
Highly Optimized 2-Step Design Validation
and Integration System Delivery to a

Multicore Project

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(VLSI Design)

By

Poornima Khullar
(14MECV24)

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2016

Highly Optimized 2-Step Design Validation
and Integration System Delivery to a

Multicore Project

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(VLSI Design)

By

Poornima Khullar
(14MECV24)

Under the guidance of

External Project Guide: Internal Project Guide:

Mr.Sandip U Rajput Dr. N. M. Devashrayee
Component Design Engineer, Professor, EC Department,
Intel India Technology Pvt. Ltd., Institute of Technology,
Bangalore. Nirma University, Ahmedabad.

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2016

Certificate

This is to certify that the Major Project entitled “Highly Optimized 2-Step Design
Validation and Integration System Delivery to a Multicore Project” submitted
by Poornima Khullar (14MECV24), towards the partial fulfillment of the requirements
for the degree of Master of Technology in VLSI Design, Nirma University, Ahmedabad is the
record of work carried out by him under our supervision and guidance. In our opinion, the
submitted work has reached a level required for being accepted for examination.The results
embodied in this major project, to the best of our knowledge,haven’t been submitted to any
other university or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Internal Guide Program Coordinator

Dr. N. M. Devashrayee Dr. N. M. Devashrayee
(Professor EC ,VLSI) (Professor EC ,VLSI)

HOD Director

Dr.P.N.Tekwani Dr.P.N.Tekwani
(Head of EE Dept.) (Head of EE Dept.)

14MECV24

Project Completion

This is to acknowledge that Project entitled “Highly Optimized 2-Step Design Val-

idation and Integration System Delivery to a Multicore Project” submitted by

Poornima Khullar (14MECV24), towards partial fulfillment of requirements for the de-

gree of Master of Technology in VLSI Design, Nirma University, Ahmedabad is the record of

work carried out by her under my supervision and guidance. In my opinion, the submitted

work has reached a level required for being accepted for examination.

for Intel Technology India Pvt. Ltd.,

Project Manager

Mr.Venkatesh K Elayavalli

(Engineering TD Manager)

Date: Place: Bangalore

ii

14MECV24

Declaration

This is to certify that

1. The thesis comprises my original work towards the degree of Master of Technology in

VLSI Design at Nirma University and has not been submitted elsewhere for a degree.

2. Due acknowledgment has been made in the text to all other material used.

- Poornima Khullar

14MECV24

iii

14MECV24

Disclaimer

“The content of this paper does not represent the technology, opinions, beliefs, or

positions of Intel Technologies India Pvt. Ltd. Company, its employees, vendors,

customers, or associates.”

iv

14MECV24

Acknowledgements

I take immense pleasure in thanking my Mentor Mr. Sandip U Rajput, Component Design

Engineer, Mr. Venkatesh K Elayavalli, Engineering Manager Intel Technologies India Pvt.

Ltd., Bangalore, for having permitted me to carry out this project work.Through-out the

training, they had given me much valuable advice on project work which I am very lucky

to benefit from.

I also wish to express my deep sense of gratitude to my guide Dr. N. M. Devashrayee,

Institute of technology, Nirma University for being a source of inspiration and for timely

guidance during the project.

I would like to express my gratitude and sincere thanks to our Director Dr. P. N. Tekwani,

Head of Electrical Engineering Department for allowing me to undertake this thesis work

and for his guidelines during the review process.

I would like to express my gratitude and sincere thanks to Mrs. Ruttika Jaju, Component

Design Engineer, Intel technologies India Pvt. Ltd., for guiding me throughout my thesis

work at Intel, and for making project at Intel more enjoyable.

I wish to thank my classmates for their delightful company which kept me in good humor

throughout the journey. Last, but not the least, there are no words to thank my family for

their constant support and sacrifices, because of which I’m able to complete the M.Tech.

degree successfully.

- Poornima Khullar

14MECV24

v

14MECV24

Abstract

With the rapid growth in semiconductor technology, always in alignment with Moore’s

prediction, the designers face large integration capacity than they can consume. Further-

more, the cut throat competition in electronic innovation is constraining the designers more

and more to minimise the time and meet the ”time to-market” window. Without change

and evolution in the design process and testing process, it will not be able to simply reduce

reasonable amount of time. One possible methodology to reduce this productivity problem

is the ”design-reuse”, which consists in the re-exploitation of the already designed modules

in different context, well-known under the name of IP-reuse. In the concept of IP reuse,

the IP module is once compiled individually and then with the entire SoC modules, thus

it is being validated twice, leading to the concept of 2-step compilation. This report de-

tails about compilation flow used for front end design and verification through which time

required and the complexity of front end process can be reduced.

In Intel earlier different design teams used their own legacy flows. A new flow was

proposed which was a mixture of all the flows and can be used many design teams. Advanced

Streamlined System (AS-2) is a mixture of the legacy flows used for validation of the SoC or

design modules. It also provides a common environment to many projects while providing

project-specific customization. Flows that were used earlier for validation of the IP’s were

not compatible with today’s generation SOC’s. Advanced Streamlined System is converged,

2-step but it has performance gap and integration bottlenecks. Performance analysis of the

current system is done to reduce the time for validation in best possible ways and finally

flow migration to the new highly optimized system.

vi

Contents

Certificate i

Certificate(Intel) ii

Declaration iii

Disclaimer iv

Acknowledgements v

Abstract vi

List of Tables ix

List of Figures x

List of Abbreviation 1

1 Introduction 2

1.1 Motivation . 2

1.2 Problem Statement . 3

1.3 Thesis Organization . 3

1.4 VLSI Design Flow . 3

1.5 Front End VLSI Flow . 5

2 Literature Review 7

2.1 Behavioral v/s Structural Modeling . 7

2.2 2-Step Compilation . 8

2.3 Legacy and SoC Integration Flow . 9

2.3.1 Legacy Flow . 10

2.3.2 Advanced flow or SoC Integration Flow 10

2.4 Advanced Streamlined System (AS-2) . 11

2.4.1 Flow Mechanism . 11

2.4.2 Integration Bottlenecks . 12

vii

CONTENTS 14MECV24

2.4.3 Summary . 13

3 Performance Analysis 14

3.1 Importance of Performance Analysis . 14

3.2 Perl Profiling Tool – NYTProf . 15

3.2.1 Statement Profiler . 15

3.2.2 Subroutine Profiler . 16

3.3 Performance Analysis of AS-2 . 16

3.3.1 Experiments . 16

3.3.2 Critical Observation in AS-2 . 22

4 Design Prototyping and Results 24

4.1 Importance of AS-2 Prototype . 24

4.2 Perl Testing Module . 26

4.3 Test Cases added to AS-2 Prototype . 27

4.3.1 Test for loading various checks for the SoC or IP 28

4.3.2 Test to check attributes being passed from parent to child design con-

figuration for the SoC or IP . 30

4.3.3 Test for Flow Equivalence Checking for the SoC or IP 31

4.3.4 Test for checking whether AS-2 modules are Perltidy compatible . . . 31

4.3.5 Test for Performance Checking of AS-2 prototype 33

4.3.6 Improvement in Test . 34

4.3.7 Unit Test for Environment setup for AS-2 Flow 37

4.4 Summary . 39

Conclusion 40

References 41

viii

List of Tables

2.1 Flow Comparison Table . 11

3.1 Results of Performance Analysis . 20

ix

List of Figures

1.1 VLSI Design Flow . 4

1.2 Front End VLSI Design Flow . 6

2.1 Behavioral Modeling Example . 7

2.2 Structural Modeling Example . 8

2.3 IP Classification . 9

2.4 Implementation of AS-2 . 10

2.5 Flow of AS-2 . 12

2.6 Integration Flow of AS-2 . 13

3.1 Statement Profile Example . 15

3.2 Experiment 1A . 17

3.3 Flow Graph of Experiment 1A . 17

3.4 Experiment 1B . 18

3.5 Experiment 1C . 18

3.6 Experiment 1D . 19

3.7 Experiment 1E . 20

3.8 Reoccurring Loop . 21

3.9 Experiment 2A . 21

3.10 Experiment 2B . 22

3.11 Color Coding in NYTProf . 23

3.12 Call Tree in NYTProf . 23

4.1 AS-2 Work Flow with IP . 25

4.2 AS-2 Work Flow with Prototype . 26

4.3 Test Driven Development . 28

4.4 Test for loading checks on SoC 1 . 29

4.5 Test for loading checks on SoC 2 . 29

4.6 Test for checking attributes . 30

4.7 Test for Comparing Flow Specification . 31

4.8 Before Perltidy . 32

4.9 After Perltidy . 32

x

LIST OF FIGURES 14MECV24

4.10 Test for Performance Checking of AS-2 prototype[1] 33

4.11 Test for Performance Checking of AS-2 prototype[2] 33

4.12 Test for Performance Checking of AS-2 prototype[3] 34

4.13 Logging of AS-2 Flow test . 35

4.14 Function of Screen Filter . 36

4.15 Function of Unit Test . 38

xi

LIST OF FIGURES 14MECV24

List of Abbreviation

RTL . Register Transfer Logic

SoC . System on Chip

CAD . Computer Aided Design

HDL . Hardware Description Language

AS-2 . Advanced Streamlined System

FEDV . Front End Design Validation

PERL . Practical Extraction and Report Language

EDA . Electronic Design Automation

DUT . Design Under Test

1

Chapter 1

Introduction

All practical VLSI circuit are very, very large or very, very complex in nature like a processor,

which are large and very complex applications. A complex circuit may have hundreds of

inputs, outputs and millions of gates, in order to create complex circuit consisting of millions

of transistors manually, can be difficult. For such problem a CAD tool is required which

will help to automate the design for given specification.

CAD tools provide several advantages like it has an ability to assess complex conditions

in which solving a single problem which may creates other problems. It use analytical

methods to evaluate the cost of a decision and uses synthesis methods to provide a solution

for the same. It concede the process of introducing and investigating the solutions at the

same time.

1.1 Motivation

The entire project covers working on AS-2 which is a front end design IP validation system.

It is converged, 2-step, and based on next generation build flows. It is a common solution

used for both big and small IP. This project gives a good idea of methodology used in front

end IP validation. It involves development and enhancing features required in the front end

part of complex SoC integration. It reduces the design time, time to market and can handle

design complexity easily.

Performance analysis of the current system is done to find the integration bottlenecks and

enhancement can be done accordingly. With that developing a prototype for AS-2 as it was

running on an IP which runs maximum qualification checks but not all. The prototype would

imitate the design and contain test case for different IP blocks and perform all qualification

checks.

2

Chapter 1. Introduction 14MECV24

1.2 Problem Statement

Designing a module which can be an SOC or IP that are optimized along the three axis

of area, power and time is a difficult task. Achieving optimum balance along any two

axis is a simpler task than across the three. To handle the rising time to market pressure

and increasing design complexities we need efficient validation methodologies that can give

maximum coverage check of the design in less amount of time. AS-2 is very efficient in the

concept of IP reuse and compiling an entire soft SoC design.

But AS-2 has performance gap and integration bottlenecks which hinders the goal of

reduction in time drastically. Performance analysis of AS-2 reveals the various gaps which

when removed can enhance performance and finally moving to optimized AS-2 which would

be much faster n efficient.

1.3 Thesis Organization

The thesis is organized in 5 chapters, the details of each chapter is as follows:-

∗ Chapter 1: This chapter gives information about VLSI flow and the front end flow

used in SoC design process.

∗ Chapter 2: It describes the various legacy flow that are used for soft IP validation.

∗ Chapter 3: This chapter explains the performance analysis results of the AS-2 system

in detail along with its advantages and fault.

∗ Chapter 4: Implementation of Prototype which is used to save the compile time of the

design.

∗ Chapter 5: Conclusion

1.4 VLSI Design Flow

The design process of any integrated circuit at various levels is evolutionary in nature. The

VLSI design flow generalizes the step, which in itself are complex task and require various

tools at different design level. The VLSI design flow is partitioned into two parts: Frontend

design flow and Backend design flow. With the two flows together, a functional chip could

be created from scratch to fabrication.[5]

Specification describes abstractly the functionality, architecture, and the interface of

the digital IC circuit to be designed. Here, vendors get feedback from potential customers

on their requirement. When this is completed, a final specification sheet with all major

technical details is constructed. Behavioral description is then build to evaluate the design

3

Chapter 1. Introduction 14MECV24

in terms of performance, functionality, compliance to given standards, and other needs

specified. RTL description is done using HDLs. RTL level analysis is then reformed to a

gate-level netlist with the help of logic synthesis tools. A gate-level netlist is a description of

the design in terms of gates and connections between them, which fulfils the timing, power

and area specifications. These parameters of timing are checked by performing static time

analysis. Finally a physical layout is created, which will be verified and validated and then

sent to fabrication or production.

Figure 1.1: VLSI Design Flow

4

Chapter 1. Introduction 14MECV24

1.5 Front End VLSI Flow

The frontend flow obtain a solution for a user problem or it converts specification into an

RTL circuit description. The flow starts from specification, and mostly involves verification

at each step to achieve good initial design confidence. Later on the process is handled over

to back end flow, where a number of process required for physical implementation of design

are carried out.(Figure 1.2)

The design complexities are growing day by day so a single tool is unable to provide

good remedy for all the design, compilation and verification related issues. With increasing

System-on-Chip (SoC) complexity, the software content combined with it and the rising

time-to-market pressures are increasing the need for an advance automated system for de-

sign, compilation and verification solution which saves time as well as efforts, during the

designing period. The term different VLSI flows means the different design, compilation

verification flows of tools by different CAD tool provider companies.[5]

The AS-2 gives higher degree of design confidence and bringing down the risk of re-spin

or repeated efforts is the main aim of the system, which ultimately contributes for less time

to market. The system is:-

∗ Converged: Used by almost all front end flows.

∗ Amalgam: It makes design compilation and validation of SoC easier and faster and

takes all the advantages of the earlier used legacy flow.

∗ Streamlined: It is a new generation build flow compatible with today’s SoC and IP

block validation.

My work goes around the different periphery of the AS-2, performance analysis of AS-2

and enhancing features of the system.

5

Chapter 1. Introduction 14MECV24

Figure 1.2: Front End VLSI Design Flow

6

Chapter 2

Literature Review

One possible methodology to increase productivity of design is to accept the ”design-reuse”

concept, which require re-exploitation of the already designed modules in different context.

This idea meant building up new IP or modules using the existing ones. This results in a

new concept well-known under the name of IP-reuse. Moreover, an IP is nothing other than

a module implemented with reuse capabilities (IP = Module + Reuse Capabilities), which

leads to the concept of 2-step compilation.[2].

2.1 Behavioral v/s Structural Modeling

When you are modeling hardware, you can write code in different ways, independent on the

HDL you are using (i.e., either VHDL or Verilog). Behavioral modeling refers to a way to

write code (more precisely, to model your hardware design) based on its functionality: it’s

like writing the algorithm that solves your problem. Certain disadvantages of behavioral

modeling are that it does not support the concept of component re-usability. The entire

design is loaded, elaborated and simulated at the same time which takes large amount of

compile time hence increasing time to market. Moreover it gives a non-modular design

description which is low quality and not optimized.

Figure 2.1: Behavioral Modeling Example

7

Chapter 2. Literature Review 14MECV24

With structural code, on the other hand, you are connecting different parts together to

get the final design. In some way you will generally use a mixture of the two: if you think

to bottom-up approach, you first create behavioral/algorithmic code for lowest-level blocks

(e.g., flip-flop) and once you move up across the abstraction levels you mix different blocks

together and connect them in a structural code (e.g., shift register). Structural modeling

gives modular design description and support the concept of design re-usability. It’s a well-

known fast that it’s easier to optimize small design rather than big ones. As it’s a modular

design technique optimized small modules that can be inherited in larger modules, thus

giving a more optimized overall design and brings the concept of 2-step compilation.

Figure 2.2: Structural Modeling Example

2.2 2-Step Compilation

In the concept of IP reuse, the IP module is once compiled individually and then linked with

entire SoC modules, thus it is validated twice leading to the concept of 2-step compilation.

The 2-step support parallelization of process and linking easily with SoC easier. Here the

IP reuse is only for the RTL collateral not for the Validation collateral. Moreover, to be

reusable, a module must be:-

∗ Configurable- constructed to solve a general user problem.

∗ Portable- designed independent of technology and CAD tools.

∗ Debugable- verified and validated with a high degree of confidence ”bug free ”.

∗ Readable- clearly documented on the basis of applicability, restrictions, and defined

interfaces.

8

Chapter 2. Literature Review 14MECV24

An IP or module can be classified as a reusable module by these of quality:

∗ Functional- it is the lowest level of a module which can be reached to be able to use

it.

∗ Maintainable- it means being functionally correct, a maintainable module which is

well documented, with clean and commented coding.

∗ Reusable- A reusable module would have many improvement on a maintainable module

or IP.

”For the purpose of module re-usability, an industrial corporation called VSIA (Virtual

Socket Interfaces Alliance) was established in 1997. It’s aim is to create a set of standards

for making IP reusable. These standards are well defined, described and accepted in today’s

semiconductor world”.[2].

Figure 2.3: IP Classification

2.3 Legacy and SoC Integration Flow

Flows that are being used for validation of Soft IP’s are not compatible with today’s gen-

eration SoC’s and IP’s. The two flows that were used earlier are Legacy Flow and SoC

Integration Flow or Advanced Flow. Both had certain advantages and disadvantages,

but the common disadvantage of them was the time taken to compile the entire SoC design

which was large, thus increasing time to market.

9

Chapter 2. Literature Review 14MECV24

2.3.1 Legacy Flow

It worked on the concept of behavioral modeling design description (Figure 2.1) i.e. non-

modular design description. It didn’t supported the concept of IP reuse and thus no 2-step

compilation. As the design is not optimized thus limiting the quality of the checks done on

it. The compilation time was very high thus limiting the performance of the flow.[6].

2.3.2 Advanced flow or SoC Integration Flow

It supported modular design concept, IP reuse, saved design time also but didn’t had a

proper qualification step. It has high maintenance cost and difficult to deploy or proliferate

to different segment of design system. If the flow failed on certain checks it was difficult

to debug the cause of failure. It was not manageable either and cannot be extended to the

growing technology because of its incompatibility.[6]

Solution to the above problem is AS-2 which takes all the advantages of the above flows

and reduces the compilation time drastically thus reducing time to market and increasing

the performance drastically

Figure 2.4: Implementation of AS-2

10

Chapter 2. Literature Review 14MECV24

Table 2.1: Flow Comparison Table

S.no. Legacy Flow SoC Integration Flow AS-2
1. Behavioral Modelling Partial Structural Mod-

elling
Structural Modelling

2. No IP Reuse (Cannot be
extended to new technol-
ogy)

IP reuse possible(not
completely)

IP reuse possible (com-
pletely)

3. Suitable for small designs Not scalable for larger de-
signs

Scalable for high capacity
designs

4. No 2-Step Compilation Flow not modular, thus
not easy to proliferate

Enabled 2-Step Compi-
lation (For new technol-
ogy)

5. Performance Limiter
(Slower)

Performance Limiter
(Slower)

Performance Limiter
(Slower)

2.4 Advanced Streamlined System (AS-2)

AS-2 is a mixture of both legacy flow and SoC integration flow. Taking advantages of both

flows and having some new features of itself, it reduces the compile time drastically. It also

support the concept of IP reuse and thus it is converged, does 2-step compilation and is

much more advanced as compared to other system. AS-2 is facilitated both for small as

well as complex IP’s. As AS-2 is a mixture of various legacy flow it supports all earlier flow

used by different design system at Intel.

2.4.1 Flow Mechanism

The various step of hybrid flow are as following:-

∗ User Specification Request –This stage specifies what action the user wants to

perform on the design. It can be running only a particular test, compiling a certain

part of the design, compiling a certain library etc., using command line interface.

Validation of the user commands is also done in this step.

∗ Data Extraction – Based on the user request the AS-2 decided the input config-

uration, the design data which would be multiple RTL source code, library needed

to compile for the design and the constraints given by the user and according to the

environment set. Design reuse in one of the feature of the system which is done in

this step. A large numbers of algorithms are used in this step, which makes the data

extraction easy and fast.

∗ Compilation - the actual sets of commands are executed on the design. Various

checks and test cases are also deployed on the design.

11

Chapter 2. Literature Review 14MECV24

∗ Execution - The output of the compiler is fed into the executor that generates the

output log files which can be looked if anything fails.

Figure 2.5: Flow of AS-2

2.4.2 Integration Bottlenecks

Besides having various advantages AS-2 still has some problem. It does not address the

integration problem as per requirement. On the data extraction step of the flow mechanism

it fails to pass data to different compiler. Moreover it produces large amount of data for

analysis while running complex algorithm and are time consuming and hence increases time

to market. It had no provision of flow testing and prototyping.

12

Chapter 2. Literature Review 14MECV24

Figure 2.6: Integration Flow of AS-2

2.4.3 Summary

In order to find the performance and integration gap performance analysis of the current

system needs to be done and finally migration to Optimized AS-2 system.

13

Chapter 3

Performance Analysis

Testing, verification and validation problems are generally consigned by separate commu-

nities - VLSI testing is generally assumed to belong to the Electrical Engineering domain,

while verification and validation are assumed of as Computer Science subjects. While in

industry, the methodologies deployed by testing, verification and validation engineers are

also different. While the application area of these problems is surely not same, there is one

similarity among all of them - and that is the underlying mathematical build or framework.

3.1 Importance of Performance Analysis

Performance analysis constitutes certain part of verification. Coverage is a measure to

evaluate the progress of functional verification. This gives a clear picture on how well the

design has been verified and also gives away the design corners still left uncovered. Code

coverage and functional coverage are the different coverage methods used in functional

verification. Besides having various advantages AS-2 still has some problem. It does not

address the integration problem as per requirement.

∗ On the data extraction step of the flow mechanism it fails to pass data to different

compiler.

∗ Moreover it produces large amount of data for analysis while running complex algo-

rithm and are time consuming and hence increases time to market.

∗ It had no provision of flow testing and prototyping.

∗ Code quality checks are slower compared to other flow.

∗ While doing the analysis of the flow it had many recursive flows or flow hierarchy

which need proper convergence to have proper dependent flow hierarchy.

The profiling analysis on the AS-2 is done by Perl profiling tool NYTProf which is being

introduced in the next segment. It’s a very accurate and efficient system.

14

Chapter 3. Performance Analysis 14MECV24

3.2 Perl Profiling Tool – NYTProf

For sequential code, it is important to collect statistical data of the programs and certain

run-time characteristic like time spent in each functions, number of times the function is

called and code lines. This is called Profiling. The design or system is run under the control

of a profiling tool, which at the run end gives the summary of an execution.[7].

∗ NYTProf is effectively does the work of two profilers. It acts both as statement profiler,

and a subroutine profiler.

∗ It has resolution of nanosecond.

∗ It generates HTML report which included code coverage, statement flow and interac-

tive Tree Maps. (Figure 3.12)

∗ NYTProf maintains extra information in the data file to capture each and every detail

of the run that may be useful when evaluating the performance.

∗ It also records all the file-name and number of calls of all the subroutines.

∗ NYTProf can profile applications and system that fork between different processes,

and does it with so efficiency so that there is no loss of performance. (Figure 3.3)

∗ nytprofhtml only works with a single output profile file. So in order to merge with

multiple files use nytprofmerge.

∗ It also reveals the code coverage of entire flow part by part.

3.2.1 Statement Profiler

The statement profiler evaluates the time between entering one Perl statement and entering

the next statement. It is similar to Statement coverage.The number of times statement is

executed can be calculated to enclosing block and enclosing function.

Figure 3.1: Statement Profile Example

Looping for the first time around the loop, the more time spent analysing the condition

would be recorded as the time spent on the last statement executed in the loop!

15

Chapter 3. Performance Analysis 14MECV24

3.2.2 Subroutine Profiler

The subroutine profiler evaluates the time between entering a subroutine and leaving it.

When the subroutine is called the call count is incremented and the duration is noted. Each

time the subroutine is called, separate counts and durations are recorded for every location

where the subroutine is called.

3.3 Performance Analysis of AS-2

∗ Step 1- The first step to carry out performance analysis of AS-2 is to deploy it on

some design or IP Block, while running NYTProf on it simultaneously.

∗ Step 2- The NYTProf run gives a number of nytprof.out files which need to be ana-

lyzed further. The nytprof.out file is read by nytprofhtml. If there is more than one

nytprof.out file we could use nytprofmerge. Next step is thus analysis.

∗ Step 3-During the analysis we need to track Master Violation that consumes large

amount of time during compile.

∗ Step 4- Look the code of Master Violation. Reproduce the same violation using a

test case in prototype and re-run the flow.

∗ Step 5- Optimize the flow part and re-run to see the reduction in time. The opti-

mization can be anything either reducing number of calls or removing a reoccurring

loop.

∗ Step 6 – Analyze the HTML report again. Track, look and optimize the flow. Repeat

the above to get maximum reduction in time.

The branch taking large amount of time should be tracked down and unnecessary code

should be optimized. For the optimization in the actual flow, some experiments were done

locally before applying to flow. While optimization we need to make sure the functionality is

completely restored, like a mistake that generally done when the actual purpose of keyword

is not known, eg. : Croak can be misunderstood by print but both have different meaning.

Experiments done are as follow.

3.3.1 Experiments

From a given design file, I have to extract given tags that is given as input by the user and

display the information for the user input in optimized way.

∗ Using three loop - Wrote a script to read a design file using three nested loop and

then acting along user’s wish. Profiling results are as follow:

16

Chapter 3. Performance Analysis 14MECV24

Figure 3.2: Experiment 1A

Figure 3.3: Flow Graph of Experiment 1A

17

Chapter 3. Performance Analysis 14MECV24

∗ Using Array – Wrote a script to read a design file using array and then acting along

user’s wish. Profiling results are as follow:

Figure 3.4: Experiment 1B

∗ Using Hashes - Wrote a script to read a design file using hashes and then acting

along user’s wish. Profiling results are as follow:-

Figure 3.5: Experiment 1C

18

Chapter 3. Performance Analysis 14MECV24

∗ Using Regular Expression - Wrote a script to read a design file using regular

expressions and then acting along user’s wish. Profiling results are as follow:-

Figure 3.6: Experiment 1D

∗ Using Hashes and Regular Expression - a script to read a design file using

hashes and regular expressions and then acting along user’s wish. Profiling results are

as follow:-

19

Chapter 3. Performance Analysis 14MECV24

Figure 3.7: Experiment 1E

∗ Exclusive Time - It is best for Bottom Up Approach

– It gives the amount of time spent “in the code of the subroutine”.

– It gives the location where the time actually gets spent.

– It is appropriate for localized optimization. (Figure 3.11)

∗ Inclusive Time - It is suited for Top Down Approach

– It gives the amount of time spent “in and below this sub”.

– It is appropriate to prioritize structural optimizations.

Table 3.1: Results of Performance Analysis

S.no Experiment Before After
1. Using Three Loop - 15.4s
2. Using Array 15.4s 14.5s
3. Using Hashes 14.4s 12s
4. Using Regular Expressions 12s 222ms
5. Using Regular Expressions and Hashes 222ms 41ms

20

Chapter 3. Performance Analysis 14MECV24

Percentage Reduction in time is 98.55% reduction.

∗ Removal of recurring loop - This Loop was taking a long time as it used to go

each and every element of array. But after the optimization the array was converted

into hash and going through it keys takes less time. Earlier the time was 47.3ms and

now its 13ms with a reduction of 86.37% in time. The Actual reduction in AS-2 flow

because of this was 9.37% but is significant. Profiling results of the above experiments

are as follows:-

Figure 3.8: Reoccurring Loop

Figure 3.9: Experiment 2A

21

Chapter 3. Performance Analysis 14MECV24

Figure 3.10: Experiment 2B

3.3.2 Critical Observation in AS-2

By analyzing the profiling result some observation were made and tried to optimize certain

part of it

∗ The current flow was getting slower because of calling a particular subroutine a number

of times.

∗ Based on my experiment the calls were reduced by modifying the PERL code using

regex, avoiding loops and using hashes.

∗ AS-2 is slower than earlier flow because it was doing more design data analysis.

∗ Running profiling on an IP takes approx. 8hrs which is not feasible for early optimiza-

tion in the AS-2 flow.

22

Chapter 3. Performance Analysis 14MECV24

Figure 3.11: Color Coding in NYTProf

Figure 3.12: Call Tree in NYTProf

23

Chapter 4

Design Prototyping and Results

Running profiling on a SoC takes approx. 8hrs which is not feasible for early optimization

in the AS-2 flow. Moreover this is only the run time, analysis of the results takes more time

which hinders the requirement to meet time to market window. AS-2 run all the regression

on a big IP which has maximum quality checks but not all. Thus it would be better to have

a prototype which runs all the quality checks by having proper test cases.

4.1 Importance of AS-2 Prototype

”Just as verifying a SoC design on FPGA prototype is a secure way to ensure that it is

functionally correct and prevents re-spin[9] of the product saving time to market window,

similarly running AS-2 flow on prototype saves compile time.”

Similarly to meet the time to market constraint, AS-2 need to be run on small and

effective design rather than big IP that consume large amount of time. Thus a dummy

design which takes less amount of time and runs all quality check and gives maximum

coverage are needed. AS-2 prototype inherits all the quality checks and run small test-cases

to validate actual IP test scenarios. It creates design black-box which may not mimic SoC

functionally but has all the flow related collateral’s.

For testing critical part or write the test cases a Test Driven Development approach is

needed. First a test is written which fails so as to reproduce the error (the tests go ’Red’).

Next test are written that make code quality checks pass (the tests go ’Green’). Now

the developer takes the opportunity to optimize or refract the code (tidy it up, improve

the readability, remove duplication etc.). The developer had to keep in mind that while

refracting a bug may inadvertently be introduced and the tests will go ’Red’ to highlight

the problem.

24

Chapter 4. Design Prototyping and Results 14MECV24

Figure 4.1: AS-2 Work Flow with IP

25

Chapter 4. Design Prototyping and Results 14MECV24

Figure 4.2: AS-2 Work Flow with Prototype

As it’s clear from Figure 4.1 and 4.2 the complexity of the system has been reduced

and it takes less compile time overall giving results early. The test- cases that are being

added to prototype model check different parts of the system through the dummy design,

in our case AS-2 Prototype.

4.2 Perl Testing Module

The test cases added to prototype are done with help of PERL test modules. Some advan-

tages of it are :-

∗ Can check memory

26

Chapter 4. Design Prototyping and Results 14MECV24

∗ Speedy way to run the test.

∗ Ease of development.

Basic steps for writing Perl test is:-

∗ Create tests with Test::More.

∗ Prove me command is used to run the tests.

Test::More is the most efficient Perl testing module. It provides many useful subroutines

like ‘use ok’ , ’compare ok’ etc. It is build on Test::Builder framework, so it can be used

with any other testing utility module that is based on Test::Builder. Test::More outputs

data in the Test Anything Protocol (TAP), so this fits very well in TAP-friendly systems

like Test::Harness, and prove.

”All of the test methods return a true or false value depending on whether the given

test passed or failed. This helps in adding conditional logic to your test code. Most of the

test methods also take the test name as their final argument so as to report when the test

is executed and also when the test fails”.[8].

4.3 Test Cases added to AS-2 Prototype

Test-driven development (TDD), is a method in which a source design is repeatedly tested.

The concept on which it is based is to ”make something work now and perfect it later.”

After each test is passed, re-factoring is done on it and then the test is run again. The

process is repeated many times until each section of test is functioning according to needs.

TDD can produce test cases of high quality in less time as compared to older methods.

Proper implementation of TDD requires the testers and developers to accurately analyse

implementation of test case and its features in the real world. Problems are approached in an

incremental way and tests intended for the application may have to be redone many times.

TDD approach ensures that all the section in an application have been tested for correct

functionality, both individually and in sync with one another. Tests should be conducted

from the very beginning of the design cycle as it saves time and money spent in debugging

at later stages.[4].

One of the major limitations of TDD is the fact that tests can sometimes be incorrectly

conceived or applied. Because of this the sections may not perform as expected in the

real world. Even if all the section work as expected in isolation and integrated with other

modules, end users may have a situations not imagined by the developers and testers. The

final approach of TDD are only as good as the tests, its thoroughness with which they have

implemented and the extent to which they mimic conditions encountered by users of the

final product. Similar approach is needed for test-case generation of AS-2 prototype.

27

Chapter 4. Design Prototyping and Results 14MECV24

Figure 4.3: Test Driven Development

Added new Design Under Test (DUT-2) to mimic the functionality of the IP. From one

of the legacy flow a design was taken and integrated with the AS-2. All the necessary

libraries and attributes and quality checks collateral’s were added on which a AS-2 can be

deployed for various reasons. The prototype is a dummy design, so here the aim will be to

even check the corner cases that can come up during the run and fail the design. The test

based approach will be based on to get maximum coverage of the design so that the designs

have to go for re-spin and save time to market.

4.3.1 Test for loading various checks for the SoC or IP

This test load the various checks needed to verify on the IP. There may be quality checks,

flow checks, for static check, configuration check. The system read the design files that may

be in verilog or system verilog configuration. If the test fails that means anything breaks in

loading the configuration of the design. The performance results of the test are as follows:-

28

Chapter 4. Design Prototyping and Results 14MECV24

Figure 4.4: Test for loading checks on SoC 1

Figure 4.5: Test for loading checks on SoC 2

29

Chapter 4. Design Prototyping and Results 14MECV24

∗ The prototype contains many Design Under Test units which need to qualify certain

quality checks.

∗ While enabling the quality checks for DUT-2 it happens that same quality checks are

applied to DUT-1 as both the DUT have some common library and dump output at

the same place which causes a race condition.

∗ This Race Condition was removed by dumping the output of the DUTs at different

places or running DUTs sequentially.

4.3.2 Test to check attributes being passed from parent to child

design configuration for the SoC or IP

Certain attributes were there in parent design configuration that were getting propagated

to child design configuration which is not valid and should not be happening. The child

attribute can be inherited by the parent but vice-versa is a bug.

Figure 4.6: Test for checking attributes

∗ The test in this case passed correctly successfully but didn’t justified the sub-routine

written in a flow part.

∗ Further debugging revealed that the subroutine for calling parent attribute was not

working as intended and attributes were not loaded correctly.

30

Chapter 4. Design Prototyping and Results 14MECV24

4.3.3 Test for Flow Equivalence Checking for the SoC or IP

Equivalence Checking is always carried out using two inputs and result comes out by com-

paring the functionality of these two input designs. This test compares the golden generated

flow specification with the flow specification generated after the compilation of the design.

The test fails if anything extra is attribute gets added or deleted during the compilation.

With this the debugging gets easy and error can be removed in a much faster way.

Figure 4.7: Test for Comparing Flow Specification

∗ This test passed initially but it failed when deployed on actual flow.

∗ The test used “compare ok” module which also compared the leading trailing white-

spaces, which should be ignored.

∗ Added a trim function to make the test pass successfully.

4.3.4 Test for checking whether AS-2 modules are Perltidy com-

patible

This test run Perltidy checks, which is a standard linting tool on AS-2 flow modules. The

test take a configuration file and checks whether the modules qualify the lint checks. The

test passes if the files are according to the rules specified and fails if the files are not up-to

the mark generating a .tdy file. The user can diff both the files and when satisfied with

changes can push in main line.

31

Chapter 4. Design Prototyping and Results 14MECV24

Figure 4.8: Before Perltidy

Figure 4.9: After Perltidy

This test passed but while manually running Perltidy from command line the .tdy file

generated by test and command line were different. With further debugging it was found

that this was because of the version difference of Perl used. By using PERL5LIB to set

proper perl version this problem was solved.

32

Chapter 4. Design Prototyping and Results 14MECV24

4.3.5 Test for Performance Checking of AS-2 prototype

This test runs profiling using nytprof on AS-2 prototype and monitors the time taken to run

AS-2 on DUT-2 which is a small design in AS-2 prototype. The test generates a warning

whenever a warning threshold is crossed and generates an error whenever failing threshold.

The warning and failing threshold is decide by successive runs of the flow on AS-2 prototype.

Figure 4.10: Test for Performance Checking of AS-2 prototype[1]

Figure 4.11: Test for Performance Checking of AS-2 prototype[2]

33

Chapter 4. Design Prototyping and Results 14MECV24

Figure 4.12: Test for Performance Checking of AS-2 prototype[3]

4.3.6 Improvement in Test

4.3.6.1 Redirecting Test output to a log file

Logging beats a debugger when you want to know what’s going on in the code or flow during

run-time. However, traditional logging packages are too static and generate large amount of

log messages in your log files that won’t help you. ”Test::Simple and Test::More have proven

to be popular testing modules, but they’re not always flexible enough. Test::Builder provides

a building block upon which to write your own test libraries which can work together.” [8].

One of such flexibility is to redirect my test output to a log file. This would help in

easy debugging whenever a test failed. By using Test::Builder option, the output of my

Test::More print outs to a log file instead of STDOUT / STDERR. The test have many

”is/ok/like” calls in the code running in loops and the output is often thousands lines of

tests long. Some examples are as follows:-

∗ output

– $Test::output($fh);

– $Test::output($file);

– Where normal ”ok/not ok” test output should go. Default output is STDOUT.

$Test is a object for Test::Builder.

34

Chapter 4. Design Prototyping and Results 14MECV24

∗ failure output

– $Test::failure output($fh);

– $Test::failure output($file);

– Where diagnostic output on test failures and diag() should go. Defaults is set to

STDERR.

∗ todo output

– $Test::todo output($fh);

– $Test::todo output($file);

– Where diagnostics about todo test failures and diag() should go. Defaults to set

to STDOUT.

Figure 4.13: Logging of AS-2 Flow test

∗ The AS-2 prototype tests generated a Log file for each test. This helped the user with

easy debugging of failing test without clouding the screen.

∗ The standard function STDOUT and STDERR does not work in test environment.

Therefore an object for Builder module needs to be created for redirecting the output.

35

Chapter 4. Design Prototyping and Results 14MECV24

4.3.6.2 Enable Screen Filter for AS-2 flow

The message getting printed on screen or log files belong to different categories such as an

info or a warning. A screen filter allows you to control the number of logging messages

generated at these different levels:-

∗ TRACE(-T-)

∗ DEBUG(-D-)

∗ INFO(-I-)

∗ WARN(-W-)

∗ ERROR(-E-)

∗ FATAL(-F-)

Figure 4.14: Function of Screen Filter

36

Chapter 4. Design Prototyping and Results 14MECV24

∗ AS-2 flow from its a central location and corresponding tools would generate logs. The

messages in the log file belong to the above defined categories. When the screen filter

switch is enabled the flow reads the filter definition and prints on the screen whatever

matches in the definition.

∗ Screen Filter allows you to control the amount of logging messages displayed on screen

very effectively. The logic of screen filter gives highest priority to ”-debug” switch and

whenever that switch is encountered, everything is printed on the screen.

∗ A new filter definition can be written according to our requirement. Whenever we

need only Die message or error message to be printed we could modify accordingly

the filter definition.

∗ While enabling screen filter for AS-2, even warning and fatal messages from AS-2

subtools were printed as an info message.

4.3.7 Unit Test for Environment setup for AS-2 Flow

Unit testing is a way to test individual components of code with automatic verification.

With normal testing we usually forget to verify that a change in one function didn’t break

another function but with unit test that is not the case. The basic steps for unit test writing

are as follows:-

∗ Define the input, output, and process.

∗ Setup the project (create stub functions and unit test contracts).

∗ Modify and run the test until it passes.

Specification: For running AS-2 flow, certain Environment variables need to be set

prior to loading modules or stages. For this a configuration file is generated in beginning of

AS-2 flow. The importance of configuration file are as follows:-

∗ AS-2 flow reads configuration and figures out the tools to be used.

∗ It also helps to load library required for the flow either from the local repository or

from the central where the actual collateral’s are present. The collateral’s can be in

form of IP needed when AS-2 runs on sub-system or an SoC.

∗ All these configuration updation were earlier hand maintained and prone to error.

But AS-2 have automated this process, and thus this automation needs quality and

we need a unit test.

37

Chapter 4. Design Prototyping and Results 14MECV24

Figure 4.15: Function of Unit Test

Implementation: The test is needed to override the data in the configure file with the

data input provided by an input file or test itself. The unit test inputs configuration file

and check where the collateral’s (IP) are present and loads collateral’s for an SoC on which

AS-2 flow is running.

38

Chapter 4. Design Prototyping and Results 14MECV24

Critical Findings: Here are some of the critical finding regarding the unit test:

∗ For reading the input configuration file the environment setup for test had to be

modified to read my configuration file which was not getting overridden. Thus inputs

need to be compared to output indirectly by passing inside the test itself.

∗ The collateral’s generated should be DUT specific which was not the case and was

same for all the DUT’s.

∗ If the user has given setting in command line then it should be given priority rather

than the default settings.

4.4 Summary

This chapter thus describes the development of the AS-2 prototype and results of the de-

velopment observed so far. The prototype has been made much more efficient to qualify

regression on it and validate any IP or SoC using AS-2 flow.

39

Conclusion

Time-to-market is one of the key factors for any company to release its product and get

hold on customers. The designing part should be completed in a short span of time so

that verification and fabrication can be completed without missing technology window.

Verification of the design takes about 70% of the total turn around time. The main aim of

this project is to provide efficient methodology for front end process through which designers

and verification engineers can complete the front end tasks using a single flow with some

time saving. AS-2 which is a front end design IP validation system. It is converged, 2-step,

and based on next generation build flows. It is a common solution used for both big and

small IP. It is a next generation builds flow, capable of handling complex design capabilities

and difficult algorithm.

With the improvement in AS-2 flow, it has become 75% faster with proper regression

that cover almost all the corner cases of next generation IP. The advancement done in AS-

2 flow are time saving and helps to cut down the time required for front end verification

process. It provided a great platform both for smaller or complex designs making AS-2 used

as a cutting edge build flow.

40

References

[1] Randal Schwartz, Tom Christiansen Larry Wall, “Hashes,” in Learning Perl, 2nd ed.,

O’REILLY,1997, ch. 5, sec. 5.4.

[2] A.K. Oudjida, D. Benamrouche ”Front-end IP development: Basic know-how”, IEEE

Conference Publications,Rabat, 2007.

[3] David Till, “Object-Oriented Programming in Perl,” Teach Yourself Perl 5 in 21 days,

2nd ed., Sams Publishing, 1996, ch. 19.

[4] Grant McLean “An Introduction to Test Driven Development Using Perl”, Catalyst

IT Limited, Sept. 2008.

[5] Prof. I. Sengupta (2008 Aug 6). Lecture Series on Internet Technologies

Available : http://nptel.iitm.ac.in

[6] ”Intelpedia,” Intel, December 2015.

Available : https://intelpedia.intel.com

[7] Josef Weidendorfer, ”The KCachegrind Handbook”, 1st ed.

[8] ”Test::Builder” - Backend for building test libraries

Available : http://search.cpan.org/~exodist/Test-Simple-1.001014/lib/

Test/Builder.pm

[9] Muhammad Aamir ”Implementation and testing of optimal design of RTU hardware

for Wireless SCADA”, IEEE Conference Publications,Aalborg , 2014.

41

http://nptel.iitm.ac.in
https://intelpedia.intel.com
http://search.cpan.org/~exodist/Test-Simple-1.001014/lib/Test/Builder.pm
http://search.cpan.org/~exodist/Test-Simple-1.001014/lib/Test/Builder.pm

	Certificate
	Certificate(Intel)
	Declaration
	Disclaimer
	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	List of Abbreviation
	Introduction
	Motivation
	Problem Statement
	Thesis Organization
	VLSI Design Flow
	Front End VLSI Flow

	Literature Review
	Behavioral v/s Structural Modeling
	2-Step Compilation
	Legacy and SoC Integration Flow
	Legacy Flow
	Advanced flow or SoC Integration Flow

	Advanced Streamlined System (AS-2)
	Flow Mechanism
	Integration Bottlenecks
	Summary

	Performance Analysis
	Importance of Performance Analysis
	Perl Profiling Tool – NYTProf
	Statement Profiler
	Subroutine Profiler

	Performance Analysis of AS-2
	Experiments
	Critical Observation in AS-2

	Design Prototyping and Results
	Importance of AS-2 Prototype
	Perl Testing Module
	Test Cases added to AS-2 Prototype
	Test for loading various checks for the SoC or IP
	Test to check attributes being passed from parent to child design configuration for the SoC or IP
	Test for Flow Equivalence Checking for the SoC or IP
	Test for checking whether AS-2 modules are Perltidy compatible
	Test for Performance Checking of AS-2 prototype
	Improvement in Test
	Unit Test for Environment setup for AS-2 Flow

	Summary

	Conclusion
	References

