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Abstract: Depression is an affective disorder characterized by hallucination, delusion and increased 
social risk and is estimated to affect approximately 20 % of the population at some point during the 
lifetime. As per World Health Organization (WHO) it is predicted to be the leading cause of burden 
of disease by 2030. Effects of currently available antidepressants have explained the monoamine 
hypothesis of depression, which proposes that impaired release of serotonin, noradrenaline and 
dopamine, are thought to be responsible for the development of depressive symptoms. However, 
these drugs are not specific for their action, as they also inhibit other enzymes; this explains the side 
effects/drug interactions associated with these agents. The present review will familiarize the readers 
with novel targets being identified for depression which will be certainly beneficial for researcher, 
academician for the development of drugs for the management of depression and related behavior.
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INTRODUCTION

In early life, events substantially influence the brain 
development and consequent adult behaviors, may cause 
affective disorders like anxiety, depression and 
schizophrenia [1]. Depression is the affective disorder 
characterized by hallucination, delusion and increased social 
risk and is estimated to affect approximately 20 % of the 
population at some point during the lifetime. As per WHO, it 
is predicted to be the leading cause of burden of disease by 
2030 [2]. In relation to this disorder, there is an increased 
explanation of negative information, difficulties disengaging 
from negative material, and deficits in cognitive control 
when processing negative information, which inter alia are 
responsible for negative thoughts and suicidal tendency in 
the individual [3]. Depression affects the mental 
performance along with impaired mood, cognition and other 
processes including sleep, appetite and libido [4]. Low mood 
is the most prominent clinical symptom of major depressive 
disorder and dispersion is often accompanied by significant 
impairments in neurocongnitive functioning that may be 
independent of depression, since cognitive impairment is 
seen in depression. In addition to cognitive disturbances, 
there are motoric, autonomic, and endocrine and sleep-wake 
abnormalities observed in depression [5-6].

Only one third of the patients receive adequate treatment 
and up to half of them relapse despite the increasing number 
of antidepressant drugs currently available [7]. Most of the 
symptoms of depression are interrelated and, thus, it may be 
complicated to exactly differentiate anxiety and depression. 
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Anxiety and depression, as both dramatic and debilitating 
multi-facetic psychiatric illnesses, involve similar 
pathophysiological appearance and occurrences. Continuous 
and long lasting exposure to stressful circumstances results 
into anxiety, tension and finally depressive like symptoms.
Pathophysiology of depression is presently documented with 
deficits in and/ impaired functioning of excitatory 
neurotransmitters viz serotonin and norepinephrine at post 
synaptic receptors [8-9]. The hypothalamic-pituitary-adrenal 
(HPA) axis dysfunction theory, based on hyperactivity of 
this system usually reflected in high levels of 
glucocorticoids, cognitive and behavioural theories and 
neurogenesis [10-11] also produce depressive like 
symptoms.

With such background information, we proposed various 
recent advances and novel targets that are certainly crucial in 
the management of depressive like symptoms. Hence, the 
present review will familiarize the readers with novel targets 
being identified for depression which will be certainly 
beneficial for researcher, academician for the development 
of drugs for the management of depression and related 
behavior.

CURRENT THERAPY OF DEPRESSION

The effects of presently used antidepressant drugs is 
based on the monoamine hypothesis of depression, which 
proposes that low levels or deficits in brain monoamines, 
such as serotonin, noradrenaline and dopamine, are 
responsible for the development of depression and or 
depressive like symptoms. The classes of these drugs include 
tricyclics and monoamine oxidase inhibitors (MAOI), 
noradrenaline reuptake inhibitors (NRI), selective serotonin 
reuptake inhibitors (SSRI), serotonin and noradrenaline 
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reuptake inhibitors (SNRI), elicit antidepressants actions by 
potentiating or increasing the brain’s monoaminergic system 
and elevating the monoamine levels [12].

The Tricyclic Antidepressants (TCAs)

All the tricyclic agents; imipramine, amitriptyline, 
doxepin and their metabolites potentiate the activity of 
noradrenaline and serotonin (5-HT) by blocking their 
reuptake results for the improvement of biological and 
emotional symptoms respectively. However, apart from 
these effects, TCA affects other receptor systems mainly,
cholinergic, neurologic and cardiovascular and thus is 
responsible for their undesirable side effects [13].

Selective Serotonin Reuptake Inhibitors (SSRIs)

The SSRIs viz, fluoxitine, sertraline, citalopram, 
escitalopram, venlafaxine are common drugs demonstrating 
high selectivity for 5-HT reuptake and thus widely accepted 
as antidepressants. These agents inhibit selectively serotonin 
reuptake at a greater extent as that of noradrenaline, and 
induce lesser anticholinergic side effects, less dangerous at 
overdose too, and further in contrast to monoamino oxidase 
inhibitors, the SSRIs do not cause ‘cheese reactions. Apart 
from their antidepressant action, the SSRIs are also 
prescribed in the management of obsessive compulsive 
disorder [14].

Monoamino Oxidase Inhibitors (MAOIs)

The MAOIs (phenelazine, tranylcypromine and 
iproniazid) produce irreversible inhibition of monoamino 
oxidase. Several studies have proposed a reduction in 
platelet MAO activity in certain groups of depressed 
patients, there is no clear evidence that abnormal MAO 
activity is involved in the etiopathogenesis of depressive like 
behavior. MAO-A is a substrate specific for serotonin and 
MAO-B is for phenylethylamine and both enzymes act on 
noradrenaline and dopamine. The MAO-A is the main target 
for antidepressant activity of MAOIs. The inhibition of 
MAO-A gene results into prevention of degradation of 
serotonin and thus concentration in synaptic cleft is 
increased [15]. In nerve terminals, MAO controls the free 
interneuronal level of serotonin or noradrenaline and 
therefore releasable stores of these neurotransmitters. Since 
MAOIs are not specific for their action, inhibit other 
enzymes too, this explains the side

FUTURE PERSPECTIVE IN DEPRESSION

Corticotropin-Releasing Hormone (CRH)

The key feature of the hypothalamus is to coordinate the 
nervous system through bridging to endocrine system via the 
pituitary gland and aid in secretion and release of
hypothalamic-releasing hormones, and these in turn 
stimulate or inhibit the secretion of corresponding pituitary
hormones. The CRH from the hypothalamus stimulates the 
release of adrneocorticotrophic hormone (ACTH), and 
subsequently higher cortisol concentration, the same was 
found to be high in depressed patients, treatment with 
amitriptyline reduces cortisol level significantly in these 

patients [16]. Supported with the fact that, depressed patients 
are more susceptible to suffer adrenal cortical hyperplasia, 
and the severity of depression was related to the density of 
cortisol as compared to non depressed patients [17]. The 
altered functioning of HPA axis is the most prominent and 
well-documented neuroendocrine abnormality observed in 
depression. The dysfunctional regulation of HPA axis could 
be a trait-rather than a state-related characteristic in 
depressed patients, leading to changes in hormonal responses 
[18]. The excessive cortisol release because of CRH resulted 
in impairment of functioning of hippocampus or locus 
ceruleus, and thus induced alterations in memory, attention, 
space perception, and behavior and finally development of 
affective disorders, including anxiety, depression and stress-
related pathologies and dementia [19]. It also stated that the 
impairment of HPA axis during pregnancy may lead to 
symptoms similar to depression. The evidence supported 
with the findings of Burke and Roulet [20], the cortisol, 
ACTH, CRH and corticosterone binding globulin (CBG) 
levels were altered significantly during pregnancy and 
postpartum [20] and higher cortisol level during pregnancy 
and postpartum than during non-reproductive phases [21-
22]. The CBG levels, increased during pregnancy and 
reduced with parturition [23-24] might responsible for the 
development of depressive symptoms in women. The 
aforementioned findings further supported that, 
administration of CRF, a positive modulator of alpha-
melanocyte stimulating hormone, (α-MSH) elicited 
anxiogenic-and depressant-like behavior in experimental 
animals [25-26] and prevention/inhibition such behavior 
with Antalarmin, a CRF antagonist produced anxiolytic-and 
antidepressant-like effect [27-28]. Interactions of CRF with 
GABA and neuropeptide Y (NPY) on melanocortin 
receptors (MC) might play a probable role in the 
development of depression [29] suggesting the participation 
of NPY and MC receptors in the pathophysiology of 
depression. The HPA antagonists inhibit glucocorticoid 
synthesis and thus stress related behavior was abolished. 
Antagonist of corticosteroids, vasopressin or CRF, or 
blocking the actions of inflammatory cytokines, found to 
elicit antidepressant-like activity in animal models of 
depression [30].

Stress is characterized by physiological changes that 
occur in response to novel or threatening stimuli. These 
changes comprise a cascade of neuroendocrine events 
mediated by sympathetic nervous system and the HPA axis. 
Chronic exposure to stressful conditions results in 
impairment of the hippocampal inhibitory control on HPA 
axis via multisynaptic pathways projecting from the 
subiculum to the paraventricular nucleus (PVN), 
glutamatergic projections to the bed nucleus [31], the lateral 
septum, and different hypothalamic nuclei, all of them send 
GABAeric projections to the PVN Changes in these nuclei 
were restored/reduced with chronic antidepressant treatment 
[32-33]. With such effects during early life as well as in 
adulthood, it alters hippocampal neurogenesis and plasticity 
due to neuronal cell death and atrophy of neuronal process. 
Since, hippocampus neurogenesis has been implicated in 
cognitive function, therefore, reduction in neurogenesis by 
cortisol manifested into impaired cognitive symptoms in 
depression [35].
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Substances P

Substance P is one of the groups of neuropeptides called 
as tachykinins. There are mainly 3 known members of this 
group: substance P, neurokinin (NK) A, and NK B. The 
receptors for these 3 neuropeptides are known as NK1, NK2, 
and NK3, respectively. Substance P is not only present in 
brain; it is also present in spinal cord tissue. Growing 
evidence suggest Substance P (SP) might play a significant 
role in depression and anxiety related disorders. Various 
experimental findings demonstrated the SP level was found 
to be increased in major depression [36], mice that cannot 
produce SP and NKA, or with a genetic ablation of the NK1 
receptor gene, are less prone to show depression related 
behaviors in several animal models [37-38]. Studies mapping 
the expression of SP and NK1 receptors in neural circuits 
found large concentrations in the amygdala, hypothalamus 
and hippocampus, areas that are thought to be critical for 
regulating emotions [39]. SP is found to display the highest 
affinity for tachykinin; type 1 [NK1] receptors [40]. The 
behavioral studies evaluated by Kramer et al. (2004), by
using brain-penetrant NK1 antagonists in a species (guinea 
pig) with NK1 pharmacology similar to that seen in humans 
provided evidence that selective blockade of the NK1 
receptor was associated with an antidepressant-like profile.
L-759274, a highly selective nonpeptide NK1 antagonist, is 
an efficacious and well tolerated antidepressant [38, 41].
Malkesman et al. (2007) suggested that it is unclear whether 
there is a complete involvement of substance P in 
depression; however, their findings reveal that NK1 
receptors antagonists are effective in the relief at least with 
some symptoms of depression [42].

NK2 binding sites in several limbic structures viz 
hippocampus, septum, and the amygdala, hippocampus, 
cortex, dorsal raphe nucleus and thalamus and in periphery. 
The participation of the NKA/NK2 system could result in the 
intonation of emotional processes including depression. It is 
demonstrated that, modulation of NK2 is implicated in stress 
related anxiety and depression [40, 43] in various 
experimental animals. Furthermore, interactions of 
tachykinins with CRF increase noradrenergic population in 
locus coeruleus, and this action is antagonized by saredutant, 
NK2 receptor antagonist suggesting the involvement of NK2 
receptors during CRF- mediated anxiety and depression [44]. 
These results are in agreement with the findings of Louis et 
al. that the effects of saredutant were comparable to those 
obtained under similar experimental conditions by fluoxetine 
or imipramine [45]. Pharmacological blockade of NK2 
receptors results in a clear anxiolytic- and antidepressant-like 
effect in rodents [45]. The role of NK-2 receptor in 
depression is elucidated in Fig. (1).

NK3 receptors, located in periphery and, predominantly 
in striatum [46], might play a role in the modulation of 
excitatory neurotransmitter into the synaptic cleft and thus 
excitation of neuronal membrane. This proposal is in 
agreement with the findings of Stoessl et al. (1987), in which 
NK 3 receptors ligand increase the concentration of 
excitatory neurotransmitter 5 HT, and NA in synaptic cleft 
and thus induces antidepressant like activity [47]. This 
hypothesis is supported with the findings of NK3 receptor 
agonist aminosenktide which displayed antidepressant-like 
activity in the forced-swim test, a widely used model of 

depression, when a mouse line with over activity of the 
opioid system was used [48].

Calcitonin Gene Related Peptides (CGRPs)

The CGRP is a member of the calcitonin family of 
peptides that acts as a major neurotransmitter and exists in 
two forms, α-CGRP and β-CGRP. The α-CGRP formed from 
the alternative splicing of the calcitonin/CGRP gene located 
on chromosome 11 and β-CGRP differs in 3 amino acids is 
encoded in a separate gene. Both, CGRP-1 and CGRP-2, are 
selectively distributed in the CNS, often localized on the 
dopaminergic neurons [49-50] CGRP fibers are highly 
localized in the brain mainly in the frontal cortex, amygdala, 
and nucleus accumbens [51]. The CGRP through modulation 
of dopaminergic and noradrenergic neurons exerts various 
biochemical and behavioral effects in the CNS. The prime 
role of CGRP in CNS is known and in the dorsal horn of the 
spinal cord is responsible for the transmission of pain [52]. 
The interaction of CGRP with dopamine affects its release 
and metabolism in selected brain regions and thereby altered 
learning and memory process [53-54] in experimental 
animals and these are responsible for the development of 
depressive like symptoms. The CGRP acting within the bed 
nucleus of the stria terminalis (BNST) induced anxiety, and 
behavioral stress responses [55]. The administration of 
CGRP into the lateral ventricle, activate the HPA axis [56] 
through BNST results in anxiety and depression related 
behavior. Therefore, the HPA activation thorough CGRP 
might participate in the pathophysiology of depression. 
Although, there is no direct relation of participation of BNST 
in depression though the CGRP, however, indirectly through 
the activation of HPA axis and anxiety related behavior 
results in depressive like behavior [56].

Research findings reveals the CGRP-like 
immunoreactivity (CGRP-LI) in the CSF was increased in 
depressed patients as compared to healthy control [57], these 
effects are in agreement with the findings of Wortwein et al. 
(2006), where they demonstrated the CGRP-LI elevated in 
hippocampus and frontal cortex of “genetically depressed” 
Flinders Sensitive Line rats, and thus, these brain regions, 
hippocampus and frontal cortex are implicated in the 
neurobiology of depression [58]. The CGRP induces 
neurophysilogical reactions characterized by fear response 
which injected directly into amygdale [59]. The CGRP 
increased haloperidol-induced catalepsy and decreased 
apomorphine-induced hypermotility at the doses of 1 and 
100 ng/rat and these behaviors are mainly due to the 
involvement of dopamine [60]. From this observation, 
CGRP’s participation in the relation to release of 
neurotransmitters including 5HT, NA can not be ruled out. 
Further, in another study, CGRP/calcitonin concentration 
ratio was increased, which is consistent with a possibility of 
an altered splicing process favoring CGRP mRNA [61]. The 
increased depression-like behavior in the forced swim and 
sucrose preference tests, increased hippocampal expression 
of α-CGRP transcripts, and decreased methylation of the α-
CGRP promoter compared with those gestated by cJ dams in 
adult hybrid mice gestated by B6 dams [62]. The differential 
expression of α -CGRP in adulthood did not result from the 
genomic imprinting, and differences between B6 and cJ 
mitochondrial DNA was not found to be responsible for 



Potential Targets for the Development of Novel Antidepressants CNS & Neurological Disorders - Drug Targets, 2015, Vol. 14, No. 2     273

behavioral phenotypes [62]. Administration of α -CGRP to 
adult hybrid mice induced depression-like behavior, the 
CGRP (1) receptor antagonist on other hand reduced 
depression-like behavior in the forced swim test. 
Furthermore, Jiao et al. (2012) confirmed gestational factors 
influence adult depression-like behavior through the 
methylation of the α -CGRP gene [59]. In contrary to these 
findings, intracerebroventricular administration of CGRP 
into the third ventricle in AKR and C57BL/6 mice decreases 
depression-like behaviors [63].

N-Methyl-D-Aspartate (NMDA)

The glutamate receptor channels mediate most of the fast 
excitatory synaptic transmission in the CNS and are 
classified into three major receptor channel subtypes, the α-
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 
(AMPA), the kainate, and N-methyl-D-aspartate (NMDA). 
Glutamate exerts its effects either ionotropic glutamate 
(iGlu) or metabotropic glutamate (mGlu) receptors. It is 
considered that depression might be related to impairment in 
the functioning glutamatergic system. The NMDA receptors 
are assembled from the two types of subunit, NR1 and NR2, 
each of them can exist in different isoforms in the brain. 
NR1 subunits co-assembled with varying expression of NR2 
family of subunits, i.e. NR2 (A-D) and less commonly NR3 

(A-B) subunits [64]. These subunits have different 
pharmacological properties and their presence in brain, and 
they play an important role in adjusting a cell's excitability 
threshold for synaptic modification. Depressed patients 
exhibit elevated levels of glutamate both in plasma and the 
limbic brain areas, which are believed to be involved in 
mood disorders [65]. Riluzole, an anticonvulsant agent 
produces antidepressant action through glutaminergic system 
[66]. Involvement of glutamate system in the depression is 
implicated and is demonstrated by administrations of D-
cycloserine, a partial NMDA glutamate agonist, elicits 
antidepressant like activity [67]. Furthermore, alterations in 
glutamate signaling as well as changes in the expression of 
AMPA or NMDA receptors subunits also observed in 
experimentally induced depression [64]. Skolnick, (1999) 
suggested the inhibition of metabotropic glutamate subunit 5 
(mGlu5) receptors, may produce a final effect similar to that 
exerted by NMDA receptor antagonists, which are known to 
display antidepressant-like effects [67]. Functional 
antagonists of NMDA receptors showed antidepressant-like 
effects in several screening methods [68-70]. These findings 
are in agreements with reports of Zarate et al. [66], in which 
they showed, acute administration of the NMDA receptor 
antagonist ketamine produced a rapid antidepressant 
response, lasting for several days. These data indicate the 
hyperfunction of NMDA (iGlu ) may lead to a depression 

Fig. (1). Role of glutamate, cytokines, Tachykinins and cortisol level in depression. AMPA, (α-amino-3-hydroxy—5-methyl-4-isoxazole 
propionic acid; KR-Kinate receptor, NMDA-N-methyl-d-aspartate receptor, CRH-corticotropin releasing factor, ACTH-adrenocorticotrophic 
hormone.
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and blockade of this NMDA receptors could be an approach 
[71-72]. Blockade of NMDA receptors produces more 
profound undesired reactions, such as psychotomimetic 
effects, memory dysfunctions, ataxia, neurodegeneration, 
and drug dependence [73], which makes them poor drug 
target. However, it is possible that substances acting / 
modulating the metabotropic glutamate receptors might be 
much safer antidepressants drugs, free of adverse effects, and 
with a reasonably fast onset of action. mGlu receptors, 
particularly subtypes mGlu5 receptors, which are mainly 
present postsynaptically, may play a role in affective 
disorders including depression. Although there is no 
evidence for the drugs or agents acting/modulating mGlu 
receptors demonstrate the antidepressant activity in clinical 
practice or in experimental animal. Further studies are 
required for the mGlu agonist or modulators for these 
receptors to prove the therapeutic target in the treatment of 
depression and associated symptoms.

Cholinergic Receptors

Acetylcholine is widely distributed in the brain, 
forebrain, midbrain and brain stem. Cholinergic neurons in 
the forebrain and brain stem send diffuse projection to many 
parts of cortex and hippocampus. Septohippocampal 
pathway is the main cholinergic input to the hippocampus 
and is involved in the memory process. The cholinergic 
system is known to be responsible for a number of CNS 
functions, including arousal, attention, learning and memory 
[74]. Dysfunctioning of Septohippocampal pathway may 
lead to poor attention, concentration and impaired memory 
and information processing [75]. Acetylcholine is known to 
exert excitatory effects, mediated through central cholinergic 
receptors (nicotinic and muscarinic). The response through 
these receptors contributes to both mood and cognitive 
symptoms of depression [74].

Various experimental findings demonstrated the 
participation of nicotinic cholinergic system in depression
which includes : (a) rates of smoking in people with major 
depressive disorder range between 50% and 60%, far higher 
than smoking prevalence in the general population [76], (b) 
individuals with depression who smoke, have a greater 
likelihood to experience a major depressive episode upon 
smoking cessation [77] and (c) nicotine supplementation 
ameliorates depressive symptoms, even in non-smokers [78]. 
The cholinergic dysfunctions may account for the 
development of cognitive symptoms associated with 
depression, especially when the disease is long lasting and 
treatment resistant. It has also been suggested that the central 
cholinergic system plays an important role in the etiology of 
affective disorders, and depression was proposed to be a 
disease of cholinergic dominance (Fig. 2). There is an ample 
evidence that cholinergic muscarinic agonists facilitate 
learning and memory whereas antagonists are associated 
with deficits in these processes [79-81]. The behavioral 
aspects of depression are a significant impairment in 
neurocongnitive function. Many of the behavioural effects 
associated with cholinergic pathway seem to be produced by 
acetylcholine through nicotinic receptor. However, Scarr 
(2009) suggested that the modulation of muscarinic system is 
known to reduce the depression associated symptoms [82]. 
Evidence of the involvement of acetylcholine in depression 

mainly arises from drug targeting nicotinic or muscarinic 
receptors [83], whether or not the nicotinic cholinergic 
receptor involved in the modulation of symptoms of 
depression is uncertain. The involvement of nicotinic 
cholinergic receptor was studied by Slotkin and Seidler, 
(2006); they demonstrated the down regulation of striatal α-
7-nicotinic acetylcholine receptors (α7 nAChRs) in olfactory 
bulbectomised rat model of depression [84]. The
experimental findings of Piccoto et al. both activation and 
desensitization of nicotine acetylcholine receptors have been 
suggested to contribute to behavior related to nicotine 
addiction and mood [85]. It is unclear that the exact role of 
either modulation of nicotinic or muscarinic receptors for the 
amelioration of depressive mood. Citalopram, a selective 
serotonin reuptake inhibitor has been demonstrated to 
improve memory impairment in depression by enhancing the 
acetylcholine level in hippocampus in laboratory animals 
[85]. Moreover, stress, the most important factor, is 
responsible for the impaired functioning of acetylcholine in 
CNS. As the stress response causes the release of 
acetylcholine in the forebrain and thus helps in activating the 
Septohippocampal pathway [86]. From this finding, one may 
certain to firm that acetylcholine likely to functions as a 
neurotransmitter and its modulation by various novel drugs 
might beneficial in the management of depression.

Histaminergic Receptors

Histamine is also an important neurotransmitter, has a 
role in arousal, alertness, learning, memory, appetite and the 
perception of pain. Therefore, histamine imbalances might 
result in alterations of mental illness, fatigue, eating 
disorders, self-mutilation, or addictive behaviors. 
Neuroanatomical studies demonstrated the direct 
hypothalamocerebellar pathways in the mammalian brain. 
The direct hypothalamocerebellar fibers that reach the 
cerebellar cortex and the cerebellar nuclei are comprised 
hypothalamocerebellar cortex and the hypothalamocerebellar 
nuclei projections, respectively and the histamine functions 
as a neurotransmitter in these pathways [87-88]. Cerebellar 
cortex plays an integral role in fine-tuning motor controls, 
apart from this function, it also contributes to cognition,
language and emotion. Hence, cognition and emotion are the 
majority of symptoms that are noticed during depression. 
Therefore, possible role of cerebellar cortex in depression 
can not be ruled out. Histamine receptors are G-protein 
coupled receptors (GPCRs) and are classified into 4 distinct 
types (H1R, H2R, H3R, and H4R), the four histamine 
receptor subtypes are distinct in terms of their pharmacology 
and molecular biology and have been implicated in diverse 
biological effects of the neurotransmitter histamine [89]. The 
H1R are located in the brain stem hypothalamus, thalamus 
amygdala, septum hippocampus olfactory bulb and cortex, 
whereas, H2R is found in the basal ganglia, amygdala, 
hippocampus, and cortex. The endogenous histamine reduces 
the time of immobility in the forced swimming test, 
suggesting an antidepressant-like effect, via activation of H1 
receptors [90-91]. The Tricyclic antidepressants also block 
H2R in brain suggesting the involvement of H2R in 
depression [92]. However, the implication of H2R in 
pathophysiology of gastric ulcer is predominant due to its 
abundant location in stomach as histamine controls gastric 
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acid secretion by activating the proton pump in parietal cells 
through H2R activation [93-94]. The H3R has been 
identified as a mainly presynaptic autoreceptor, regulating 
the release of histamine as well as a heteroreceptor on non-
histaminergic neurons that is capable of regulating the 
release of many other important neurotransmitters, such as 
acetylcholine, norepinephrine, dopamine and serotonin [95-
97], thus, an indirect release of these neurotransmitters 
through H3R might be beneficial for the management of 
depressive symptoms. Recently, JNJ-17216498 [chemically 
2-Methyl-4-(4-methylsulfanyl-phenyl)-7-(3-morpholin-4-yl-
propoxy)-1,2,3,4-tetrahydro isoquinoline], an H3R 
antagonist, is discovered and found to have in vivo functional 
activity at the histamine H3 receptor. It also significantly 
increased cortical extracellular levels of serotonin at doses of 
0.3 mg/kg (s.c.) and higher, showed antidepressant-like 
activity in the mouse tail suspension test at doses ranging 
from 3-30 mg/kg p.o. [98]. Experimental findings 
demonstrated, JNJ-28583867 is a combined histamine H3
receptor antagonist-SERT inhibitor with in vivo efficacy in 
biochemical and behavioral models of depression and 

wakefulness useful in narcolepsy patient [98]. Furthermore, 
H4 receptors on human and rodent neurons highlight their 
implication in neuronal functions their location in the areas 
of CNS viz. hippocampus, thalamus, amygdala, cortex, 
striatum and spinal cord studied [99-100]. The role of H4R 
in depression was studied and experimental findings 
demonstrated the activation of cerebral H4 receptors was 
devoid of any effect on the mobility time in the mouse tail 
suspension test, indicating the lack of any antidepressant-like 
effect by this histamine receptor subtype [100].

JNJ-28583867- H3 receptor antagonist

Fig. (2). Dysfunction of cholinergic innervations in prefrontal cortex.
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Cocaine and Amphetamine Regulated Transcript

Cocaine and amphetamine regulated transcript (CART) is 
a peptide expressed in the hypothalamus and major limbic 
structure [98-100] and various studies have been conducted 
for the presence and distribution of CART in brain and their 
behavioural/neurological effects. The CART is expressed in
the olfactory bulb, sensory cortex, midbrain, thalamic nuclei, 
nucleus tractus solitarius, ambiguous, parabrachilis, lateral 
hypothalamus, raphe nuclei, hippocampus, paraventricular 
nucleus of hypothalamus (PVN), arcuate nucleus (ARC) etc 
[101, 104-105]. The CART found to modulate affective and 
anxiety behaviors [106]. Ma et al. (2007) suggested that an 
increase in 5-HT may contribute to antidepressant like 
effects of CART [107]. Various experimental findings 
reveal, CART elicited anti-depressant like actions and 
related neurodegenerative disorders [108-109], moreover, the 
CART immunoreactivity profile in different component that 
processes depression related information by use of Porsolt’s 
forced swim test [110]. The participation of CART in the 
regulation of ethanol withdrawal induced anxiety like 
behavior within the framework of central nucleus of 
amygdala. Since amygdala is a center critical for the 
regulation of several psychological behavior including 
depression. The experimental outcomes of Dandekar et al.,
confirm that the endogenous CART may be involved in the 
regulation of depression like behavior possibly via central 

nucleus of amygdala [111] and this supported the 
observation that adolescents carrying a missense mutation in 
the CART gene exhibited anxiety and depression [112]. 
These findings also supported the fact that CART in the 
regulation of the HPA axis, is believed to be altered and is 
considered to be one of possible pathogeneses in major 
depression [113-114]. The therapeutic implication of CART 
in the treatment of depression and its antidepressant effects 
might be through the expression of excitatory 
neurotransmitters viz. 5-HT, noradrenaline and dopamine 
[107] or through the Brain-derived neurotrophic factor 
(BDNF), kinases (trkB) [108]. Antidepressant effect of 
CART might be due to increased level of extracellular 
signal-related kinase (ERK) phosphorylation that is 
associated with a variety of growth factors, hormones and 
neurotransmitters [115]. However, Dandekar et al. suggested 
the regulation of depression-like behavior might be due to 
anterograde transport of CART from the PVN and ARC 
neuronal cell bodies to the amygdala in olfactory bulbectomy 
as well as socially isolated rat models [111]. Taken into 
consideration, the possibility that endogenous CART system 
plays a major role in mediating symptoms of depression and 
could be a target for treating depression behavior by 
increasing the CART level/concentration. Fig. (3) depicted 
that the modulation of CART by novel activators might be 
beneficial in the management of depression.

Fig. (3). Modulation of CART functioning in depression, CART-cocaine amphetime regulated peptide, BDNF- Brain-derived neurotrophic 
factor, trkB-tyrosine kinase B, 5HT-serotonin, NA- noradrenaline.
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Oxidative Stress

The brain, being the master regulator of the body, suffers 
from the oxidative stress easily as compared to other organs. 
This might be due to either of these reasons: (a) presence of 
iron in brain which is responsible for higher free radicals 
formation, (b) low concentration of endogenous antioxidant 
enzymes in the brain and or (c) the presence of high amounts 
of lipids and fatty acids in the brain, makes the brain more 
susceptible to peroxidation process which manifests into 
increased oxidative stress and subsequently leading to 
increased formation of free radicals [116]�� The lack of 
neuronal regeneration in all but certain stem-cell regions 
further renders the brain more vulnerable to oxidative stress. 
The generated free radicals are then produced damage to 
DNA, protein, neuronal membrane integrity, and 
mitochondrial dysfunction of neuronal cells (Fig. 4).
Oxidative stress is the imbalance between oxidant and anti- 
oxidants in favor of the oxidants, leading to a disruption of 
the redox signaling and control and/or molecular damage 
[117]. Use of an oxidative stress index, defined as the 

percent ratio of total peroxide plasma concentration to the 
total antioxidant potential, one can link between oxidative 
stresses with higher Hamilton Depression Rating Scales 
[118]. Stressful situations are believed to be important in the 
development of human psychopathologies including anxiety, 
depression, and impairment in the cognitive functions [119-
121]. It is further demonstrated that, excessive oxygen free 
radicals production has been observed in patients with 
depression and anxiety due to oxidative stress [122] and 
simultaneous decrease in the endogenous antioxidant defense 
activity [123]. Experimentally induced depression in rats and 
mice supports oxidative stress which plays an important role 
in depression. Oxidative stress is measured in terms of 
estimation of superoxide dismutase (SOD) glutathione 
peroxidase (GSH-Px) and catalase (CAT) enzymatic 
activities, formation of malondialdehyde (MDA) and nitric 
oxide (NO) (mainly in hippocampus, prefrontal cortex, and 
amygdale).

Since, enzymatic functions lowered and increased MDA 
formation was observed in experimentally induced 

Fig. (4). Schematic representation of role of oxidative stress, production of free radicals, endogenous antioxidant enzymes; superoxide
dismutase (SOD), and catalase (CAT); BDNF (brain derived neurotrophic factor) that collectively results in induction of depressive like 
symptoms and impairment in cognitive functions.
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depression in animals [124-125]. Currently used 
antidepressants, fluoxetine, citalopram, fluvoxamine or 
sertraline produce decreased NO, levels restored depleted 
SOD, GSH [126] and MDA formation and improved 
enzymatic activity of endogenous antioxidants [127]. In 
addition, venlafaxine, a serotonin-norepinephrine reuptake 
inhibitor, was shown to protect against stress-induced 
oxidative cellular and DNA damage, decreased the 
hippocampal MDA and NO and increased hippocampal 
GSH, total antioxidant levels in mice [127]. Therefore, the 
prevention and/or reduction in oxidative stress are one of the 
mechanisms involved in depression or its associated 
symptoms. This statement is agreements with various 
experimental findings, demonstrating antidepressant activity 
through antioxidant activity, by restoring depleted 
antioxidant enzymes and prevention of MDA formation due 
to oxidative stress [122-123, 126].

Moreover, neurotrophic factors are also involved in 
pathophysiology in the induction of depressive like 
symptoms [128], brain-derived neurotrophic factor (BDNF), 
one of the important neurotropic factors, and the reduced 
amount of BDNF in serum was demonstrated during 
oxidative stress in animals [129]. Chronic treatment with 
natural flavonoids, curcumin and resveratrol, increased 
hippocampal BDNF expression in mice [129-130].

CONCLUSION

Currently, several anti-depressants drugs are available for 
the management of depression, however, due to lack of 
specificity of presently used antidepressants and their side 
effects, it is requisite to discover and develop newer anti-
depressants. Various targets like NMDA, SP, histaminergic 
receptors, cholinergic receptors, CART are now being 
investigated for their involvement in depression. Along with 
these targets, the most important being oxidative stress, is 
responsible for depressive like behavior, prevention of 
oxidative stress by antioxidants mainly from natural sources 
will be beneficial in augmenting such behavior. It is 
expected that having a better understanding of these targets 
and their insight pathophysiological implications in 
depression, a novel, safe and effective molecules would be 
made available for depression.

LIST OF ABBREVIATIONS

AMPA = α-Amino-3-Hydroxy-5-Methyl-4-Isoxazole 
Propionic Acid

BDNF = Brain-Derived Neurotrophic Factor
CART = Cocaine and Amphetamine Regulated 

Transcript
CAT = Catalse
CGRPs = Calcitonin Gene Related Peptides
CRH = Corticotropin-Releasing Hormone
FST = Forced Swim Test
HPA = Hypothalamic-Pituitary-Adrenal
MAOI = Monoamine Oxidase Inhibitors
NK = Neurokinin

NMDA = N-Methyl-D-Aspartate
NPY = Neuropeptide Y
PVN = Paraventricular Nucleus
SOD = Superoxide Dismutase
SP = Substance P
SSRI = Selective Serotonin Reuptake Inhibitors
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