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Abstract--In this paper, a general solution for stresses around 

elliptical and oval shaped hole in finite laminated plate is 

presented. The plate is subjected to in-plane loading and stress 

functions are obtained using Muskhelishvili’s complex variable 

approach. The complex stress functions are represented in terms 

of Laurent series and constants of the series are derived using 

boundary collocation method. Effect of plate size, hole geometry, 

material properties, hole location and loading condition on stress 

concentration is presented. The results obtained through present 

method are compared with finite element solution and with the 

literature.  

I. INTRODUCTION  

The laminated composite plates are widely used in many 
engineering applications nowadays. Different shapes of cut-
outs are purposefully made in the plate for the necessity of 
service. Under the loading condition these cut-outs exhibit 
high stress concentration. Many researchers like Savin [1], 
Lekhnitskii [2], Ukadgaonker & Rao [3], Sharma [4]-[6], Patel 
and Sharma [7] etc. have attempted the problem of finding 
stress concentration around different shapes of holes in 
isotropic/ anisotropic plate subjected to various loading 
conditions using Muskhelishvili’s [8] complex variable 
approach. All these solutions are applicable to infinite plates 
only.  

For the finite plate, Ogonowski [9], Madenci et al [10], Xu 
et al [11], Pan et al [12], Chauhan and Sharma [13] and few 
more have presented the solutions for stresses around circular, 
elliptical or rectangular hole.  

The attempt is made here to present the generalized 
solution for stress concentration around elliptical/ oval shaped 
hole in finite anisotropic plate subjected to in-plane loading. 
The complex variable approach in conjunction with boundary 
collocation method is used to derive the stress functions. The 
influence of plate size, material properties, fiber orientation, 
hole geometry, hole location and loading angle on stress 
concentration is also presented. The results obtained through 
present method are compared with finite element solution and 
the literature.  

II. ANALYTICAL FORMULATION 

For an anisotropic thin plate, the stress components are 
represented in terms of complex stress functions as, 
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where x and y  are normal stresses in x and y direction, 

xy  is the shear stress in xy  plane,  jj z  are complex stress 

functions [8],  jj z'  is the first derivatives of complex stress 

function, yxz jj   define the point on jz  plane, j are 

constants of anisotropy. Constants of anisotropy ( j ) are the 

roots of characteristics equation obtained by applying 
generalized Hooke’s law, compatibility conditions and Airy’s 
stress function to anisotropic plate [2].  

A. Mapping Function 

Elliptical or Oval shaped hole in z-plane is mapped 
conformally on to the unit circle in  -plane by a mapping 

function, 
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where  ie , C and 
k

m  are the constants that define 

the different geometry of the hole as shown in Table 1.  

TABLE I.  CONSTANTS OF MAPPING FUNCTION 

Hole Constants 

Ellipse 

1C ; 1k ; 
ie

ba

ba
m 2

1



  

Oval cC 1 ; 3,1k ;   iecm 2

1
1 ; 

 iem 4

3
2  

where a  and b  are semi major and minor axis of ellipse, 

9c and   is the constant. Here   is the hole orientation 

angle.  
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Introducing the constants of anisotropy, (2) takes the form, 
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where 
jj ia 1  and 

jj ib 1 . The mapping 

function (3) map the elliptical/ oval shape hole on to the unit 
circular hole around which the analytic complex function is 
easy to obtain.  

B. Stress function 

The complex stress functions for the finite plate with hole 

can be represented in terms of Laurent series [9] as, 
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where jnA and jnB are the constants of series, j  are the 

mapped coordinates of corresponding jz  point obtained by 

solving (3). The constants of the series stress functions are 
obtained from the boundary conditions. 

C. Boundary condition 

A finite anisotropic plate with hole is subjected to in-plane 
loading on the boundary of the plate and the hole is considered 
traction free. The forces on the boundary of the plate can be 
represented in terms of complex stress function [10] as, 
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where j are the mapped coordinate obtained by solving 

(3),  0yyF nxx   and  0xxF nyy   here 0x and 0y  are the 

coordinates of reference point while x and y are the coordinates 
of collocation point at which the forces are evaluated. Upper 
and lower signs in (5) correspond to the outer and inner 
boundary respectively. nx  and ny  are the applied loading in 

X and Y direction respectively and can be obtained as, 
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where   is applied load per unit length,   is loading factor 

can be set 0 or 1 for uniaxial and equi-biaxial loading 
respectively and  is loading angle.  

III. SOLUTION METHODOLOGY 

A boundary collocation method is employed in the 

present solution to derive the constants of the series stress 

function. The solution begins with the generation of P1 and P2 

number of collocation points on the boundary of finite plate 

and hole respectively in z-plane. Using mapping function (3), 

the corresponding mapped coordinates j  are obtained for 

each collocation points. Substituting j  and (4) into (5), total 

2P (P=P1+P2) number of boundary equations are obtained in 

terms of unknown constants ( jnA , jnB ) of series stress 

functions. If the infinite series of the stress functions (4) are 

truncated to a finite number N, total 4N number of unknowns 

are required to be obtained from 2P boundary equations. In 

general the large number of collocations points are selected to 

define the boundary accurately and that results in the 

overdetermined system of equations (i.e. 2P>>4N). The 

overdetermined system of equations is solved using least 

square method. Once the unknowns of the series are known, 

the stress components can be derived using (1). The stress 

transformation is used to derive the stress components in polar 

coordinates.  

 

IV. RESULTS AND DISCUSSION 

A computer programme is prepared based on the analytical 
solution presented in previous section. The loading condition, 
material properties, hole geometry and plate size are input to 
the programme. Fig. 1(a) shows the geometrical parameters of 
plate and hole. An iterative process of increasing the number 
of terms in stress functions is employed to achieve the 
convergence (Refer Fig. 1(b)). The materials considered here 
are as shown in Table 2.  

TABLE II.  MATERIAL PROPERTIES 

Material E1 (GPa) E2 (GPa) G12 (GPa) 
12  

Graphite/Epoxy 182 10.3 7.17 0.28 

Glass/Epoxy 47.4 16.2 7 0.26 

Plywood 11.79 5.89 0.69 0.071 

Boron/Epoxy 282.77 23.79 10.35 0.27 

Isotropic steel E = 205 G = 80  =0.26 

  

(a) 

 

(b) 

Figure 1.  (a) Geometry of the plate with hole (b) Convergence  

Table 3 shows the comparison of stress concentration 
factors obtained through present method for large dimension 
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of plate (L = 100) with that of results of infinite plate available 
in the literature for uniaxial Y loading. The results are in good 
agreement.  

TABLE III.  COMPARISON WITH LITERATURE (MAX(  / )) 

Hole geometry Material  Present method Literature 

Ellipse (a/b = 2) Glass/Epoxy 4.641 (L = 100) 4.70 [6] 

Oval (  = -0.04) Plywood  6.812 (L = 100) 6.39 [2] 

Oval (  =-0.04) Isotropic  4.490 (L = 100) 4.44 [2] 

 
Fig. 2 shows the comparison of the stress distribution 

around elliptical and oval shaped hole in finite plate subjected 
to unit uniaxial Y loading obtained through present method 
with that of finite element solution through ANSYS. The 
maximum stress around elliptical hole with a/b = 2 in 
Glass/Epoxy plate (L = 8) is 5.408 by present method and 
5.566 by ANSYS. For the oval shape (   = -0.03) hole in 

Plywood plate (L = 10), maximum stress is 8.424 and 8.451 
by present method and ANSYS respectively. The results 
obtained by present method are closely agree with that of finite 
element solution.  

Fig. 3 shows the effect of plate size on the stress 
concentration around centrally located elliptical or oval hole in 
different materials. It is observed that as the plate size 
increases, the stress concentration decreases and it approaches 
the values of infinite plate. It can be evident from Fig. 3 that 
the present method is capable to produce the satisfactory 
results of infinite plate also by considering large dimension of 
the plate. 

 

Present Method 

 
 

ANSYS 

 

 
 

 

Figure 2.  Comparison with finite element solution 

 

 
(a) 

 
(b) 

Figure 3.  Effect of plate size (a) Elliptical hole (a/b = 2), (b) Oval hole 

( =-0.04) 

Fig. 4 shows the stress distribution around elliptical hole 
(a/b = 2) and oval shaped hole (  = -0.04) in finite plate (L = 

10) of different materials subjected to uniaxial Y loading. The 
highest stress concentration is observed for Plywood plate 
while the Graphite/Epoxy plate shows high compressive stress 
due to their different material properties and anisotropy.  

 
(a) 
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(b) 

Figure 4.  Effect of material properties (a) Elliptical hole (a/b = 2), (b) 

Oval hole ( =-0.04) 

The effect of different loading conditions can be observed 
from Table 4. The maximum stress concentration is observed 
for uniaxial Y loading while the minimum is observed for 
uniaxial X loading. Table 4 also shows the effect of stacking 
sequence on stress concentration around hole. The ply with 
[90] shows the high stress concentration. Addition of 00 ply 
and 450 ply decreases the stress concentration for uniaxial Y 
loading.   

TABLE IV.  STRESS CONCENTRATION AROUND HOLE IN GLASS/EPOXY 

FINITE PLATE (L = 10) 

 Ellipse (a/b = 1.5) Oval ( = -0.03) 

Uni-X Uni-Y Equi-bi Uni-X Uni-Y Equi-bi 

[0] 3.342 4.096 3.351 2.162 6.323 5.630 

[90] 2.380 6.749 4.489 2.189 11.511 9.326 

[0/90]s 2.931 5.439 4.128 1.857 8.707 7.506 

[0/45/90]s 2.933 4.990 5.434 3.265 7.248 8.319 

 
The effect of load angle on stress concentration is shown 

in Fig. 5 for elliptical and oval shaped hole in Glass/Epoxy[0], 
Graphite/Epoxy[0] and Isotropic finite plate (L = 10). The 
minimum stress concentration is observed for load angle 
ranges from 300 to 400 for different materials.  

The geometry of the hole has significant effect on stress 
concentration around hole as shown in Fig. 6. For the elliptical 
hole the ratio of semi major axis to semi minor axis (a/b) is 
varied and the maximum stress concentration around hole is 
plotted against ratio ((a-b)/(a+b)) as shown in Fig. 6(a). For 
((a-b)/(a+b)) = 0, the hole is circular and as the ratio ((a-
b)/(a+b)) approaches 1, the hole will become crack and shows 
very high stress concentration. For the oval hole, the parameter 
  has small negative values but as its value increases and 

approaches zero, the hole will become crack and exhibit very 
high stress concentration as shown in Fig. 6(b). 

 
(a) 

 
(b) 

Figure 5.  Effect of load angle (a) Elliptical hole, (b) Oval hole 

By varying the angle  , the hole can be orientated at 

different angle. The effect of hole orientation on stress 
concentration is shown in Fig. 7 for elliptical and oval hole in 
Isotropic plate (L = 10) subjected to uniaxial X loading. The 
maximum stress concentration is observed for 900 orientation.  

V. CONCLUSION 

A generalized solution to derive the stress distribution 
around elliptical/ oval shaped hole in finite anisotropic plate is 
carried out using complex variable approach in conjunction 
with boundary collocation method. The results are closely 
agree with literature and finite element solution. The present 
method is time efficient and capable to accommodate different 
geometries of plate boundary. The solution is capable to 
produce the results of infinite plate also by considering large 
plate dimension. The results of isotropic materials can also be 
obtained by selecting suitable material properties. The present 
method is suitable for parametric study also. The stress 
distribution around the hole is significantly influenced by plate 
size, material properties, stacking sequence, loading condition, 
hole geometry and hole orientation.  
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(a) 

 
(b) 

Figure 6.  Effect of hole geometry (a) Elliptical hole (b) Oval hole 

 

 
Figure 7.  Effect of hole orientation 
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