.

– Digital

Verilog is suitable for use today in the digital hardware design process, from

functional simulation, manual design and logic synthesis down to gate-level

simulation. Verilog tools provide an integrated design environment in this

area.

Verilog is also suited for specialized implementation-level design verifica-

tion tools such as fault simulation, switch level simulation and worst case

timing simulation. Verilog can be used to simulate gate level fanout load-

ing effects and routing delays through the import of SDF files.

The RTL level of abstraction is used for functional simulation prior to syn-

thesis. The gate level of abstraction exists post-synthesis but this level of

abstraction is not often created by the designer, it is a level of abstraction
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adopted by the EDA tools (synthesis and timing analysis, for example).

– Analog

Because of Verilog’s flexibility as a programming language, it has been

stretched to handle analog simulation in limited cases. There is a draft

standard Verilog-AMS that addresses analog and mixed signal simulation.
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Logic Synthesis

3.1 Introduction

The introduction of logic synthesis for HDLs pushed HDLs from the background

into the foreground of digital design. Synthesis tools compiled HDL source

files (written in a constrained format called RTL) into a manufacturable netlist

description in terms of gates and transistors. Writing synthesizable RTL files

required practice and discipline on the part of the designer; compared to a

traditional schematic layout, synthesized RTL netlists were almost always larger

in area and slower in performance.

How do you write good synthesisable Verilog code to give you the hardware

you want? Synthesis is a broad term often used to describe very different tools.

Synthesis can include silicon compilers and function generators used by ASIC

vendors to produce regular RAM and ROM type structures. This is best suited

to gate arrays and programmable devices such FPGAs.

Synthesis is not a panacea! It is vital to tackle High Level Design using Verilog

with realistic expectations of synthesis. The definition of Verilog for simulation

is cast in stone and enshrined in the Language Reference Manual. Other tools

which use Verilog, such as synthesis, will make their own interpretation of the

21
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Verilog language. There is an IEEE standard for Verilog synthesis (IEEE Std.

1364.1-2002) but no vendor adheres strictly to it.

It is not sufficient that the Verilog is functionally correct; it must be written

in such a way that it directs the synthesis tool to generate good hardware, and

moreover, the Verilog must be matched to the idiosyncrasies of the particular

synthesis tool being used. We shall tackle some of these idiosyncracies in this

Verilog tutorial.

There are currently three kinds of synthesis:

– behavioural synthesis

– high-level synthesis

– RTL synthesis

There is some overlap between these three synthesis domains. We will con-

centrate on RTL synthesis, which is by far the most common. The essence of

RTL code is that operations described in Verilog are tied to particular clock cy-

cles. The synthesised netlist exhibits the same clock-by-clock cycle behaviour,

allowing the RTL testbench to be easily re-used for gate-level simulation.

3.2 Synthesis tools targeting ASICs

– Design Compiler by Synopsys

– Encounter RTL Compiler by Cadence Design Systems

– BuildGates, an older product by Cadence Design Systems, humorously

named after Bill Gates

– HDL Designer by Mentor Graphics

– TalusDesign by Magma Design Automation

– RealTime Designer by Oasys Design Systems

– BooleDozer: Logic synthesis tool by IBM (internal IBM EDA tool)
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3.3 Synthesis tools targeting FPGAs

– XST (delivered within ISE) by Xilinx

– Quartus II integrated Synthesis by Altera

– IspLever by Lattice Semiconductor

– Encounter RTL Compiler by Cadence Design Systems

– LeonardoSpectrum and Precision (RTL / Physical) by Mentor Graphics

– Synplify (PRO / Premier) by Synopsys

– BlastFPGA by Magma Design Automation





Chapter 4

Memory

4.1 INTRODUCTION TO MEMORIES

A device or an electrical circuit used to store a single bit (0 or 1) is called

a memory cell. Examples of memory cell are flip flop, a charged capacitor

etc. Semiconductor memories are capable of storing large amount of Digital

information. The amount of memory required in a particular system depends

on the type of application but the no. of transistor required for storage of data

are always much larger than the no of transistors used for logic operations &

other purposes.

The ever increasing demand of high storage capacity has driven the fabrication

technology & memory development towards more compact design rules and

consequently towards higher data storage densities. The memory data storage

capacity of a single chip doubles almost after every two years. The number

of data bits stored per unit area is one of the key criteria that determine the

overall storage capacity & hence the memory cost per bit. Another important

issue is the memory access time i.e. the time taken to store or retrieve data

in the memory array. The access time determines the memory speed. Static

& Dynamic Power consumption of the memory array is a significant factor to

25
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be considered in the design because of the increasing demand of the low power

applications.

4.2 TYPES OF MEMORY

The Semiconductor memories are classified according to the type of data storage

and data access.

Figure 4.1: Types of Memory
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4.2.1 ROM

These are read only memory . ROM are non volatile memories that is the stored

data is not lost even when the power supply is not switched off and refresh

operation is not required. Memories in the ROM family are distinguished by

the methods used to write new data to them (usually called programming),

and the number of times they can be rewritten. This classification reflects the

evolution of ROM devices from hardwired to programmable to erasable-and-

programmable. The ROM are classified into three main categories:

a. PROM

These are programmable ROM in which data is written electrically after

the chip is fabricated. The device programmer writes data to the device

one word at a time by applying an electrical charge to the input pins of

the chip. Once a PROM has been programmed in this way, its contents

can never be changed. If the code or data stored in the PROM must be

changed, the current device must be discarded. As a result, PROMs are

also known as one-time programmable (OTP) devices.

b. EPROM

An EPROM (erasable-and-programmable ROM) is programmed in exactly

the same manner as a PROM. However, EPROMs can be erased and repro-

grammed repeatedly. To erase an EPROM, you simply expose the device

to a strong source of ultraviolet light. (A window in the top of the device

allows the light to reach the silicon.) By doing this, you essentially reset

the entire chip to its initial–unprogrammed–state. Though more expen-

sive than PROMs, their ability to be reprogrammed makes EPROMs an

essential part of the software development and testing process.

c. MASKED ROM

These are ROM in which data is written during chip fabrication by using

a photo mask. The contents of the ROM had to be specified before chip
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production, so the actual data could be used to arrange the transistors in-

side the chip. These are also known as hard wired memories. The primary

advantage of a masked ROM is its low production cost. Unfortunately, the

cost is low only when large quantities of the same ROM are required.

4.2.2 RAM

The Read/Write memory is commonly known as Random Access Memory (RAM).

Read/Write(R/W) memory must permit the modification (writing) of data bits

stored in the memory array, as well as their retrieval (reading) on demand. .Un-

like sequential access memory any cell can be accessed with nearly equal access

time. The stored data is volatile i.e. the stored data is lost when the power

supply is switched off. RAMs are classified into two main categories :

a. DRAM

Dynamic Random Access memory (DRAM ) cells consist of capacitor to

store binary information , 1(high voltage ) or 0(low voltage) ,and transistor

to access the capacitor . Cell information (voltage) is degraded mostly due

to the junction leakage current at the storage node. Therefore, a cell data

must be read and re-written periodically (refresh operation) even when

memory arrays are not access. The entire memory area is divided into

several blocks where the row & column decoders are shared by neighboring

blocks. Each memory block is sliced into sub-blocks, where each sub block

has its data line control circuits. The number of cells per word & bit

lines is determined by the trade-off between the chip size & performance.

The Chip size is smaller if more cells can share the same word line & bit

lines. However the performance is degraded in this case as row & column

address decoders must drive a large load. In dynamic RAM cell data is

stored as charge on a capacitor & the presence or absence of stored charge

determines the value of the stored bit. Since the data stored as charge on
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a capacitor cannot be retained indefinitely because the leakage currents

eventually remove or modify the stored data. Thus all the DRAM cells

requires a periodic refreshing so that the unwanted modifications due to

leakage can be prevented. The usage of a capacitor as the primary storage

device generally enables the DRAM cell to be realized in a much smaller

area as compared to the typical SRAM cell.

b. SRAM

Static Random access memory (SRAM) is used when we require high speed

because SRAM devices offer extremely fast access times (approximately

four times faster than DRAM) but are much more expensive to produce.

Generally, SRAM is used only where access speed is extremely important.

Rest all about SRAM is explained in next chapter

4.2.3 HYBRID

As memory technology has matured in recent years, the line between RAM and

ROM has blurred. Now, several types of memory combine features of both.

These devices do not belong to either group and can be collectively referred

to as hybrid memory devices. Hybrid memories can be read and written as

desired, like RAM, but maintain their contents without electrical power, just

like ROM. Two of the hybrid devices, EEPROM and flash, are descendants

of ROM devices. These are typically used to store code. The third hybrid,

NVRAM, is a modified version of SRAM. NVRAM usually holds persistent

data.

a. EEPROM

EEPROMs are electrically-erasable-and-programmable. Internally, they

are similar to EPROMs, but the erase operation is accomplished electri-

cally, rather than by exposure to ultraviolet light. Any byte within an



CHAPTER 4. MEMORY 30

EEPROM may be erased and rewritten. Once written, the new data will

remain in the device forever or at least until it is electrically erased. The

primary trade off for this improved functionality is higher cost, though

write cycles are also significantly longer than writes to a RAM. So you

wouldn’t want to use an EEPROM for your main system memory.

b. FLASH RAM

Flash memory combines the best features of the memory devices described

thus far. Flash memory devices are high density, low cost, nonvolatile, fast

(to read, but not to write), and electrically reprogrammable. These advan-

tages are overwhelming and, as a direct result, the use of flash memory has

increased dramatically in embedded systems. From a software viewpoint,

flash and EEPROM technologies are very similar. The major difference is

that flash devices can only be erased one sector at a time, not byte-by-

byte. Typical sector sizes are in the range 256 bytes to 16KB. Despite this

disadvantage, flash is much more popular than EEPROM and is rapidly

displacing many of the ROM devices as well.

c. NVRAM

The third member of the hybrid memory class is NVRAM (non-volatile

RAM). Nonvolatility is also a characteristic of the ROM and hybrid mem-

ories discussed previously. However, an NVRAM is physically very dif-

ferent from those devices. An NVRAM is usually just an SRAM with a

battery backup. When the power is turned on, the NVRAM operates just

like any other SRAM. When the power is turned off, the NVRAM draws

just enough power from the battery to retain its data. NVRAM is fairly

common in embedded systems. However, it is expensive–even more expen-

sive than SRAM, because of the battery–so its applications are typically

limited to the storage of a few hundred bytes of system-critical information

that can’t be stored in any better way.
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Why do we need Models.?

We have studies about mathematical models or statistical models of some sys-

tems or some theory. But why do we use those models was a big question that

time. So here I explain you the reason.

Generally speaking, models are simplified descriptions of reality that strip away

all of its complexity except for a few features thought to be critical to the un-

derstanding of the phenomenon under study. Mathematical models are such

descriptions translated into a very precise language which, unlike natural hu-

man languages, does not allow for any double (or triple) meanings. The great

strength of mathematics is that, once we have framed a problem in mathe-

matical language, we can deduce precisely what are the consequences of the

assumptions we made – no more, no less.

Models can be used for a variety of purposes: a compact description of the

system structure, an investigation into the logical coherence of the proposed ex-

planation, and derivation of specific predictions from theory that can be tested

with data. Depending on the purpose, we can develop different models for the

same empirical system.

Similarly, in VLSI industries, HDL Models are used for logical/functional coher-

ence of the proposed explanation and derivation of specific predictions that can

31
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be tested with data.Also, note that, HDL Models are the Replication of your

Design functionality. Models should be developed such that its functionality

should act like more closed to Silicon.

In ST Microelectronic, my work is to make these Models with provided design

functionalities and specifications. I have done the Modelling of Memory IPs

with Verilog HDL.
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HDL Based Memory Models

In ST Microelectronics, I updated a previous version of model with adding some

functionalities and some strategies. We will go through these Functionalities

thoroughly.

Figure 6.1: Memory Model Block Diagram

33
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The functionalities which were supported in Memory models are,

– Read/write

– Redundancy

– Masking

– E-switch functionality

– Power supply checks

– Margin Controls

– Retention Logic

6.1 Read/Write

Static Random access memory (SRAM) is used when we require high speed

because SRAM devices offer extremely fast access times (approximately four

times faster than DRAM) but are much more expensive to produce. Generally,

SRAM is used only where access speed is extremely important. The timing

diagrams of read cycle and write cycles are shown below:



CHAPTER 6. HDL BASED MEMORY MODELS 35

Figure 6.2: Read cycle

Figure 6.3: Write cycle without mask
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Figure 6.4: Write cycle with mask
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6.2 Redundancy

In large memory arrays (where in SRAM is being used), there are possibilities

of corruption of memory arrays /memory cells. If any memory cell is corrupted

in between the array, the current technology replaces the entire array which

doubles the cost and reduces the throughput. To overcome this problem redun-

dancy technique is proposed.

Figure 6.5: Redundancy operation of Model

The basic idea of the technique is to replace the row or column containing the

corrupted bit cell with a redundant row or column. So the memory array will

be built along with the redundant blocks (rows or column). But one should see

to it that the total cost of SRAM array with redundant blocks and additional

features should not exceed the double the cost of a single SRAM array.
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Figure 6.6: Redundancy Concept

For example,

the above fig 6.6 shows the cut with a single failing row 104 on left, and the

same cut after repair, on the right. Note that row 105 is also replaced along with

row 104. Thus, if during testing, a failure is found on row number 104, to repair

the memory redundancy repair address should be put as 104 (binary 1101000)

on redundancy repair address, and redundancy repair address enable should be

pulled high. This ensures that the failing row is never accessed; redundancy

row replaces it instead.

6.3 Masking

The Bit Mask feature enables a user to preserve the contents of particular

bits/bytes in a word when a new Write operation is initiated. When a memory

is generated with Mask feature, then every data input is accompanied by a mask

input. When mask input is high during a Write operation, the corresponding

bit/byte of the memory location is not updated with the new data input. When

Mask pin is asserted, the corresponding bit/byte does not enter into Write mode

and dynamic power consumption is reduced.
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For example, consider the following case for memory size 16x8, when the ad-

dress is 5 and my previous value at that memory location be 8b 1111 1000, then

the value that should go to the memory location 5 during write operation with

masking is obtained below:

Mem[5] 8’b 1111 1000

Data 8’b 0101 0110

Mask 8’b 1011 1101

Value 8’b 1111 1010

Thus, instead of data hex 56 my value at that memory will go as hex FA.

6.4 E-switch

The Eswitch option enables embedded power gating in the compiler. By de-

fault, the option is set to No. When the Eswitch option is set to Retention,

both array and periphery can be switched Off or On independently. Separate

switch controls are available for turning the periphery and array off, with two

external pins each for array and periphery to control a small and a large internal

switch. The small switch is turned On before the large switch. This ensures

low peak currents so that adjoining circuits sharing the same power mesh are

not impacted when memory wake up is in progress.

6.5 Power Supply

A designer may decide to use separate substrate supplies in Split Bulk Supply

mode. For the periphery, these two are different power supplies, that is, sub-

strate power is vddsmp and source power is vddmp. Ground is split into gndm
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and gndsm (substrate) for periphery. The substrate supply of memory array is

connected to gndm.

Split Bulk power supply option instances have separate substrate supplies to

enable operation in Body Bias mode. Forward body bias is used to improve

memory performance for slow lots.
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Work Flow of HDL Modeling

7.1 Updates

Customer reports some updation in terms of,structure of memory models or

model specifications & functionality. Figure 7.1 shows the updates from the

customers. With reference to these listed updates, previosly defined models are

edited in terms of verilog langauge or supported views.The previously defined

models are enhanced with the new specs or functionality or structure.After that

the updated model is being verified on SV verification environment.
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Figure 7.1: List of updates

7.2 Bug finding

In Modelling, we first write the HDL code. That HDL code is written with con-

sidering all the functionalities that the model should represent or the customer

wants in the model/IPs.

When the HDL code is written, we do take care of

– Some instances and its co-dependence

– Priority / preference of occurring of events

– Dependence of one functionality on others

– Modes to be included in HDL model
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– Groups of timing checks i.e. the group of timing checks are described in

terms of stability time windows and the group to check clock and control

signals and are described in terms of the difference in time between two

events.

– Supply Checks and priority of supply togglings priority

– Task handling

After considering all the above points, the Model Developer should verify whether

the model is in sync with the design specifications or not. For that ”Verifica-

tion” of the written RTL is done.

In ST Microelectronics, we use an ”SV ENVIRONMENT” that is prepara-

tory of the Verification Team to verify the Model. This environment is updated

with the design specifications. So, when the model is run on the environment,

it compares the expected golden response with the model output responds.

When the mismatch occurs, we can say that, there is a BUG present in the HDL

model (actually its a Verilog code only). Finding the ”Presence of the BUG” is

easy but finding ”where and why the BUG is...!” is difficult. After the mismatch

comes in the log file, we open up the Simulation window of the respected case.

With putting all the functionality in a human mind, the developer should check

the mismatch that the simulation tool shows us.

In the below figures 7.2 and 7.3, the screenshot of the log file and the waveform

window at that time instant are shown respectively.
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Figure 7.2: Log file view

Figure 7.3: Waveform view
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In test case atp se tby initn sleep stdby there are 143 errors and thus that test

case failed in the SV environment run. Generated report:

Figure 7.4: Failed testcase

7.3 Debugging

When we find the presence of the bug, and where the big is, we need to do the

DEBUGGING process on our Verilog code.

So the developer again goes to the flow of the code and with respect to the

mismatch occurred, the test case conditions and the defined functionality, de-

bugging of the code is done.

Here in the below fig 7.5 the screenshot of the log file, for the same test case.

Figure 7.5: Passed testcase
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”After passing all the BUG FINDING & DEBUGGING the failed code becomes

the successive one”.

7.4 Model Template File Update

The model developer writes a code for a small memory cut i.e for the lesser

memory size so that the length of the code do not make the bug finding and

debugging process a tedious one. Thus, the first cut I have referred was of 16x8

in which Address is 16 and each address have 8 bits of contain.

But after the HDL code becomes the successive code, i.e if it matches the design

specific functionalities for a smaller cut, then that flow of that HDL code should

be made generic so that it gives the same successive approach for the larger cuts

too.

Also, the handling of functionalities should be in the hand of user/customer. It

should not be a hard coded one. If a customer wants a memory code in which

the Redundancy functionality should not be present, then it becomes unworthy

to remove all the redundancy related terms from the hard-coded HDL code.

Thus, a Template file is written in MIF codes, that will handle the function-

alities as well as the terms of HDL related to it, like, the number of repeated

instances of a sub-module.

MIF - Map Into Format file, is a file extension for an interchange format file

format. MIF files contain representations of the text and layout construction in

grouped statements. Due to its text nature, an MIF file can be read and parsed

easily.

In ST Microelectronics, I have updated the MIF file i.e a template file of the

updated code. After updating it, that file is also compiled and checked whether

there is any syntax error or not! And then a script that will contain the infor-

mation of the required cuts functionalities & features like, the memory cut size,

address bits, data bits, name of the compiler supported, the name of the .v file,
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model type i.e allpins model (contains the supply pins on the input ports) or

Verilog model, the presence of the required functionalities & also the absence

of the non-required functionalities.

Here, is screen shot of the MIF File,

Figure 7.6: Template view

When the script is run successfully the output will be the HDL code for that

memory cut. But the generated file is also being verified at the developer side.

Sometime it is also possible that the generated file also have some errors that

will be seen in the verification end.

If the developed code is checked for all the possible cuts and the possible modes

i.e. timing mode or functional mode, the MIF file will be considered as the next

updated MODEL of the Memory. Thus it is important that the generated cut

should pass all the test cases, below fig. 7.7 shows the report of a Timing mode

in which file initialization is done without Fault.
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Figure 7.7: Final Report with all passed test cases

Thus, the updated model is ready to release.



Chapter 8

Work done during the project

– Understanding of Behavioral Modeling of Single Port Memory previously

defined models.

– Simulation on NCSim, QuestaSIM and VCSMX simulators.

– Writing synthesible verilog RTL code for emulator models.

– Spyglass tool for RTL checks.

– Design Compiler for synthesis.

– TetraMAX Automatic Test Patterns Generation.

– Above mentioned steps for, ROM model, pseudo-REG models, and Dual

Port REG models.

– Emulation on VELOCE tool for SP, ROM, pREG & DP emulator-models.
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msmCutGen: Auto-Cut

Generation Tool

9.1 Introduction

As we have seen before, updation of memory involves some steps to be followed:

– Template updation

– Cut generation

– Verification

– Validation

The cut generation step converts the MIF formatted file into the actual ver-

ilog coded files. along with this verilog view, other supported views are also

geneated. The generation step involves, many deliverable products which pro-

vides the respective background supports.

The compilers supported for a perticular memory model, are submitted on

UPT(Unicad Project Tracking). Today Cut generation process is error prone

due to many manual interventions. Also, it was Difficult for newcomers. Some-
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times it introduce bugs in products due to missing cuts/missing compilers. and

because of these errors, its run time was large due to iterations.

steps involved in Old process:

– Look up / findout compilers supported and PRIMARY names

– manually create dirs for all compilers supported by a model product.

(sometimes not all compilers are created.)

– Download products required for the primaries are listed

– Decide on the cutlist and get it reviewed by PL (Risky)

– Generate Cuts (manual generation commands. + environment- variable

settings can be sometimes be incorrect.)

Thus, a script was developed to automate the process. and steps involved in

new process:

– User only gives the Model name and version on which he is working

– Automatic lookup of PRIMARIES and compilers supported

– Auto Dir structure created for all compilers

– Auto cutlist generated, with controllable combinations.

9.2 Flow of msmCutGen

The flow if msmCutGen is shown in figure 9.1
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Figure 9.1: msmCutGen Flow

9.3 Features

The msmCutGenkit offers :

– Extraction of latest version of compilers supported by given model product

which user wants to validate from UPT.

– Allows user to add compilers which are not on UPT but wants to run the

generation for it.

– Allows to select the compilers for which generation should run.

– Allows to select the compilers for which generation should run.

– Allows to give already existing ucdprod, .ucdprod and ugnGuiSetupDB

paths as an input for any of the compilers.
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– Exhaustive cutlist generation for compilers based on given cut template.

– Runs the cut generation in complete batch mode.

– Generates summarised and detailed report for cut generation done.

9.4 Procedure

Provided options with msmCutGen command are as shown in below fig. 9.2

Figure 9.2: msmCutGen: Options

– Extracts the latest version of compilers from UPT supported by given

model product.

– Pops up a GUI window for selection of configs on which generation should

run.

– If user wants to give already existing ucdprod, .ucdprod and ugnGuiSe-

tupDB paths as an input for any of the selected compilers then another

GUI window as shown in below fig. 9.3 pops up to enter the inputs.
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Figure 9.3: runGUI window

– After having complete inputs of all the compilers, then each of the com-

pilers generation is launched on LSF in parallel to each other.

– In mid of the whole process, for ugnGuiSetupDB if cut template is given,

then exhaustive cutlist is also generated automatically.

– Generates the report of generations launched and mails to the user.
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Figure 9.4: Generated reports



Chapter 10

Conclusion

Front-end Modeling is an important activity for all projects. Hence, this needs

to be continuously updated to deliver state-of-the-art solutions to our customers.

The need for modeling to resemble the actual hardware design keeps on increas-

ing with time, as designers want to know exactly how a particular IP will behave

when it is plugged into a SoC (System on Chip).

Moreover, nowadays with shrinking technology, the numbers of views deliv-

ered for same IP are also increasing. Earlier it was mainly to do with functional

and timing model. Now it includes ATPG views, emulation view, Equivalence

Checker view etc. Hence, Front-End modeling becomes all the more complex.

The working Memory model is released to customer and the customer can gen-

erate the required size and the different views can also be generated.
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