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a b s t r a c t

In this paper, a solution to calculate the stress components around rectangular shaped cutout in a finite
anisotropic plate subjected to in-plane loading is presented. The stress functions are derived using
complex variable approach and least square boundary collocation method. The influence of plate size,
material properties, stacking sequence, hole geometry and loading conditions on the stress concentra-
tion is also presented. Some of the results obtained by present method are compared with finite element
solutions and with the existing literature.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thin plates of various materials are very commonly used in
engineering applications. The different shapes of cutouts are made
in plates to cater the need of service/operation. These cutouts
exhibit high stress concentration under different loading condition
and may cause the catastrophic failure of the components. To
understand the catastrophe of the component, it is necessary to
have an awareness of the stress concentration around the hole in a
plate during design phase.

The closed form solutions for the stresses around different
shaped holes in an infinite isotropic and anisotropic plate for
different loading have been obtained by Savin [1], Lekhnitskii [2],
Ukadgaonker and Rao [3], Rao et al.[4], Sharma [5–7], Sharma et al.
[8], Sharma and Dave [9], Patel and Sharma [10], Rezaeepazhand
and Jafari [11], Batista [12], Yang et al.[13] and many more using
complex variable approach proposed by Muskhelishvili [14]. In all
these solutions the load is assumed to be applied at the remote
boundary of the plate (i.e. infinite plate) which is not always the
case in practical applications like perforated plates, aircrafts
windows, automobile windows etc. wherein the loaded bound-
aries are nearer to the hole and affect the stress distribution
around the hole severely. The cases where the boundary are closer
to the hole or other way if the ratio of the plate size to the hole size

is less than 10, it is considered as the finite plate. The stress
distribution around hole in finite plate cannot be estimated
through the solution of infinite plate directly.

Some researchers namely Ogonowski [15], Newman [16], Lin
and Ko [17], Woo and Chan [18], Madenci et al. [19], Xiwu et al.
[20], Xu et al. [21], Zheng and Xu [22] and few others have
proposed the solutions for finite plate using complex variable
method. The complex stress functions are expressed in terms of
infinite power series and the constants of the series are obtained
by boundary collocation method. These solutions are limited to
circular and/or elliptical hole in isotropic and/or anisotropic finite
plate. In many engineering applications the shape of the hole is
not only limited to circular or elliptical but the rectangular and
polygonal holes are also found its practical importance. The
solution for stresses around rectangular hole in finite plate is
proposed by Pan et al. [23] by modified stress functions for
isotropic material. The literature review suggests that the solution
for the stresses around rectangular and square shaped hole in
finite laminated plate has not been addressed.

The present work provides a generalized method to obtain the
stress distribution around rectangular hole in finite anisotropic
plate. Unlike the previous papers, a generalized Schwarz–Chris-
toffel mapping function is used in the formulation of anisotropic
finite plate to map the rectangular hole on to the unit circular hole.
The Laurent series expansion of the complex stress functions is
used and constants of the series are derived using the boundary
collocation method. Influence of plate size, hole geometry, mate-
rial properties and stacking sequence on stress concentration are
also studied and presented.
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2. Analytical formulation

A finite sized thin plate having rectangular opening (refer Fig. 1)
is subjected to in-plane loading. Applying generalized Hooke's law,
Airy's stress functions and strain–displacement compatibility con-
ditions, the stress components in an anisotropic media can be
represented in terms of Muskhelishvili's [14] complex stress
functions ϕjðzjÞ as

σx ¼ 2Re
X2
j ¼ 1

μ2j ϕ
0
jðzjÞ

2
4

3
5

σy ¼ 2Re
X2
j ¼ 1

ϕ0
jðzjÞ

2
4

3
5

τxy ¼ 2Re
X2
j ¼ 1

μjϕ
0
jðzjÞ

2
4

3
5 ð1Þ

where, zj ¼ xþμjy, μj are the complex constants of anisotropy.
These constants are roots of the characteristics equation of
anisotropic plate (Lekhnitskii [2]) and depend on material proper-
ties, fiber orientation and stacking sequence.

2.1. Mapping function

The mapping function to map the area external to the rectan-
gular shaped cutout in z-plane conformally on to the area outside
the unit circle in ζ- plane is available in the literature [1] as
follows:

z¼ R ζþ
X
k

Ck

ζk

!
ðk¼ 2p�1; p¼ 1; 2; 3; ::::nÞ

 
ð2Þ

where R is the size factor, ζ¼ eiθ andCk are the constants of the
mapping functions. The values of constants of mapping functions
are available in the literature for few specific side ratios of
rectangle having longer side parallel to X-axis. To produce the
rectangle of any desired side ratios (D/d) and also at any orienta-
tions (α), the constants of the mapping functions (Ck) are obtained
as follows:

C1 ¼
1
2

e2i βþαð Þ þe�2i β�αð Þ
� �

;
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1
24
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� �

; ð3Þ

where β characterizes the side ratio of the rectangular hole (refer
Table 1) and αis orientation angle of rectangular hole with positive
X axis as shown in Fig. 1. Table 1 shows the values of these
constants for different side ratios of rectangular hole with the
corner radius ρð Þ and total perimeter. The corner radius is derived
using the formula given by Sharma [5].

For an anisotropic media, Eq. (2) is modified by introducing
constants of anisotropyμj. Due to affine transformation, Eq. (2)
takes the form

zj ¼ R aj
1
ζ
þ
X
k

Ckζ
k

!
þbj ζþ

X
k

Ck

ζk

!#  "
ð4Þ

where, aj ¼ ð1þ iμjÞ=2, bj ¼ ð1� iμjÞ=2 and Ckare the constants
corresponding to the different side ratios of the rectangular hole.

Rearranging the terms in Eq. (4), a polynomial equation of ζis
obtained as

X
k

RajCkζ
2kþRbjζkþ1�zjζkþajζk�1þbjCk

h i
¼ 0 ð5Þ

The one out of 2k roots of Eq. (5) maps the rectangle shape on
to the unit circle and it is used for the solution of stress function.

2.2. Stress functions

The stress functions can be taken in the form of infinite power
series with negative and positive power terms in ζj plane as [2],

φjðζjÞ ¼ αj ln ζjþ
X1
m ¼ 1

Ajmζ
�m
j þBjmζ

m
j

� �
; ð6Þ

where, αj; Ajm and Bjm are unknown constants of the series which
are derived from boundary conditions, ζj are the mapped

Fig. 1. Geometry of finite plate and rectangular hole.

Table 1
Constants of mapping functions.

D/d
α¼ 0

β C1 C3 C5 Corner radius
(ρ)

Total
perimeter

1 0.7983 �0.0251 �0.1666 0.0025 0.0996 6.68
2 0.6283 0.3095 �0.1507 �0.0280 0.0679 6.79
3 0.5364 0.4781 �0.1286 �0.0369 0.0548 6.93
4 0.4764 0.5797 �0.1107 �0.0385 0.0554 7.03
5 0.4333 0.6477 �0.0967 �0.0376 0.0597 7.10
6 0.4003 0.6965 �0.0858 �0.0359 0.0649 7.16
7 0.3741 0.7331 �0.0771 �0.0339 0.0710 7.22
8 0.3525 0.7617 �0.0700 �0.0320 0.0761 7.26
9 0.3345 0.7847 �0.0640 �0.0302 0.0808 7.30

10 0.3190 0.8035 �0.0591 �0.0285 0.0848 7.34
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coordinates obtained from Eq. (5) corresponding tozj. In Eq. (6) the
positive power terms define analytic function on the plate bound-
ary while the negative power terms along with the logarithmic
terms define analytic function on the hole boundary. For the
traction free condition of the hole, the logarithmic terms are
dropped.

2.3. Boundary conditions

Forces acting on the boundary of the plate in X and Y direction
can be written in terms of complex stress functions as [19]

7Fx ¼ 2Re
X2
j ¼ 1

μj ϕjðζjÞ�ϕjðζ0j Þ
� �

;

8Fy ¼ 2Re
X2
j ¼ 1

ϕjðζjÞ�ϕjðζ0j Þ
� �

; ð7Þ

where, ζ0j is the mapped coordinate of the reference point on the
boundary. Substituting Eq. (6) in to Eq. (7) and rearranging the
terms
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The left hand side of Eq. (8) are the applied force on plate
boundary. Fxand Fy can be written as Fx ¼ sxðy�y0Þ;
Fy ¼ syðx�x0Þ, where, x and y are the coordinates of respective

collocation points while x0 and y0 are coordinates of reference
point on the boundary, sxand sycan be set as follows [4]:

sx ¼ σ

2
λþ1ð Þ�Re λ�1ð Þe2iγ

� �h i
;

sy ¼
σ

2
λþ1ð ÞþRe λ�1ð Þe2iγ

� �h i
; ð9Þ

where σ is applied loading on the plate boundary, λ is the loading
factor which can be set to 0 or 1 for uniaxial or equi-biaxial
loading respectively and γ is load angle with respect to positive
X axis.

3. Solution methodology

To obtain the stress components in the finite plate with
rectangular hole, N1 number of collocation points on plate bound-
ary and N2 numbers of collocation points on the hole boundary are
generated in z-plane. Each collocation point of z-plane is mapped
to the respective point in ζ- plane by using mapping function (Eq.
(5)). Imposing the boundary conditions (Eq. (8)) on each colloca-
tion point 2 N (N¼N1þN2) number of boundary equations are
generated. These equations are solved simultaneously to deter-
mine the constants of the series. If the series in stress functions are

Fig. 2. Convergence of the results. Fig. 3. Stress distribution around rectangular hole (a) Present method, (b) ANSYS.
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truncated to a finite number M, total 4M number of unknowns are
to be determined from 2N number of boundary equations.

The need of large number of collocation points to define the
boundaries accurately results in overdetermined system of equa-
tions i.e. 2N»4M. This overdetermined system of Eq. ((10)) is solved
using the least square method.

P½ �ð2N�4MÞ X½ �ð4M�1Þ ¼ F½ �ð2N�1Þ; ð10Þ

where [P] is the matrix of coefficients, [X] is the vector of
unknowns and [F] is the known vector of boundary force.

An iterative process of increasing the number of terms in series
up to some finite number is employed till the convergence is
achieved. Once the constants of the series stress functions are
known, the stress components can be evaluated using Eq. (1). The
stresses in the polar coordinate are determined using stress
transformation.

4. Results and discussion

The mathematical formulation and solution methodology is
presented in the previous section. Based on the formulation, a
computer program is prepared to obtain the stress distribution
around rectangular hole in a finite anisotropic plate. The loading
parameters (σ; λand γ), material properties (E1, E2, G12 and ν12),
stacking sequence, plate size (L and H) and hole geometry (n; β; α)
are input to the program. Fig. 1(a) shows the geometry of finite
plate with rectangular hole and Fig. 1(b) shows the hole with
different side ratios and orientations. For 01 orientation, the longer
side (D) of the rectangle is parallel to X axis while it is parallel to Y
axis for 901 orientation. The materials considered here are Gra-
phite/Epoxy (E1¼ 182 GPa, E2¼10.3 GPa, G12¼7.17 GPa, ν12¼0.28),
Glass/Epoxy (E1¼47.4 GPa, E2¼16.2 GPa, G12¼7 GPa, ν12¼0.26),
Plywood (E1¼11.79 GPa, E2¼5.89 GPa, G12¼0.69 GPa, ν12¼0.071),
Boron/Epoxy (E1¼282.77 GPa, E2¼23.79 GPa, G12¼10.35 GPa,
ν12¼0.27) and Isotropic steel(E¼205 GPa, G¼80 GPa, ν¼0.26).

The representation of the stress functions in terms of infinite
power series needs the checking of convergence to produce
accurate results. The convergence of series is affected by number
of collocation points, plate size, hole geometry and material
properties. To check the convergence of the series, an iterative
process of increasing the number of terms in the series stress
functions is employed and the stress concentration around the
hole is evaluated for each iteration. Fig. 2(a) shows the conver-
gence of the stress concentration around rectangular hole with D/
d¼2 in the finite (L¼H¼10) plate of Glass/Epoxy[0], Graphite/
Epoxy[0], Boron/Epoxy[0] and isotropic material subjected to
uniaxial Y loading. The convergence for the different plate size is
shown in Fig. 2(b) for Glass/Epoxy[0/90]s laminated plate sub-
jected to uniaxial Y loading. Fig. 2(c) shows the convergence of
results in the laminated plate of size L¼H¼10 subjected to
uniaxial load. The good convergence of the results is achieved.

To validate the results obtained through present method, a
comparison with the finite element solution (ANSYS) is shown in
Fig. 3 and Fig. 4. The maximum normalized stress around the
rectangular hole (D/d¼3.0) in finite (L¼H¼10) Glass/Epoxy [0]
plate is 4.016 and 3.746 respectively through the present method
(Fig. 3(a)) and ANSYS (Fig. 3(b)) for uniaxial tensile load. The
maximum normalized stress around the square hole (D/d¼1.0) in
finite (L¼H¼10) isotropic plate is 4.149 and 4.237 respectively
through the present method (Fig. 4(a)) and ANSYS (Fig. 4(b)) for
uniaxial tensile load. In Finite element model PLANE182 and
PLANE42 elements are used for orthotropic plate and isotropic
plate, respectively. The exact geometry of the plate with hole is

produced in ANSYS by exporting the coordinates of key-points
through a computer program. The results obtained through pre-
sent method are in close agreement with that of the finite element
solutions.

The stress concentration around rectangular hole of different
side ratios are obtained for the finite plate of Glass/Epoxy[0],
Glass/Epoxy[90], Glass/Epoxy[0/90]s, Graphite/Epoxy[0/90]s and
Graphite/Epoxy[04/745/902]s subjected to uniaxial load as shown
in Table 2. It is observed from Table 2 that for a given plate size, the
stress concentration increases as the side ratio increases (for D/
dZ1). The increase in side ratio produces the narrow and
elongated rectangle that raises the stress concentration. Addition-
ally, the narrow and elongated rectangular hole has vertices closer
to the plate boundary that makes the stress concentration more
severe.

Fig. 4. Stress distribution around square hole (a) Present method, (b) ANSYS.

M.M Chauhan, D.S Sharma / International Journal of Mechanical Sciences 101-102 (2015) 272–279 275



Table 2
Maxðσθ=σÞaround centrally located rectangular hole in square plate (L¼H).

L D/d

1 2 3 4 5 6 7 8 9 10

Glass/Epoxy [0] λ¼ 0; γ ¼ 901α¼ 01

5 4.24 4.78 5.13 5.60 6.51
7.94 9.02 10.47 11.68 12.73

6 3.96 4.40 4.66 5.52 5.96
7.01 8.04 9.59 10.30 11.37

7 3.84 4.19 4.35 4.72 5.48
6.60 7.61 8.71 9.69 10.56

8 3.76 4.06 4.19 4.52 5.21
6.18 7.09 8.12 9.30 10.13

9 3.71 4.00 4.08 4.38 5.07
5.92 6.84 7.87 8.99 9.77

10 3.69 3.96 4.02 4.28 4.90
5.74 6.88 7.61 8.51 9.57

100 3.59 3.86 3.97 4.24 4.78
5.59 6.41 7.23 8.03 8.86

Infinite 3.83 3.91 4.03 4.28 4.85
5.66 6.48 7.30 8.11 8.91

Glass/Epoxy [90] λ¼ 0; γ ¼ 901α¼ 01

6 4.72 6.31 7.23 9.02 11.38
13.70 16.18 18.70 21.30 23.86

8 4.52 5.82 6.61 8.34 9.93
11.53 13.47 15.31 17.35 19.22

10 4.33 6.04 6.76 8.15 9.49
11.17 12.79 14.38 15.86 17.51

100 3.79 4.41 4.93 6.09 7.50
8.90 10.30 11.70 13.08 14.46

Infinite 4.82 4.82 5.06 6.16 7.57
8.97 10.38 11.76 13.15 14.53

Glass/Epoxy [0/90]s λ¼ 0; γ ¼ 901 α¼ 01

6 4.31 5.22 5.66 6.79
8.32 9.95 11.61 13.23 14.88 16.52

8 4.01 4.93 5.38 6.22
7.59 9.05 10.22 11.73 12.96 14.46

10 3.79 4.78 5.20 5.96
7.21 8.60 9.71 11.12 12.26 13.44

100 3.54 4.02 4.34 5.09
6.23 7.37 8.51 9.63 10.75 11.86

Infinite 3.51 4.02 4.40 5.17
6.31 7.44 8.57 9.69 10.81 11.93
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Table 2 also shows the effect of plate size on the stress
concentration around rectangular hole in finite plate subjected to
uniaxial load. As the plate size increases (keeping hole size
constant), the stress concentration decreases and approaches to
the values of infinite plate. The results for the infinite plate are
produced based on the formulation proposed by Ukadgaonker and
Rao [3] for the comparison purpose.

The stress concentration is affected by anisotropy of the
material. The anisotropy of the composite laminates is governed
by fiber orientation and stacking sequences. Fig. 5 shows the effect
of the stacking sequence on the stress concentration around
rectangular hole of D/d¼3 in Graphite/Epoxy plate (L¼H¼10)
subjected to uniaxial Y loading. The different stacking sequences
considered are [08]s, [04/904]s, [04/745/902]s, [04/745]s, [908]s,
[02/745/904]s and [904/745]s. The maximum stress concentra-
tion is observed for [908]s while the minimum is observed for [08]s
and [04/745]s. It can be stated that the addition of 745 laminae
is advantageous.

Apart from the material anisotropy and plate size, the stress
distribution around the hole is significantly affected by the hole
geometry. Hole geometry is governed by parameters of mapping
function β; αandnas explained in Eq. (2). The stress concentration
around rectangular hole of different side ratios are shown in
Table 3 for uniaxial and equi-biaxial loading in Glass/Epoxy[0/
90]s, Graphite/Epoxy[0/90]s, Glass/Epoxy[0] and Isotropic finite
plate (L¼10). For the given hole geometry, the stress concentration
for λ¼ 0; γ ¼ 01; α¼ 01 and λ¼ 0; γ ¼ 901; α¼ 901 matches clo-
sely in isotropic material while it deviates for laminates due to
anisotropy. The stress concentration is higher under equi-biaxial
loading compared to uniaxial load. The least stress concentration
is observed when longer side of rectangle (D), fiber orientation and
applied load are aligned in same direction, for instant,
α¼ 0o; λ¼ 0; γ ¼ 01 with 00 fiber lamina. It is also observed that
the stress concentration increases with increasing the side ratio
when the loading is applied normal to the longer side (D) of the
hole i.e. for α¼ 0o; λ¼ 0; γ ¼ 90oand α¼ 901; λ¼ 0; γ ¼ 01.

By increasing the number of terms in the mapping function,
corner radius decreases. To study the effect of corner radius on
stress concentration, the stress distribution around centrally
located rectangular hole (D/d¼2) with different corner radius
are obtained as shown in Fig. 6 for Glass/Epoxy plate (L¼H¼10)
subjected to uniaxial load. The sharp corners of the hole exhibits
high stress concentration.

The location of vertex with respect to plate boundary has
significant effect on the stress concentration around hole in finite
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Fig. 5. Effect of stacking sequence.
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plate. To study this effect, the vertex location is altered by two
different ways, (a) by changing the orientation of the hole about its
center i.e. by varying angle α and (b) by changing the location of
hole center keeping orientation constant i.e. by varying l and h.

Fig. 6. Effect of corner radius (ρ)

Table 3
Max ðσθ=σÞ around rectangular hole in square plate (L¼10).

D=d α Glass/Epoxy [0/90]s Glass/Epoxy [04/745/902]s Glass/Epoxy [0] Isotropic

λ¼ 0;
γ ¼ 01

λ¼ 0;
γ ¼ 90o

λ¼ 1;
γ ¼ 01

λ¼ 0;
γ ¼ 01

λ¼ 0;
γ ¼ 90o

λ¼ 1;
γ ¼ 01

λ¼ 0;
γ ¼ 01

λ¼ 0;
γ ¼ 90o

λ¼ 1;
γ ¼ 01

λ¼ 0;
γ ¼ 01

λ¼ 0;
γ ¼ 90o

λ¼ 1;
γ ¼ 01

1 01 4.09 3.79 5.28 3.76 3.72 5.66 4.23 3.69 5.95 3.84 3.84 6.21
2 01 2.69 4.78 4.96 2.75 4.18 5.12 2.95 3.98 5.02 2.82 4.25 5.60
3 01 2.03 5.20 4.80 2.03 4.43 4.66 2.16 4.02 4.40 2.12 4.47 5.03
4 01 1.63 5.96 5.02 1.63 4.87 4.58 1.73 4.29 4.20 1.69 4.88 4.85
5 01 1.35 7.21 6.08 1.36 5.77 4.96 1.48 4.91 4.43 1.40 5.59 5.02
6 01 1.16 8.60 7.47 1.17 6.82 5.90 1.28 5.74 5.09 1.20 6.62 5.62
7 01 1.11 9.71 8.60 1.06 7.86 6.94 1.20 6.88 6.20 1.05 7.68 6.64
8 01 1.12 11.12 10.00 1.05 8.93 8.01 1.14 7.61 6.96 1.05 8.73 7.69
9 01 1.11 12.26 11.15 1.05 9.95 9.02 1.13 8.50 7.86 1.05 9.79 8.74
10 01 1.10 13.44 12.34 1.04 11.07 10.15 1.14 9.56 8.90 1.05 10.84 9.79
10 901 13.42 1.10 12.32 12.80 1.22 11.58 17.44 1.88 15.56 10.97 1.08 9.90
9 901 12.14 1.11 11.03 11.55 1.21 10.34 15.83 1.88 13.95 9.90 1.07 8.83
8 901 10.92 1.11 9.81 10.30 1.21 9.10 14.19 1.87 12.31 8.83 1.07 7.77
7 901 9.65 1.12 8.53 9.07 1.20 7.86 12.57 1.86 10.71 7.76 1.06 6.70
6 901 8.41 1.17 7.29 7.83 1.20 6.63 10.99 1.85 9.14 6.69 1.20 5.66
5 901 7.28 1.36 6.15 6.60 1.36 5.43 9.43 1.84 7.59 5.64 1.40 5.04
4 901 6.06 1.62 5.15 5.47 1.63 4.85 7.86 1.82 6.12 4.91 1.69 4.86
3 901 5.34 2.02 4.91 4.80 2.04 4.84 6.58 2.08 5.66 4.49 2.12 5.03
2 901 4.70 2.77 4.87 4.39 2.73 5.20 5.98 2.75 5.93 4.26 2.83 5.61
1 901 3.97 3.82 5.27 3.76 3.72 5.66 4.23 3.68 5.93 3.84 3.84 6.21

Table 4
Effect of hole orientation angle (α) on Maxðσθ=σÞ
ðλ¼ 0; γ ¼ 01 ; L¼H¼ 10; l¼ h¼ L=2; D=d¼ 1Þ

α Isotropic Glass/Epoxy[0] Glass/Epoxy[90] Glass/epoxy[0/90]s

01 3.84 4.23 3.80 4.09
51 2.30 9.62 4.90 7.19
101 2.92 15.80 7.60 10.14
151 3.02 18.44 10.85 12.85
201 2.69 20.83 6.68 15.23
251 3.29 22.77 16.94 17.37
301 4.87 21.57 10.89 19.88
351 5.88 16.80 9.54 21.81
401 4.79 16.34 8.54 23.10
451 8.91 13.49 7.61 23.70
501 4.95 16.51 8.36 23.59
551 6.06 16.99 9.39 22.79
601 5.09 21.87 10.89 21.32
651 3.40 22.89 17.06 19.22
701 2.77 19.20 5.82 16.55
751 3.38 18.38 9.33 13.39
801 2.99 15.11 7.19 9.85
851 2.36 9.86 4.72 6.03
901 3.84 4.23 3.94 3.79

Fig. 7. Effect of hole location.
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Table 4 shows the effect of α(for case (a)) on stress concentra-
tion around square hole (D/d¼1) in finite plate (L¼H¼10) sub-
jected to uniaxial load. The maximum stress concentration for
isotropic plate and Glass/Epoxy[0/90]s is observed at 451 rotation
while for Glass/Epoxy[0] and Glass/Epoxy[90] plate, the maximum
stress concentration is observed at 251 and 651.

For case (b), to change the location of the hole with respect to
plate boundary, the x and y coordinates of hole center with respect
to the center of plate are defined as lx ¼ l�ðL=2Þ and hy ¼ h�ðH=2Þ
respectively and are varied (by varying land h) to obtain various
positions of the hole in a finite plate. For each hole location in
Glass/Epoxy [0] plate, maximum normalized stress is derived and
a surface plot is obtained for D/d¼5 with 01 and 901 orientation as
shown in Fig. 7(a) and (b) respectively. The stress concentration is
higher when the vertices of the rectangular hole is near to the
plate boundary. Similar to this a family of contours for different
geometry of plate and hole can be obtained for the use of
estimating the stress concentration.

5. Conclusions

A generalized methodology is presented to obtain the stress
functions for finite composite plate with rectangular hole using
complex variable approach in conjunction with the boundary
collocation method. The solution can be used as ready reference
to the designers for estimating the stress concentration around the
rectangular hole. The solution is also useful to predict the effect of
material properties, stacking sequence, hole geometry, plate size
and loading conditions on the stress distribution around rectan-
gular hole. The method is capable to produce the satisfactory
solution for infinite plate by considering the large plate size. The
solution of isotropic plate can also be obtained by considering
suitable material properties. By changing the constants of mapping
function, the solution can be applied to other shapes of
cutouts also.

References

[1] Savin GN. Stress concentration around holes. New York: Pergamon Press;
1971.

[2] Lekhnitskii SG. Anisotropic plates. New York: Gordon and Breach Science
Publisher; 1968.

[3] Ukadgaonker VG, Rao. DKN. A general solution for stress distribution around
holes in symmetric laminates under in-plane loading. Compos Struct
2000;49:339–54.

[4] Rao DKN, Babu MR, Reddy KRN, Sunil D. Stress around square and rectangular
cutouts in symmetric laminates. Compos Struct 2010;92(12):2845–59.

[5] Sharma DS. Stress distribution around polygonal holes. Int J Mech Sci.
2012;65:115–24.

[6] Sharma DS. Moment distribution around polygonal holes in infinite plate. Int J
Mech Sci 2014;78:177–82.

[7] Sharma DS. Stresses around polygonal hole in an infinite laminated composite
plate. Eur J Mech A/Solids 2015;54:44–52.

[8] Sharma DS, Patel NP, Trivedi RR. Optimum design of laminates containing an
elliptical hole. Int J Mech Sci 2014;85:76–87.

[9] Sharma DS, Dave JM. Stress intensity factors for hypocycloidal hole with cusp
in infinite anisotropic plate. Theor Appl Fract Mech 2015;75:44–52.

[10] Patel NP, Sharma DS. Bending of composite plate weakened by square hole. Int
J Mech Sci 2015;94-95:131–9.

[11] Rezaeepazhand J, Jafari M. Stress concentration in metallic plates with special
shaped cutout. Int J Mech Sci 2010;52:96–102.

[12] Batista M. On the stress concentration around a hole in an infinite plate
subject to a uniform load at infinity. Int J Mech Sci 2011;53:254–61.

[13] Yang Y, Liu J, Cai C. Analytical solutions to stress concentration problem in
plates containing rectangular hole under biaxial tensions. Acta Mech Solida
Sin 2008;21:411–9.

[14] Muskhelishvili NI. Some Basic Problem of Mathematical Theory of Elasticity.
The Netherland: P Noordhoof Ltd; 1962.

[15] Ogonowski JM. Analytical study of finite geometry plates with stress concen-
trations. In: Proceedings of the AIAA/ASME/ASCE/AHS 21st SDM conference,
Washington; 1980.

[16] Newman JC An improved method of collocation for the stress analysis of
cracked plates with various shaped boundaries. Technical Note no. D-6376,
NASA; 1971.

[17] Lin CC, Ko CC. Stress and strength analysis of finite composite laminate with
elliptical hole. J Comput Mat 1988;22:373–85.

[18] Woo CW, LWS Chan. Boundary collocation method for analyzing perforated
plate problem. Eng Fract Mech 1992;43(5):757–68.

[19] Madenci E, Ileri L, Kudva JN. Analysis of finite composite laminates with holes.
Int J Solids Struct 1993;30(6):825–34.

[20] Xiwu XW, Liangxin S, Xuqi F. Stress analysis of finite composite laminates
weakened by multiple elliptical holes. Int J Solids Struct 1995;32(20):3001–14.

[21] Xu XW, Yue TM, Man HC. Stress analysis of finite composite laminate with
multiple loaded holes. Int J Solids Struct 1999;36:919–31.

[22] Zheng X, Xu X. Stress analysis of finite composite laminates with elliptical
inclusion. Comput Struct 1999;70:357–61.

[23] Pan Z, Cheng Y, Liu J. Stress analysis of a finite plate with a rectangular hole
subjected to uniaxial tension using modified stress functions. Int J Mech Sci
2013;75:265–77.

M.M Chauhan, D.S Sharma / International Journal of Mechanical Sciences 101-102 (2015) 272–279 279

http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref1
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref1
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref2
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref2
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref3
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref3
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref3
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref4
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref4
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref5
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref5
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref6
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref6
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref7
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref7
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref8
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref8
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref9
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref9
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref10
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref10
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref11
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref11
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref12
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref12
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref13
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref13
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref13
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref14
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref14
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref15
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref15
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref16
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref16
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref17
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref17
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref18
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref18
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref19
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref19
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref20
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref20
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref21
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref21
http://refhub.elsevier.com/S0020-7403(15)00286-6/sbref21

	Stresses in finite anisotropic plate weakened by rectangular hole
	Introduction
	Analytical formulation
	Mapping function
	Stress functions
	Boundary conditions

	Solution methodology
	Results and discussion
	Conclusions
	References




