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ABSTRACT 

 

Prototype Virtual Reality Enabled Particle Swarm Optimizer 

By Arpit M. Patel 

 

Plasma Physics is a complex nonlinear system. The problems of the field involve the 

optimization of a set of a parameters and their constraint checking on a set of 

boundary conditions. The convergence of algorithm for local and global minima is of 

importance. Due to unpredictable nature of solution, use of virtual reality based 

modeling will be of due importance for better understanding and sharing it for 

discussion. Numerous optimization algorithms have been proposed to solve these 

problems with varying degree of success. The particle swarm optimization is 

relatively new techniques that have been empirically shown to perform well on 

many of this optimization problem. It is inspired by the behavior of the swarm 

found in nature. The basic optimization algorithm of PSO has been enhanced for 

guaranteed convergence with various configurations and topologies. This project 

will be focus on study of Particle Swarm Optimization algorithms and modeling of 

physical problem of 3rd degree nonlinear equations using it and comparing it with 

empirical results. Empirical results are presented to support theoretical properties 

predicted by the various models, using synthetic benchmark functions to 

investigate specific properties. In the later phase more complex problems related to 

plasma physics will be tried out and results will be achieved.  
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1.                                                                   INTRODUCTION  
 
 

“You awaken to the sound of your alarm clock. A clock that was 

manufactured by a company that tried to maximize its profit by 

looking for the optimal allocation of the resources under its control. 

You turn on the kettle to make some coffee, without thinking about 

the great lengths that the power company went to in order to optimize 

the delivery of your electricity. Thousands of variables in the power 

network were configured to minimize the losses in the network in an 

attempt to maximize the profit of your electricity provider. You climb 

into your car and start the engine without appreciating the complexity 

of this small miracle of engineering. Thousands if parameters were 

fine-tuned by the manufacturer to deliver a vehicle that would live up 

your expectations, ranging from the aesthetic appeal of the bodywork 

to the specially shaped side-mirror cowls, designed to minimize drag. 

As you hit the gridlock traffic, you think "Couldn't the city planners 

have optimized the road layout so that I could get to work in under an 

hour?" 

Optimization forms an important part of our day-to-day life. Many scientific, social, 

economic and engineering problems have parameters that can be adjusted to 

produce a more desirable outcome. Over the years numerous techniques have 

been developed to solve such optimization problems. This thesis investigates the 

behavior of a relatively new technique known as Particle Swarm Optimization, a 

technique that solves problems by simulating swarm behavior.   

 

1.1 About Organization: Institute for Plasma Research 

Institute for Plasma Research was established in 1986, as an autonomous 

institution, funded by the Department of Atomic Energy. Institute for Plasma 

Research is a Premier Institute; the major objectives of institute carrying out 

fundamental theoretical and experimental research on magnetically confined hot 

Plasmas and nonlinear plasma phenomena. It has its branch, Facilitation Center for  
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Industrial Plasma Technology (FCIPT), at GIDC, Gandhinagar, which basically builds 

industrial plasma appliances and makes some funding to the Institute. The Institute 

has various working groups, viz., Pulsed Power Group, RF Group, Cryogenics 

Group, Vacuum Group, Modeling Group, Neutral Beam Injection Group, etc. 

 

1.2 Motivation 

Plasma physics is a complex non-linear system. These systems have various 

parameters whose values define various system properties, system behavior, 

system architecture, system design, system requirement, etc… . The pro blem  o f the 

field involves the optimization of these set of parameters and their constraint 

checking on a set of boundary conditions. Thus the important task is the 

convergence of the algorithm for the local and global minima in order to optimize 

complex non-linear problems.  

 The nature of the solution to these complex nonlinear problems is 

unpredictable, so use of virtual reality based modeling will be of importance for 

better understanding and analysis. By using virtual reality based modeling the 

problems and their solutions can be studied in microscopic way. To solve these 

kinds of problems numerous techniques have been proposed which has given 

varying degree of success. 

 The Particle Swarm Optimization (PSO), which is inspired by the behavior of 

the swarm found in nature, is a relatively new technique that has been empirically 

shown to perform well on many of the optimization problems other than Plasma 

Physics related optimization problems like neural network learning algorithm, 

Human tremor analysis, Reactive power and voltage control, Distribution state 

estimation, state of charge of battery pack, rule extraction in fuzzy neural network, 

etc...[2].  

The main motivation is that, the PSO has been never applied in the area of 

Plasma Physics, so here it is to be applied first time in the area of plasma physics. 
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1.3 Objectives 

The primary objectives of this thesis can be summarized as follows: 

 To develop Particle Swarm Optimization engine with different variations 

of PSO algorithm and various topologies to solve various kinds of 

optimization problems 

 To simulate the behavior of the convergence of 3 rd degree nonlinear 

equations using Java3d API 

 To select optimum values for parameters of the PSO for better 

performance of PSO 

 To analyze the performance of various PSO using various benchmark 

functions 

 To apply PSO for optimization of various Plasma Physics related problems 

 

1.4 Scope of Project 

The PSO has been applied to a vast number of problems, though not all of these 

applications have been described in published material yet. This section will briefly 

describe scope of the PSO in some areas. 

 Neural Network training was one of the first applications of the PSO, 

Kennedy and Eberhart reported that the PSO was successful in training a network 

to correctly classify the XOR system, a process involving the minimization of 

function in a 13-dimensional search space [1]. They also reported that the PSO 

co uld train a neura l netw o rk to  classify Fisher’s Iris D ata set.  

In fact, most PSO applications reported in the literature involve neural 

network training. Eberhart and Hu used the PSO to train a network to correctly 

classify a patient as exhibiting essential tremor, o r suffering fro m  Parkinso n’s 

disease. Their PSO implementation used an inertia weight that decreased linearly 

from 0.9 to 0.4 over 2000 iterations.  

The PSO has also been used to evolve the architecture of a neural network in 

tandem with the training of the weights of the network. 

 Eberhart describes several other applications of PSO in [2], including some 

more neural network training applications. Tandom used the PSO to train a neural  
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network used to simulate and control an end milling process. End milling involves 

the removal of metal in a manufacturing process, using computer numerically 

controlled (CNC) machine tools. Another neural network training application 

described by Eberhart is that of training a network to estimate the state-of-charge 

of a battery pack. Another neural network training application, Fuzzy Neural 

Network was studied by He[2].  

 Another scope of PSO unrelated to neural network was used to optimize to 

ingredient mix of chemicals used to facilitate the growth of strains of micro-

organisms. Another scope of PSO unrelated to neural network was published by 

Fukuyama and Yoshiba. They have shown that the PSO is very effective at 

optimizing continuous and discrete variables simultaneously.  

 PSO is also useful for Reactive Power and Voltage Control and Power System 

Stabilizer Design[2][3].  

 In the area of Plasma Physics, PSO is used for optimum parameters 

selections of Nuclear Fusion Reactors for minimization of cost per unit energy. It is 

also useful for atomic cluster configuration for lowest energy configurations.  

 The virtual reality enable Particle Swarm Optimizer is useful for the modeling 

the behavior of various 3rd degree nonlinear equations for better understanding and 

analysis. Virtual reality enable PSO can be useful for analysis of various problems in 

microscopic way. 

 

1.5 Thesis Outline 

Chapter 2 starts with an introduction to the theory of optimization. This is followed 

by a description of the Particle Swarm Optimizer. In this, the focus will be on 

background of PSO, optimization process of PSO, neighborhood topologies used in 

PSO and variants of PSO. 

 Chapter 3 presents requirement specification of system, which is to be 

made. Here system requirements are identified and their feasibility is checked for 

implementation. 
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 Chapter 4 describes the design of the system, which is to be implemented. 

H ere system ’s class diagram , sequence diagram , etc…  are discussed. In th is 

section, overall structure and style of system are discussed. 

 Chapter 5 discussed about performance analysis of the system. In this 

section, optimum parameter selection of the PSO is discussed. After that different 

variants o f the PS O ’s results are analyzed. 

 Chapter 6 explains applications of PSO. These applications are of the field of 

Plasma Physics. Here various PSO are used to solve the problems of Plasma Physics 

and the results are analyzed. 

 Chapter 7 presents a summary of the findings of this thesis. Some topics for 

future research are also discussed. 

 The appendices present, in order, a list of useful websites, a list of published 

paper. 
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2.                      Background 
 
 

This chapter reviews some of the basic definitions related to optimization. Then the 

origin of Particle Swarm Optimizer is discussed, followed theory of Particle Swarm 

Optimizer and variants of PSO are described. At the end, Virtual Reality for PSO is 

discussed. 

 

2.1 Optimization 

The task of optimization is that of determining the values of a set of parameters so 

that some measure of optimality is satisfied, subject to certain constraints. This 

task is of great importance to many professions, for example chemists, scientists, 

engineers etc. The term optimization refers to both minimizations and maximization 

tasks. A task involving the maximization of the function is equivalent to the task of 

minimizing – f, therefore the terms minimization, maximization and optimization will 

be used interchangeably.  

 Techniques used to solve the minimization problems defined above can be 

placed into two categories: Local and Global Optimization algorithms 

1. Local optimization 

A local minimiser, *
Bx  of the region B is defined so that Bxxfxf B  ),()( * , 

where nRSB  , and S denoted the search space. B is a proper subset of S. 

Here, the whole search space (S) is divided into number of blocks with 

smaller search space (B). The optimization or finding minima or maxima is 

performed on these smaller blocks of search spaces.  

2. Global optimization 

A global minimiser, *x  of the region S is defined so that Sxxfxf  ),()( * , 

Where S is the search space. The optimization or finding minima or maxima 

is performed on the whole search space (S). 

 

2.2 Particle Swarm Optimizers 

Particle Swarm Optimization is a population based search technique, was first 

introduced by Dr. Russell C. Eberhart and Dr. James Kennedy [1] in 1995. As  
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described by Eberhart and  K ennedy, “Particle S w arm  algo rithm  im itates hum an (o r 

insects) social behavior. Individuals interact with one another while learning from 

their own experience, and gradually the population members move into better 

regio ns o f the pro blem  space”. H ere they called each in d ivid ua l as “Particle” 

because they felt that velocities and accelerations are more appropriately applied to 

particles. 

 

2.2.1 Background of PSO 

Natural creatures sometimes behave as a swarm. One of the main streams of 

artificial life researches is to examine how natural creatures behave as a swarm and 

reconfigure the swarm models inside a computer. Swarm behavior can be modeled 

with a few simple rules. School of fishes and swarm of birds can be modeled with 

such simple models. Namely, even if the behavior rules of each individual (particle) 

are simple, the behavior of the swarm can be complicated. Reynolds called this kind 

of particle as boid and generated complicated swarm behavior by CG animation [3].  

He utilized the following three vectors as simple rules.  

(1) To step away from the nearest particle  

(2) To go toward the destination  

(3) To go to the center of the swarm  

Namely, behavior of each particle inside the swarm can be modeled with simple 

vectors. This characteristic is one of the basic concepts of PSO. Boyd and Richerson 

examine the decision process of human being and developed the concept of 

individual learning and cultural transmission [4]. According to their examination, 

people utilize two important kinds of information in decision process. The first one 

is their own experience; that is, they have tried the choices and know which state 

has been better so far, and they know how good it was. The second one is other 

people's experiences; that is, they have knowledge of how the other peoples 

around them have performed. Namely, they know which choices their neighbors 

have found are most positive so far and how positive the best pattern of choices 

was. Namely each person decides his decision using his own experiences and other 

peoples' experiences. This characteristic is another basic concept of PSO.  
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2.2.2 Optimizer Engine 

Particle Swarm has two primary operators: Velocity update and Position update. 

During each generation each particle is accelerated toward the particles previous 

best position and the global best position. At all iteration new velocity value for 

each particle is calculated based on its current velocity, the distance from its 

previous best position, and the distance from the global best position. The new 

velocity value is then used to calculate the next position of the particle in the 

search space. This process is then iterated a set number of times or until a 

minimum error is achieved. Namely, PSO is basically developed through simulation 

of bird flocking in two-dimension space. The position of each particle is represented 

by XY axis position and also the velocity is expressed by VX (the velocity of X axis) 

and VY (the velo city o f Y axis). M o dificatio n o f the particle’s position is realized by 

the position and velocity information. Bird flocking optimizes a certain objective 

function. Each particle knows its best value so far (pBest) and its XY position. This 

information is analogy of personal experiences of each particle. Moreover, each 

particle knows the best value so far in the group (gBest) among pBests. This 

information is analogy of knowledge of how the other particles around them have 

performed.  Namely, each particle tries to modify its position using the following 

information: current positions (x, y, z), velocities (VX, VY, VZ), distance between the 

current position and pBest and distance between the current position and gBest. 

This modification can be represented by the concept of velocity. Velocity of 

each particle can be modified by the following equation:  

)(**)(** 2211
1 k

i
k
ii

k
i

k
i SgBestrandCSpBestrandCVV 

… ........ (1) 

        Where 
1k

iV  = Velocity of particle i at iteration k, 

  C1      = Self confidence parameter 

  C2      = Group confidence parameter 

         rand1,2 =  Random number between 0 and 1 

  
1k

iS    = position of particle i at iteration k 

  pBesti =  pBest of particle i 

  gBesti =  gBest of particle i 
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Using the above equation, a certain velocity, which gradually gets close to 

pBest and gBest, can be calculated. The current position (searching point in the 

solution space) can be modified by the following equation:    

        
k
i

k
i

k
i SVS   11

… … … … … … … … … … … … … … … … … …  (2 ) 

Figure 2.1 shows a concept of modification of a searching point by PSO and Figure 

2.2 shows a searching concept with particles in a solution space. Each particle 

changes its current position using the integration of vectors as shown in Figure 2.1. 

                                                           
 

  Fig.2.1 Concept of modification           Fig 2.2 Searching concept 

     of a searching point by PSO           with particles in a solution space by PSO      
 

The general flow chart for the PSO can be described as follows: 

Step: 1 Generation of initial condition of each particle  

Initial searching points (
0
iS ) and velocities (

0
iV ) of each particle are usually 

generated randomly within the allowable range. The current searching point is set 

to pBest for each particle. The best-evaluated value of pBest is set to gBest and the 

particle number with the best value is stored 

Step: 2  Evaluation of searching point of each particle  

The objective function value is calculated for each particle. If the value is better 

than the current pBest of the particle, the pBest value is replaced by the current 

value. If the best value of pBest is better than the current gBest, gBest is replaced 

by the best value and the particle number with the best value is stored.  

Step: 3 Modification of each searching point  

The current searching point of each particle is changed using (1) and (2).  

Step: 4  Checking the exit condition  

The current iteration number reaches the predetermined maximum iteration, 



 2:    Background 

- 10 - 

  

 number, then exit. Otherwise, go to step 2. 

Figure 2.3 shows the general flowchart of PSO. The features of the searching procedure 

of PSO can be summarized as follows:  

(a)  As shown in (1) and (2), PSO can essentially handle continuous optimization 

problem.  

(b)  PSO utilizes several searching points like genetic algorithm (GA) and the 

searching points gradually get close to the optimal point using their pBests and the 

gBest.  

 
Figure2.3: General Flow Chart of PSO 

 

(c)  The first term of right-hand side (RHS) of (1) is corresponding to 

diversification in the search procedure. The second and third terms of that are 

corresponding to intensification in the search procedure. Namely, the method has 

a well-balanced mechanism to utilize diversification and intensification in the 

search procedure efficiently.  

(d)  The above concept is explained using only XY-axis (two- dimension space). 

However, the method can be easily applied to n-dimension problem. Namely, PSO



7 
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can handle continuous optimization problems with continuous state variables in a n-

dimension solution space.  

The above feature (c) can be explained as follows [3]. The RHS of (1) 

consists of three terms. The first term is the previous velocity of the particle. The 

second and third terms are utilized to change the velocity of the particle. Without 

the seco nd and third  term s, the particle w ill keep o n “flyin g” in the sam e directio n 

until it hits the boundary. Namely, it tries to explore new areas and, therefore, the 

first term is corresponding to diversification in the search procedure. On the other 

hand, w itho ut the first term , the velo city o f the “flying” particle is o nly determ ined 

by using its current position and its best positions in history. Namely, the particles 

will try to converge to their pBests and/or gBest and, therefore, the terms are 

corresponding to intensification in the search procedure.  

The basic algorithm for the particle swarm optimizer is shown as follows:  

Procedure PSO 

   Repeat 

 For i = 1 to number of individuals do 

  If G( iS ) > pBesti then            ● G() evaluates goodness 

   For d = 1 to dimensions do 

pBesti,d = diS ,           ● pBest i,d  is the best state    found 

so far  

   End for  

  End if  

  g = i            ● arbitrary 

  For j = indexes of neighbors do 

   If G( jS ) > gBestj then 

g = j    ● g is the index of the best                           

performer in the neighborhood 

   End if 

  End for 

 



2:    Background 

 - 12 - 

 

  For d = 1 to number of dimensions do 

      )),1(,()( ,)1( gdididtidid pptVSftV    ● Update velocity  

          ),()( maxmax VVtVid    

        ))1(),(()(  tStVftS ididid   ● Update position  

End for 

End for 

    Until stopping criteria  

End procedure 

 

2.2.3 Neighborhood Topologies 

There are three main neighborhood topologies used in PSO: Circular topology, 

wheel topology and star topology [6]. The choice for neighborhood topology 

determines which individual to use for gBest. The topology affects the rate of 

convergence and the parallelism of the search. 

In circle topology, each individual in society is connected to its k- nearest 

topological neighbors, from which each particle obtains its gBest value, which is the 

best individual result among its k-nearest neighbors, where k is typically 2. Figure 

2.4 shows five individual connected with circular topology. 
 

 
Figure 2.4 Circular Topology   Figure 2.5 Circular Topology  Figure 2.6 Wheel topology 
 

The star topology (see Fig. 2.5) is better known as the global best topology. 

Here every individual is connected to every other individual in the swarm. Here 

gB est becom es the best ind ividua l’s result in the w ho le po pulatio n. The W heel  
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topology (see Fig. 2.6) effectively isolates individuals from one another, as 

information has to be communicated through a focal individual, whose best value is 

known as fBest (focal best). From that, the gBest value can be found as gBest = 

best {fBest, pBest}.  

 
2.2.4 Variations of Particle Swarm Optimization 

Researchers have uncovered many variants determined to be better with respect to 

convergence speed and robustness. Numerous improvements to the PSO have 

been proposed. These improvements usually involve changes to the PSO update 

equations, without changing the structure of the algorithm. 

Here three variants of PSO are discussed. 

 

1. Inertia Weight PSO 

Some of the earliest modifications to the original PSO were aimed at further 

improving the rate of convergence of the algorithm. One of the most widely used 

improvements is the introduction of the inertia weight, which is developed by Shi 

and Eberhart in 1998 [5]. The inertia weight is a scaling factor associated with the 

velocity during the previous time step, resulting in a new velocity update equation, 

so that  

)(**)(*** 2211
1 k

i
k
ii

k
i

k
i SgBestrandCSpBestrandCVWV 

 

Where W = Inertia Weight 

Based on the values of inertia weight there are two variants of Inertia Weight PSO: 

1) Constant Inertia Weight PSO 

In Constant Inertia Weight PSO, the w value is kept constant for iterations in 

the execution of optimization algorithm. From the empirical results, it can be 

shown that the inertia weight w is selected in the range of [0.8, 1.2] 

[Chapter 4] for better convergence speed and robustness. 

2) Variable Inertia Weight PSO 

In Variable Inertia Weight PSO, the w value is decreased linearly over time 

from 1.0 to 0.5. At the start of simulation runs, the inertia weight value is  
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1.0 and as the time goes the value of inertia weight is decreased linearly up 

to 0.5. This approach allows the PSO to explore a large area at the start of 

simulation run (when the inertia weight is large), and to refine the search 

later by using a smaller inertia weight. This approach gives the better 

performance compare to constant inertia weight PSO (Chapter 4). So, 

decreasing the inertia weight over time introduces a shift from the 

exploratory (global search) to exploitive (local search) mode.  

The inertia weight governs how much of the previous velocity should be 

retained from the previous time step. To briefly illustrate the effect of w, let C1 = 

C2 =0. Now, a w value greater than 1.0 will cause the particle to accelerate up to 

maximum velocity Vmax (or –Vmax) where it will remain as it is.  A w value less than 

1.0 will cause particle to decelerate until its velocity reaches zero. When C1 = C2  

0, the behavior of the algorithm is harder to predict, but based on the results of Shi 

and Eberhart [5] it would appear that w values close to 1.0 are preferable. 

 

2. Constriction PSO  

Another PSO variation named Constriction Coefficient PSO was developed by Clerc 

[6] in 2000. In this variation of PSO, one new constriction factor is introduced for 

ensuring convergence. The constriction factor model describes a way of choosing 

the values of w, C1 and C2 so that the convergence is ensured. By choosing these 

values correctly, the need for clamping the values of velocity to the range Vmax 

can be omitted.  

A modified velocity update equation, corresponding to constriction model is 

presented in below equation. 
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Clert, et al., found that by modifying , the convergence characteristics of the 

system could be controlled.  

Let C1 = C2 = 2.05 and substitute 1.421  CC into above equation of 

constriction factor, will give value of 7298.0 . 

Substituting value of constriction factor in the above velocity update equation, will 

result in 

))(**05.2)(**05.2(*7298.0 21
1 k

i
k
ii

k
i

k
i SgbestrandSpbestrandVV 

   

This is equivalent to choosing C1 = C2 = 2.05*0.7298 = 1.4962 and w = 0.7298. 

So the modified equation can be represented with w, C1 and C2 as follows: 

))(**4962.1)(**4962.1*7298.0 21
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 B y using co nstrictio n facto r, the am plitu de o f the particle’s o scillatio n 

decreases. But for some functions, however, the PSO with the constriction factor 

failed to reach the specified error threshold for the specified number of iterations. 

To mitigate this effect, use of velocity constriction is applied, which gives improved 

performance for almost all the functions- both in terms of the rate of convergence 

and the ability of the algorithm to reach the error threshold. The particle will 

oscillate around the weighted mean of pBest and gBest, if the previous best 

position and the neighborhood best position are near each other the particle will 

perform a local search. If the previous best position and the neighborhood best 

position are far apart from each other the particle will perform a more exploratory 

search. During the search the neighborhood best position and previous best 

position will change and the particle will shift from local search back to global 

search. 

 

1. Fully Informed PSO 

This variation of PSO [7] is made up on the basis of constriction PSO. A particle 

searches through its neighbors in order to identify the one with the best result so 

far, and used information from that one source to bias its search in promising  
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direction. In the constriction PSO the two terms 
)( k

ii Spbest 
and 

)( k
iSgbest 

are 

of the same kind. Hence it can be condensed to the following.  

Velocity updates equation:    
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Position updates equation: 
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Where  
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and  
)21/()*2*1(   gbestpbestpi  

This shows that the particle tends to converge towards a point determined by ip
, 

w hich a w eighted average o f its previo us best pB est and the neighbo rhoo d’s best 

gBest.  

Here variation is introduced in several ways: First, the term is weighted by a 

random number. This in itself would not prevent the velocity from approaching a 

zero limit. For instance, if the pm-Si difference equals zero, the velocity will still 

converge to zero. Another important source of variation is the difference between Pi 

and Si. As long as the position of the particles differs from the previous best 

position, then there will be movement. Here pm does not remain fixed, and a key 

source of variation is the updating of Pm over time as new points are found in the 

search space, which are better than those previous ones. For convergence it is 

necessary for Pm to remain fixed. 

The velocity update equation can be further generalized to any number of 

terms: 
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Here N denotes the neighborhood and kp
 denotes the best previous position by 

the k-th particle in N. if |N| equals 2 then above is a generalization of the Standard 

PSO. The results (Chapter 4) of the FIPS shows that the rate of convergence of this 

algorithm is very fast compare to all above approaches. The number of faults is 

also very less compare to others. In FIPS, all the informants take part into the  
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calculation of new velocity of particle. In FIPS, increasing the size of the 

neighborhood seems to deteriorate the performance of the swarm. 

 

2.3 Virtual Reality for PSO 

Virtual reality (VR) is a technology, which allows a user to interact with a 

computer-simulated environment, be it a real or imagined one. Most current virtual 

reality environments are primarily visual experiences, displayed either on a 

computer screen or through special stereoscopic displays. In nature, real world 

problems can be expressed as numerical equations. For better understanding and 

analysis of these equations i.e. real problems, they should be studied in a 

microscopic way. These problems can be solved and analyzed using mathematical 

models or optimization theories. This can be used for function understanding or 

algorithm analysis method. So, as the microscopic analysis requirement, there is a 

need of Virtual reality modeling. Here the behavior of the PSO is modeled and 

analyzed using virtual reality. Users can interact with a virtual environment for 

analyzing PSO behavior; he can use keyboard or mouse. The simulated 

environment can be similar to the real world 

http://en.wikipedia.org/wiki/Computer-simulated
http://en.wikipedia.org/wiki/Surroundings
http://en.wikipedia.org/wiki/Computer_screen
http://en.wikipedia.org/wiki/Stereoscopy


   

  

3.                         Requirement Analysis 
 
 

Requirement is a feature of the system or a description of something the system is 

capable o f do ing in o rder to  fulfill the system ’s purpo se. S ince Particle S w arm  

Optimizer has been widely studied and has been implemented in many 

applications, but as this thesis deals with the use of PSO in Plasma Field, the 

requirement analysis is very important. There are various kinds of requirements, 

which are discussed below for the PSO.  

 

3.1 Particle Swarm Optimizer Input Requirements: 

Before starting the project, there is lot of research and study work required. This 

input requirement not only includes the study of Particle Swarm Optimization but 

also the study of all the basic requirement of the project. 

The sub requirements are as follows: 

Input Requirement 1: Understanding of Optimization  

            1.1 Understanding of Local Optimization 

            1.2 Understanding of Global Optimization  

Input Requirement 2: Study of Swarm Behavior 

Input Requirement 3: Study of PSO Algorithm 

Input Requirement 4: Study of Social Behavior 

 

3.2 Particle Swarm Optimizer Topology Requirements: 

To implement any system or algorithm in various environment or field, the various 

topologies should be required. There are mainly three-topology requirement in 

PSO. 

Topology Requirement 1: Study of Circular topology (section 2.2.3) 

Topology Requirement 2: Study of Star topology (section 2.2.3) 

Topology Requirement 1: Study of Wheel topology (section 2.2.3) 
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3.3 PSO Implementation Requirements: 

The PSO can be implemented in two types. The types are differentiated based on 

the type of solution to be produced. Based of local and global optimization there 

are two model of PSO: Lbest –  local best model and Gbest –  global best model. 
 

Lbest Model: The Lbest model tries to prevent premature convergence by 

maintaining multiple attractors. A subset of particles is defined for each 

particle from which the local best particle is then selected. 
 

Gbest Model:  The Gbest model offers a faster rate of convergence at the expense 

o f ro bustness. This m o del m aintains o nly a sing le “best so lutio n”, called the g lo bal 

best particle, across all the particles in the swarm. This particle acts as an 

attractor, pulling all the particles towards it. Eventually all particles will converge to 

this position, so if it is not updated regularly, the swarm may converge 

prematurely. 

D ifferent variants o f PS O ’s im plem entatio n are also  requ ired  fo r analysis o f all the 

variants to find the best one from all. Here there are mainly four variants o f PS O ’s 

implementation is required.  

Implementation Requirement 1: Inertia Weight PSO (constant) 

Implementation Requirement 2: Inertia Weight PSO (variable)  

Implementation Requirement 3: Constriction PSO 

Implementation Requirement 4: Fully Informed PSO 

 

3.4 Function Evaluation 

Here the problems, which are to be optimized, are defined by the mathematical 

functions. These functions have relevance with the real world problems. These 

functions are evaluated on a single computer or at remote computer. Based on 

location of evaluator there are two requirements for the function evaluation: 

Stand Alone Function Evaluation: 

The function should be evaluated and optimized on a single computer. Mainly, 

when the function, which is to be optimized, is not very complex and do esn’t  
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require much computation time than the function can be implemented and 

optimized on a same computer.  

Remote Function Evaluation 

Here the function, which is to be optimized, is evaluated at remote system. Mainly, 

very complex functions, which require large amount of computation time, are 

evaluated on large computers. To optimize these kinds of problems, there is an 

interface requirement to communicate with them and to transfer data to each 

other. In Plasma Physics, functions, which are to be optimized, are very complex 

and nonlinear in nature. As most of scientific and complex mathematical libraries 

are implemented in FORTRAN, it is desirable to use FORTRAN for the calculation of 

the fitness function which is to be optimized. Here FORTRAN is used as an 

implementation platform for the evaluation of the function. These evaluation 

functions are called by the C server, which communicates with optimization 

algo rithm  (in Java). The FO R TR A N  eva luato r gets each particle’s po sitio n fro m  the 

C server and returns back the fitness value (see Fig. 3.1). The fitness value 

specifies the goo dness o f the particle’s po sitio n in the search space o r how  it fits in  

the search space.  

 

Fig. 3.1 C and FORTRAN interaction 

 

3.5 Behavior Modeling in VR –  Active Animation 

As the project is virtual reality enabled, there is requirement of the modeling of the 

PSO in the virtual environment. The Virtual Reality environment can be simulated 

using JAVA 3D technology, which provides rich set of libraries for the 

implementation of various 3D graphics rendering, modeling and visualizing. Here, 

the PSO is used to model the behavior the molecular dynamics, so for the better 

analysis and understanding of the behavior of the convergence and performance of  
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the algorithm, it is necessary to use JAVA3D or any other Virtual Reality Modeling 

Language.  

 The behavior of the molecular dynamics is like an animation in which number 

of particles moving and colliding with each other. So the active animation of the 

modeling is required. The active animation of the molecular behavior can be used 

to plot convergence graph of the particles. 

 

3.6 Virtual Reality Requirement Specification  

There are two types of requirement to create virtual worlds. These are VR modeling 

requirement and interaction requirement.  

VR Modeling Requirement: 

 In this requirement, there is a basic need of Virtual Space representation. 

The virtual space is also known as virtual universe, in which different visual objects 

(particle) are displayed and rendered. 

 If the problem, which is solved by PSO is 3-dimentional then the simulation 

of the PSO algorithm behavior should be displayed using the VR modeling.  

Interaction Requirement: 

 These requirements are related to interaction associated with the virtual 

worlds. These requirements are of Instantaneous type. For each virtual world, 

there is a need of interaction by which virtual worlds can be navigated. In this, 

there is need of rotational view in which the virtual worlds are rotated as user 

requirement for better visualization and understanding of the system. Navigation 

system is also required in which the virtual worlds objects can be positioned, scaled 

etc…  by V R  devices. The view ing system  is also required in w hich fro m  different 

views the virtual worlds can be analyzed and displayed. 

 



4.                              System Design 
 
 

System design is the first stage in which the basic approach to solving the problem 

is selected. During system designing the overall structure and style are decided.  

4.1 Use Case Diagram 

A use case is a set of scenarios that describing an interaction between user and a 

system. A use case diagram displays the relationship among actors and use cases. 

Following shows the use case diagram of the system which is to be made(see 

Figure 4.1). 

 
Figure 4.1 Use Case Diagram 
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Here user interacts with the system. At start, user can specify the function, 

which is to be optimized. After that, user configures the parameters of PSO. The 

user is allowed to configure following parameters: (1) Social parameters and (2) 

particles position and velocity ranges within which particle can move, and (3) 

Swarm size (or number of particles) and dimension. 

After validation of input parameters, user can start the optimization process 

with the selection of various kinds of PSO algorithms. User can stop the 

optimization whenever he desire. If the problem is of 3rd degree equation 

(dimension = 3) user can see the simulation of the PSO behavior in virtual world 

created using Java3d. When the simulation is shown, user can interact with it using 

mouse to navigate the virtual world, in which virtual worlds can be rotated, scaled 

and translated for better visualization and understanding purpose. 

User can see the solutions and other results after execution of the 

optimization process using Log management system. Here, user can compare the 

results with other results also for identifying better solution, configuration 

parameters and algorithm. In this Log management, user can see the convergence 

plot of the optimization process, which displays the convergence graph of PSO, 

means how the PSO finds the best solution step by step. 

 

4.2  Class Diagram 

Class diagrams are used to describe the types of objects in a system and their 

relationships. To implement complete Particle Swarm Optimizer, six classes are 

used here. In PSO each class communicates with some class to achieve the desired 

result. The class diagram is shown in Figure 4.2.  

 The Particle class contains the basic properties of particles. These properties 

includes dimensions of the search space, position of particle, velocity of particle, 

particle’s current fitness and initia l fitness, num ber o f neighbo rs and their id , best 

position in the history, and group best position. 

 The main heart of the whole system is defined in the ParticleSwarmOptimizer 

class. This class defines various configuration parameters of the PSO. This includes 

self confidence parameter C1 and group confidence parameter C2, randomness  
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parameters Si1 and Si2. It also defines maximum number of times the PSO is 

iterated, target fitness which is to be achieved, achieved fitness which is obtained 

by PSO, best solution to the problem and function which is to be optimized. When 

optimization starts, createSwarm() initializes the particles in the search space with 

random values to their position and velocity using getRandomPosition() and 

getRandomVelocity() function. After that, the topology is set with specified number 

of neighbors using setTopology(). 

 
Figure 4.2 Class Diagram 
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The calculateFitness() function is used to calculate fitness o f each particle. To 

identify the best neighbor in the group getNgbrWithBestFitness() is used. This class 

interacts with Particle to get and set particles position, velocity, fitness, 

neighborhood topology, its best value and group best value.  

 The Function class is used as a function library in which different synthetic 

benchmark functions are implemented. These class also contain some real world 

problems like SurfaceWaveMode() is used to define problem of surface wave mode 

differentiation, NuclearFusion() is used to define problem related to parameter 

selection problem of fusion reactor, LennardJones() defines the problem of atomic 

cluster optimization.  

 The Log class is used to store the results of various functions after their 

optimization. It also includes the facility of showing Convergence plot which is 

provided by showConvergenceGraph(), in which it interacts with DataBase 

communicator class to retrieve the convergence values of the algorithm for each 

function, which stores different algorithms results.  

 The 3DVisualization class is used to display the simulation of the PSO 

behavior. This class uses various objects of Java3D to create virtual world. The 

class initializes the particles in the virtual world. It than simulate the particles using 

movePartricle(). The  po sitio n param eters o f each particles’ are o btained  by 

interacting with ParticleSwarmOptimizer class. The virtual universe can be 

navigated using rotateuniverse() for rotation, scaleUniverse() for scaling and 

moveUniverse() for translation of universe. The createSceneGraph() is used to 

create the scene graph structure of the virtual world. The displaySceneGraph() 

function shows the tree like structure of the virtual world, which shows the 

structure of visual  and non visual objects used in creating virtual world. 

 

4.3  Sequence Diagram 

A sequence diagram is a graphical view of a scenario that shows object 

interaction in a time-based sequence what happens first, what happens next. 

Sequence diagrams establish the roles of objects and help provide essential 

information to determine class responsibilities and interfaces. A sequence  
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diagram has two dimensions: typically, vertical placement represents time and 

horizontal placement represents different objects (see Figure 4.3 (sequence 

diagram of PSO system)). 

 
Figure 4.3 Sequence Diagram 
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The user first starts the PSO system. Than PSO system requests the input 

parameters and function to be optimized from user. The user responses with 

configuring PSO parameters and giving function. After that, user starts the 

optimization process, which is followed by the optimization process of the PSO 

optimizer.  

The PSO optimizer sends the parameters to the fitness evaluator to calculate 

the fitness. While optimization runs, PSO optimizer sends particles best position to 

the 3D visualizer when the function is of 3 rd degree. The 3D visualizer simulates the 

behavior of the PSO in 3D world. The 3D world can be navigated by user using 

mouse. PSO also sends best value calculated in each iteration to the Log, where 

the results are stored. After execution of the optimization process, the results are 

displayed to the user. The user can request to plot the convergence graph of the 

PSO to Log. The Log responds by displaying the convergence plot of the desired 

function with desired PSO variant. 

 

4.4 Collaboration Diagram 

UML collaboration diagrams illustrate the relationship and interaction between 

system objects. The collaboration diagram illustrates messages being send 

between classes and objects (instances). For each system operation the 

collaboration is defined. Here as the main operation is of optimization, only one 

collaboration diagram exists. 

 There are four main objects defined for designing Particle Swarm Optimizer 

system (see Figure 4.4). These objects are as follows: PSO Optimizer, Fitness 

Evaluator, 3D Visualizer and Log. Initially user starts the optimization process by 

interacting with PSO Optimizer, which requests input parameters and problem to 

be optimized from user. After that, PSO optimizer starts the optimization process. 

While optimization, it interact with Fitness Evaluator and Log. When the function is 

of 3rd degree, it also interacts with 3D visualizer.  
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Figure 4.4 Collaboration Diagram 

 

PSO optimizer updates the information of particles depending on the fitness values 

obtained from the fitness evaluator. It than calculates best value at each iteration 

and sends it to Log and 3D visualizer (in case of 3rd degree problem). The 3D 

visualizer simulates the behavior of PSO algorithm for certain function. The Log 

stores the best values over time and displays the results to the user. User can 

show the convergence graph of the PSO by interacting with Log, which store the 

results and PS O ’s co nvergence param eters values. 

 

4.5 State chart Diagram 

State chart diagrams provide a way to model the workflow of a system process.  

We can also use state chart diagrams to model code-specific information such as a 

class operation.  State chart diagrams are very similar to a flowchart because we  

can model a workflow from state to state. The state chart diagrams are state 

centric. The state chart is best suited fo r the d iscrete stages o f an o bject’s life tim e. 
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Figure 4.5 State chart diagram 

When PSO starts, it first enters into “createSwarm” state, where the swarm is 

initialized in which numbers of particles are initialized with random position and 

velocities. A fter that it enters into  “set To po lo gy” state, w here gro ups o f particles 

are created. Than the algorithms optimization process starts in optimization state. 

During optimization it interacts with 3D display, fitness evaluator and log. In 

“Fitness Evaluato r” state, the fitness is calcu lated acco rding to  the functio n w hich is 

to be optimized by getting input values from optimizer. After obtaining the fitness 

values from fitness evaluator, optimizer updates particles information and sends 

particles best information to the 3D display, where particles are displayed and Log 

where they are stored. In  “3 D  disp lay” state, the sim ulatio n o f PS O  is disp layed  and 

can be navigated using mouse. In “Lo g” state, the results o f vario us functio ns are 

shown with respect to the configuration of parameters and the type of PSO. The 

convergence plot of the algorithm for optimized function can be shown in this state. 



5.                                Performance Analysis 
 
 

This chapter includes analysis of parameter selection of PSO. Optimum values of 

parameters of PSO are selected by analyzing the performance of PSO for range of 

values of all parameters. It also investigates analysis of different variants PSO, 

which are explained in Chapter 2.  

 

5.1 Methodology 

This investigates the performance of PSO using several benchmark functions.  

These benchmark functions are synthetic functions, which are used to test and 

compare various algorithms. Although these functions may not necessarily give an 

accurate indication of the performance of an algorithm on real world problems, 

they can be used to investigate certain aspects of the algorithm under construction. 

Below certain benchmark functions are described briefly. Note that all the 

functions described here are synthetic benchmark functions. 

Ackley: 

This function is originally proposed by Ackley [8], and generalized by Back, has an 

exponential term that covers its surface with numerous local minima (see Appendix 

D). In order to obtain good results for this function, the search strategy must 

combine the exploratory and exploitative components efficiently. The function is 

defined as below: 

 

Where, . 

The function has global minima at  at . 

Here various types of PSO are used to optimize the Ackley function. The results for 

this are shown in Table 2.1.  

Spherical: 

This [8] is a very simple function (see Appendix D). It is used in the development 

of theory of evolutionary strategies.  The function is defined as: 
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, where   

The function has minima at  ,    where  

Rastrigin: 

This [8] function is constructed from sphere adding a modular term . 

Its contour is made up of a large number of local minima whose value increases 

with the distance to the global minimum (see Appendix D). It is defined as:  

  

where  

The function has global minimum at  where  

Griewangk: 

This [8] function has a product term that introduces interdependence among the 

variable. The aim is the failure of the technique that optimizes each variable 

independently. The optima of Griewangk function are regularly distributed (see 

Appendix D). 

The function is defined as: 

 

where . 

The function has global minimum at  where . 

Table 5.1 lists the lists the parameter settings for the functions in the benchmark 

suite. Note that all functions were tested using 25 particles (swarm size). All 

functions are solved in 5-dimensional search space.  

 

Table 5.1 Parameter settings for benchmark functions  

Function No. of Particles Dimension Domain 

Ackley 25 5 30 

Spherical 25 5 5.12 

Rastrigin 25 5 5.12 

Griewangk 25 5 600 
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The PSO algorithm was initialized so that initial particles in the swarm were 

distributed thought the search space using a random number generator. The value 

of each dimension j of particle i was thus sampled from a distribution of the form  

     Si,j  ~  U (-d, d) 

Where d is the appropriate domain value for the function under consideration. The 

dom ain value specifies the range o f the particle’s search area (the area within 

which particle can move). 

The position and velocity of each particle are selected randomly using the 

random function of the Math library of JAVA. The function is Math.nextDouble() 

which generates random numbers from 0.0 to 1.0 in double format. The random 

numbers generated from this function are then scaled for obtaining desired random 

values in the desired domain. 

 For all functions specified above are optimized using various PSO. Here the 

total num ber o f “iteratio ns” required and num ber o f “faults” occurred w hile 

optimizing problems are used to compare performance i.e. convergence speed and 

ro bustness o f PS O . “Iteratio ns” is the to tal num ber o f iteratio ns requ ired  to  find  the 

optimum value of the function. When particle crosses boundary of search space, 

then it is known as fault.   

 

5.2 Optimum Configuration of Parameters of PSO 

The standard PSO (Constant Inertia Weight PSO with inertia weight = 1.0) is used 

to find the optimal values for parameters of PSO. For that, PSO is used to optimize 

3-dimensional Rastrigin function which is unconstrained benchmark function. 

Following are the parameters of PSO, which are defined in algorithm: Number of 

Particles (Swarm size), Velocity Limits, Self Confidence Parameter (C1), Group 

Confidence Parameter (C2), and Inertia Weight (w).  

To select optimum parameters of PSO, The PSO is used to optimize the 

Rastrigin function in which different parameters values are varying over range of 

values. For each configuration of parameters, number of iterations and faults 

required are compared with each other. 
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Following discusses the steps of fixing the values for the parameters of PSO: 

Step 1: Fixing Number of Particles (Swarm Size) 

To fix the swarm size, PSO is executed with the initial values of C1=C2=2.0 and 

Si1=Si2=w=1.0, with Vmax = Smax = 5.12. And the swarm size is varied from 5 to 35 

at a step of 5. Figure 5.1 shows the graph of iterations, faults vs. swarm size. From 

the graph, when swarm size is 25, PSO converges with less number of iterations 

than other values of swarm size (or it converges faster than others). 
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Figure 5.1 iterations vs. Swarm size 

 

Step 2: Fixing Velocity Range (Vmax) 

To fix the velocity range, PSO is executed with the initial values of C1=C2=2.0 and 

Si1=Si2=w=1.0, with swarm size = 25. And the velocity range is varied from Smax 

to 4*Smax at a step of Smax. Figure 5.2 shows the graph of iterations, faults vs. 

velocity range. From the graph, when velocity range is same as position range, PSO 

converges faster than others. 
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        Figure 5.2 iterations vs. velocity

 

Step 3: Fixing Self Confidence Parameter (C1) 

To fix the self confidence parameter C1, PSO is executed with the initial values of 

C2=2.0 and Si1=Si2=w=1.0, with swarm size = 25 and Vmax = Smax. And the C1 is 

varied from 0.5 to 2.5 at a step of 0.5. Figure 5.3 shows the graph of iterations, 

faults vs. C1. From the graph, when C1 is 2.0, PSO converges faster than others. 
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Figure 5.3 iterations vs. C1 
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Step 4: Fixing Group Confidence Parameter (C2) 

To fix the group confidence parameter C2, PSO is executed with the initial values of 

C1=2.0 and Si1=Si2=w=1.0, with swarm size = 25 and Vmax = Smax. And the C2 is 

varied from 0.5 to 2.5 at a step of 0.5. Figure 5.4 shows the graph of iterations, 

faults vs. C2. From the graph, when C2 is 2.0, PSO converges faster than others. 
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Figure 5.4 iterations vs. C2 

Step 5: Fixing Inertia weight (w) 

To fix the group confidence parameter C2, PSO is executed with the initial values of 

C1=C2=2.0 and Si1=Si2=1.0, with swarm size = 25 and Vmax = Smax. And the 

inertia weight w is varied from 0.5 to 1.5 at a step of 0.1. When w  is 0.8, 0.9 or 

1.0, PSO converges faster than others (Figure 5.5).  
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Figure 5.5 Iterations vs Inertia Weight
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Table  5.2 shows the optimum values for parameters of PSO, which are derive from 

above results for faster convergence of algorithm. 
 

Table 5.2 Optimum values of parameters of PSO 

Parameter  Optimum Value 

Number of Particles (swarm size) 20 to 30 

Velocity Range (Vmax) Smax (position range) 

Self confidence (C1) 2.0 

Group confidence (C2) 2.0 

Inertia Weight (w) 0.8,0.9,1.0 

 

5.3 Performance analysis of variants of PSO 

Synthetic benchmark functions, which are described in section 5.1, are used to 

analyze the performance of variants of PSO. Here all defined functions are 

optimized using variants of PSO. After optimizing all the functions, number of 

iterations and number of faults are used for the comparison. When any algorithm 

optimizes function with less number of iterations and less number of faults 

compare to others, it can be say that the algorithm performs better than the 

others. When faults are higher, it shows that the particles are crossing the 

boundary many times and it may possible that the solution may not be found 

within defined number of iterations. From the update equations of each variants of 

PSO, each update equation requires number of additions and multiplications, which 

affect the convergence speed of the algorithm. Table 5.3 shows the number of 

additions and multiplication requires for each variant of PSO. N is Group size (or 

neighborhood size), the number of individuals in group. 
 

Table 5.3  Optimum values of parameters of PSO 

PSO variant No. of Additions No. of Multiplications 

Standard PSO 4 4 

Inertia Weight PSO 4 5 

Constriction PSO 4 5 

Fully Informed PSO 3*N + 1 6*N + 1 
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Following Table5.4 shows the results of various PSO when they are used to 

solve various benchmark functions.  Here the results are in terms of number of 

faults occurred and number of iterations required for solving the function. Here four 

types of PSO is used which are explained in chapter 2. 

All functions are of 5 dimensional with swarm size is 25 and neighborhood topology 

is circular with 2 nearest neighbors, means there are 2 left and 2 right neighbors 

for each individual. The social parameters C1 and C2 = 2.05 and the domain size 

for all functions is defined in Table5.1. 
 

Table 5.4 Results of variants of PSO for different benchmark functions (No. of Iterations)  

 PSO Type 

 

Function 

Standard 

PSO 

Inertia weight 

PSO 

Constriction 

PSO 

FIPSO 

Iter. Faults Iter. Faults Iter. Faults Iter. Faults 

Spherical 277 19465 126 4027 116 2948 12 30 

Rastrigin -    - 180 6757 170 3490 19 35 

Griewangk 38 2689 12 864 128 5688 108 76 

Ackley  -    - 491 13001 664 7006 30 13 
 

 

Table 5.5 shows the results of variants of PSO for different benchmark functions in 

terms of number of additions and multiplications requires for the optimization of 

the defined functions.  
 

Table 5.5 Results of variants of PSO for different benchmark functions (No. of Evaluations)  

PSO Type 

 

Function 

Standard 

PSO 

Inertia weight 

PSO 

Constriction 

PSO 

FIPSO 

Add. Mult. Add. Mult. Add. Mult. Add. Mult. 

Spherical 1108 1108 504 630 464 580 192 324 

Rastrigin - - 720 900 680 850 301 513 

Griewangk 152 152 48 60 512 640 1728 2808 

Ackley - - 1964 2455 2656 3220 480 810 
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From the above results, when the sphere function is optimized using different 

variants of PSO, the FIPSO gives the best results among them. It optimizes the 

function in 12 iterations means it takes 192 additions and 324 multiplications to 

find the optimum value. The inertia weight PSO and Constriction PSO gives almost 

identical performance but less compare to FIPSO. The Standard PSO gives very 

poor performance than others. For Rastrigin and Ackley function also above is true.  

 In the case of Griewangk, the results are totally different than the above 

one. The inertial weight PSO optimizes the function within 12 iterations, which 

require 48 additions and 60 multiplications and Standard PSO optimized with 152 

additions and multiplications. Constriction PSO requires 512 additions and 648 

multiplications, while FIPSO requires 1728 additions and 2808 multiplications. So 

here, the Inertia weight PSO gives better performance than the others. 

 Form the result, it can be said that the FIPSO is better to use when the 

function complexity is not so high. In the case of higher complexity of function, 

there is always a trade off between the selection of optimization algorithms. 

  



6.                                      Application of PSO 
 
 

This section investigates the application of Particle Swarm Optimization in the area 

of plasma physics. Here PSO is used for the optimum parameter selection for 

Nuclear Fusion Reactors and Atomic cluster optimization [13] problem. Virtual 

Reality enabled PSO is useful for modeling the behavior of the convergence of PSO. 

It shows how the optimization is achieved by PSO graphically. 

 

6.1 Atomic cluster optimization problem 

The problem of minimizing the potential energy function of cluster of atoms is 

generally known as molecular conformation problem. Cluster sizes can range from a 

few atoms to several atoms. The determination of global minima of these energy 

functions is of particular interest to researchers in chemistry, biology, physics and 

optimization methods. One part of these, the Lennard-Jones potential function is 

concerned with determining the lowest-energy configuration of a cluster of neutral 

atoms interacting via the Lennard Jones potential. This turns out to be very difficult 

problem to solve since the number of local minima has been estimated to increase 

exponentially with the number of atoms. Studies have shown that at N = 13 there 

are 988 local minima and for N = 98 the number grows to the order of 1040. The 

function to be minimized is the total energy (in reduced units) of the Lennard-Jones 

cluster as computer from 

       
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       Where   N = number of atoms in cluster 

  ri,j = distance separating atom i and atom j 

It serves as a reasonably accurate mathematical model of a real physical system, 

namely that of low-temperature micro clusters of heavy rare-gas atoms such as 

argon, krypton and xenon. 

The problem is optimized by various types of PSO, which are discussed earlier. PSO 

is executed for 10000 iterations and the minimum cluster energy is calculated for  
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different sizes of number of atoms. Following parameters are selected in the 

execution of PSO. 

Here N is varied from 5 to 13, for which the minimum cluster energy is 

defined as in Table 6.1. Swarm size is 25. Atoms velocity values can range from -

0.2 to 0.2 and the C1 and C2 are selected as 2.0.  The neighborhood size is 5.Table 

6.1 shows the results of various PSO for the cluster energy minimization problem. 
 

Table 6.1 Results of Atomic cluster optimization 

 

Here, for larger sizes of cluster (>9) the inertia weight PSO gives better 

performance than the FIPSO (less number of additions and multiplications). When 

cluster size is smaller (<10), the FIPSO gives better performance than the Inertia 

weight PSO (less number of additions and multiplications). So, it can be say that 

various PSO can be used effectively for this kind of atomic cluster optimizations 

problems. 

 The calculations show that the PSO is indeed an effective optimization 

method. The potential energy surfaces for these problems are known to contain 

large numbers of local minima, often very close to the global minima for certain 

values of N. Hence it is not unexpected to find that many of the runs converge to 

one of these local minima.  

 

 Cluster 
Energy 

Inertia Weight PSO Fully Informed PSO 

N Fault Iter. Add Mult Fault Iter Add Mult 

5 -9.90 996 47 188 235 28 2 144 256 

6 -9.90 1330 52 212 265 81 4 64 104 

7 -9.90 980 69 276 345 58 4 64 104 

8 -9.90 1289 17 68 85 45 19 304 496 

9 -9.90 1082 54 216 270 91 10 160 260 

10 -9.90 2075 65 260 325 51 15 240 390 

11 -9.90 2501 69 276 345 62 27 432 702 

12 -9.90 3213 56 224 280 71 15 240 390 

13 -9.90 2697 32 128 160 64 21 336 546 
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6.2 Optimum Parameter selection for Nuclear Fusion Reactors for 

minimum cost per unit energy 

Nuclear Fusion Reactors are used generate power. Here donut shaped reactor is 

shown in Fig. 6.1 which is known as tokomak. Here the cavity of tokomak contains 

plasma, which is used to generate energy.  

The cost of energy generated using this kind of nuclear reactors is depends 

on the three parameters of the reactor:  Reactor Radius, Reactor width and Reactor 

temperature. These parameters are shown in the cross section of tokomak (Figure 

6.2) 

 

Fig 6.1 Tokomak                      Fig 6.2 cross-section of reactor 

 

The cost per unit energy is calculated using following function.  
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     where  r  = reactor radius 

   w = reactor width 

   t  = reactor temperature 

   C1 = C2 = C3 = C4 = 1, generally between 0 and 2. 

Here the aim is to achieve the minimum cost per unit energy for values of r, w and 

t.  
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Following table shows the results of r, w, t and the cost per unit energy obtained by 

using variants of PSO. 

 
 

Table 6.2 Results of Nuclear Fusion Reactor Parameters optimum values for minimum cost/kw/hr  

 Radius(meter) Width(meter) T em perature(M ‘C ) Cost/KW/hr 
Inertia Weight 1.581 0.494 480.1 $9.98 
Constriction 1.632 0.22 543.6 $9.974 
FIPSO 1.78 0.32 513.8 $9.998 

 

From the above table, it can be say that, Constriction PSO gives minimum cost of 

9.974 Rupees per kilo watt energy generated by nuclear fusion reactor, with values 

of radius, width and temperature as 1.632meter, 0.22meter, and 543.6  m illio n ‘C .  

 

6.3 Differentiation and Distribution of Surface wave modes on a 

Dielectric Coated Cylinder 

Plasmas that are excited by propagation of electromagnetic surface waves are 

called surface-wave-sustained. The surface wave mode allows to generate uniform 

high-frequency-excited plasmas in volumes whose lateral dimensions extends over 

several wavelengths of the electromagnetic wave, e.g. for microwaves of 2.45 GHz 

in vacuum the wavelength amounts to 12.2 cm. When electromagnetic waves are 

excited on a dielectric coated cylinder it produces surface waves (see Figure 6.6). 

These surface w aves’ m o des are o f interest in the design o f co nfo rm al antenna and 

in the control of scattering properties of metallic cylindrical structures that have 

been coated with dielectric materials. The waves propagating along a curved 

surface with respect to features of their modal propagations constants are very 

important for the analysis. Here the analysis is performed on the data, which is 

generated using 3-d FDTD (Finite Difference Time Domain) method [12].  

  

 

 

 

 
 

http://en.wikipedia.org/wiki/Wavelength
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Figure 6.3 Dielectric coated cylinder excited by EM waves 

 

FDTD is a popular computational electrodynamics modeling technique. As it is 

time domain method, solutions cover a wide frequency range. The FDTD method 

belongs in the general class of grid based differential time- domain numerical 

modeling methods. The equations are solved in leapfrog manner: the electric field 

is solved at given instant time, than the magnetic field is solved at the next instant 

time, and the process is repeated over and over time.  

 Using 3-d FDTD code, researchers have generated data, electric and 

magnetic field [19/Mr. Bhaskar], on the surface of a dielectric coated cylinder, 

which is being lit by a plane EM wave. 

 Researchers [19, Bhaskar] have generated a time series of electric and 

magnetic fields at different locations on the surface of the cylinder. The surface 

wave modes are characterized by amplitude, phase angle, damping coefficient, 

mode number and phase angle. 

These characteristic parameters are calculated by optimizing following equation: 
 

   F(t,θ)  =   ∑ ∑  ( Ai * cos(wt) * e-α 1θ  * cos(α2*θ + Ф )  - E(t,θ ))2,… .. (6.1) 
         t   ø           
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where  Ai   =  Amplitude, 
α 1       =  Damping Coefficient, 
α2     =  Mode number, 

Ф      =  Phase Angle, 

W    =  Omega  = 18GHz 
Here t is a time step, which specifies the data (electric field EX and magnetic field 

Ey) collected using FDTD at t. Researchers had collected data for 1000 time steps. θ 

specifies the angle at which the data is to be collected from the surface wave. 

Researches had collected data from 342 different angles from the surface wave. 

Each θ  value is used to extract components EX and Ey.   E(t, θ) is a matrix of data 

collected in terms of  Ex and Ey corresponding to t and θ. Here as there are 1000 

time steps and 342 angles, E(t, θ) consists of 1000 rows corresponding to time step 

and 685 columns (one is of time step, 342 of Ex and 342 of Ey). Here the aim is to 

find the values of Ai, α 1, α 2 and Ф  such that the F(t, θ) gives the value 0.0. These 

values can be calculated by fitting the first term of the equation of the right hand 

side to the second term E(t, θ) of the equation of the right hand side. In other 

words, the analytical data is to be fitted with empirical data, for that values of Ai, 

α 1, α2 and Ф  are calculated.  

 The PSO is used to find these values of Ai, α 1, α 2 and Ф , such that the 

analytical data fits with empirical data. Table 6.4 shows the values of Ai, α 1, α 2 and 

Ф  achieved by o ptim izing the equatio n (6 .1) using PS O . 

 

Table 6.3 Results of equation 6.1 

Amplitude 

(Ai) 

Damping  

Co-eff (α 1) 

Mode  

Number(α 2) 

Phase angle 

(Ф ) 

Achieved 

Fitness 

894.8 6.2 20.1 1.6 -8403492.54 

1033.7 2.8 22.5 1.2 -8204038.41 

234.2 1.2 1.6 1.2 1940692.77 

404.7 1.4 9.8 1.5 -135660.77 

83.5 0.0 0.9 0.0 -744892.27 
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From these values of Ai, α 1, α 2 and Ф , the best value is achieved when amplitude I 

404.7, damping coefficient is 1.4, mode number is 9.8 and phase angle is 1.5 with 

fitness value as -135660.77. These values are useful to differentiate the surface 

wave modes and in calculation of each distribution mode, which are useful in the 

design of conformal antennas and in the control of scattering properties of metallic 

cylindrical structures that have been coated with dielectric materials. 

 

6.4 Modeling the behavior of PSO convergence using Virtual Reality 

The Virtual Reality is used to create the virtual worlds, in which different visual 

objects are rendered and navigated through navigation systems like mouse, 

keybo ard, hapitcs, etc…  H ere, virtual reality is used to  m o del the behavio r o f the 

PSO. When PSO is used to optimize the 3rd degree nonlinear equation, the behavior 

of the PSO is modeled in the virtual world. The modeling of the PSO in virtual 

reality is useful for understanding the convergence of PSO and to analyze and 

understand behavior of the particles.   

Here Java3D API is used to create virtual worlds. The Java3D is a freely 

available toolkit from SUN, which supports mouse and keyboard for interaction with 

virtual worlds. It has 255 C and Java functions which are used to implement virtual 

reality enable programs. Fig.6.4 shows the initial positions of the particles in a 

virtual world, which is created using Java3d. In virtual world, the particles are 

displayed using spheres. The Rastrigin function is used to model the behavior of the 

Inertia weight PSO. Here 3rd degree Rastrigin function, with ±Vmax = 5.12, with 30 

particles is optimized. 
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Figure 6.4 Initial Positions of Particles (Rastrigin Function)  

 

The Vmax is set to 5.12, so any particle will never cross the boundary of the ±5.12. 

The particles can freely move in the range of [-5.12, 5.12].  

When PSO is running, the particles try to converge to the target value. This 

convergence of particles is simulated in the virtual world. For Rastrigin function, as 

algorithms runs, the particles try to come to origin. From the movement of the 

particles, which depends on the best value found by algorithm, PSO behavior can 

be analyzed. Figure 6.5 shows the positions of the particles at 607 th iteration. Note 

that the algorithms had founded the target value for some particles and some of 

them are converged to target value (0.0, 0.0, 0.0). Here some particles have not 

yet found the target, which are away from the origin and are displayed in the 

virtual world.  
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Figure 6.5 Positions of Particles (607th iteration) 

 

At the end of the simulation, all the particles converge to the target value. Here, as 

Rastrigin function is used, all particles will converge to (0.0, 0.0, 0.0) (see Figure 

6.6). Here three axis are shown, to understand the positions of the particles.  

Here, the Virtual world can be rotated, scaled and translated for better view and 

understanding of PSO. 
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Figure 6.6 Positions of Particles (712th iteration) 

 

Here, the virtual reality enabled PSO is used for the analysis of PSO behavior and 
its understanding.  



7.                                        Summary and Conclusion 
 
 

This chapter briefly summarizes the findings and contributions of this thesis, 

followed by a conclusion and discussion of numerous directions for future research. 

 

7.1  Summary 

The thesis investigated the detailed study of Particle Swarm Optimizer algorithms, 

its performance analysis and its uses in the area of plasma physics. Virtual Reality 

enabled PSO investigated the modeling of PSO behavior in the 3D world. 

 Chapter 2 discusses about the basic optimization concepts of local and global 

minima. It also describes about the road map of Particle Swarm Optimization 

including its background and its basic optimization algorithm, followed by the 

various neighborhood topologies used in the PSO. At the end, variants of PSO, 

Constant Inertia Weight PSO, Variable Inertia Weight PSO, Constriction PSO and 

Fully Informed PSO are discussed, which are created by involving improvement in 

the PSO update equation. It also discusses about the Virtual reality, which is used 

to simulate the behavior of the PSO.  

 In Chapter 3 and 4, the requirement and the design of the PSO engine is 

discussed. These are the basic building blocks of any system which is to be 

implemented.  

 Chapter 5 discusses about the performance of the PSO. In this chapter, 

various synthetic benchmark functions are discussed which are used to test the 

algorithms. It also discusses about the optimum parameter selection of PSO. To 

select the optimum values of parameters of PSO, the PSO is used to  optimize 

certain benchmark function using different ranges of the parameters of PSO. From 

these ranges of values, optimum values are selected. At the end of the chapter, 

various benchmark functions are optimized using defined variants of PSO, with 

optimum values of parameters of PSO. These variants require distinct number of 

evaluations.  

Chapter 6 applied the variants of PSO to optimize various real world 

problems of plasma physics like atomic cluster optimization, optimizing parameters  
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of Nuclear Fusion Reactors for optimum cost and surface wave mode differentiation 

and contribution. In Atomic cluster optimization, the Lennard Jones problem, which 

is used to configure the lowest energy clusters, is optimized using PSO. The results 

are than compared with Genetic Algorithm, whose results are empirically shown. In 

Nuclear Fusion, the values of parameters of Reactors are optimized for lowest cost 

per energy (KiloWatt/hour). Another physics problem, differentiation and 

contribution of surface wave modes is also optimized using PSO, which is used in 

the design of conformal antenna and control of scattering properties of the metallic 

dielectric cylinder. At the end of the chapter, Virtual Reality enabled PSO is 

discussed, which is used to analyze the convergence behavior of the PSO visually. 

 

7.2 Conclusion 

Plasma Physics is a complex nonlinear system. The problems defined in the plasma 

physics involve the optimization of a set of parameters and their constraint 

checking on a set of boundary conditions. In optimization, the convergence of the 

algorithm for local and global minima is of interest. Numerous optimization 

techniques have been proposed. Particle Swarm Optimization is one of them, which 

is relatively new technique inspired by the behavior of swarm found in nature. The 

PSO has certain parameters. The convergence speed of the algorithm is depends on 

these parameters. To improve the convergence speed, the optimum value of 

parameters of PSO should be extracted. For that, PSO is used to solve certain 

benchmark functions using different ranges of values of parameters of PSO. From 

the result (Section 6.2), for certain values of parameters, the PSO converges faster, 

which can be considered as optimum values. So, it is concluded that, by using 

optimum values of parameters of PSO, the convergence speed is increased.  

 By using these optimum values of parameters, different variants of PSO are 

required to analyze for their comparison with each other. For comparison, different 

synthetic benchmark functions, which have different characteristics, are optimized 

using different variants of PSO. The results shows that, for simple functions like 

Spherical, Fully Informed PSO gives the best results compare to other ones and 

Inertia weight PSO and Constriction PSO gives almost identical performance, but 

less compare to FIPSO. The Standard PSO gives the lowest performance among all  
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the PSO. For complex functions, there is always a trade off between the selection of 

Inertia weight PSO and Fully Informed PSO, because for some functions like 

Griewangk Inertia weight PSO and Standard PSO gives the better results while for 

some functions like Ackley, FIPSO gives best results. So, it is required to study the 

functions characteristics for the purpose of classifying functions in which Inertia 

weight PSO or FIPSO can be used. Variable Inertia Weight PSO converges with 

lowest number of additions and multiplications. Constriction PSO and Constant 

Inertia weight PSO performances are less compare to other two PSO. So, it can be 

concluded that, the convergence speed of the algorithm depends on the parameters 

of PSO and the characteristics of function which is to be optimized. 

 To date, Particle Swarm Optimization was never used in the field of PSO. 

Empirical results shows that, PSO had performed well in different area of problem 

space like neural network, microorganisms, power and voltage control, stabilizer 

design, o ptim izing co ntin uo us and d iscrete variab les sim u ltaneo usly, etc…  B y taking  

inspiration from these results, PSO is tried to optimize plasma physics problems. 

Here the PSO is used to solve atomic cluster optimization problem in which from 

results (Figure 6.1), the PSO gives better results than Genetic Algorithm. So, it can 

be concluded that, for minimizing atomic cluster energy PSO performs better than 

GA. PSO is also used to calculate the optimum parameters of Nuclear Fusion 

Reactor for optimum cost per unit energy generated. When PSO is used to solve 

these problem, it gives different optimum values for parameters of Nuclear Fusion 

Reactor, from which, depending on the requirement the values of parameters can 

be selected to design the Nuclear Fusion Reactor to generate energy with optimum 

cost. 

 When EM waves are excited on a dielectric cylinder, it produces surface wave 

modes. These surface wave modes are used in the design of conformal antenna 

design and also to control the scattering properties of metallic dielectric cylinder. 

The calculation of these surface wave modes is very complex. Here. PSO is used to 

find the characteristics of surface wave modes from which surface wave modes and  

 

its distribution can be calculated. Even though, the results obtained are not giving 

the desirable ones, but it can be used as the base for further improvement.  
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 Today, Virtual Reality is very important, as its uses are increasing day by day 

in the area of scientific calculation, medical, chemistry, education and gaming. Here 

to understand the behavior and to analyze the convergence of PSO, the Virtual 

Reality is used. For that, the PSO made virtual reality enabled using Java3d. This 

virtual reality enable PSO can be used to simulate the behavior of PSO.  
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APPENDIX – A                    Function LandScape 
 
 

Here for all the functions are plotted according to their ranges specified in the 

chapter 5.1. Except for Griewangk function, it is plotted over [-30,30]. 

Spherical: 

 

Figure A.1 Spherical function 

Rastrigin: 

 

Figure A.2 Rastrigin function 
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Ackley: 

 

Figure A.3 Ackley function 

 
Griewangk: 
 

 

Figure A.4 Griewangk function 
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APPENDIX – B                       Screenshots 
 

 

 

Figure B.1 PSO Algorithm Input Characteristics Frame  

The above figure shows the PSO Algorithm input frame. This is used to setup the 

configuration parameters of PSO, to select the function to be optimized and the 

selection of PSO variant type.  
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Figure B.2 PSO Algorithm Output Characteristics Frame  (with 3-D visualization) 

The above figure shows the output frame of PSO system. When the problem is of 

3rd degree, the simulation of the PSO is displayed. The green spheres identify the 

particles and axes are used to understand the position of particles. It also shows 

the best position till now and the current best fitness and the iteration number. 
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Figure B.3 Log Table  

The above figure shows the Log table of the PSO system. This Log is disp layed by 

pressing “V iew  Lo g” butto n o f the PSO  input fram e. It show s the results o f the PSO  

and associated parameter’s value.  

 

Figure B.4 Convergence Graph 

The above graph shows the convergence graph of the Rastrigin function. This graph 

can be displayed by pressing the “S ho w  G raph” butto n o f Lo g table. The Y-axis 

presents the fitness and X-axis presents the iteration number. 
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